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Phase transitions in multi-robot intera
tionsColin G. Johnson� and Steven J. BrodieComputing LaboratoryUniversity of KentCanterbury, Kent, CT2 7NXEngland C.G.Johnson�uk
.a
.uk5th April 2001Abstra
tPhase transitions are where a small 
hange in a parameter 
auses a qualitative 
hange in thebehaviour or state of a system. We 
an apply this 
on
ept to determining the 
onne
tivity of apopulation of mobile robots. Consider a population of mobile robots whi
h 
an pass messages toother nearby robots. When the number of robots is small, or their working environment is large,robots will only be able to pass a message to a small number of others. However there is a pointwhere if we in
rease the population by a small number, in
rease the 
ommuni
ation range slightly,or redu
e the working area by a small amount, the 
onne
tivity of the population in
reases suddenlyto a point where almost all robots are 
ommuni
ating with ea
h other. The 
onsequen
es of this formulti-robot learning are dis
ussed.1 Introdu
tionMany mobile roboti
s systems 
onsist of teams of robots whi
h 
ommuni
ate with one another, e.g.sending ea
h other information about the environment that they share, or about su

essful strategiesfor a
hieving 
ertain tasks. It has been shown [7, 8℄ that su
h 
ommuni
ation 
an improve the overallperforman
e of su
h teams on 
omplex tasks.If we are to make e�e
tive use of su
h teams of robots, we need to understand what 
onditions willfa
ilitate the maintenan
e of an e�e
tive level of 
ommuni
ation. Given a parti
ular environment, wewould like to know how many robots need be deployed to 
over the spa
e e�e
tively, and how good the
ommuni
ation need be between pairs of robots in order for the team of robots to be 
onne
ted withrespe
t to 
ommuni
ation.In this paper we show how phase transitions 
an o

ur in su
h systems. This is where small 
hangesto the system make a sudden qualitative 
hange in the global stru
ture of the system. This type ofbehaviour gets its name from physi
s, where 
hanges between phases (e.g. liquid to solid, liquid to gas,or vi
e versa) o

ur with small 
hanges of temperature or pressure.2 Random graphs and small worlds.As an underlying model of the 
ommuni
ation between agents, we make use of graphs whi
h representsnapshots of the situation at any parti
ular time, where the nodes represent the robots, and the edgesrepresent the ability of a pair of robots to 
ommuni
ate. The graph-theoreti
 property needed for thenetwork of robots to be able to inter
ommuni
ate is that the graph must be 
onne
ted, as then a message
an pass along a path from one robot to another. In pra
ti
e we mean that a large number of nodesmu
h be 
onne
ted for a large proportion of the time.One type of graph whi
h we will see arising below when we apply this model is the random graphmodel [1℄. A random graph G(n; p) is a graph produ
ed by taking n nodes, then taking ea
h pair of nodesPro
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Figure 2: Cari
ature of the typi
al behaviour of a random graph pro
ess as we in
rease the number ofedges.in turn and joining them together with probability p. One of the most interesting aspe
ts of randomgraphs is that as we in
rease the probability of two edges being joined, the 
lustering behaviour in thegraph exhibits a non-linear behaviour. In this 
ontext a 
luster is a set of nodes any pair of whi
h 
anbe joined by a set of edges in the graph, i.e. what is 
ommonly 
alled a 
onne
ted 
omponent [11℄.If the probability of joining ea
h pair of nodes is small, i.e. the number of edges is small, then anumber of small 
lusters (typi
ally of size two or three) will form (�gure 1a). However as we in
reasethe number of edges we rea
h a point at whi
h new edges have a high probability of linking two 
lusters(�gure 1b). As a few more edges are added the 
lusters merge together in
reasingly, leading rapidly to theformation of a giant 
omponent (�gure 1
) where most of the nodes in the graph are 
onne
ted together.This transition from lots of small 
omponents to a giant 
omponent happens with only a small 
hangein the number of edges added to the graph. This is a pro
ess similar to a phase transition in a material,where the transition from (say) liquid to solid happens with a small 
hange of temperature or pressure.For this reason we 
an refer to the 
riti
al value around whi
h this phase transition happens as the phasetransition point. Figure 2 shows a 
ari
ature of typi
al behaviour around this point.The o

urren
e of these phenomena in graphs have been investigated by Erd}os and Renyi [3℄. Theyshowed that for a random graph with n edges, the expe
ted number of edges required for the giant
omponent to emerge is n2 ln(n).These ideas have been extended to other kinds of random graphs other than those where there is auniform probability of ea
h pair of nodes being formed. These ideas have been used to explain a numberof e�e
t. One example is the e�e
t whereby every person appears to be 
onne
ted to every other personin the world by a small string of a
quaintan
es (the small worlds e�e
t). Another example is showingthe importan
e of 
asual a
quaintan
es in transmitting infe
tious disease outside family groups. Theseideas are explored further in [1, 10℄.



