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Drawing Area-Proportional Euler Diagrams 
Representing Up To Three Sets 

Peter Rodgers, Gem Stapleton, Jean Flower and John Howse 

Abstract— Area-proportional Euler diagrams representing three sets are commonly used to visualize the results of medical 

experiments, business data, and information from other applications where statistical results are best shown using interlinking 

curves. Currently, there is no tool that will reliably visualize exact area-proportional diagrams for up to three sets. Limited 

success, in terms of diagram accuracy, has been achieved for a small number of cases, such as Venn-2 and Venn-3 where all 

intersections between the sets must be represented. Euler diagrams do not have to include all intersections and so permit the 

visualization of cases where some intersections have a zero value. This paper describes a general, implemented, method for 

visualizing all 40 Euler-3 diagrams in an area-proportional manner. We provide techniques for generating the curves with circles 

and convex polygons, analyze the drawability of data with these shapes, and give a mechanism for deciding whether such data 

can be drawn with circles. For the cases where non-convex curves are necessary, our method draws an appropriate diagram 

using non-convex polygons. Thus, we are now always able to automatically visualize data for up to three sets. 

Index Terms— Information visualization; Venn diagrams; Euler diagrams.  

—————————— � —————————— 

1 INTRODUCTION

uler diagrams are frequently used to visualize statisti-
cal data where a diagrammatic representation of the 

values of set intersections is required. This paper discuss-
es techniques for automatically drawing such diagrams. 
An example of the output from our software can be seen 
in Fig. 1. Typically, curves (often circles) represent the 
sets, and the areas of the regions formed from the curve 
intersections are required to be given values. An example 
can be seen in Fig. 2, which visualizes the results of a 
medical study [21]. Other applications include crime con-
trol [7] and genetics [10].  

Fig. 1. An example area-proportional Euler-3 diagram. 

Whilst Venn diagrams must include a region for every 
possible intersection of the curves in the diagram, Euler 
diagrams may omit some regions. Hence the diagram in 
Fig. 1 is an Euler diagram, rather than a Venn diagram. 

This is because some regions are missing. For instance, 
there is no region that is inside all three circles. We note 
that every Venn diagram is also an Euler diagram. Euler 
diagrams are called area-proportional when the relative 
region areas are taken to be of semantic importance. 

 

 

Fig. 2. The distribution of albuminuria and estimated glomerular filtra-
tion among patients with type 2 diabetes, obtained from [21]. 
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nitive load [14] compared to complex shapes, helps justify 
our preference for circles, followed by convex shapes. 

The research contributions described this paper are:  
1. to classify the 40 separate diagram descriptions 

drawable with three curves or fewer according to 
whether they can be drawn with circles or convex 
polygons; 

2. to specify exactly when three-set area specifications 
can be drawn with circles; 

3. to develop constructions for drawing an exact area-
proportional Euler diagram for all 40 descriptions, so 
that any area specification for three sets or fewer can 
be drawn. These constructions minimize the well-
formedness properties broken and attempt to mini-
mize the number of vertices when polygons are used; 

4. to describe a software implementation of these con-
structions, which prioritizes circles over convex poly-
gons and uses non-convex shapes where necessary. 
The Euler3 software is publically available: 
www.eulerdiagrams.com/Euler3.html. 

A simplistic approach for drawing diagrams with few-
er regions than Venn-3 would be to find a Venn-3 solution 
and shrink the unwanted regions to have no area. How-
ever, this leads to concurrency, triple points and non-
simple (self-intersecting) curves. The more sophisticated 
approach taken in this paper is to examine the possible 
topological structures for the diagram, and to choose one 
that minimizes these effects. In fact, in many cases, no 
concurrency, triple points or self-intersecting curves need 
to appear at all. 

The rest of the paper is organized as follows. Section 2 
gives the definitions required for the following sections. 
Section 3 details our classification of Euler diagrams with 
three curves or fewer. Section 4 identifies when area spec-
ifications for these diagrams can be drawn with circles. 
When circles cannot be used, Section 5 discusses when 
convex curves can be used. Section 6 describes the soft-
ware implementation, with more details given in the Ap-
pendix. Finally, Section 7 gives our conclusions and dis-
cusses further work. 

2 DEFINITIONS 

We define some of the terms we use throughout this pa-
per. For a more formal approach, see [20]. 

