Artificial Intelligence Review manuscript No.
(will be inserted by the editor)

Expressiveness of Temporal Query Languages: On the
Modelling of Intervals, Interval Relationships and States

Rodolfo SakAs Gbmez - Juan Carlos Augusto

Received: date / Revised version: date

Abstract Storing and retrieving time-related information are intpat, or even crit-
ical, tasks on many areas of Computer Science (CS) and ircylartfor Artificial
Intelligence (Al). The expressive power of temporal dataséquery languages has
been studied from different perspectives, but the kind oiperal information they
are able to store and retrieve is not always convenientlyesseéd. Here we assess a
number of temporal query languages with respect to the ringalf time intervals,
interval relationships and states, which can be thoughsdha building blocks to
represent and reason about a large and important classtofitimformation. To
survey the facilities and issues which are particular taatertemporal query lan-
guages not only gives an idea about how useful they can bertitydar contexts,
but also gives an interesting insight in how these issuesraneany cases, ultimately
inherent to the database paradigm.

While in the area of Al declarative languages are usuallypttegerred choice,
other areas of CS heavily rely on the extended relationalgigm. This paper, then,
will be concerned with the representation of historic infiation in two well known
temporal query languagefemplogin the context of temporal deductive databases,
andTSQL2in the context of temporal relational databases. We hopesthéts high-
lighted here will increase cross-fertilisation betweeifiedent communities. This ar-
ticle can be related to recent publications drawing thentitia towards the different
approaches followed by the Databases and Al communities whiag time-related
concepts.

Keywords Temporal Deductive Database3emporal Relational Databases
Knowledge RepresentatioiTemporal Logic

* Final version: R.S.Gomez and J.C.Augusto, “Expressivenas Temporal Query Languages:
On the modelling of intervals, interval relationships ardtes”. In: Artificial Intelligence Review,
Springer Netherlands, ISSN 0269-2821 (Print) 1573-7464li(®), DOl 10.1007/s10462-007-9051-4
(http://www. springerlink.com content/r3347p646152351n).

Computing Laboratory, University of Kent, CT2 7NF Canteshu Kent, UK E-mail:
R.S.Gomez@kent.ac.ukSchool of Computing and Mathematics, University of Ulstedardanstown,
BT37 0QB Newtownabbey, Co. Antrim, UK E-mail: jc.augustol@er.ac.uk

1 Introduction

Temporal databases has recently become an active reseaadh aomputer science
(Tansel et al 1993; Etzioni et al 1998; Morris and Khatib 1,996odwin and Trudel
2000; Bettini and Montanari 2001; Artale et al 2002; Reysadahd Sattar 2003)).
This kind of databases offers the possibility to associate to data and to deal with
it in a way that non-temporal systems cannot handle, or in @hnmore convenient
way. For example, in a medical database it is useful to stdfmmation related to
the different stages a patient’s health goes through. A inpgngystem requires to
store the time each transaction is done as well as expirdabes for its loans. A
public transportation system must keep track of departimbeariving times for each
unit. These are just a few from a plethora of contexts whesdime with time is
fundamental for the success of the system.

There exist multiple levels to consider temporal issuesatabases (Snodgrass
and Ahn 1986). For example, database manager systems (DB&8)traditionally
offered some support for what is termeser time this is usually represented with a
special data type (e.dat e) butit is handled just as any other non-temporal attribute.
For example, a company database may store the period in whél employee has
held a particular position, by using a tuple with attribigash as the employee id, the
name of the position and two attributes denoting the stattesndl dates of the period
that position was held. However, in a conventional DBMS ¢heme no primitives to
deal with this information in such a way temporal consisygapreserved (e.g. tuple
update or removal), neither are there primitives to coreethy perform complex
forms of temporal reasoningalid time databases consider associate each tuple a
validity period for that information (informally, the ped in which the information
is regarded as valid in the “real world"Jransaction timedatabases keep track of
the time when information arrives to the database managr (ehen it is deleted).
Bitemporal databases support both valid and transactioa. tin this paper, we will
be concerned only with valid time.

