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Abstract. This paper presents a generic classification framework for large-scale 
face recognition systems. Within the framework, a data sampling strategy is 
proposed to tackle the data imbalance when image pairs are sampled from 
thousands of face images for preparing a training dataset. A modified kernel 
Fisher discriminant classifier is proposed to make it computationally feasible to 
train the kernel-based classification method using tens of thousands of training 
samples. The framework is tested in an open-set face recognition scenario and 
the performance of the proposed classifier is compared with alternative 
techniques. The experimental results show that the classification framework can 
effectively manage large amounts of training data, without regard to feature 
types, to efficiently train classifiers with high recognition accuracy compared to 
alternative techniques. 

Keywords: classification framework, face recognition and kernel Fisher 
discriminant. 

1   Introduction 

In the past two decades, there has been a great deal of research and development in 
the field of face recognition (FR) [14]. To develop a large-scale practical FR system, 
it is essential to use a large facial image database for training and testing so that real-
world scenarios that may be faced in target applications can be effectively 
represented. Fortunately, some large databases have been built up for testing various 
FR technologies [8-10].  

It is well known that the task of face recognition can be turned into a simple and 
effective two-class classification problem [4,6,7]. To do that, facial features are 
extracted from an image pair (instead of a single image) and then classified into the 
intra- and extra-personal categories. Here, the intra-personal features represent those 
calculated from two images of the same persons while the extra-personal features are 
calculated from two images from different persons. 

Although adopting the classification problem is not new in the literature, using it to 
build up an FR system based on a large facial database (e.g., the Face Recognition 
Grand Challenge (FRGC) database [9]) still remains challenging. The first major 
challenge is how to handle the large amount of training data. For example, if the 
FRGC database is used and only the controlled frontal images are exploited, 



according to [9], there are more than 20 thousand such images from which more than 
400 million image pairs can be sampled for training and testing. Moreover, the 
number of intra-personal image pairs and extra-personal image pairs are extremely 
imbalanced. Fig. 1 shows an example that explains such imbalance. In the figure, the 
black squares represent images of Subject ݅ and rest of the squares stand for other 
images in the database. The stars mark all possible intra-personal image pairs that can 
be sampled for Subject ݅, while the circles locate the extra-personal image pairs. It is 
obvious that in a large database, there will be much more extra-personal image pairs 
than the intra-personal pairs for every Subject ݅ , resulting in the huge imbalance. 
Here, the question turns to be how to sample image pairs to form a balanced training 
dataset with a reasonable size.  

The way that the training and test data are defined depends on whether a FR 
application is a close-set or an open-set problem. For an open-set problem, the system 
will be expecting in the test data some subjects which have not been encountered at 
the training phase. For a close-set scenario, all subjects in the test are also included in 
the training set. In recent evaluation campaigns [10], it has been observed that the 
open-set scenario could show a much lower FR performance compared to a closed-set 
scenario. Very often, a real-world large-scale FR system is required to deal with an 
open-set scenario. Therefore, the second challenge will be how to properly select and 
train a classifier using the available training data to classify the test data from some 
unknown subjects. 

In this paper, we propose a generic classification framework to tackle the above-
mentioned challenges. The framework consists of an image-pair sampling strategy for 
preparing a balanced set of samples for training and a kernel-based classifier that can 
perform reasonably in an open-set scenario and can be trained using a large training 
dataset. The framework is essentially “feature agnostic” – meaning that it is 
independent of the choice feature-extraction algorithms used to produce training and 
test vectors for classification. The multi-resolution local binary pattern (LBP) [1] 
features are used to test the system on the FRGC database. Experiments are designed 
to simulate the open-set scenario and results indicate that the framework significantly 
improves the performance. 

The rest of the paper is organised as follows: Section 2 and 3 describes the 
sampling strategy and the classifier, respectively. The experiments and results are 
presented in Section 4. Section 5 provides a summary and conclusions. 

 
 

 
Fig. 1. An example showing the imbalance between the number of intra-personal image pairs 
and the number of extra-personal image pairs that can be sampled for Subject . The black 
squares represent images of Subject ܑ and rest of the squares stand for other images in the 



database. The stars mark all possible intra-personal image pairs that can be sampled for Subject 
ܑ, while the circles locate the extra-personal image pairs. 

