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Abstract Storing and retrieving time-related information are important, or even crit-
ical, tasks on many areas of Computer Science (CS) and in particular for Artificial
Intelligence (AI). The expressive power of temporal databases/query languages has
been studied from different perspectives, but the kind of temporal information they
are able to store and retrieve is not always conveniently addressed. Here we assess a
number of temporal query languages with respect to the modelling of time intervals,
interval relationships and states, which can be thought of as the building blocks to
represent and reason about a large and important class of historic information. To
survey the facilities and issues which are particular to certain temporal query lan-
guages not only gives an idea about how useful they can be in particular contexts,
but also gives an interesting insight in how these issues are, in many cases, ultimately
inherent to the database paradigm.

While in the area of AI declarative languages are usually thepreferred choice,
other areas of CS heavily rely on the extended relational paradigm. This paper, then,
will be concerned with the representation of historic information in two well known
temporal query languages:Templogin the context of temporal deductive databases,
andTSQL2in the context of temporal relational databases. We hope theresults high-
lighted here will increase cross-fertilisation between different communities. This ar-
ticle can be related to recent publications drawing the attention towards the different
approaches followed by the Databases and AI communities when using time-related
concepts.
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1 Introduction

Temporal databases has recently become an active research area in computer science
(Tansel et al 1993; Etzioni et al 1998; Morris and Khatib 1999; Goodwin and Trudel
2000; Bettini and Montanari 2001; Artale et al 2002; Reynolds and Sattar 2003)).
This kind of databases offers the possibility to associate time to data and to deal with
it in a way that non-temporal systems cannot handle, or in a much more convenient
way. For example, in a medical database it is useful to store information related to
the different stages a patient’s health goes through. A banking system requires to
store the time each transaction is done as well as expirationdates for its loans. A
public transportation system must keep track of departing and arriving times for each
unit. These are just a few from a plethora of contexts where dealing with time is
fundamental for the success of the system.

There exist multiple levels to consider temporal issues in databases (Snodgrass
and Ahn 1986). For example, database manager systems (DBMS)have traditionally
offered some support for what is termeduser time; this is usually represented with a
special data type (e.g.date) but it is handled just as any other non-temporal attribute.
For example, a company database may store the period in whichevery employee has
held a particular position, by using a tuple with attributessuch as the employee id, the
name of the position and two attributes denoting the start and end dates of the period
that position was held. However, in a conventional DBMS there are no primitives to
deal with this information in such a way temporal consistency is preserved (e.g. tuple
update or removal), neither are there primitives to conveniently perform complex
forms of temporal reasoning.Valid time databases consider associate each tuple a
validity period for that information (informally, the period in which the information
is regarded as valid in the “real world”).Transaction timedatabases keep track of
the time when information arrives to the database manager (also when it is deleted).
Bitemporal databases support both valid and transaction time. In this paper, we will
be concerned only with valid time.

The expressiveness of temporal database models and query languages has been
studied from different perspectives. For instance, (Bohlen et al 1996) discusses a rela-
tionship betweenTSQL2and Temporal Logic, (Toman and Niwinski 1996) describes
the class of first order queries that cannot be expressed in Temporal Logic, (Toman
1996) compares point-based vs. interval-based query languages, and (Baudinet et al
1993) surveys some languages regarding infinite temporal extensions. Other works
addressing expressiveness issues include (McKenzie and Snodgrass 1989; Tansel and
Tin 1998; Cobo and Augusto 1999). However, we believe that some important is-
sues remain overlooked. The formal characterisation of a query language’s expressive
power usually receives the focus of attention, but the kind of temporal information
that a query language is well suited to model and retrieve notalways can be inferred
directly from its expressive power, and language pragmatics often results poorly sur-
veyed. For instance, knowing that a pair of languages are as expressive as a particular
temporal logic does not always suffice to answer questions likeWhat kind of problems
each language is best suited to deal with?, Are both languages prepared to handle
the same problems?or Is similar information as easy to model and retrieve in one
language as it is in the other?. It is worth mentioning that query languages are not
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considered in isolation but related to a data model through their data manipulation
primitives.

This paper addresses the facilities provided by temporal query languages for
modelling time intervals, Allen’s interval relationshipsand states (Allen 1983, 1984;
Dowty 1986). These concepts are deeply related and are of paramount importance
in valid time databases. Firstly, states stand for a possible way in which facts can be
assigned temporal semantics. Briefly, facts are regarded asvalid during time intervals
according to point-based semantics (Jensen and Snodgrass 1996), which happens to
be the kind of information that is usually required to be stored in valid time databases.
Therefore the closer the query language expressions resemble states, the more natu-
ral it is to modelling temporal information. Finally, Allen’s interval relationships can
be thought of as powerful retrieval tools as they describe all possible relative loca-
tions (in time) between two intervals, and hence how a pair offacts may be located
on the time axis. In addition, these relationships naturally arise in a wide range of
application environments.

This paper, then, will be concerned with the representationof intervals, inter-
val relationships and states in two well known temporal query languages:Templog
(Abadi and Manna 1989) in the context of temporal deductive databases, andTSQL2
(Snodgrass 1995) in the context of temporal relational databases. We will also con-
trastTemplogwith Datalog1S (Chomicki 1990a), andTSQL2with TQuel(Snodgrass
1987). A comparison between these languages serves to complement existing sur-
veys, and helps in realising how subtle differences in expressive power, data repre-
sentation models or even the choice of predefined temporal operators impact on the
modelling of intervals, interval relationships and states.

From a wider perspective this work adds to previous contributions (Gómez and
Augusto 2000; Galton and Augusto 2002; Gómez and Augusto 2004) rasing aware-
ness in the Databases and AI communities about the potentialbenefits that consider-
ing the mutual approaches may bring to each other.

The paper is organised as follows. Section 2 describes a formalisation of time
intervals, interval relationships and states; and discusses the importance of these con-
cepts on revealing the value of temporal query languages from a user’s perspective.
At this respect,TemplogandTSQL2are analysed in sections 3 and 4, respectively.
Among other issues, a comparison betweenTemplogandDatalog1S is offered in sec-
tion 3.5. Similarly,TSQL2andTQuelare compared in section 4.5. Conclusions are
given in section 5.