The expressiveness of temporal database models and quegnalges has been
studied from different perspectives. For instance, (Bokleal 1996) discusses a rela-
tionship betweeid SQL2and Temporal Logic, (Toman and Niwinski 1996) describes
the class of first order queries that cannot be expressedmpdial Logic, (Toman
1996) compares point-based vs. interval-based query &geg) and (Baudinet et al
1993) surveys some languages regarding infinite tempotahsions. Other works
addressing expressiveness issues include (McKenzie arthBass 1989; Tansel and
Tin 1998; Cobo and Augusto 1999). However, we believe thatesomportant is-
sues remain overlooked. The formal characterisation okayjanguage’s expressive
power usually receives the focus of attention, but the kihtkmporal information
that a query language is well suited to model and retrievalwedys can be inferred
directly from its expressive power, and language pragmeatiten results poorly sur-
veyed. For instance, knowing that a pair of languages are@essive as a particular
temporal logic does not always suffice to answer questika$Vihat kind of problems
each language is best suited to deal wit&Pe both languages prepared to handle
the same problemsar Is similar information as easy to model and retrieve in one
language as it is in the other?™ is worth mentioning that query languages are not

considered in isolation but related to a data model throhgir data manipulation
primitives.

This paper addresses the facilities provided by temporahglanguages for
modelling time intervals, Allen’s interval relationshipad states (Allen 1983, 1984;
Dowty 1986). These concepts are deeply related and are afrpamt importance
in valid time databases. Firstly, states stand for a passialy in which facts can be
assigned temporal semantics. Briefly, facts are regardealidsduring time intervals
according to point-based semantics (Jensen and Snod@®@8} tvhich happens to
be the kind of information that is usually required to be stbin valid time databases.
Therefore the closer the query language expressions résatakes, the more natu-
ral it is to modelling temporal information. Finally, Alléminterval relationships can
be thought of as powerful retrieval tools as they describpadsible relative loca-
tions (in time) between two intervals, and hence how a pafacfs may be located
on the time axis. In addition, these relationships natyrafise in a wide range of
application environments.

This paper, then, will be concerned with the representatioimtervals, inter-
val relationships and states in two well known temporal guanguagesTemplog
(Abadi and Manna 1989) in the context of temporal deductatelolases, anBSQL2
(Snodgrass 1995) in the context of temporal relationallmeges. We will also con-
trastTemplogwith Datalog; s (Chomicki 1990a), an@iSQL2with TQuel(Snodgrass
1987). A comparison between these languages serves to emrapt existing sur-
veys, and helps in realising how subtle differences in esgive power, data repre-
sentation models or even the choice of predefined tempoeahtgrs impact on the
modelling of intervals, interval relationships and states

From a wider perspective this work adds to previous contiobs (Gomez and
Augusto 2000; Galton and Augusto 2002; Gomez and Augusid P@&sing aware-
ness in the Databases and Al communities about the poteetiafits that consider-
ing the mutual approaches may bring to each other.

The paper is organised as follows. Section 2 describes aafwation of time
intervals, interval relationships and states; and dis=i8% importance of these con-
cepts on revealing the value of temporal query languages &aser’s perspective.
At this respectTemplogand TSQL?2are analysed in sections 3 and 4, respectively.
Among other issues, a comparison betw@&@mplogandDatalog, s is offered in sec-
tion 3.5. Similarly, TSQL2andTQuelare compared in section 4.5. Conclusions are
given in section 5.

2 Interval, Interval Relationships and States

This section defines intervals, interval relationships states in their most usual in-
terpretation, and their relevance in representing vaiig information. In accordance
with the consensus glossaries presented in (Jensen et&IBS@ini et al 1998a), we
define atime domainas a couplg7, <) where7 is a non-empty set afime in-
stantsand< is a total order orY . Bounded and unbounded discrete-time models can
be defined over this domain. For instance, in models witlainiime there exists a
distinctive instanb € 7 such thab <iforalli € 7.

