
McKay, Fraser and Kölling, Michael (2013) Predictive Modelling for HCI
Problems in Novice Program Editors. In: Proceedings of BCS HCI 2013
- The Internet of Things XXVII. . British Computer Society, London, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/34950/ The University of Kent's Academic Repository KAR

The version of record is available from
http://ewic.bcs.org/content/ConWebDoc/51722

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/34950/
http://ewic.bcs.org/content/ConWebDoc/51722
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

© The Authors. Published by BCS
Learning and Development Ltd.
Proceedings of BCS HCI 2013- The
Internet of Things XXVII, Uxbridge, UK.

Predictive Modelling for HCI Problems in
Novice Program Editors

Fraser McKay
School of Computing

University of Kent
Canterbury, UK. CT2 7NF

fm98@kent.ac.uk

Michael Kölling
School of Computing

University of Kent
Canterbury, UK. CT2 7NF

 m.kolling@kent.ac.uk

We extend previous cognitive modelling work to four new programming systems, with results
contributing to the development of a new novice programming editor. Results of a previous paper,
which quantified differences in certain visual languages, and feedback we had regarding interest in
the work, suggested that there may be more systems to which the technique could be applied. This
short paper reports on a second series of models, discusses their strengths and weaknesses, and
draws comparisons to the first. This matters because we believe “bottlenecks” in interaction
design to be an issue in some beginner languages – painfully slow interactions may not always be
noticeable at first, but start to become intrusive as the programs grow larger. Conversely, text-
based languages are generally less viscous, but often use difficult symbols and terminology, and
can be highly error-prone. Based on the models presented here, we propose some simple design
choices that appear to make a useful and substantive difference to the editing problems discussed.

Programming, Scratch, Alice, StarLogo, CogTool, viscosity, patterns.

1. INTRODUCTION

Programming education is highly topical, and there
are several actively-developed novice programming
tools that have been widely used, and cited in the
literature. These range from child-user “block”
building systems (like Scratch) to Greenfoot – a
Java game-based development tool used in
schools – to “pure” visual programming systems,
based on flow-chart-style diagrams (such as Lego
Mindstorms). There are other systems that sit
between the above, such as Alice, StarLogo TNG,
and numerous other variations on the “block”
metaphor. There are also “mainstream”
programming languages that are judged to be the
simplest of their kind, used to teach beginners
(such as Python, Java, or variants of Basic). All of
these systems look, superficially, very different –
they range from toy-like graphics, to monospace
text, to complex flow diagrams and lines. However,
there are interactions that are common to several
of the differently-styled editor types, and there are
also systems that look similar, but behave very
differently in terms of interaction design.
In this paper, we extend previous cognitive
modelling work to four new programming systems
(McKay 2012). The initial goal of that study was to
compare several “benchmark” systems to a new
editor in development, as part of the design
process. Results of the previous paper, which

highlighted differences in some visually-similar
visual languages, and feedback we received,
suggested that there may be other systems that
could be approached in this way. This short paper
reports on a second series of models, discusses
their strengths and weaknesses, and compares
them to each other, and to the systems in the first
set. We acknowledge, for the record, that viscosity,
through task time, is only one of the issues in
novice programming systems. A system with low
viscosity would not necessarily meet the other
(educational) requirements for beginner systems,
but observations suggest that excessively viscous
interactions may still be problematic for some types
of novice user.

2. RELATED WORK

2.1 Psychology of programming

One important idea from the psychology of
programming is viscosity. When working with
notations – in this case, computer programs –
viscosity is defined as resistance to change (Green
1989). For example, once a program has been
(partly) written, viscosity might be encountered
when editing an existing statement, rearranging the
entered program, or inserting new code
somewhere in that which already exists.

Predictive Modelling for HCI Problems in Novice Program Editors
McKay ● Kölling

Green & Blackwell (1998) define six “cognitive
activities” – “incrementation” (adding new code),
transcription (copying a design into code, or
copying code from somewhere else), modification,
exploratory design, searching, and exploratory
understanding. The primary activities dealt with in
our previous paper were incrementation and
modification. Together, these cover adding and
modifying statements, moving them once in place,
and removing them. In the Time Scale of Human
Action terms used by Newell and Card (1985),
these tasks take place in the “task” and “unit task”
scales of the rational and cognitive bands.