Euler diagrams are collections of labelled simple 
closed curves. Note that we have incorporated the well-
formedness condition of curve simplicity into our defini-
tion of Euler diagram. Venn diagrams are Euler diagrams 
where every possible intersection between curves is a 
non-empty, connected region. Euler-� is an Euler diagram 
containing exactly � curves. An Euler diagram, �, is 
drawn with convex curves if all of its curves are convex. 
Similarly, � is drawn with circles if all of its curves are 
circles.  

A triple point is a point in the plane that is passed 
through at least three times by the curves in the diagram. 
A region is disconnected if it comprises more than one 
connected component. We also need to define concurren-
cy. For our purposes, we need to distinguish two kinds of 

concurrency between curves. In particular, we define 
complete concurrency and partial concurrency. Two distinct 
curves are completely concurrent if they follow exactly 
the same path and they are partially concurrent if the two 
curves are not completely concurrent but segments of 
them follow the same path. The distinction is important 
because, as we shall see in Section 4, it can be possible to 
draw diagrams with complete concurrency using circles 
but not with partial concurrency. In Fig. 5, the diagram 
exhibits complete concurrency between � and �. Note 
that in this figure, the concurrent curves are shown slight-
ly separated for clarity, an approach that is taken 
throughout this paper. 

Given two completely concurrent curves, we can re-
move one of them, � say, from �, to give a diagram we call 
� − � without altering the presence or absence of partial 
concurrency. Given �, we define a concurrency reduced 
diagram, denoted ���, where ��� contains exactly one 
curve from each equivalence class under the completely 
concurrent equivalence relation. It should be obvious that 
any two concurrency reduced diagrams obtained from � 
are visually identical except for the choice of curve labels. 
If ��� contains exactly � curves then we say � reduces to 
Euler-�. In Fig. 5, � and � are completely concurrent and 
removing either one of them from this diagram, �, yields 
a ��� with two curves. Thus � reduces to Euler-2. Fig. 6 
exhibits partial concurrency between the curves � and �.  

Fig. 5. Complete concurrency. 

Fig. 6. Partial Concurrency 

Minimal regions, or simply regions, are connected 
components of ℝ� less the (images of the) curves in the 
diagram and a minimal region description, or simply 
region description, is the set of labels of the curves that 
the minimal region is inside. In Fig. 5, there are four min-
imal regions: one is outside all three curves and has de-
scription ∅, a second is inside just � (so outside � and �) 
and has description {�}, a third is inside just � and � (so 
outside �) and has description {�,�}, and the fourth is 
inside all three curves and has description {�,�,�}. When 
drawing an area-proportional Euler diagram, we need to 
ensure that the minimal regions have the desired areas. 

A B 

C 

A B 

C 
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A connected component of a diagram is a maximal 
subset of the curves whose images form a single compo-
nent in the plane [9]. Fig. 7 shows a diagram that contains 
two connected components, one comprises the curves � 
and �, the other comprises just curve �. The connectivity 
of a diagram is related to its drawability with given areas. 
For instance, in Fig. 7, we can arbitrarily alter the area 
inside the curve �, since this forms a connected compo-
nent drawn ‘independently’ of � and �. In Fig. 8, even 
though � still forms a connected component, its area is 

constrained by the area of the overlap between � and �. 
Fig. 7. An Euler diagram with 2 connected components. 

Fig. 8. An Euler diagram where � is contained by both � and �. 

We are only considering Euler diagrams with three or 
fewer curves. The remainder of the definitions in this sec-
tion will, where appropriate, be presented for this class of 
diagrams. We will use a fixed set of curve labels {�,�,�}. 
Then, for example, the minimal region inside three curves 
with these labels is described by ��,�,�	. When writing 
region descriptions we will abuse this notation and write, 
for example, ���. Where it is convenient to do so, we 
blur the distinction between a minimal region and its de-
scription. For example, we will use the terminology �� 
for both the region description and the minimal region 
with that description. The unbounded ‘outside’ minimal 
region, ∅, is always present. In terms of the represented 
sets, in a diagram, �� represents (� ∩ �) − �, � represents 
� − (� ∪ �), ∅ represents 
 − �� ∪ � ∪ ��, where 
 is the 
universal set, and so forth. 

Given a diagram, it can be described by the descrip-
tions of its minimal regions. For example, Fig. 1 shows a 
diagram with description {∅,�,�,�,��,��}, we typically 
write this as ∅	�	�	�	��	��. A diagram description, �, is 
defined to be a subset of ℙ({�,�,�}) such that ∅	 ∈ �. A 
diagram, �, has description � whose elements are precise-
ly the descriptions of the minimal regions in �. When 
there is more one diagram description under considera-
tion, we will write �� to mean the description of �.  