Definition 1 A time interval is a set of consecutive instants. A closednvall with
boundinginstants™, it € 7,7~ <it,isdefinedad =i ,i"]| ={ie T |i~ <
i <it}.

Intervals can be thought as being one of the building blo¢ksald time infor-
mation. Query languages that are well suited to handlevateiprovide a compact
representation of temporal validity, i.e., an efficient wafyassigning temporal se-
mantics to facts. Later in this section we will see theirvatee on defining states.

Example lintervals are handled ifSQL2(see details in section 4) through the
PERI OD predefined data type. For instan®&RI OD ' [2002, 2003]’.

Note, also, that our time domain is general enough to supgodnonsand
granules(Jensen et al 1998; Bettini et al 1998a). A chronon is defireed aon-
decomposable time interval of some fixed, minimum duratimi¢h is typically set
by applications). Data models related to some query langgigpresent the time line
by a sequence of chronons, and granularities, e.g., daysaos yare built by indexing
sets of consecutive chronons.

Interval relationshipsvere proposed by Hamblin (Hamblin 1972) and later ex-
plored by Allen (Allen 1983, 1984) in the context of tempakdsoning, where inter-
vals are the temporal primitives and facts can be assignéio with such different
meanings as properties, processes and events. They cafintesldeer? as follows:

Definition 2 An interval relationshigs a predicate ovef x Z, whereZ is the set of
all closed intervals ovef . LetI = [i~,iT] andJ = [, ;1] be two intervals, then
interval relationships are interpreted as follows (ineerslationships can be mod-
elled by swapping predicate arguments):

T |= before(1,J) iff 7TEit<j

T E meets(I,J) iff TEiT=j"

T = overlaps(1,J) iff ThEi~<j- <it<j 7t
T & during(I,J) iff TE;j <i®<it<j*
T | starts(1,J) iff TE:i =j" <it<j*
T k= finishes(I,J) iff ThEj <i”- <it=j7
T E equals(1,J) iff TEi =j" <it=j"

Example 2TheTSQL2predefined functioPRECEDES, which can be used MHERE-
clauses oSELECT statements (see details in section 4), is semanticallywelgnt to
the interval relationshipefore() For instance, the following expression is true:

PERI OD ’ [1999, 2000]° PRECEDES PERI OD ' [2002, 2003]’

Interval relationships describe every possible way in Whigo intervals may
be positioned on the time axis, and by extension betweenrap#acts if they are
assigned temporal validity over intervals. This complesnmakes the relationship
set a sound vehicle to compare how conveniently temporalydarguages retrieve
information.

Statescan be thought of as one of many possible ways in which infaon@an
be assigned temporal semantics. They have been studieddsysarch as Philosophy,

Linguistics and Artificial Intelligence. For instance, yhare considered one of the
classes in which human beings capture reality through laggexpressions, e.g., as
stative sentencg®owty 1986); or, from other perspective, as a way in whidattfa
can be associated to time (Allen 1984; Galton 2005).

States may be regarded as statements which are considezenl/ar time inter-
vals, calledralidity intervals For example, the sentendehn worked for the company
from 1990 to 199&lenotes a state in which the falithn works for the comparnyg
considered true over the interval than ranges from 1990 @81®oreover, states
hold a distinctive property, usually known in the TDB an Alhemunities aglown-
ward hereditary(Allen 1984; Bettini et al 1998b); if a state holds over inggr/,
then it also holds over any subinterval bf For example, thalohn worked for the
company from 1990 to 1996plies thatlohn worked for the company from 1995 to
1997 States can be expressed by temporal databases if factsayeead intervals ac-
cording topoint-based semanti¢§ensen and Snodgrass 1996; Bettini et al 1998b); a
factis true over a given interval if and only if it is true aty instant of that interval.
Formally, states can be defined as follows:

Definition 3 Let the pair(D, 7) represent the structure of a given temporal query
language’, whereD denotes the data model, i.e., a set of facts which are expless
by the language, and its temporal structure. In addition, I&tdenote the set of all
possible intervals oveF. We will say thatstatescan be modelled it if a mapping

S : D — 27 can be defined, such that for every pair{Iy, ..., I,}) € S the factd

is considered valid over every instant [;, forall1 < j <n.