3 Applying these ideas to mobile roboti
s.One way in whi
h robots 
an work well together is for them to be able to 
ommuni
ate informationwhi
h has led to their su

ess at parti
ular tasks, either by sharing information about their 
ommonenvironment or by 
ommuni
ating strategies whi
h have led to su

ess at some task [7, 8℄.In order for this to be su

essful the population robots need to be in 
ommuni
ation with ea
h otherfor mu
h of the time: every pair should be 
onne
ted either by a dire
t 
ommuni
ation link or via anintermediate 
hain of one or more robots.If a phase transition point o

urs in their ability to 
ommuni
ate then we need to know where thatpoint might be, otherwise we run into diÆ
ulties and problems. An example of a situation in whi
h su
ha problem 
ould arise would be taking a fun
tioning population of robots and pla
ing them in a slightlylarger environment, or removing a robot from the population. It would only take a small in
rease in thesize of the environment in order to render the whole population useless.3.1 A simple system for simulation.As a test example for the simulation program des
ribed below we use the following model. We have anumber of robots, represented by 
ir
les moving in a two-dimensional re
tangular arena. As the robotsmove around this arena they 
ommuni
ate messages to other robots in the population by sending amessage to all other robots whi
h are within a 
ertain radius of the 
entre of the 
urrent robot.3.2 Predi
ting the phase-transition point.In this system, where does this phase transition point o

ur? Take the number of robots (r), the 
om-muni
ation radius (
), and the size of the arena (assume a re
tangular arena of dimensions h�w). Beginby 
onsidering the relationship between the number (n) of nodes in a random graph and the number (e)of edges. In order for the giant 
omponent to emerge we needn2 ln(n) < e (1)Consider the graph whi
h underlies a parti
ular 
on�guration of robots in the arena, where we assign anode to ea
h robot and an edge between every pair of robots whi
h 
an inter
ommuni
ate. Clearly thenumber r of robots is equal to n in the equation above.We 
an work out the number of edges thus. Firstly 
onsider the area of the arena in whi
h the robot
an 
ommuni
ate (�gure 3). The area of a given robot's 
ommuni
ations radius is �
2 (ignoring edgee�e
ts, so this will only be valid for 
ommuni
ation radii whi
h are small with respe
t to the area of thearena), and the area of the arena is width � height. So the proportion of the arena whi
h the robot 
an
ommuni
ate to is �
2wh (2)Now there are r� 1 other robots in the arena. If we assume that at a typi
al point in the run the robotsare well distributed around the arena, then there will be(r � 1)�
2wh (3)robots in the 
ommuni
ation radius of a typi
al robot. Finally we sum over all of the robots, and divideby two be
ause the pro
ess above 
ounts ea
h robot twi
e (for ea
h pair the �rst is 
ounted when it iswithin the se
ond one's 
ommuni
ation radius, and vi
e versa).Therefore for a given set of parameters we would expe
t the phase transition to o

ur whenr2 ln(r) < r(r � 1)�
22wh (4)As an example of the use of this let us 
al
ulate how big a 
ommuni
ation radius we need for a phasetransition for a 100� 100 arena 
ontaining 20 robots. Firstly we rearrange equation 4 so as to isolate 
s2whr ln(r)2�r(r � 1) < 
 (5)
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Figure 3: Counting robots in the area o

upied by a robot's 
ommuni
ation radius.and we assume that the positive square root is taken as the negative result is physi
ally meaningless.If we 
al
ulate this for our �gures above we get that 
 > 22:4 as a 
riterion for the phase transition too

ur. To investigate this further we shall do some simulations, results are given below.We 
ould extend this model to the more realisti
 