An area specification is a function, �, where 
�: ℙ{A, B, C} − �∅	 → ℝ� ∪ �0	. This indicates the required 
areas of the minimal regions in the diagram: given �, the 
induced diagram description, ��, is 

 

�� = ��� ∈ ℙ{A, B, C}:�(��� ≠ 0 ∨ �� = ∅}. 
 

In a diagram, the actual area of a minimal region, �, is 
denoted by �������. Given an area specification, �, we 
say that the diagram � represents � if: 
• �� = ��, and 
• for each minimal region, �, in �, area(�) = �(�). 
 

In Fig. 1, the numbers written in the minimal regions 
give the region areas, and the diagram represents the de-
rivable area specification. Given an area specification, �, 
we say � can be drawn with circles if there exists a dia-
gram that is drawn with circles and represents �. Simi-
larly we can define when � is drawn with convex 
curves. The goal of automatic layout of area-proportional Eu-
ler diagrams is to take an area specification and draw a dia-
gram that represents it. 

3 CLASSIFICATION OF EULER DIAGRAMS WITH UP 

TO THREE CURVES 

In [16], the number of Euler diagrams with particular 
numbers of curve labels was established. It was shown 
that there are essentially 40 different diagram descriptions 
with up to three curves, although there was no attempt at 
determining the actual descriptions. We only need to con-
sider how to draw representative diagram descriptions 
from each equivalence class. Table 1 shows the 40 differ-
ent diagram descriptions, with each row corresponding to 
an equivalence class. The Venn Diagram column shows a 
Venn diagram drawn with three circles where the shaded 
regions correspond to those not present in the diagram 
description. 

In Section 4 we identify, for each diagram description, 
�, in Table 1 whether � is 
a) always drawable: given any area-specification, �, 

which induces �, � can be drawn with circles, 
b) drawable in a range: some � that induces � can be 

drawn with circles and, when � can be drawn, any 
small change can be made to the area specification 
without impacting drawability, 

c) over-constrained: some � that induces � can be 
drawn with circles but when � is drawable some 
small change made to the areas results in an undraw-
able case, and 

d) never drawable: � is not drawable with circles. 
 
Subsequently, Section 5 classifies each � similarly, but 

in terms of convex polygons. 

4 THREE-CIRCLE ANALYSIS 

Here we establish which area specifications for three or 
fewer sets can be represented by diagrams drawn with 
circles. In many diagrams that follow, we do not label the 
curves to reduce clutter and adopt the convention that the 
curve labelled � is drawn in red, � is drawn in blue and � 
is drawn in green.  

A B 
C 

A B 

C 
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TABLE 1 
Classifying diagram descriptions for up to three sets 

 

No. Diagram 

Description 

Venn 

Diagram 

 No. Diagram 

Description 

Venn 

Diagram 

 No. Diagram 

Description 

Venn 

Diagram 

 No. Diagram 

Description 

Venn 

Diagram 

1 
∅∅∅∅	A	B	C 

AB	AC 

BC	ABC 

 

 

11 
∅∅∅∅	AB	AC 

BC	ABC 

 

 

21 
∅∅∅∅	AB	AC 

ABC 

 

 

31 ∅∅∅∅	AB	ABC 

 

2 
∅∅∅∅	A	B	AB 

AC	BC 

ABC 

 

 

12 
∅∅∅∅	A	AB 

AC	ABC 

 

 

22 
∅∅∅∅	AB 

AC	BC 

 

 

32 ∅∅∅∅	AB	AC 

 

3 
∅∅∅∅	A	B	C 

AB	AC 

ABC 

 

 

13 
∅∅∅∅	A	AB 

BC	ABC 

 

 

23 
∅∅∅∅	A 

BC	ABC 

 

 

33 ∅∅∅∅	A	ABC 

 

4 
∅∅∅∅	A	B	C 

AB	AC	BC 

 

 

14 
∅∅∅∅	A	AB 

AC	BC 

 

 

24 
∅∅∅∅	A	AB 

ABC 

 

 

34 ∅∅∅∅	A	BC 

 

5 
∅∅∅∅	A	AB	AC 

BC	ABC 

 

 

15 
∅∅∅∅	A	B 

AB	ABC 

 

 

25 
∅∅∅∅	A 

AB	BC 

 

 

35 ∅∅∅∅	A	AB 

 

6 
∅∅∅∅	A	B	AB 

AC	ABC 

 

 