Example 3The following tuple, extracted fromBSQL2valid time table (see details
in section 4), can be thought of as modelling the state “AnntiSmorked for the
company from 1990 to 1994, and then again from 1998 until 2008QL2regards
the information encoded by this tuple as valid during evexgnin{1990, ..., 1994,
1998, ..., 2002.

NAVE VALI D TI ME
Ann Smith | { [1990-1994]° U ' [1998-2002] }

Information in temporal databases are very often requivdaktstored as states.
Query languages that can handle states are thus able to meddé range of sit-
uations, which adds real value from the user’s perspedtivehat follows we will
assess how some well known temporal query languages haneltedls, interval re-
lationships and states. Let us note that this paper will ead @vith issues such as
the implication of open intervals in databases (Cliffor&ke1997), relationships on
open-intervals (Freksa 1992) or indeterminacy of infoiora{Dyreson and Snod-
grass 1998). While all of these aspects are certainly istieigg we believe their in-
clusion in this paper will make it exceed a reasonable length

3 Intervals, Interval Relationships and States in Templog

This section is devoted to show how intervals, intervaltrefeships and states are
supported byfemplog This fact may seem surprising since Allen’s relationsiaipg

states are build over intervals, afdmplogdoes not provide them as a primitive
concept. However, we will see that under certain modellisguaptions intervals
can be implicitly represented if we relate them to the oance of certain context-
dependent events. In addition, the representation ofsstaffeemplogis made pos-
sible as the language assigns validity to predicates aitwptd point-based seman-
tics. Therefore, we will see that Allen’s relationships tenexpressed by comparing
the interval bounding events by means of temporal logic atpes such a$; and
that states can be represented as facts whose validitydsdetween two bounding
events, by means d@emplog¢s inference rules and recursion.

3.1 Language overview

Templog(Abadi and Manna 1989; Baudinet 1989, 1992) is a syntactiension of
logic programming to linear-time temporal logic. Time igthisomorphic tdY, i.e.,
linear, discrete, with initial time and unbounded futurethis language, predicates
may vary with time, but the time point they refer to is definegblicitly by temporal
operators rather by an explicit temporal argument.

The only temporal operators usedTiamplogare O (nex), which refers to the
next time instantd (alwayg, which refers to the present and all the future time
instants, and> (eventually), the dual ofl, which refers to the present or to some
future time instant.

The abstract syntax fofemplogclauses is defined by the following grammar,
whereA stands for an atong;denotes an empty formula<” the logical implication
operator and a comma “,” in a body the conjunction operatostands for anext-
atom that is, we will useD™ A to denoteD ... O A.

——

n times
Body: B = ¢|A|B1, B2|OB|¢B
Initial Clause: IC =N« B|ON < B
Permanent Clause: PC' := O(N <« B)
Program Clause: O = IC|PC
Goal Clause: G =+« B

Initial clausesdescribe statements that holds at the initial tipggmanent clauses
express statements that hold at any time instant. Prograngaal clauses are as-
sumed to be universally quantified, as in classical logigmmming (Lloyd 1987).
EachTemplogprogram is a finite set of program clauses. Computatiofeimplog
programs is based on a temporal logic resolution methothe@rTSLD-resolution
(Abadi and Manna 1989; Baudinet 1995). Semantics for teaipogic formulas are
provided w.r.t. a temporal interpretatidn that is an infinite sequenc®y, Dy, ...
of classical first-order interpretations (one classictrpretation for each time in-
stant). InTemplog only predicates symbols have time-varying meanings; teoits
and function symbols are assumed to be independent of Tiemeplogoperators are
interpreted as follows:

':Di OF Iﬁ ':Di+1 F
=p, OF iffforeveryj € N, =p, , F
Ep, OF iffforsomej € N, =p,,, F

start wor k(ml)

O start work(nR)

O(02 stopwork(ml) « start_work(mt))
O(O* stopmwork(nR) «— start_work(n2))
0(02 start work(M «— stopwork(M)

Fig. 1 A simple Templogprogram.