2 Interval, Interval Relationships and States

This section defines intervals, interval relationships andstates in their most usual in-
terpretation, and their relevance in representing valid time information. In accordance
with the consensus glossaries presented in (Jensen et al 1998; Bettini et al 1998a), we
define atime domainas a couple〈T ,≤〉 whereT is a non-empty set oftime in-
stantsand≤ is a total order onT . Bounded and unbounded discrete-time models can
be defined over this domain. For instance, in models with initial time there exists a
distinctive instanto ∈ T such thato ≤ i for all i ∈ T .
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Definition 1 A time interval is a set of consecutive instants. A closed intervalI with
bounding instantsi−, i+ ∈ T , i− ≤ i+, is defined asI = [i−, i+] = {i ∈ T | i− ≤
i ≤ i+}.

Intervals can be thought as being one of the building blocks of valid time infor-
mation. Query languages that are well suited to handle intervals provide a compact
representation of temporal validity, i.e., an efficient wayof assigning temporal se-
mantics to facts. Later in this section we will see their relevance on defining states.

Example 1Intervals are handled inTSQL2(see details in section 4) through the
PERIOD predefined data type. For instance,PERIOD ’[2002, 2003]’.

Note, also, that our time domain is general enough to supportchrononsand
granules(Jensen et al 1998; Bettini et al 1998a). A chronon is defined as a non-
decomposable time interval of some fixed, minimum duration (which is typically set
by applications). Data models related to some query languages represent the time line
by a sequence of chronons, and granularities, e.g., days or years, are built by indexing
sets of consecutive chronons.

Interval relationshipswere proposed by Hamblin (Hamblin 1972) and later ex-
plored by Allen (Allen 1983, 1984) in the context of temporalreasoning, where inter-
vals are the temporal primitives and facts can be assigned tothem with such different
meanings as properties, processes and events. They can be defined overT as follows:

Definition 2 An interval relationshipis a predicate overI × I, whereI is the set of
all closed intervals overT . Let I = [i−, i+] andJ = [j−, j+] be two intervals, then
interval relationships are interpreted as follows (inverse relationships can be mod-
elled by swapping predicate arguments):

T |= before(I, J) iff T |= i+ < j−

T |= meets(I, J) iff T |= i+ = j−

T |= overlaps(I, J) iff T |= i− < j− < i+ < j+

T |= during(I, J) iff T |= j− < i− < i+ < j+

T |= starts(I, J) iff T |= i− = j− < i+ < j+

T |= finishes(I, J) iff T |= j− < i− < i+ = j+

T |= equals(I, J) iff T |= i− = j− < i+ = j+

Example 2TheTSQL2predefined functionPRECEDES, which can be used inWHERE-
clauses ofSELECT statements (see details in section 4), is semantically equivalent to
the interval relationshipbefore(). For instance, the following expression is true:

PERIOD ’[1999, 2000]’ PRECEDES PERIOD ’[2002, 2003]’

Interval relationships describe every possible way in which two intervals may
be positioned on the time axis, and by extension between a pair of facts if they are
assigned temporal validity over intervals. This completeness makes the relationship
set a sound vehicle to compare how conveniently temporal query languages retrieve
information.

Statescan be thought of as one of many possible ways in which information can
be assigned temporal semantics. They have been studied by areas such as Philosophy,
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Linguistics and Artificial Intelligence. For instance, they are considered one of the
classes in which human beings capture reality through language expressions, e.g., as
stative sentences(Dowty 1986); or, from other perspective, as a way in which facts
can be associated to time (Allen 1984; Galton 2005).

States may be regarded as statements which are considered true over time inter-
vals, calledvalidity intervals. For example, the sentenceJohn worked for the company
from 1990 to 1998denotes a state in which the factJohn works for the companyis
considered true over the interval than ranges from 1990 to 1998. Moreover, states
hold a distinctive property, usually known in the TDB an AI communities asdown-
ward hereditary(Allen 1984; Bettini et al 1998b); if a state holds over interval I,
then it also holds over any subinterval ofI. For example, thatJohn worked for the
company from 1990 to 1998implies thatJohn worked for the company from 1995 to
1997. States can be expressed by temporal databases if facts are assigned intervals ac-
cording topoint-based semantics(Jensen and Snodgrass 1996; Bettini et al 1998b); a
fact is true over a given interval if and only if it is true at every instant of that interval.
Formally, states can be defined as follows:

Definition 3 Let the pair〈D, T 〉 represent the structure of a given temporal query
languageL, whereD denotes the data model, i.e., a set of facts which are expressible
by the language, andT its temporal structure. In addition, letI denote the set of all
possible intervals overT . We will say thatstatescan be modelled inL if a mapping
S : D → 2I can be defined, such that for every pair(d, {I1, . . . , In}) ∈ S the factd
is considered valid over every instanti ∈ Ij , for all 1 ≤ j ≤ n.

Example 3The following tuple, extracted from aTSQL2valid time table (see details
in section 4), can be thought of as modelling the state “Ann Smith worked for the
company from 1990 to 1994, and then again from 1998 until 2002”. TSQL2regards
the information encoded by this tuple as valid during every year in{1990, . . . , 1994,
1998, . . . , 2002}.

NAME VALID TIME
Ann Smith {’[1990-1994]’ ∪ ’[1998-2002]’}

Information in temporal databases are very often required to be stored as states.
Query languages that can handle states are thus able to modela wide range of sit-
uations, which adds real value from the user’s perspective.In what follows we will
assess how some well known temporal query languages handle intervals, interval re-
lationships and states. Let us note that this paper will not deal with issues such as
the implication of open intervals in databases (Clifford etal 1997), relationships on
open-intervals (Freksa 1992) or indeterminacy of information (Dyreson and Snod-
grass 1998). While all of these aspects are certainly interesting, we believe their in-
clusion in this paper will make it exceed a reasonable length.