2.2 Previous paper

In a previous work, we used CogTool to simulate
human-like task completion times, for a variety of
programming tasks (McKay 2012). That paper was
based on cognitive models of 46 broadly-chosen
program editing tasks. For simplicity, the tasks
have been grouped into five categories (to avoid

separately listing 46 tasks  8 systems): adding
new statements (n=6), modifying part of a
statement (n=8), deleting it (n=12), moving it to
somewhere else in the program (n=13) and
removing/replacing it with another statement (n=7).
Where some groups are larger than others, it is
because there are multiple variants of the task,
applying to different types of statements. The tasks
were all simulated using the same cognitive
architecture/agent – the software used to conduct
the simulations is explicitly designed to facilitate
comparing two or more designs like-for-like. As well
as task times, we were able to observe the number
of steps involved in completing a task. From the
differences in simulated times between different
systems, we noticed trends in types of task
generally required more steps and/or time in
similar systems, and which required less.
The prior paper covered only Scratch, Alice,
Greenfoot, and a new prototype design (which was
being described in that paper).

2.3 Novice program editors

Programming languages appear frequently; as with
any other language domain, there are a great
number of languages that have been considered
educational. Kelleher & Pausch (2005), for
example, categorised 87 educational programming
systems, in a paper nearly a decade old. Indeed,
two of the triad of “major” systems often discussed
in the computing education world – Greenfoot and
Scratch (the other being Alice) – were not around
at that time. It would not have been possible, here,
to investigate every possible variation. However,
we have chosen a small number of systems that
exemplify certain editing and notational styles, and
that are used in a “real” educational context (that is,
that they are not purely research languages). The

original selection of Scratch, Alice and Greenfoot
was based on their respective similarities to the
new editor we were developing at the time. It was
hypothesised that the main differences would occur
between Greenfoot (representing text, in general)
and Scratch and Alice (as a pair, since they are
superficially similar in structure). There were, in
fact, several areas in which they behaved very
differently (for example, when deleting or moving
an existing statement, but not adding new ones).
The rationale for selecting the four additional
example systems is discussed in the methodology
section, but it is appropriate to describe the
distinguishing features of each of the systems here,
for readers who are unfamiliar with them.

2.3.1 Alice
Alice (Cooper, Dann & Pausch 2003) programs are
composed of drag-and-drop blocks that represent
program statements. Because drag-and-drop
allows for validation, syntax errors can be
prevented (it is not possible to drop an invalid
statement at a given point). Adjustable parameters
for a statement can be added or changed through
context menus. The structure of the statement
remains intact, and cannot be broken up. The block
has to be entirely removed, and replaced, if the
programmer wants to modify the type of block.

2.3.2 Scratch
At first, Scratch (Maloney et al. 2004) appears
visually similar to Alice, though it uses a much
stronger colour scheme. Programs are composed
of blocks, which must be dragged to the
composition area using a mouse. One difference
between Alice and Scratch, noted in the prior
paper, is that Scratch blocks “stick” to the blocks
above them when they are dragged. This means
that additional steps are needed to move a single
block, since it must be detached from its
neighbours first (so as not to bring them with it). As
shown later in this paper, this is a critical point in
discussing Scratch’s overall results.

2.3.3 Greenfoot (inc. Java)
Greenfoot (Henriksen, Kölling 2004) is a Java-
based system that emphasises object-oriented
programming (it is closely related to BlueJ) through
games. Though Greenfoot’s Java text editor uses
font colour and background to some effect in code
presentation, its interactions are essentially the
same as other text editors’ (Greenfoot’s focus is on
the games-based approach, rather than the specific
program code used).

2.3.4 StarLogo TNG
StarLogo TNG blocks are visually similar to
Scratch’s. However, there are some differences in
the effects alignment and layout have on a block’s
meaning. More importantly, for this work, Scratch
allows text literals to be entered (into a textbox)

Predictive Modelling for HCI Problems in Novice Program Editors
McKay ● Kölling

from the keyboard. In StarLogo literals need to be
added as separate blocks. From the results in this
paper, we can see that that makes StarLogo more
viscous to use, and this is discussed later.