16 
∅∅∅∅	A	B	AC	

ABC 

 

 

26 
∅∅∅∅	A 

AB	AC 

 

 

36 ∅∅∅∅	A	B 

 

7 
∅∅∅∅	A	B	AC 

BC	ABC 

 

 

17 
∅∅∅∅	A	B 

AB	AC 

 

 

27 
∅∅∅∅	A	B 

ABC 

 

 

37 ∅∅∅∅	ABC 

 

8 
∅∅∅∅	A	B	AB 

AC	BC 

 

 

18 
∅∅∅∅	A	B 

AC	BC 

 

 

28 
∅∅∅∅	A 

B	AC 

 

 

38 ∅∅∅∅	AB 

 

9 
∅∅∅∅	A	B	C 

AB	ABC 

 

 

19 
∅∅∅∅	A	B 

C	ABC 

 

 

29 
∅∅∅∅	A 

B	AB 

 

 

39 ∅∅∅∅	A 

 

10 
∅∅∅∅	A	B	C 

AB	AC 

 

 

20 
∅∅∅∅	A	B 

C	AB 

 

 

30 ∅∅∅∅	A 

B	C 

 

 

40 ∅∅∅∅ 
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In order to draw an area specification, �, with circles, 
we first need to know the required area of each circle. 
Given a curve label, �, we can compute the required area 
of the circle, �, to be labelled �, denoted ����(�), by add-
ing up the values of �(�) where � contains �. Thus, the 
required radius, denoted ������(�), of � can be derived 
from ����(�).  

All that remains is to determine whether the centres of 
the circles can be chosen so that the minimal regions thus 
formed have the required areas. To proceed with this, we 
note that given any pair of circles that are not completely 
concurrent, they either overlap, one contains the other, or 
they have completely disjoint interiors. Here, we focus on 
the overlapping case. Given a diagram description, �, 
two distinct labels �� and �� form a Venn-2 (i.e. they over-
lap) in � if � contains  

(a) a region description containing both �� and ��,  
(b) a region description containing �� but not ��, and  
(c) a region description containing �� but not ��.  

In other words, if we remove the third label, ��, from each 
minimal region description in � then we obtain all mini-
mal region descriptions in ℙ({��, ��}). Given a description 
�, a set of curve labels, �, pairwise form a Venn-2 when-
ever each pair of distinct curve labels in � form a Venn-2 
in �. For example, in Fig. 1, � and � form Venn-2, as do � 
and �. However, � and � do not form a Venn-2. Hence, 
the set of labels {�,�,�} does not pairwise form a Venn-2. 
Whilst we have only defined the concepts of forming a 
Venn-2 and pairwise forming a Venn-2 on diagram de-
scriptions, they have obvious analogies in drawn dia-
grams. We will use the terminology at both levels. 

Given two labels �� and �� that form a Venn-2, the re-
quired distance between centres of the to-be-drawn cir-
cles, denoted ��(��, ��), can be derived numerically as we 
know the radii of the circles and the area of their intersec-
tion (which is the sum of the areas of the region descrip-
tions containing both �� and ��); details can be found in 
[4]. Fig. 9 shows an illustrative example.  

Fig. 9. For any given area specification, the radii and centre distance 
are fixed. 

Relating this to drawability with circles, given two curves 
that pairwise form a Venn-2, the distances between their 
centres is fixed, given an area specification, �. This has 
the advantage that the layout of any two such curves is 
essentially unique. However, there is also a disadvantage: 
if the third curve needs to intersect with one, or both, of 
these two curves then it may not be possible to draw it as 
a circle in a manner that represents �, for example. 

Sometimes the third curve needs to be drawn inside a 
minimal region, �, of the formed Venn-2. This is illustrat-

ed in Fig. 8, where � is drawn inside the minimal region 
�� of the Venn-2 comprising � and �. Whether � is 
drawable with the correct area depends on the overlapping 
distance between � and �. The overlapping distance of 
two curve labels, �� and ��, in a diagram description �, 
denoted ��(��, ��), is defined to be 

 
�����, ��� = ����������+ 	����������− 	�����, ���. 

 
In a drawn diagram, the overlapping distance is defined 
to be the width of the lens formed from the overlapping 
region of the two circles. We require access to the over-
lapping distance in order to determine when a circle with 
a particular area can be drawn inside this lens.  

Sometimes it is not just a single curve that we wish to 
draw inside a region, but a set of curves, as in Fig. 10. 
Here, � and � (each of which forms a connected compo-
nent) are both drawn inside �. Clearly the areas of � and 
� are constrained by �. The sum of the diameters of � and 
� must be less than the diameter of �. 