A formula F' is satisfiable in a given interpretatidniff |=p, F. A formula is valid
if it is satisfiable in all possible interpretations.

Templogcannot (naturally) deal with contexts where the use of ekglime ref-
erences, or database updates are the rule rather than #yatierq Kowalski 1992).
Because of its roots in temporal logitemplogis best suited to deductive databases
and, in general, applications where temporal reasoningrenconcise representation
of relative, possibly infinite information is required (epgriodic information). Thus,
our elaboration on how intervals, Allen’s relationshipsl atates can be represented
in Templogwill take into account those contexts where the languageldviiod a
more natural application.

Figure 1 shows demplogprogram where the alternating use of two machines,
ml andn®, is represented. The program depicts a cycle whiérstarts initially,m2
starts 1 time units after thatjl works in periods of 2 time units (am® in periods
of 3 time units), and both machines idle for 2 time units betmeorking periods.

3.2 Time intervals iMfemplog

Since explicit temporal references are not supporteteomyplog we will assume that
intervals will be related to states, i.e. a certain fact Whi considered valid on a
given period of time. Intervals, then, can be representealigir of predicates which
denote the occurrence of those events which bound the pomdig state. Because
the same bounding event may have multiple occurrence® tieesirrences are also
used to uniquely identify a given interval. Thus, intervads be represented by a pair
of predicatedegi n(7) andend(7), wherei represents a list of attributes which
uniquely identify the interval in question, e.g. a state raand a particular instance
number which is related to a specific occurrence of boundiegts (a full character-
isation of states will be discussed later, in section 3.4}fi¢¢ that more convenient
representations may exist. Since, in general, this willethelon the problem being
modelled, we have proposed just a possible solution whigthtraccommodate a
number of commonly found scenarios.

Figure 2 shows how the program of Figure 1 can be modified teesgmt those
intervals where each machine is operational. Such a statek(ng) is bounded by
the events corresponding to a machine starting and stop@imigespondingly, the
predicatest art wor k andst op_wor k now feature an extra parameter (a natural
number) identifying the event occurrence. Notice that thegmam offers, indeed,
a concise representation of infinitely periodic intervalg. that the machinel is
operational duringdk, 4k + 2], k € N.

8

start work(mi, 1)

O start work(n2, 1)

O(02 stopwork(ml, N) « start_work(mt, N))
O(O* stopwork(n2, N) « start_work(n2, N))
O(02 start work(M N+1) «— stopwork(MN))

O(begi n(working, MN) «— start work(M N))
O(end(working, MN) < stop.work(MN))

Fig. 2 Representing time intervals femplog

3.3 Modelling interval relationships

Since Allen’s relationships are defined in such a way thatademporal spans be-
tween intervals are abstracted awBsmplogs modal operators provide a natural way
of representing the relative position between two intergl comparing the bound-
ing events (see semantics of Allen’s relationships in defNdtice that we used,”

to denote O, which in turn represents the relational operatar (< is reflexive)
between a pair of instants. L&t be the list of attributes which uniquely identify
intervalsI and.J, respectively. Intervals relationships can be modellegieyglicates
bef or e, neet s, etc., as shown below. Without loss of generality, we asstivae
these predicates are time-independent.