2.4. Cognitive models

Keystroke-level models can be used to measure
the “overt”, or mechanical, movements that a user
makes (Card, Moran & Newell 1980). Cognitive
models additionally measure hidden “mental”
operators, like eye movement, and reading- and
thinking-time. These models, however, are
complex, and difficult to construct accurately by
hand. Non-experts, in particular, can introduce
errors into the calculations (John 2010). CogTool
(John et al. 2004) is a prototyping tool that
automates the creation of cognitive models for
specific tasks. The evaluator leads CogTool
through screenshots or storyboards step-by-step,
demonstrating the end-user’s workflow for the
chosen task (such as clicking a button or menu
item). CogTool uses a computer model of human
cognition to generate a model of the task, and
makes predictions for overall task time, for sub-
tasks. CogTool automates error-prone parts of the
modelling process, improving the accuracy of the
prediction considerably, compared to manually-
created models (John 2010).

3. MODELS

The CogTool models here are based on 46
exemplar tasks, each of which was modelled in all

eight systems. The tasks were chosen to cover
each of the cognitive activities found in the
literature. They are based on use-cases – all of the
places where a statement can be entered, or
moved from one context to another, and so on.
They are not necessarily “equal” in terms of how
frequently they occur in real tasks. We hope to
have additional data in future that would show
which use-cases are the most frequent in real-
world novice programs.
In the previous paper Scratch, Alice and Greenfoot
were modelled against a prototype editor. Those
systems were selected because of their (apparent)
similarities to the prototype. To augment those
findings, we modelled StarLogo TNG (a block
language that is similar to Scratch) and Mindstorms
NXT (a diagrammatic visual language, also used in
education). While Greenfoot was the only text-
based system tested in the previous work,
NetBeans’s Java editor has now been included.
This separates any effects that are unique to (the
current version of) Greenfoot from those that are
related to Java syntax (or perhaps, to text in
general). The final system used here is Python.
Python is used in some teaching contexts – though
to a lesser extent than Java – and is included to
provide an additional point of comparison for text
languages. Python’s syntax is considerably
different from Java’s, and it uses fewer special
symbols (such as semicolons or braces).

4. RESULTS

Mean task times produced by the model, grouped

Table 1: Old and new predictions for task types (times in seconds)

 Previous paper New predictions

 Alice Scratch Greenft Proto MStorm Python NetB StarLg

Insertion 6.560 4.868 3.803 1.644* 15.950 3.950 5.085 12.501

Modification 7.051 5.613 5.836 5.005* 9.103 5.438 5.532 8.288

Deletion 2.555 5.440 6.530 2.418* 6.508 5.530 7.820 5.586

Moving 3.093* 5.480 12.197 4.843 3.819 5.179 6.008 4.968

Replacement 8.902 9.796 4.693 2.289* 18.546 5.162 5.102 11.547

* = least viscous/most efficient

Figure 1: Mean system times for each task type

A
lic

e

A
lic

e

A
lic

e

A
lic

e

A
lic

e

Sc
ra

tc
h

Sc
ra

tc
h

Sc
ra

tc
h

Sc
ra

tc
h

Sc
ra

tc
h

G
re

en
fo

o
t

G
re

en
fo

o
t

G
re

en
fo

o
t

G
re

en
fo

o
t

G
re

en
fo

o
t

P
ro

to

P
ro

to

P
ro

to

P
ro

to

P
ro

to

St
ar

Lo
go

 T
N

G

St
ar

Lo
go

 T
N

G

St
ar

Lo
go

 T
N

G

St
ar

Lo
go

 T
N

G

St
ar

Lo
go

 T
N

G

M
in

d
st

o
rm

s

M
in

d
st

o
rm

s

M
in

d
st

o
rm

s

M
in

d
st

o
rm

s

M
in

d
st

o
rm

s

P
yt

h
o

n
 (

V
S)

P
yt

h
o

n
 (

V
S)

P
yt

h
o

n
 (

V
S)

P
yt

h
o

n
 (

V
S)

P
yt

h
o

n
 (

V
S)

Ja
va

 (
N

B
)

Ja
va

 (
N

B
)