3 Intervals, Interval Relationships and States in Templog

This section is devoted to show how intervals, interval relationships and states are
supported byTemplog. This fact may seem surprising since Allen’s relationshipsand
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states are build over intervals, andTemplogdoes not provide them as a primitive
concept. However, we will see that under certain modelling assumptions intervals
can be implicitly represented if we relate them to the occurrence of certain context-
dependent events. In addition, the representation of states in Templogis made pos-
sible as the language assigns validity to predicates according to point-based seman-
tics. Therefore, we will see that Allen’s relationships canbe expressed by comparing
the interval bounding events by means of temporal logic operators such as3; and
that states can be represented as facts whose validity extends between two bounding
events, by means ofTemplog’s inference rules and recursion.

3.1 Language overview

Templog(Abadi and Manna 1989; Baudinet 1989, 1992) is a syntactic extension of
logic programming to linear-time temporal logic. Time is then isomorphic toN, i.e.,
linear, discrete, with initial time and unbounded future. In this language, predicates
may vary with time, but the time point they refer to is defined implicitly by temporal
operators rather by an explicit temporal argument.

The only temporal operators used inTemplogare f (next), which refers to the
next time instant,2 (always), which refers to the present and all the future time
instants, and3 (eventually), the dual of2, which refers to the present or to some
future time instant.

The abstract syntax forTemplogclauses is defined by the following grammar,
whereA stands for an atom;ε denotes an empty formula, “←” the logical implication
operator and a comma “,” in a body the conjunction operator.N stands for anext-
atom, that is, we will use fnA to denote f. . . f

︸ ︷︷ ︸

n times

A.

Body: B ::= ε|A|B1, B2| fB|3B

Initial Clause: IC ::= N ← B|2N ← B

Permanent Clause: PC ::= 2(N ← B)
Program Clause: O ::= IC|PC

Goal Clause: G ::=← B

Initial clausesdescribe statements that holds at the initial time;permanent clauses
express statements that hold at any time instant. Program and goal clauses are as-
sumed to be universally quantified, as in classical logic programming (Lloyd 1987).
EachTemplogprogram is a finite set of program clauses. Computation inTemplog
programs is based on a temporal logic resolution method, termed TSLD-resolution
(Abadi and Manna 1989; Baudinet 1995). Semantics for temporal logic formulas are
provided w.r.t. a temporal interpretationD that is an infinite sequenceD0, D1, . . .

of classical first-order interpretations (one classical interpretation for each time in-
stant). InTemplog, only predicates symbols have time-varying meanings; constants
and function symbols are assumed to be independent of time.Templogoperators are
interpreted as follows:

|=Di

fF iff |=Di+1
F

|=Di
2F iff for every j ∈ N, |=Di+j

F

|=Di
3F iff for somej ∈ N, |=Di+j

F
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start work(m1)
d start work(m2)
2( d2 stop work(m1) ← start work(m1))
2( d4 stop work(m2) ← start work(m2))
2( d2 start work(M) ← stop work(M))

Fig. 1 A simpleTemplogprogram.

A formulaF is satisfiable in a given interpretationD iff |=D0
F . A formula is valid

if it is satisfiable in all possible interpretations.
Templogcannot (naturally) deal with contexts where the use of explicit time ref-

erences, or database updates are the rule rather than the exception (Kowalski 1992).
Because of its roots in temporal logic,Templogis best suited to deductive databases
and, in general, applications where temporal reasoning andthe concise representation
of relative, possibly infinite information is required (e.g. periodic information). Thus,
our elaboration on how intervals, Allen’s relationships and states can be represented
in Templogwill take into account those contexts where the language would find a
more natural application.

Figure 1 shows aTemplogprogram where the alternating use of two machines,
m1 andm2, is represented. The program depicts a cycle wherem1 starts initially,m2
starts 1 time units after that,m1 works in periods of 2 time units (andm2 in periods
of 3 time units), and both machines idle for 2 time units between working periods.

3.2 Time intervals inTemplog

Since explicit temporal references are not supported byTemplog, we will assume that
intervals will be related to states, i.e. a certain fact which is considered valid on a
given period of time. Intervals, then, can be represented bya pair of predicates which
denote the occurrence of those events which bound the corresponding state. Because
the same bounding event may have multiple occurrences, these occurrences are also
used to uniquely identify a given interval. Thus, intervalscan be represented by a pair
of predicatesbegin(i) andend(i), wherei represents a list of attributes which
uniquely identify the interval in question, e.g. a state name, and a particular instance
number which is related to a specific occurrence of bounding events (a full character-
isation of states will be discussed later, in section 3.4). Notice that more convenient
representations may exist. Since, in general, this will depend on the problem being
modelled, we have proposed just a possible solution which might accommodate a
number of commonly found scenarios.

Figure 2 shows how the program of Figure 1 can be modified to represent those
intervals where each machine is operational. Such a state (working) is bounded by
the events corresponding to a machine starting and stopping. Correspondingly, the
predicatesstart work andstop work now feature an extra parameter (a natural
number) identifying the event occurrence. Notice that the program offers, indeed,
a concise representation of infinitely periodic intervals,e.g. that the machinem1 is
operational during[4k, 4k + 2], k ∈ N.
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start work(m1,1)
d start work(m2,1)
2( d2 stop work(m1,N) ← start work(m1,N))
2( d4 stop work(m2,N) ← start work(m2,N))
2( d2 start work(M,N+1) ← stop work(M,N))

2(begin(working,M,N) ← start work(M,N))
2(end(working,M,N) ← stop work(M,N))

Fig. 2 Representing time intervals inTemplog.

3.3 Modelling interval relationships

Since Allen’s relationships are defined in such a way that actual temporal spans be-
tween intervals are abstracted away,Templog’s modal operators provide a natural way
of representing the relative position between two intervals by comparing the bound-
ing events (see semantics of Allen’s relationships in def. 2). Notice that we use “3◦”
to denote “3 f”, which in turn represents the relational operator “<” (3 is reflexive)
between a pair of instants. Leti, j be the list of attributes which uniquely identify
intervalsI andJ , respectively. Intervals relationships can be modelled bypredicates
before, meets, etc., as shown below. Without loss of generality, we assumethat
these predicates are time-independent.