O before(3, 5)
«— O(end(7), Oobegi n(5))
O meet s(1, 7)
«— O(end(i), begi n(7))
O overl aps(i, j5)
— O(begi n(7), Oo(begi n(j), Oo(end(i), Coend(4))))
O during(3, 7)
«— O(begin(j), Oo(begin(i), Oo(end(i), C.end(5))))
O starts(i,)
«— O(begin(i), begin(j), Oo(end(i), Coend(5)))
O finishes(i,)
— O(begi n(7), Oo(begi n(7), ©o(end(7), end(7))))
O equal s(1, 7)
«— O(begi n(7), begin(j), C.(end(7), end(7)))

Notice that these predicates are just templates, which tealve adapted to par-
ticular contexts. For example, and following the examplenghin Figure 2, suppose
that we want to check whether it is possible that machifiefinishes its task be-
fore n2 starts working on its own. This check could be done by asggpredicate
bef or e/ 4, as shown in Figure 3, and querying the goal

— before(ntl, N, 2, N) .

start work(mi, 1)

O start _work(n2, 1)

O(02 stopwork(ml, N) « start _work(ml, N))
O(0* stopwork(n2, N) « start_work(n2, N))
O(02 start work(M N+1) «— stopwork(M N))
O(begi n(working, MN) «— start work(M N))
O(end(working, M N) « stop.work(M N))

O before(M, N1, M2, N2) « <O(end(wor ki ng, ML, N1) ,
Oobegi n(wor ki ng, M2, N2))

Fig. 3 Representing interval relationshipsTiamplog

start work(mt, 1)

O start work(n2, 1)

O(02 stopwork(ml, N) « start_work(ml, N))
O(0% stopwork(n2, N) «— start_work(n2, N))
O(02 start work(M N+1) «— stopwork(MN))
O(begi n(working, MN) «— start work(M N))
O(end(working, MN) < stop.work(MN))

O (valid(working, MN « begin(working, MN))

O (O valid(working, MN) «— valid(working, MN),
Oo end(wor ki ng, M N))

O (state(working, M « valid(working, MN))

Fig. 4 Representing states fremplog

3.4 Modelling states

States can be modelledTemplogby a program where a) the state’s validity intervals
have been asserted, and b) a predicate denoting the statiestian is made valid
at every point included in a validity interval. We have showahieady, that validity
intervals can be modelled by asserting a pair of predida¢gs n, end denoting the
interval’s bounding events. For example, Figure 4 shows th@sstate of a machine
being operationalfor ki ng) could be represented. Notice that the predivatei d

is used to assert the validity st at e at every point in time betweenegi n and
end.

3.5 Discussion

Templog and Datalog s. The expressiveness of the function-free subsé&eaiplog
is known to be equivalent to that &fatalog, s (Chomicki 1990a), a minimal exten-
sion of Datalog(Gallaire et al 1984; Grant and Minker 1992) (the subset néfion-
free Horn-clause logic programs) where predicates arevatldo contain oneempo-
ral argument where a successor function can be applied. CoastyjiothTemplog
andDatalog; s have been proposed as suitable query languages for tenueohat-
tive databases (Baudinet et al 1993). However, the linoitatif Datalog; s to allow
the successor function to be applied to at most one predicgtenent severely limits

10

start work(mi, 0).

start work(nm2, 1).

start work(n8, 0).

st op_wor k(nB, 5).

stopwork(ml, T+2) :- start_work(ntl, T).
stopwork(n2, T+4) :- start_work(n2, T).
start work(M T+2) :- stopwork(MT).

begi n(working, MT) :- start work(MT).
end(working, MT) :- stopwork(MT).