Ja
va

 (
N

B
)

Ja
va

 (
N

B
)

Ja
va

 (
N

B
)

0

2

4

6

8

10

12

14

16

18

Insert Modify Delete Move Replace

M
e

an
 t

im
e

 (
se

co
n

d
s)

Predictive Modelling for HCI Problems in Novice Program Editors
McKay ● Kölling

by task type, are shown in Table 1, and illustrated
in the figure. As shown, no system is universally
“best” across all task types, and scales of the
differences between systems (for a given task type)
vary. Mean times for the “insert” group, for
example, range from 1.644s to 15.950s, with some
systems clustered around 3-6 seconds. The
“replace” group has a similar distribution. There is
less variation in the “modify” group. An analysis of
variance (ANOVA) finds that the differences
between systems are significant in all groups
except “modify”. Variance in the “modify” group is
not significant overall.

5. DISCUSSION

5.1 Presentation vs. interaction

Although Scratch, Alice and StarLogo TNG could
be referred to as “block” languages, and in some
ways look very similar, they are very different in
terms of interactions.
An example of the relationship between
language/notation and editing system is best seen
by comparing Greenfoot and NetBeans. Both are
Java systems, but, as seen above, have produced
differing results in some groups.
In the previous paper, we had not expected the
relatively long task times for selecting and moving
code in Greenfoot. The CogTool graphs
subsequently showed that much of the time and
(virtual) effort involved came from the user having
to select exactly the right delimiting characters in a
Java program construct (semicolons, { } braces,
etc.). These are relatively small mouse targets,
compared to the systems where a user
manipulates whole blocks – an example of Fitts’
(1954) law. Though the notation differs visually
from the block-based systems, Mindstorms NXT
has a similar overall task-time profile as those.
Most of the differences occur in tasks which involve
manipulating the very small “wires” that connect
NXT’s circuit-like symbols. In these cases, the fine
manipulation required appears to increase task
time – similar to the bracket/non-bracket
manipulation effect from the text systems here.
Modelling another Java editor – NetBeans –
provides an additional set of results. In tasks that
require the user to select around a statement,
NetBeans is still more viscous than some of the
alternatives. However, it is less viscous than
Greenfoot in the “move” task group. A detailed look
at the two shows that while the two environments
approach selection in a similar way, and give
similar results, the extra time cost in Greenfoot
occurs in the “move” part of the task. In some text
editors (including NetBeans) it is possible to cut
and paste a highlighted portion of code with drag
and drop, though it requires small/fine movement at

the end location. Because Greenfoot does not do
this, the user must “manually” cut and paste – most
quickly done through a right-click context menu.
Modelling Python – another text language, one that
does not feature C/Java-style braces –
demonstrates the difference. Visual Studio’s
Python editor supports the highlight-and-drag
feature mentioned above – making the “move” task
type behaviour similar to NetBeans. However, it
was more efficient at selecting the code in the first
place, because Python lacks the small delimiting
characters. Another factor in Java (or languages
with a similar syntax) is that pairs of braces must
often be “closed up” when part of the code is
moved away – surplus braces might need to be
removed, and/or extra ones added. The cognitive
dimensions refer to these situations as “knock-on”
viscosity, where a single change has an indirect
effect on other parts of the program (Green,
Blackwell 1998).

5.2 Comparison to previous results

5.2.1 Viscosity and “sticky” blocks
One of the biggest causes of viscosity in Scratch,
and StarLogo, is the way blocks “stick” to their
neighbours when moved. When a block is dragged
from the middle of a program, any blocks that are
below it are dragged along too. Therefore, when
manipulating a single statement, a novice
programmer has to detach any neighbouring
blocks, carry out the main task, and then reattach
the “unwanted” blocks in their original positions
(closing the gap that was left). This was noticed by
users when we previously conducted a qualitative
pilot study using Scratch (McKay, Kölling 2012). It
adds several (tedious, or unhelpful, in their
opinions) steps which are not found when we
compare Scratch or StarLogo to a system like
Alice. The pattern is not defined by the visual
structure of the blocks (which is often useful), but
by the “sticking” effect when interacting with more
than one unit of code.
The net effect of this “sticking” varies from program
to program. However, the models have been used
here to compare a number of tasks in their “with-
follower” or “without-follower” variants. This is, for
example, the difference between deleting two
identical statements – one at the end of a
scope/stack/method, without any others trailing
underneath; the other mid-program, with
neighbours both above and below. This was
applicable in fourteen of the modelled tasks, and
the effect is summarised in Figure 2. Task time
appears unaffected by end-of-stack positioning in
Alice (the total difference is less than 0.04% in only
one task). In both of the affected systems, the task
time increased for all tasks.