2   Data Sampling Strategy 

As mentioned above, a large facial database (e.g., the FRGC database) could contain 
thousands of face images from which millions of image pairs can be sampled for 
training and test purposes. The huge amount of data available and the imbalance 
between the numbers of intra- and extra-personal image pairs make the preparation of 
a suitable training dataset non-trivial for any FR system.  

To cope with the large number of training samples and to make each subject evenly 
weighted in the training dataset, one common way [13] is to select equal number of 
images for each subject and sample all the intra- and extra-personal image pairs from 
the selected images. By evenly weighted, we mean that the numbers of intra- and 
extra-personal image pairs including images of a particular subject should be the same 
for each subject. Although the method is intuitively straightforward, the obtained 
training dataset is not suitable for the classification problem as explained in the 
example below.  

Suppose that there is a database containing ୱܰ୳ୠ = 300 subjects (a large facial 
database could include many more subjects) and for each subject, ݊ = 4 images are 
randomly selected. Assume that there are ten images from Subject ݅ and seven images 
from Subject ݆. Fig. 2(a) and Fig. 3(a) show the intra-personal pairs sampled for 
Subject ݅ and extra-personal pairs sampled for Subject ݅ and ݆. (Note that without loss 
of generality, images belonging to a subject can always be organised in the order that 
starts with the selected images represented by the black boxes.) Here the image pair 
,ଵܫ) ,ଶܫ) ଶ) is considered to be the same asܫ  ଵ) and the pairs formed by the sameܫ
images are only included once. The total number of intra-personal pairs ୧ܰ୬୲ can be 
calculated as ଵ

ଶ
݊(݊ − 1) ୱܰ୳ୠ = 1800 and the total number of extra-personal pairs 

ୣܰ୶୲  can be calculated as ଵ
ଶ

݊ଶ
ୱܰ୳ୠ( ୱܰ୳ୠ − 1)  which is more than 7 × 10ହ . The 

disadvantage of the sampling method is that ୧ܰ୬୲  and ୣܰ୶୲ are decided by ݊  given 
ୱܰ୳ୠ  and ୧ܰ୬୲ ≪ ୣܰ୶୲  always holds no matter how ݊  changes. Besides the large 

imbalance between ୧ܰ୬୲ and ୣܰ୶୲, from the figures, it can been that the image pairs 
are not randomly sampled from all the possible positions. 

In this paper, we propose a strategy for sampling a balanced dataset in which each 
subject is evenly weighted. Here the subjects involved in the sampling are denoted as 
൛ݏଵ, ,ଶݏ … , ே౩౫ౘݏ

ൟ and the images from ݏ as ቄܫଵ
 , ଶܫ

 , … , ேೞܫ
 ቅ where ௦ܰ is the number of 

images. Instead of selecting images for each subject, we first list all the intra- and 
extra-personal pairs. For ݏ, the intra-personal pairs can be expressed as: 

 

୧࣪୬୲
 = ൛(ܫ௨

 , ௩ܫ
 ݑ|( < ,ݒ 1 ≤ ݑ ≤ ൫ ௦ܰ − 1൯, 2 ≤ ݒ ≤ ௦ܰ

ൟ. (1) 

 



In Eq. (1), the image index ݑ is always smaller than ݒ to avoid including an image 
pair twice and to exclude those formed by the same images. For a subject pair ൫ݏ ,  ൯ݏ
(݅ < ݆), the extra-personal pairs can be expressed as: 
 

࣪ୣ ୶୲
, = ቄ൫ܫ௨

 , ௩ܫ
൯|1 ≤ ݑ ≤ ௦ܰ , 1 ≤ ݒ ≤ ௦ܰೕ

ቅ. (2) 

 
In Eq. (2), the subject index ݅ is always smaller than ݆ to avoid considering a subject 
pair twice. We then randomly choose ݊୧୬୲  pairs from each ୧࣪୬୲

  and ݊ୣ୶୲ pairs from 
each ࣪ୣ ୶୲

,  to form the training dataset. In this way, the total numbers of the intra- and 
extra-personal pairs can be computed as: 
 

୧ܰ୬୲ = ݊୧୬୲ ୱܰ୳ୠ  

ୣܰ୶୲ =
1
2 ݊ୣ୶୲ ୱܰ୳ୠ( ୱܰ୳ୠ − 1) (3) 