Fig. 5 The limits ofDatalog, .

the modelling of intervals (and consequently, that of Aerlationships and states).
For example, Figure 5 showsatalog; s program similar to that of Figure 2, but
extended with a third machine3 working just during the intervdb, 5]. Here, the
last argument in every predicate is assumed to be the teinparameter. Notice
that predicatebegi n/ 3 andend/ 3 correctly represent the single working inter-
val for nB ([0, 5]), but they cannot distinguish the working intervals fdkr or n2
because a paibegi n, end] does not necessarily correspond tonatchingpair
[start work, st op_wor k]. For example, they represent bdth2] and[0, 6], al-
though the proper intervals were meant to[®e], [4,6], ... [4k,4k + 2], k € N.
Notice that[0, 6] is represented as a consequence of pairing the first occeran
start wor k at time0 and the second occurrencestfop_wor k at time6. This
problem is the result obatalog, s not being expressive enough to distinguish be-
tween different occurrences of the same bounding eventhwhiTemplogvas made
possible by adding an extra data parameter and a rule tovreerdt every time a new
occurrence was identified (see Figure 2).

However,Datalog, s is expressive enough to deal with settings where states are
not only assumed to be represented by a pair of boundingg\aritalso where mul-
tiple occurrences of the same event do not happen. If thig,ithen the following
gueries can be expresseddatalog s: a) whether the validity intervals correspond-
ing to two different states satisfy a given Allen’s relabip, b) whether a given state
is valid at a particular pointin time, and ¢) whether a givittesis valid at a particular
interval. All of these are recognition queries (i.e. theyéges/no answers). Gener-
ation queries are also possible (e.g. those which retumsehof states which hold
simultaneously at a particular point in time), but genemtjueries with infinite an-
swers require a more involved evaluation technique. Thikides the generation of
a finite model both for the Herbrand model of the program instjoa, and for the
answer to the query (Baudinet et al 1993).

Figure 6 shows ®atalog, s program where the database is composed of 3 pairs
of tuples[st ar t _.wor k/ 2, st op_wor k/ 2] denoting the working interval), 2],
[5,9] and[7,11], for the machines, n2 andnB respectively. The state of a ma-
chine being operational is represented by the predisateéki ng/ 2. This predicate
is assigned temporal validity by conjoining two auxiliarsedicates or war d/ 2
andbackwar d/ 2, to represent those time points where a machine starts or has
started, and stopped or will stop (respectively). The raingi auxiliary predicates
support the definition obef ore/ 2 andover | aps/ 2, which in turn represent

11

the corresponding Allen’s relationships between the wagkintervals of two ma-
chinesXandY. For examplebef or e(X, Y) holdsif Allen’s relationshigpefore(l,J)
holds, wherd andJ are the working intervals of machin®sandY, respectively. The
difficulty in expressing Allen’s relationships iDatalog; s (notice the definition of
over | aps/ 2) comes from the fact that the relatien between time points is not
directly available in the language. Thus, predicsteart ed(M T) (respectively
st opped(M T)) holds at all time-point3 after machinévistarted (stopped). Sim-
ilarly, predicatest arted_started(X, Y, T) (stopped_stopped(X Y, T))
holds at allT after both machineX andY have started (stopped), provid&dtarted
(stopped) beforé; and predicatst art ed_st opped(X, Y, T) denotes all time-
pointsT afterY stopped, provided started before.

With these auxiliary predicatesyer | aps(X, Y) can be intuitively understood
to hold if there exist a number of time poirits< t5 < t3 < t4 such thalX started at
t1, Y started at,, X stopped at; andY stopped at,. Indeed, if this is the case, then
T = t4 satisfiesstarted.started(X, Y, T), started_stopped(X, Y, T)
andst opped_st opped(X, Y, T) . Figure 7 depicts the situation. Notice that the
validity intervals for the state of a machine being operaiare, forX andY, I =
[t1,t3] andJ = [ta,t4] (respectively), and effectivelgver | aps(X, Y) holds if
overlaps!, J) holds (compare with the semantics given for the Allen’stieteship
overlapgs1, J) in section 2). Finally, the following queries are possible:

— Is the machinerl working at time 1?
(Goal “: - wor ki ng(nt, 1))
— Is the machine® working during[6, 8]?
(Goal “: - wor ki ng(n2, 6), working(n2,8)")
— Do working intervals for machines2 andn8 overlaps?
(Goal “: - overl aps(n, n8) ")