Predictive Modelling for HCI Problems in Novice Program Editors
McKay ● Kölling

0

2

4

6

8

10

12

Alice Scratch StarLogo

M
e

an
 t

im
e

 (
se

co
n

d
s)

Variants of the same tasks (n=14) with
single statement or mid-program

Average no-follower

Average with-
follower

5.2.2 Text vs. block-based literals
Block languages differ from each other in their
treatments of text and numeric literals. Though the
program statements in these languages are shown
as individual blocks, there is some difference
between those that use “plug-in” value blocks in
those statements, and those that have character-
based text entry slots as parameters instead.
Scratch allows literals to be entered as text, from
the keyboard. In StarLogo literals are added as
separate blocks (Figure 4), and this makes
StarLogo more viscous to use. Scratch allows plain
text and drag-and-drop value blocks to be used
together in the same expressions. In StarLogo, as
noted, literals are created as special blocks, which
are snapped together horizontally (whereas
statements are arranged vertically) to create
expressions. There is no direct way to enter the
text without a block. Alice’s design approach is
different still – while allowing drag-and-drop style
blocks, it also uses selection from hierarchical
menus. Thus, clicking on the empty space for a
parameter opens a (large) context menu, from
which the user can choose any possible values.
This makes menus very large in programs with
many variables, or when writing complex multi-
nested expressions.
StarLogo’s block-only approach is conceptually
consistent, but it increases task times for those
tasks that require extra blocks for each literal. Once
the block is in place, changing its value is less
problematic. In Figure 3, the mean task times for

changing a literal, once its block has been added,
are approximately the same for all three systems
(since this involves entering text from the keyboard,
as normal).

5.2.3 Incidental to the interface
There are some results that indicate a problem with
the general UI of the editor, rather than a problem
with the actual program notation. Some of the
differences between Scratch and StarLogo TNG
are like this; StarLogo, for example, uses a series
of panels, on the left of the screen, which must be
cycled through in a fixed order. There are panels
for blocks that apply to the individual object, apply
to that class of object, and that represent control
statements.
A further example is Greenfoot’s cut and paste
options. In most text editors (whether for
programming or other domains) selected text can
be dragged to another point in the file, effectively
interpreted as a combined cut and paste operation.
In the version of Greenfoot that was tested, this
interaction is not present. Although ostensibly
trivial, this increases the task time for Greenfoot
tasks that rely on moving statements, or
rearranging the order of different program parts.

5.3 Limitations of the predictive model

The modelling approach used here does not take
into account the time a user might spend designing
a program, or attempting to understand existing
code. Programming is a more cognitively complex
activity than most Internet browsing, for example
and involves additional processes. We proceed on
the basis that though this – the program design
element of the task – means that, in practice,
program-writing will take longer than the sum of the
individual cognitive/ “mechanical” tasks, there is still
value in comparing those aspects of tasks like-for-
like in different systems.
It is obvious that the choice of tasks affects mean
task times. If we were studying the overall effect
that these HCI problems have on writing a whole

Figure 3: Adding blocks to hold literals
Figure 2: Task times whether or not mid-program

0

2

4

6

8

10

12

14

Alice Scratch StarLogo

M
e

an
 t

im
e

 (
se

co
n

d
s)

Added time cost for literal blocks

Adding new literal

Changing existing
literal

Figure 4: Equivalent literal values in Scratch/StarLogo

Predictive Modelling for HCI Problems in Novice Program Editors
McKay ● Kölling

program, it would be important to weight the task
groups appropriately – taking account of the
proportion of their time the “real” programmer is
likely to spend on different activities. Jadud (2006)
observed such a user, and provides programmer
workflows of the sort that could be used to
determine the importance of different tasks.