2 before(i,j)
← 3(end(i),3◦begin(j))

2 meets(i,j)
← 3(end(i),begin(j))

2 overlaps(i,j)
← 3(begin(i),3◦(begin(j),3◦(end(i),3◦end(j))))

2 during(i,j)
← 3(begin(j),3◦(begin(i),3◦(end(i),3◦end(j))))

2 starts(i,j)
← 3(begin(i),begin(j),3◦(end(i),3◦end(j)))

2 finishes(i,j)
← 3(begin(j),3◦(begin(i),3◦(end(i),end(j))))

2 equals(i,j)
← 3(begin(i),begin(j),3◦(end(i),end(j)))

Notice that these predicates are just templates, which haveto be adapted to par-
ticular contexts. For example, and following the example shown in Figure 2, suppose
that we want to check whether it is possible that machinem1 finishes its task be-
forem2 starts working on its own. This check could be done by asserting predicate
before/4, as shown in Figure 3, and querying the goal

← before(m1,N,m2,N).
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start work(m1,1)
d start work(m2,1)
2( d2 stop work(m1,N) ← start work(m1,N))
2( d4 stop work(m2,N) ← start work(m2,N))
2( d2 start work(M,N+1) ← stop work(M,N))
2(begin(working,M,N) ← start work(M,N))
2(end(working,M,N) ← stop work(M,N))

2 before(M1,N1,M2,N2) ← 3(end(working,M1,N1),
3◦begin(working,M2,N2))

Fig. 3 Representing interval relationships inTemplog.

start work(m1,1)
d start work(m2,1)
2( d2 stop work(m1,N) ← start work(m1,N))
2( d4 stop work(m2,N) ← start work(m2,N))
2( d2 start work(M,N+1) ← stop work(M,N))
2(begin(working,M,N) ← start work(M,N))
2(end(working,M,N) ← stop work(M,N))

2 (valid(working,M,N) ← begin(working,M,N))
2 ( d valid(working,M,N) ← valid(working,M,N),

3◦ end(working,M,N))
2 (state(working,M) ← valid(working,M,N))

Fig. 4 Representing states inTemplog.

3.4 Modelling states

States can be modelled inTemplogby a program where a) the state’s validity intervals
have been asserted, and b) a predicate denoting the state in question is made valid
at every point included in a validity interval. We have shown, already, that validity
intervals can be modelled by asserting a pair of predicatesbegin, end denoting the
interval’s bounding events. For example, Figure 4 shows howthe state of a machine
being operational (working) could be represented. Notice that the predicatevalid
is used to assert the validity ofstate at every point in time betweenbegin and
end.

3.5 Discussion

Templog and Datalog1S. The expressiveness of the function-free subset ofTemplog
is known to be equivalent to that ofDatalog1S (Chomicki 1990a), a minimal exten-
sion ofDatalog(Gallaire et al 1984; Grant and Minker 1992) (the subset of function-
free Horn-clause logic programs) where predicates are allowed to contain onetempo-
ral argument where a successor function can be applied. Consequently, bothTemplog
andDatalog1S have been proposed as suitable query languages for temporaldeduc-
tive databases (Baudinet et al 1993). However, the limitation of Datalog1S to allow
the successor function to be applied to at most one predicateargument severely limits
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start work(m1,0).
start work(m2,1).
start work(m3,0).
stop work(m3,5).
stop work(m1,T+2) :- start work(m1,T).
stop work(m2,T+4) :- start work(m2,T).
start work(M,T+2) :- stop work(M,T).

begin(working,M,T) :- start work(M,T).
end(working,M,T) :- stop work(M,T).

Fig. 5 The limits ofDatalog1S .

the modelling of intervals (and consequently, that of Allen’s relationships and states).
For example, Figure 5 shows aDatalog1S program similar to that of Figure 2, but
extended with a third machinem3 working just during the interval[0, 5]. Here, the
last argument in every predicate is assumed to be the temporal parameter. Notice
that predicatesbegin/3 andend/3 correctly represent the single working inter-
val for m3 ([0, 5]), but they cannot distinguish the working intervals form1 or m2
because a pair[begin, end] does not necessarily correspond to amatchingpair
[start work, stop work]. For example, they represent both[0, 2] and[0, 6], al-
though the proper intervals were meant to be[0, 2], [4, 6], . . . [4k, 4k + 2], k ∈ N.
Notice that[0, 6] is represented as a consequence of pairing the first occurrence of
start work at time0 and the second occurrence ofstop work at time6. This
problem is the result ofDatalog1S not being expressive enough to distinguish be-
tween different occurrences of the same bounding event, which inTemplogwas made
possible by adding an extra data parameter and a rule to increment it every time a new
occurrence was identified (see Figure 2).

However,Datalog1S is expressive enough to deal with settings where states are
not only assumed to be represented by a pair of bounding events, but also where mul-
tiple occurrences of the same event do not happen. If this is so, then the following
queries can be expressed inDatalog1S: a) whether the validity intervals correspond-
ing to two different states satisfy a given Allen’s relationship, b) whether a given state
is valid at a particular point in time, and c) whether a given state is valid at a particular
interval. All of these are recognition queries (i.e. they have yes/no answers). Gener-
ation queries are also possible (e.g. those which returns the set of states which hold
simultaneously at a particular point in time), but generation queries with infinite an-
swers require a more involved evaluation technique. This includes the generation of
a finite model both for the Herbrand model of the program in question, and for the
answer to the query (Baudinet et al 1993).