 
It can be seen that given fixed ୱܰ୳ୠ, ୧ܰ୬୲  and ୣܰ୶୲ are controlled by ݊୧୬୲  and ݊ୣ୶୲ , 
respectively. The number ݊୧୬୲/݊ୣ୶୲ can be customised to enlarge/limit the number of 
intra-/extra-personal image pairs in the training dataset. Following the sampling 
example mentioned above, Fig. 2(b) and 3(b) show the image pairs obtained using the 
proposed sampling strategy where ݊୧୬୲ = 15 and ݊ୣ୶୲ =5. It can be seen that not only 
twice more intra-personal pairs are selected, but more images of Subject ݅  are 
involved in the sampled image pairs, which in some sense makes the image pairs 
more representative for Subject ݅. On the other hand, because of ݊ୣ୶୲ = 5, the number 
of extra-personal pairs is significantly reduced to one third of the previous size. Note 
that subjects in a large database often have more images and a larger ݊ୣ୶୲ can be 
chosen to sample more intra-personal pairs. 
 
 

         
        (a)     (b) 

Fig. 2. The intra-personal image pairs sampled for Subject ݅ using (a) the normal image-based 
sampling method and (b) the proposed image-pair-based sampling strategy.   
  
 



        
          (a)     (b) 
Fig. 3. The extra-personal image pairs sampled for Subject ݅ and Subject ݆ using (a) the normal 
image-based sampling method and (b) the proposed  image-pair-based sampling strategy. 

3   Modified Kernel Fisher Discriminant 

For an effective FR system, the choice of the classifier is equally important as the 
selection of informative and discriminatory features, especially for an open-set 
problem. In some cases, a simple classifier (e.g., a K-nearest neighbour classifier or a 
Bayesian classifier [6]) can do the job. However, if sufficient training data is 
available, a more sophisticated classifier could significant improve the system 
performance particularly when the extracted features have a complex distribution in 
the feature space. Recently, the kernel-based classification methods (e.g., the support 
vector machine (SVM) [11] and the kernel Fisher discriminant (KFD) [5]) have been 
widely used to solve some non-linear classification problems [4,5,7,13]. If two classes 
of data points cannot be separated sufficiently in the original space, the kernel 
methods provide a way to map the points into a higher-dimensional feature space in 
which they could distribute more sparsely and therefore, more easily be separated. 
The merit of these methods is that the computation of the mapping can be avoided by 
the ‘kernel trick’ [11] which makes it computationally feasible and affordable. 

Let Φ be the mapping to the new feature space ℱ  and Φ(࢞) ∈ ℱ  be the point 
mapped from a data sample ࢞. The kernel ࣽ is a function defined in the original space 
to calculate the dot product of two mapped samples Φ(࢞)  and Φ(࢞′) , that is, 
,࢞)ࣽ (′࢞ = 〈Φ(࢞),Φ(࢞′)〉. In both SVM and KFD, the gram matrix ࡷ  [11] is 
calculated from all the training samples to solve some optimisation problem. Each 
entry ࡷ(݅, ݆) is defined as the value of the kernel ࣽ൫࢞ , ࢞  and࢞ ൯ where࢞  are the ݅୲୦ 
and ݆୲୦ samples in the training dataset. According to the definition, the dimension of 
matrix ࡷ will be ܰ × ܰ where ܰ is the total number of samples for training. Although 
a sampling strategy has been proposed to significantly reduce the size of the training 
data, as there are possibly hundreds of subjects included in the database, there could 
still be tens of thousands of image pairs selected for training according to Eq. (3), 
which would make ࡷ very large. Keeping such a large matrix not only requires a 
large amount of memory, but makes the optimisation problem computationally very 
expensive, sometimes even infeasible. To solve the problem, Joachims [3] developed 
the SVM௧  system, an implementation of an SVM learner which addresses the 
problem of having large training dataset. In this paper, a modified KFD (MKFD) is 
proposed to tackle the problem in a more efficient way.  