6. CONCLUSIONS

This paper extends previous cognitive modelling
work to compare different block-based and
traditional text programming languages. The
discussion has concentrated on the viscosity
incurred when statements cling to each other
during editing, and the ways in which parameters,
particularly literals like numbers or text, are handled
in the (semi-) visual notations. Comparisons of
those systems that, superficially, look alike, have
proved particularly useful. The differences between
literals in Scratch and StarLogo TNG, for example,
cause an observable effect in task completion time
for the same sets of tasks. Mindstorms NXT, again,
looks very different from the block-based
languages, but its treatment of literals and
Scratch’s are closer to each other than Scratch’s is
to Alice or StarLogo (and this overall approach
appears more usable). We are developing an editor
that has some resemblance to block-based editors,
and our findings suggest that a Scratch-style
textbox approach would be preferable to the
StarLogo horizontal blocks design.
Compared to Alice, Scratch and StarLogo are very
viscous when editing existing statements. In this
case, we believe that the Scratch/StarLogo “sticky”
block design would be detrimental.
Overall, while some of these factors might be
noticed through system use, we believe that this
work is a first step towards quantifying them in a
systematic way. Predictive models, based on their
accuracy elsewhere, give us reason to believe that
the trends, at least, would be similar in real user
testing, and this is a step which we now intend to
pursue.

7. REFERENCES

Card, S.K., Moran, T.P. & Newell, A. 1980, "The
keystroke-level model for user performance time
with interactive systems", Communications of the
ACM, vol. 23, no. 7, pp. 396-410.

Cooper, S., Dann, W. & Pausch, R. 2003,
"Teaching objects-first in introductory computer
science", ACM SIGCSE Bulletin, vol. 35, no. 1,
pp. 191-195.

Fitts, P.M. 1954, "The information capacity of the
human motor system in controlling the amplitude
of movement.", Journal of experimental
psychology, vol. 47, no. 6, p. 381.

Green, T.R.G. 1989, "Cognitive dimensions of
notations", People and computers V:
proceedings of the fifth conference of the British
Computer Society Human-Computer Interaction
Specialist Group, Cambridge University Press, p.
443.

Green, T.R.G. & Blackwell, A.F. 1998, "Design for
usability using Cognitive Dimensions", Tutorial
session at British Computer Society conference
on Human Computer Interaction.

Henriksen, P. & Kölling, M. 2004, "Greenfoot:
Combining object visualisation with interaction",
Conference on Object Oriented Programming
Systems Languages and Applications, ACM,
New York, October 24-28 2004, p. 73.

Jadud, M.C. 2006, "Methods and tools for exploring
novice compilation behaviour", Proceedings of
the second international workshop on Computing
education research, ACM, p. 73.

John, B.E. 2010, "Reducing the Variability between
Novice Modelers: Results of a Tool for Human
Performance Modeling Produced through
Human-Centered Design", Proceedings of the
19th Annual Conference on Behavior
Representation in Modeling and Simulation, p.
22.

John, B.E. et al. 2004, "Predictive human
performance modeling made easy", Proceedings
of the SIGCHI conference on Human factors in
computing systems, ACM, p. 462.

Kelleher, C. & Pausch, R. 2005, "Lowering the
barriers to programming: A taxonomy of
programming environments and languages for
novice programmers", ACM Computing Surveys,
vol. 37, no. 2, pp. 83-137.

Maloney, J. et al. 2004, "Scratch: A Sneak
Preview", Proceedings of the Second
International Conference on Creating,
Connecting and Collaborating through
Computing, IEEE Computer Society, p. 109.

McKay, F., 2012, "A Prototype Structured but Low-
viscosity Editor for Novice Programmers",
Proceedings of BCS HCI 2012: People &
Computers XXVI, p. 363.

McKay, F., Kölling, M. 2012, "Evaluation of
Subject-Specific Heuristics for Initial Learning
Environments: A Pilot Study", Proceedings of the
24th Psychology of Programming Interest Group
(PPIG) annual conference.

Newell, A. & Card, S.K. 1985, "The prospects for
psychological science in human-computer
interaction", Human-Computer Interaction, vol. 1,
no. 3, pp. 209-242.