It is worth mentioning that other extensiondditaloghave been proposed in the
literature, in which the modelling of intervals, Allen’slaionships and states might
become an easier task. These extensions include stratédgatian (Baudinet et al
1993; Chomicki 1994), and integer and periodicity constsa{Revesz 1993; Toman
et al 1994). However, these languages are still not expesgsiough as to model
states where bounding events can have multiple occurre@tlesr extensions over-
come this problem, such as adding integer constraints aautifistd negation (Revesz
1993), or allowing predicates to have an arbitrary numbeteofporal parameters
(where a successor function can be applied) (Baudinet €3%l)1 but query evalu-
ation for these languages is, in general, not guaranteeztnurtate (they bring the
expressive power of Turing-computable functions).

Templog and the Event Calculus.Readers would acknowledge that our approach
for modelling intervals and states has much in common withrépresentation of
time periods and relationships in the Event Calculus (Kekiahnd Sergot 1986;
Kowalski 1992). Some features of the Event Calculus, suategation and explicit
temporal references, make the representation of theseotaiemtities easier to ex-
press than it is iMfemplog However in general this depends on the intended appli-
cation, andTemplogmight be the preferred choice when infinite databases must be

12

% -- the database (no nmultiple occurrences for the same boundi ng event)

start work(mt, 0).
st opwor k(mi, 2).
start work(ng,5).
st opwor k(2, 9).
start work(mB, 7).
stopwor k(nB, 11).

% -- representing the "working" state
forward(MT) :- start.work(MT).
forward(M T+1) :- forward(MT).

backward(M T) :- stopwork(MT).

backward(M T) :- backward(M T+1).
working(MT) :- forward(M T), backward(MT).

% -- representing Allen’s relationships ("before" and "overl aps")

started(M T+1) :- start_work(MT).
started(M T+1) :- started(MT).

stopped(M T+1) :- stopwork(MT).
stopped(M T+1) :- stopped(MT).

startedstarted(X Y, T) :- start work(Y,T), started(X T).
startedstarted(X, Y, T+1l) :- startedstarted(X Y, T).

started_stopped(X, Y, T) :- stopmork(Y,T), started(X T).
started_stopped(X, Y, T+1l) :- startedstopped(X Y, T).

st opped_st opped(X, Y, T) :- stopmork(Y,T), stopped(X T).
st opped_st opped(X, Y, T+1) :- stoppedstopped(X Y, T).

before(X,Y) :- start work(Y,T), stopped(X T).

overlaps(X, Y) :- startedstarted(X Y, T), started.stopped(Y, X T),
st opped_st opped(X, Y, T).

Fig. 6 Allen’s relationships and states Datalog; s .

start_work(X, T) stop_work(X, T)
| |
started(X, T) start_stop(Y, X, T)
start_start(X Y, T) stop_stop(X, VY, T)
| |
start_work(Y,T) stop_work(Y,T)

Fig. 7 Intuitive interpretation obver | aps(X, Y).

13

represented. We will not extend the comparison betwieemplogand the Event Cal-
culus any further, but the reader will find extensive rededane on both theory and
applications of the Event Calculus in the literature (Ginidtand Montanari 1996;
Cervesato et al 2000).

Coalescing in Temploglt turns out that because intervals have to be “programmed”
ad-hoc inTemplogby using the language primitives, maximal intervals cartyet
feasibly enforced (usually known a&salescing(Tansel et al 1993)). We have seen
that, since explicit time-references are not supportednals could be represented
by predicates asserting the occurrence of bounding evEhén, coalescing would
involve a revision of the database which, as discussed byéleki 1992), may result

in a number of update operations which is disproportionatg.the complexity of
the coalescing itself. Also, it is not difficult to see thaistproblem is even worse for
databases representing periodic information. For exangplen the following two
intervals:

begi n(wor ki ng, n,