Let {࢞ଵ, ଶ࢞ … ,  ே} be the training samples. The classic KFD algorithm tries to࢞
search a vector ࢝∗ ∈ ℱ that maximises the ratio of the intra-class variations of the 
mapped feature points over the extra-class variations. Using the theory of reproducing 
kernels [11], ࢝ can be written as a linear combination of all the samples, that is, 
࢝ = ∑ ߙ

ே
ୀଵ Φ(࢞). Using the kernel trick, the problem can be converted to find the 

optimal parameters ࢻ∗ that maximises ℐ(હ) = ࢻ ۻTࢻ
ࢻ ࡺTࢻ

 where ࢻ = ,ଵߙ] ,ଶߙ … ,  ே]. Theߙ
definitions of matrices ࡹ and ࡺ can be found in [5]. In this case, ࡹ and ࡺ can be 
easily computed from ࡷ and to keep both matrices makes the computation more 
difficult. 

A similar situation is encountered in the SVM where a set of parameters હ is to be 
optimised. It is known that ࢝ only depends on a subset of training samples (the 
support vectors). The support vectors are found by solving an optimisation problem 
which itself involves the calculation of ࡷ and only those parameters ߙ୬ corresponding 
to the support vectors have non-zero values. Inspired by the finding from the SVM, 
we modify the KFD algorithm by selecting a subset ࣲ  of the training samples 
(obtained by the sampling strategy) to construct the linear combination for ࢝. The 
samples in ࣲ  are half intra-personal and half extra-personal and are randomly 
selected from the training dataset. Let ܳ = ୀଵ{ݍ}

ெ  be the indices of the selected 
samples. Zero values are assigned to all the ߙ୬ where ݊ is not in ܳ. In this way, only  
൛ߙభ , మߙ , … , ಾൟߙ  need to be optimised, which makes the KFD computationally 
feasible for a large training dataset. Although not using the full set of the training 
samples might cause some information loss, the experimental results show that 
significant improvement can still be achieved by the MKFD method when compared 
with alternative techniques.  

4   Experiments and Results 

4.1  Experimental Setting 
 

Experiments have been designed to test the system in a face verification scenario. A 
subset of the FRGC database was used. In total, the subset contains 16 thousands face 
images all taken under a controlled environment (e.g., with a static clear background 
and controlled lighting) during the 2003-2004 academic year. The large size of the set 
of images makes it suitable for demonstrating the proposed framework. The 
normalisation procedure described in [2] was used to pre-process images in the 
experiments.  

Results can be influenced by the choice of particular training and test data. To 
reduce this effect, we prepared seven image groups each of which contained images 
from 50 subjects. In total, there were 12992 face images in the groups. Note that the 
subjects in each group were unique and did not appear in the other groups thereby 
simulating an open-set scenario very often encountered in a practical large-scale FR 
system. Cross validation was adopted to test the system, using one image group for 
validating and the rest of the images for training. The validating set was changed from 
one group to another until all the groups had been used.  



Since the proposed classification framework does not specify any feature 
extraction method, the local binary pattern (LBP) technique described in [1] was used 
to extract facial features for testing the framework. To have different kinds of facial 
features, images were partitioned into 3 × 4, 5 × 5, 7 × 7, 10 × 10 and 14 × 14 local 
regions and three different LBP operators LBP଼ ,ଶ

௨ଶ , LBP଼ ,ସ
௨ଶ  and LBPଵ,ସ

௨ଶ  (see [1] for 
details) were exploited, resulting in totally 15 kinds of facial features. For an image 
pair, the chi-square distances were computed from the local LBP histograms as the 
facial features. Note that all the features were zero-score normalised [12] in the 
experiments.  

To prepare the training datasets, we need to decide the values of n୧୬୲  and nୣ୶୲ . 
Some experiments were carried out using training datasets with different sizes and 
based on the results we set ݊୧୬୲ = 100 and ݊ୣ୶୲ = 5. For the test datasets, all the 
intra- and extra-personal image pairs were used to calculate the test samples. To 
employ MKFD, two most commonly used kernels were tested: the RBF kernels, 
ࣽ൫࢞, ൯′࢞ = exp(−‖࢞ − (/‖′࢞  and the polynomial kernels, ࣽ൫࢞, ൯′࢞ =
࢞) ∙ ௗ(′࢞  where   and ݀  are positive constants. The RBF kernels largely 
outperformed the polynomial kernels and were used in the experiments. Finally, the 
size of the subset ࣲ in the MKFD was chosen to be 5000 based on some exploratory 
experiment.  