ase where there is a probability that the message-passing fails. To do this we multiply the probability of two robots being linked by this additionalprobability.4 Experiments and results.We have written a simulation program with whi
h to investigate these phenomena. This simulates anumber of mobile robots moving in a re
tangular arena, and 
an be run either as an intera
tive graphi
alsimulation (�gure 4) or as a bat
h pro
ess for doing statisti
al analysis.We are 
urrently using this program to investigate the phase transition phenomena des
ribed above.For example we 
an 
reate an experiment whereby the robots wander randomly around the arena, andre
ord the average 
luster size. In this 
ase a 
luster is the number of other robots whi
h 
an be
ommuni
ated with, either dire
tly by being in the 
ommuni
ation radius of the 
urrent robot or viapassing a message through other robots. We then average this over 2000 timesteps of motion.We would expe
t there to be a phase transition point at the lo
ation des
ribed above, i.e. somewherearound a 
ommuni
ation radius of 22:4. The results are given in �gure 5. This plots the maximum 
lustersize for a given 
ommuni
ation radius. We 
an 
learly see that the 
luster size in
reases rapidly on
e thephase transition point has been passed.Clearly this will have an impa
t on the ability of the robots to learn from one another, whether thatis learning spe
i�
 features of the environment or learning general strategies about how to 
ope with theenvironment.We are 
urrently 
arrying out work whi
h looks into the impa
t that this behaviour has on the learningbehaviour of robots. We are using a number of tasks, for example a foraging task and a rubbish-
olle
tiontask, and investigating whether these phase transitions in 
ommuni
ation a�e
t the ability of the robotsto learn from one another, in
luding learning information about the environment and learning strategiesabout how to a
t in that environment. A preliminary summary of these investigations suggests that thisa�e
ts the 
ommuni
ation when the robots are 
arrying out tasks where the information is 
onstantly



Figure 4: The simulation program in a
tion.
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hanging, e.g. a foraging task where fe
und areas of the environment are regularly 
hanging and the robotsare 
ommuni
ating 
onje
tured positions of su
h regions. Where the task is su
h that the information,on
e learned, 
ontinues to be of use (e.g. a good heuristi
 strategy), the phase transition has little e�e
t,be
ause robots are gradually moving from small 
luster to small 
luster even when the 
ommuni
ationradius is small.5 Dis
ussion.It seems likely that these arguments 
an be extended to more 
omplex behaviours. One example is whererobots have to explore a large region and then 
ome ba
k together to pool their results. Using the aboveideas we 
an de
ide how 
lose the robots need to 
ome to get a 
olle
tive knowledge of this information.Another way in whi
h this 
ould be used would be in 
reating good 
on�gurations for populationsof mobile robots rather than analysing existing situations. One example would make use of anotherspe
ial kind of random graph 
alled a small world network [10℄. Su
h networks model the 
ommuni
ativebehaviour of so
ial networks in populations of people, where large numbers of people are 
onne
ted bysmall 
hains of a
quaintan
es. This is popularly known as the \six degrees of separation" e�e
t (theidea that every person in the world 
an be 
onne
ted to every other through a 
hain of an most sixa
quaintan
es) [6℄, whi
h has been experimentally investigated [9℄.Su
h networks are 
hara
terized by having small groups (e.g. families) in whi
h lots of information isshared, 
onne
ted by networks of a
quaintan
es whi
h span otherwise dis
onne
ted parts of the network.Su
h networks have high 
onne
tivity for small numbers of links. This might provide a good model forexploratory roboti
s using many small robots [4℄; small 
lusters of robots explore parti
ular areas ofinterest, whilst 
ommuni
ating results via a small number of long-distan
e links. Su
h systems 
ould beevolved in a bottom-up manner by in
luding relevant 
onne
tivity measures in a �tness fun
tion for anevolutionary roboti
s system.Another issue is that in many situations the robots will not be evenly distributed around their envi-ronment, either due to the behaviour being 
arried out, or due to the nature of the environment. In these
ases we need more 
omplex measures of 
onne
tivity. Examples of this are given in the books by Bollobas[1℄, and in parti
ular in the book by Watts [10℄. Watts de�nes two quantities, the 
hara
teristi
 pathlength and the 
lustering 
oeÆ
ient, whi
h are shown to 
hara
terise the 
onne
tivity of graphs. Other



ideas are suggested in the popular-s
ien
e book by Gladwell [5℄; formalizing these ideas mathemati
allyand experimentally would be another interesting dire
tion.There are other areas in whi
h similar questions 
an be usefully asked. As an example 
onsider thefollowing proposal for bringing telephone te
hnology to parts of the world where installing a 
able orbase-station infrastru
ture is ex
essively 
ostly or problemati
. The idea is that ea
h telephone will a
tboth as a normal phone and also as a low-powered base-station, having enough power to transmit toanother phone in the vi
inity. This would then make a 
onne
tion to another phone, and so on, until aset of links was established. If we were to install su
h a system we would need to know in advan
e howmany units would need to be installed, how powerful they would need to be, and how the network mightbe a�e
ted by the removal of a small number of units.Further details 
an be found in the se
ond author's masters thesis [2℄.Referen
es[1℄ B. Bollobas. Random Graphs. Oxford University Press, 1985.[2℄ Steven J. Brodie. Phase transition phenomena in roboti
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