Figure 6 shows aDatalog1S program where the database is composed of 3 pairs
of tuples[start work/2, stop work/2] denoting the working intervals[0, 2],
[5, 9] and [7, 11], for the machinesm1, m2 andm3 respectively. The state of a ma-
chine being operational is represented by the predicateworking/2. This predicate
is assigned temporal validity by conjoining two auxiliary predicatesforward/2
andbackward/2, to represent those time points where a machine starts or has
started, and stopped or will stop (respectively). The remaining auxiliary predicates
support the definition ofbefore/2 andoverlaps/2, which in turn represent
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the corresponding Allen’s relationships between the working intervals of two ma-
chinesX andY. For example,before(X,Y) holds if Allen’s relationshipbefore(I,J)
holds, whereI andJ are the working intervals of machinesX andY, respectively. The
difficulty in expressing Allen’s relationships inDatalog1S (notice the definition of
overlaps/2) comes from the fact that the relation< between time points is not
directly available in the language. Thus, predicatestarted(M,T) (respectively
stopped(M,T)) holds at all time-pointsT after machineM started (stopped). Sim-
ilarly, predicatestarted started(X,Y,T) (stopped stopped(X,Y,T))
holds at allT after both machinesX andY have started (stopped), providedX started
(stopped) beforeY; and predicatestarted stopped(X,Y,T) denotes all time-
pointsT afterY stopped, providedX started before.

With these auxiliary predicates,overlaps(X,Y) can be intuitively understood
to hold if there exist a number of time pointst1 < t2 < t3 < t4 such thatX started at
t1, Y started att2, X stopped att3 andY stopped att4. Indeed, if this is the case, then
T = t4 satisfiesstarted started(X,Y,T), started stopped(X,Y,T)
andstopped stopped(X,Y,T). Figure 7 depicts the situation. Notice that the
validity intervals for the state of a machine being operational are, forX andY, I =
[t1, t3] andJ = [t2, t4] (respectively), and effectivelyoverlaps(X,Y) holds if
overlaps(I, J) holds (compare with the semantics given for the Allen’s relationship
overlaps(I, J) in section 2). Finally, the following queries are possible:

– Is the machinem1 working at time 1?
(Goal “:- working(m1,1)”)

– Is the machinem2 working during[6, 8]?
(Goal “:- working(m2,6), working(m2,8)”)

– Do working intervals for machinesm2 andm3 overlaps?
(Goal “:- overlaps(m2,m3)”)

It is worth mentioning that other extensions ofDataloghave been proposed in the
literature, in which the modelling of intervals, Allen’s relationships and states might
become an easier task. These extensions include stratified negation (Baudinet et al
1993; Chomicki 1994), and integer and periodicity constraints (Revesz 1993; Toman
et al 1994). However, these languages are still not expressive enough as to model
states where bounding events can have multiple occurrences. Other extensions over-
come this problem, such as adding integer constraints and stratified negation (Revesz
1993), or allowing predicates to have an arbitrary number oftemporal parameters
(where a successor function can be applied) (Baudinet et al 1991); but query evalu-
ation for these languages is, in general, not guaranteed to terminate (they bring the
expressive power of Turing-computable functions).

Templog and the Event Calculus.Readers would acknowledge that our approach
for modelling intervals and states has much in common with the representation of
time periods and relationships in the Event Calculus (Kowalski and Sergot 1986;
Kowalski 1992). Some features of the Event Calculus, such asnegation and explicit
temporal references, make the representation of these temporal entities easier to ex-
press than it is inTemplog. However in general this depends on the intended appli-
cation, andTemplogmight be the preferred choice when infinite databases must be
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% -- the database (no multiple occurrences for the same bounding event)

start work(m1,0).
stop work(m1,2).
start work(m2,5).
stop work(m2,9).
start work(m3,7).
stop work(m3,11).

% -- representing the "working" state

forward(M,T) :- start work(M,T).
forward(M,T+1) :- forward(M,T).
backward(M,T) :- stop work(M,T).
backward(M,T) :- backward(M,T+1).

working(M,T) :- forward(M,T), backward(M,T).

% -- representing Allen’s relationships ("before" and "overlaps")

started(M,T+1) :- start work(M,T).
started(M,T+1) :- started(M,T).

stopped(M,T+1) :- stop work(M,T).
stopped(M,T+1) :- stopped(M,T).

started started(X,Y,T) :- start work(Y,T), started(X,T).
started started(X,Y,T+1) :- started started(X,Y,T).

started stopped(X,Y,T) :- stop work(Y,T), started(X,T).
started stopped(X,Y,T+1) :- started stopped(X,Y,T).

stopped stopped(X,Y,T) :- stop work(Y,T), stopped(X,T).
stopped stopped(X,Y,T+1) :- stopped stopped(X,Y,T).

before(X,Y) :- start work(Y,T), stopped(X,T).
overlaps(X,Y) :- started started(X,Y,T), started stopped(Y,X,T),

stopped stopped(X,Y,T).

Fig. 6 Allen’s relationships and states inDatalog1S .

start_work(X,T)

start_stop(Y,X,T)started(X,T)

stop_work(X,T)

start_start(X,Y,T)

start_work(Y,T) stop_work(Y,T)

stop_stop(X,Y,T)

Fig. 7 Intuitive interpretation ofoverlaps(X,Y).
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represented. We will not extend the comparison betweenTemplogand the Event Cal-
culus any further, but the reader will find extensive research done on both theory and
applications of the Event Calculus in the literature (Chittaro and Montanari 1996;
Cervesato et al 2000).

Coalescing in Templog.It turns out that because intervals have to be “programmed”
ad-hoc inTemplogby using the language primitives, maximal intervals cannotbe
feasibly enforced (usually known ascoalescing(Tansel et al 1993)). We have seen
that, since explicit time-references are not supported, intervals could be represented
by predicates asserting the occurrence of bounding events.Then, coalescing would
involve a revision of the database which, as discussed by (Kowalski 1992), may result
in a number of update operations which is disproportionate w.r.t. the complexity of
the coalescing itself. Also, it is not difficult to see that this problem is even worse for
databases representing periodic information. For example, given the following two
intervals:

begin(working,m1,1)
f2 end(working,m1,1)
f3 begin(working,m1,2)
f5 end(working,m1,2)

we can see that, in this case, the state ofworking is related to[0, 2] ∪ [3, 5], instead
of the maximal interval[0, 5] (time in Templogis discrete). Thus, coalescing these
two non-maximal intervals requires two predicate removals( f2 end/3 and f3

begin/3) and one attribute update (the occurrence number inf5 end/3 is set to
1 instead of2), giving:

begin(working,m1,1)
f5 end(working,m1,1)

Finally, let us mention that coalescing is not supported inDatalog1S , either.