 
4.2  Experimental Results 

 
In the first experiment, following [1], face images were partitioned into 7 × 7 local 
regions and the LBP features were extracted using LBP଼ ,ଶ

௨ଶ . The classification 
framework was performed on the seven image groups defined for the cross-validation. 
To test the robustness of the framework, in each turn of the cross-validation, we 
sampled three different training datasets using the sampling strategy. The MKFD 
classifier was then trained on them and tested on the same test dataset.  To compared 
with the framework, we implemented the LBP system developed in [1], the linear 
Fisher discriminant (LFD) classifier, and the SVM௧  [3]. Here the LFD and the 
SVM௧  are trained on the same training datasets as used by the MKFD classifier.  

Table 1 and Fig. 4 show the results in terms of the equal error rates (EERs) and the 
true acceptance rates (TARs) at the false acceptance rates (FARs) of 0.1% and 1% 
which are two important rates for evaluating system performance [7,9]. Based on the 
same facial features, the proposed classification framework and the SVM௧system 
significantly outperform the other two methods. Considering the EERs, the proposed 
framework performed slightly better than the SVM௧  system. Table 2 summarises 
the CPU time used to train the MKFD classifier and the SVM௧  system. 
(Experiments were carried out on a PC with an Intel Core 2 Duo 2.4Hz CPU and 4G 
memory.) It can be seen that using the same training datasets, the SVM௧  required 
eight times more training time than the MKFD. Moreover, there were averagely 
9.57 × 10ଷ support vectors learned by the SVM௧  system each time, while the size 
of the subset ࣲ used by the MKFD was set to be 5000 all the time. 

In the second experiment, we investigated how the size of the subset ࣲ could 
affect the performance of the MKFD. Using the same training and test datasets in the 
first experiment, different sizes of ࣲ were chosen to train and test the MKFD. 



 
Fig. 4. Average TARs reported at the FARs of 0.1% and 1%. 

Table 1.  Means and STDs of the EERs for different algorithms tested in the first experiment.  

 LBP System LFD MKFD SVM௧ 
Mean (%) 6.10 4.98 3.52 3.87 
STD (%) 1.43 1.33 1.11 1.23 

Table 2.  Means and STDs of the CPU time used to train the MKFD and SVM௧.  

 MKFD SVM௧ 
Mean (sec) 1.0 × 10ଷ 8.0 × 10ଷ 
STD (sec) 1.2 1.1 × 10ଶ 

 
 

 
(a)                                                                     (b)             

 
Fig. 5. Different sizes of the subset ࣲ are chosen to train and test the MKFD classifier. The 
average EERs and TARs at the FARs of 0.1% and 1% are reported in (a) and (b), respectively. 
 



Fig. 5(a) shows the EERs at the different sizes of ࣲ. The rates dropped quickly from 
the size of 100 to 2500. After that, the curve reached the bottom at the size of 5000. 
It can be seen that although the size of ࣲ was increased by half from 5000 to 7500, 
the EER remained almost unchanged, which indicates that increasing the size of ࣲ 
does not always help to increase the performance. Fig. 5(b) shows the corresponding 
average TARs at the FARs of 0.1% and 1%. Once again, the two curves confirmed 
the finding in Fig. 5(a). 

In the final experiment, we explored the capability of the classification framework 
for fusing different sources of facial information. To do that, various image 
partitionings and LBP operators were used to extract a range of feature sets. The 
framework was then tested for all the three LBP feature types on each of the seven 
image partitionings. Table 3 shows the average EERs calculated for each 
combination. The resulting features were then concatenated to produce fused features 
used for classification. Fig. 6 presents the results in terms of ROC curves. Besides the 
ROC for all features, the figure also shows the ROC curves for the two kinds of 
features with the smallest EERs. It can be seen that the classification framework not 
only can handle each of the different kinds of features, but is capable of fusing the 
facial information carried by the features to give a much better performance.     

5   Conclusions 

In this paper, a generic classification framework has been proposed for large-scale 
face recognition systems. The framework consists of two components: a data 
sampling strategy and a modified kernel Fisher discriminant classifier. The sampling 
strategy is aimed at dealing with the imbalance within the large amount of training 
data when image pairs are sampled for feature extraction. The modified KFD provides 
a simple solution for using the KFD algorithm given a large training dataset. Various 
experiments have been carried out in an open-set scenario and results suggest that the 
classification framework can provide an effective solution in terms of accuracy and 
computational efficiency. 
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