Computability of Templog. Baudinet (Baudinet 1989) showed that TSLD-resolution
is both sound and complete forTemplog. However, a number of results appear in
(Baudinet et al 1993) which might help to have a better account of the implications
of evaluatingTemplogprograms. For one thing, it is suggested that TSLD-resolution
would require a form of term-size check to guarantee termination in the presence of
functional symbols. For the function-free subset ofTemplog, TSLD-resolution ter-
minates for queries with finite answers. Also, it is shown howbottom-up evaluation
(as forDatalog1S) can be modified to deal with queries with infinite answers; but it
is not clear how this could be applied for a top-down evaluation technique such as
TSLD-resolution. Regarding the complexity of evaluating agiven recognition query,
the function-free subset ofTemplogis PSPACE-complete in terms of the size of the
database (extrapolating results given forDatalog1S). Although we are not aware of
such results, we conjecture that tractable subsets might befound forTemplogwhich
can be evaluated in polynomial time (as done forDatalog1S in (Chomicki 1990b)).
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4 Intervals, Interval Relationships and States in TSQL2

Intervals, interval relationships and states are all concepts which can be considered
primitive in TSLQ2(Snodgrass 1995); thus, we will see that contexts in which these
concepts play a central role, can be modelled quite naturally. The presentation of
TSLQ2in this section will focus in the contrast between this language, which is rep-
resentative of the relational database paradigm, andTemplog/Datalog1S as deduc-
tive approaches. The general syntax ofTSLQ2specifications, and further syntactic
and behavioral details ofTSLQ2operators presented in this section, can be found in
(Snodgrass 1995).

4.1 Language overview

TSQL2is a temporal relational query language, based on the SQL-92standard (Tansel
et al 1993). It supports user-defined, valid and transactiontimes. The temporal struc-
ture is linear, discrete and bounded. Time references are stored in fixed-size struc-
tures calledtimestamps. The time line is partitioned into chronons, and several gran-
ularities and calendars, both predefined an user-defined, can be built over chronons
with different grouping schemas. Timestamps are expressedas values with associated
granularity and calendar. For example, the expressionDATE ’18/06/2003’ is a
timestamp denoting a specific day in the calendar (18 June, 2003).

4.2 Modelling time intervals

Intervals inTSQL2are supported via the data typePERIOD. Conceptually, intervals
are sets of consecutive granules represented by a pair of timestamps in the same
granularity (denoting the interval boundaries). For example, the expressionPERIOD
’[1/2003-6/2003]’ denotes the set{Jan/03, Feb/03, . . ., Jun/03}.

Unlike in Templog, intervals are entities themselves, not necessarily attached to
facts.TSLQ2provides a number of functions to manipulate intervals. Among other
operations,BEGIN and END return the interval timestamps; andINTERSECT and
+ return, respectively, the intersection and union of two intervals. Notice that the the
union of two intervals may result into a set of intervals. Forexample,

PERIOD ’[3/2002-5/2002]’ + PERIOD ’[7/2002-12/2002]’

yields the set,

{ ’[3/2002-5/2002]’ ∪ ’[7/2002-12/2002]’ }

TSQL2can also handle sets of intervals as entities (called temporal elements), and
provides the usual set operations (e.g. intersection, union and difference) and the
functions FIRST and LAST to return the first and last interval of a set (in chrono-
logical order).
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Table 1 Interval relationships inTSQL2.

Interval relationship EquivalentTSQL2expression
before(I,J) I PRECEDES J

meets(I,J) END(I) = BEGIN(J)

overlaps(I,J) BEGIN(I) PRECEDES BEGIN(J) AND
END(I) PRECEDES END(J)

during(I,J) BEGIN(J) PRECEDES BEGIN(I) AND
END(I) PRECEDES END(J)

starts(I,J) BEGIN(I) = BEGIN(J) AND END(I) PRECEDES END(J)

finishes(I,J) BEGIN(J) PRECEDES BEGIN(I) AND END(I) = END(J)

equals(I,J) I = J

4.3 Modelling interval relationships

Interval relationships can be easily defined via the relational operators= (equals) and
PRECEDES, which compares two timestamps, and the functionsBEGIN and END
to extract the timestamp from the interval in question. These definitions can be seen
in Table 1 (Snodgrass 1995), whereI and J denote two intervals.

4.4 Modelling states

States can be expressed as valid time tuples.TSQL2supports valid time tables (called
state tables), where tuples are assigned a set of maximal, non adjacent intervals (valid
time elements). Coalescing is automatically handled by theDBMS whenever valid
time elements are updated.

The information expressed in the tuple attributes is considered valid, according
to point-based semantics, in each interval included in valid time element. A func-
tion VALID is provided which extracts the valid time element from a tuple. If single
intervals must be handled instead, valid time elements can be partitioned into their
set of constituent intervals. This can be done by specifyingoption (PERIOD) in a
FROM-clause. Example 4 illustrates the representation of states inTSLQ2.

Example 4The followingTSLQ2sentence creates a valid time table,EFile, where
tuples store the name of an employee (attributeNAME); the department where she/he
has worked or is currently working (attributeDEPT); and a valid time element which
stores the periods where the employee in question has workedin the corresponding
department.

CREATE TABLE EFile (NAME CHARACTER, DEPT CHARACTER)
AS VALID STATE TO MONTH

A possible instance forEFile is shown next (where predefined timestampFOREVER
is used to represent a future-open interval),
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NAME DEPT VALID TIME
John Roberts Books {’[1/2002-6/2002]’,

’[1/2003-FOREVER]’}
John Roberts Bazar {’[7/2002-12/2002]’}
Ann Smith Bazar {’[3/2002-5/2002]’}

By way of example, the followingTSLQ2query returns the list of departments where
John Roberts worked, before he entered to work in the Bazar department,

SELECT DISTINCT T1.DEPT
FROM EFile(PERIOD) AS T1 T2
WHERE T1.NAME = ’John Roberts’ AND

T2.NAME = T1.NAME AND
T2.DEPT = ’Bazar’

AND VALID(T1) PRECEDES VALID(T2)

Notice in the previous query (example 4 above), that the construct EFile(PERIOD)
in the FROM-clause, decomposes every valid time element into single periods, and
so the query is actually evaluated with respect to the following table representation,

NAME DEPT VALID TIME
John Roberts Books ’[1/2002-6/2002]’
John Roberts Books ’[1/2003-FOREVER]’
John Roberts Bazar ’[7/2002-12/2002]’
Ann Smith Bazar ’[3/2002-5/2002]’

4.5 Discussion

Relative information in TSQL2. So far we have seen thatTSQL2deals with inter-
vals, interval relationships and states where the information is absolute, in the sense
that interval boundaries are explicit and known only with respect to the correspond-
ing fact. Interestingly enough,TSQL2also provides a limited way to model situations
where the temporal validity of certain facts is only known toberelativeto some other
information in the database.

In TSLQ2, relative timestamps can be constructed by adding or subtracting time
spans to/from other timestamps. Time spans are representedby the INTERVAL data
type, e.g.INTERVAL ’3’ MONTH denotes a time span of 3 months.TSLQ2also
provides a way to construct new states from other states, as it is illustrated by exam-
ple 5 below,

Example 5The next sentence adds a new tuple to the tableEFile (see example 4
again), which denotes that Mike Thompson started to work forthe Toys department
two months after John Roberts started to work for Books, and that Mike Thompson
worked for Toys until Ann Smith stopped working for the Bazardepartment.

Notice, in the specification of this state, the absence of absolute temporal refer-
ences; all we know is that the working period of Mike Thompsonis relative to the
first working period of John Roberts at Toy, and the last period of Ann Smith at Bazar.
TheTSLQ2sentence which inserts this state inEFile, is as follows,
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INSERT INTO EFile
SELECT ’Mike Thompson’,’Toys’
VALID PERIOD

(BEGIN(VALID(J))+INTERVAL ’2’ MONTH,
END(LAST(VALID(D)))

FROM EFile AS J A
WHERE J.NAME = ’John Roberts’ AND

J.DEPT = ’Books’ AND
A.NAME = ’Ann Smith’ AND
A.DEPT = ’Bazar’

Relative references may also appear in queries. For example, the followingTSLQ2
query returns the department for which John Roberts was working, six months after
Mike Thompson started to work for Toys,

SELECT J.DEPT
FROM EFile AS J M
WHERE J.NAME = ’John Roberts’ AND

M.NAME = ’Mike Thompson’ AND
M.DEPT = ’Toys’ AND
VALID(J) CONTAINS
(BEGIN(FIRST(VALID(M))) + INTERVAL ’6’ MONTH)

where the predefined functionCONTAINS checks for temporal inclusion between
intervals.

We have seen that contexts where the temporal information isrelative, can be mod-
elled naturally inTemplog(see, e.g. Figure 1). However, compared withTemplog, the
facilities provided inTSLQ2to handle this kind of situations is limited. Generally
speaking, and as the following example shows, theTSLQ2constructs which allows
for the representation of relative information, are best regarded as syntactic facilities.
In particular, if the base information changes, then the relative facts are not updated to
reflect the changes. Instead, the user is supposed to check for possible inconsistencies
and updated the necessary information.

Example 6Consider the simpleTemplogprogram,

start work(m1)
2( f start work(m2) ← start work(m1))
2( f2 stop work(M) ← start work(M))

which denotes that machinem1 started working initially, thatm2 always starts work-
ing 1 time-unit afterm1 starts, and that both machines always works for 2 time-units.
Clearly, information is given relative to the time when machines start working, and
in particular to the time whenm1 starts.

Now assume the representation of the same information inTSLQ2, in which we
assume a valid time tableMachines denoting the working periods of machines.
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Assume, as well, that the table has only one data attribute,NAME, that the granularity
is given in days, and that the tuple corresponding to the working period of machinem1
has already been inserted in the table. Then, the following sentence will add a tuple
corresponding to machinem2, whose working period (as we have seen) is relative to
the start ofm1 ( BEGIN(VALID(M1))).

INSERT INTO Machines
SELECT ’m2’
VALID PERIOD ( BEGIN(VALID(M1))+INTERVAL ’1’ DAY,

BEGIN(VALID(M1))+INTERVAL ’2’ DAY )
FROM Machines AS M1
WHERE M1.NAME = ’m1’

Now, consider a change in the original starting time form1, in which this happens
3 days later than initially asserted. This update is easy inTemplog, yielding a new
program,

f3start work(m1)
2( f start work(m2) ← start work(m1))
2( f2 stop work(M) ← start work(M))

It is not difficult to note that the working period of the second machine,m2, is kept
consistent with this new information. However, this will not be the case in ourTSLQ2
table, Machines. The problem is, that a clause like,

VALID PERIOD ( BEGIN(VALID(M1))+INTERVAL ’1’ DAY,
BEGIN(VALID(M1))+INTERVAL ’2’ DAY )

is evaluated at insertion time, and so an expression such as,

BEGIN(VALID(M1))+INTERVAL ’1’ DAY

returns, actually, just an absolute temporal reference. Therefore, changing the valid
time of the tupleM1 will not affect the timestamps stored for’m2’.

TSQL2 and TQuel. TQuel(Snodgrass 1987; Tansel et al 1993) is a minimal exten-
sion toQuel, the relational query language for the system Ingres (Stonebraker et al
1976). It supports user-defined, valid and transaction times. The temporal structure is
also similar to that ofTSQL2: a linear, discrete, and bounded set of chronons. Times-
tamps are explicit and may be specified in different granularities. However, a few
differences exist betweenTSQL2andTQuelwhich may impact on the modelling of
intervals, interval relationships and states.

One of these differences is in the modelling of interval relationships; these are
more difficult to express inTQuel, as the relational operator< to compare times-
tamps is not directly available in the language. Instead, the predefinedTQuelopera-
tor precedes implements≤, and so negation (not) has to be used in conjunction
to get the proper semantics for Allen’s relationships. Table 2 shows the definition of
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Table 2 Interval relationships inTQuel.

Interval relationship EquivalentTQuelexpression
before(I,J) I precede J and not (end of I equal begin of J)

meets(I,J) end of I equal begin of J

overlaps(I,J) begin of I precede begin of J and
begin of J precede end of I and
end of I precede end of J and
not (begin of I equal begin of J) and
not (end of I equal end of J)

during(I,J) begin of J precede begin of I and
end of I precede end of J and
not (I equal J)

starts(I,J) begin of I equal begin of J and
end of I precede end of J and
not (I equal J)

finishes(I,J) begin of J precede begin of I and
end of I equal end of J and
not (I equal J)

equals(I,J) I equal J

Allen’s relationships inTQuel: I andJ denote intervals, and functionsbegin of
andend of return the timestamps of a given interval. Notice, in contrast with ta-
ble 1, that expressions are not as straightforward as inTSQL2.

Probably the most important difference betweenTQuelandTSLQ2, is the rep-
resentation of states with multiple validity intervals. Unlike TSQL2with valid time
elements,TQueldoes not handle interval sets as single entities. Then, tuples in valid
time databases are assigned only a single validity interval, and modelling states with
multiple intervals would require one tuple for every such interval. This does not only
cause redundancy in data attributes, but also makes certainqueries more difficult to
express. In particular, this is the case when the query workswith some, but not all,
validity intervals related to the same state. Aggregate functions would be needed to
search over all tuples (which may result in nested queries),just to collect the relevant
intervals.

This issue occurs in the followingTQuelquery, which returns the department for
which John Roberts was working, six months after Mike Thompson started to work
for Toys (introduced forTSQL2in example 5),
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range of J is Efile
range of M is Efile
range of T is Efile
retrieve (J.Dept)
where J.Name = "John Roberts" and

M.Name = "Mike Thompson" and
M.Dept = "Toys" and
J overlaps (begin of M + %6 month%) and
M equals earliest(T where

T.Name="Mike Thompson" and
T.Dept = "Toys")

whereearliest is an aggregate function which retrieves the first of all of those
intervals where Mike Thompson used to work at Toys (tupleT). If we compare this
with the equivalent query inTSQL2, which we revisit below, we will notice that
nested queries are not necessary, as the set of relevant intervals is already available
when the tuple (M) is found.

SELECT J.DEPT
FROM EFile AS J M
WHERE J.NAME = ’John Roberts’ AND

M.NAME = ’Mike Thompson’ AND
M.DEPT = ’Toys’ AND
VALID(J) CONTAINS
(BEGIN(FIRST(VALID(M))) + INTERVAL ’6’ MONTH)

Notice that the construct,

FIRST(VALID(M))

has the same purpose that the aggregate functionearliest in theTQuelquery, i.e.
to return the first intervals related to Mike Thompson working for Toys. However, in
theTSQL2query these intervals are already available as the valid time element ofM
(and so are returned byVALID(M)). On the other hand, inTQuela nested query is
needed to collect all these intervals,

T where T.Name="Mike Thompson" and T.Dept="Toys"

5 Conclusions

We think the main contribution of this paper is in evaluatingwell known temporal
query languages, such asTemplogand TSQL2, from a novel perspective. Surveys
on formal expressiveness of temporal query languages have populated the literature;
however, the issue of how naturally valid time information can be modelled, has been
mostly overlooked. To complement existing accounts,TemplogandTSQL2have been
evaluated from a different perspective, based upon the concepts of time intervals,
interval relationships and states.
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We have worked on the hypothesis that these concepts are general enough to
represent a wide class of valid time information. Therefore, evaluating the languages
(and related data models) with respect to these concepts gives an idea of the kind of
issues which may arise in practice, in commonly found modelling tasks. In addition,
and particularly in those cases in which the language does not naturally model certain
concept, we have offered possible ways in which this can be achieved.

Deductive languages are not generally expected to deal withabsolute temporal
references. We have, therefore, assessed the modelling of interval, interval relation-
ships and states in more natural contexts, e.g. in those where the application will
typically need to reason about relative facts, or periodic information. Also, the fact
that a deductive language such asTemplogdoes not support intervals as primitive
temporal elements, is a hindrance for the modelling of states. In addition, and among
other issues, we have elaborated on the differences betweenTemplogandDatalog1S

when modelling states. This is interesting as reveals modelling limitations which are
not obvious under different evaluation contexts.

On the other hand, relational query languages such asTSQL2will efficiently deal
with absolute intervals (and consequently, relationshipsand states), as intervals are
primitive blocks of valid time information. Nevertheless,we have shown that contexts
in which relative information play a crucial role, might notbe so straightforward
to deal with. We have also comparedTSQL2with TQuel, in order to reveal how
small differences in the languages data models and predefined operators, may have
important consequences in practice when modelling states.

We conclude this paper by pointing out further research. We believe that a promis-
ing line of research may consider extending the expressiveness criterion in order
to cover other kinds of temporal information, such as eventsand processes (Gal-
ton 2005). One work conducted in this area is that of Terenziani (Terenziani 2000).
He addressed some problems inTSQL2regarding the modelling oftelic facts, i.e.,
facts can be valid over intervals but they are not consideredvalid at any subinterval
in question.

This work also complements previous reports in the technical literature (Galton
and Augusto 2002; Gómez and Augusto 2004) rasing awarenessin the Databases and
AI communities about the potential benefits that considering the mutual approaches
may bring to each other. In an era of specialisation, there isa potential danger of the
areas becoming ”too introspective”. We have observed that phenomenon regarding
temporal concepts in AI and Databases. This article, as wellas other previously men-
tioned, are part of an effort to encourage interaction between the areas and to increase
the benefits deriving from each others’ findings.
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