 
Fig. 10. An Euler diagram with � and � inside �. 

Let � be a diagram and let � be a minimal region in �. 
An r-component is a non-empty set of connected compo-
nents, �, of � that comprise, between them, all curves 
drawn properly inside the region that � becomes on re-
moving all curves in �. More precisely, in �, an �-
component is a non-empty set, �, of connected compo-
nents, , of � such that all of the minimal region descrip-
tions, �’, in �� that include a label of a curve in a compo-
nent of � also: 

(a) include the description (of) �, that is � ⊆ 	�’, and 
(b) only include labels of curves in components of � 

or �, that is �’ ⊆ � ∪ ����, where �(�) is the set 
of labels of the curves in the components of �. 

The �-components of a diagram descriptions, �, inde-
pendently of a drawing of �, can be found using results 
in [17]. In Fig. 10 the circles � and � form an �-component 
where � is the minimal region with description �. 

Given the concepts introduced here, we can now pro-
ceed to fully analyze the drawability of area specifications 
when using only circles. 

4.1 Circles: Always Drawable 

Here we identify the class of diagram descriptions that 
can always be drawn with circles. These are illustrated in 
Table 2. The diagrams shown in the columns Circle Con-
struction and Polygon Construction are illustrative of 
those produced by our software tool (see Section 6). 

A 
B 

��(�,�)
 

�����	(�) 
�����	(�) 

A 

B 
C 
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TABLE 2: Always drawable with circles and convex polygons

Description

20: 

23: 

24: ∅∅∅∅

28: 

29: 

30: 

31: 

33: 

34: 

35: 

36: 

37: 

38: 
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TABLE 2: Always drawable with circles and convex polygons

Description 

20: ∅∅∅∅	A	B	C	AB 

23: ∅∅∅∅	A	BC	ABC 

∅∅∅∅	A	AB	ABC 

28: ∅∅∅∅	A	B	AC 

29: ∅∅∅∅	A	B	AB 

30: ∅∅∅∅	A	B	C 

31: ∅∅∅∅	AB	ABC 

33: ∅∅∅∅	A	ABC 

34: ∅∅∅∅	A	BC 

35: ∅∅∅∅	A	AB 

36: ∅∅∅∅	A	B 

37: ∅∅∅∅	ABC 

38: ∅∅∅∅	AB 

39: ∅∅∅∅	A 

40: ∅∅∅∅ 
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TABLE 2: Always drawable with circles and convex polygons

Circle Template
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TABLE 2: Always drawable with circles and convex polygons

Circle Template Polygon Template

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROPORTIONAL EULER DIAGRAMS

TABLE 2: Always drawable with circles and convex polygons

Polygon Template

 

 

 

 

 

 

 

 

 

 

 

 

 

IAGRAMS 

 

Given a description, 
with circles
following conditions are true of the Circle Template di
grams in Table 
1. the connected components reduce to Euler

2, and
2. for every non

by 
a. 

b. 

We call these two conditions the 
conditions. 
cannot be drawn as diagrams that satisfy these cond
tions. That is, these conditions completely describe the 
diagrams with up to three curves that are always draw
ble with circles. Extending
fications, we have the following result: 

given an
scription is always drawable with circles, 
able with circles. 

To justif
Template representative drawings of the diagram d
scriptions in Table 2 satisfy the always drawable co
straints. Thus, the representative drawings show that it is 
possible to draw the descriptions in Table 2 with circles. 
In all 15 cases it is trivial to verify that the required areas 
can be achieved by altering the radii and centre points of 
the circles. For in
with area 
and use this to determine a centre of 
circle �
overlap occurs. Arguments for the remaining cases are 
equally 
it can be shown that 
then draw a circle, 
the containing curve, 

In general, when 
grams, the only significant issue is that of drawing a co
rect Venn
out for Venn

We finish this subsection 
that all area specifications for Euler
grams are drawable with circles. The Euler
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by ∅) that contains an 

 the region that 
a boundary formed from a single curve, 

 one of the curves, 
curves in �
with ��. 

We call these two conditions the 
conditions. Diagram descriptions that are not in Table 2 
cannot be drawn as diagrams that satisfy these cond
tions. That is, these conditions completely describe the 
diagrams with up to three curves that are always draw
ble with circles. Extending
fications, we have the following result: 

given any area specification, 
scription is always drawable with circles, 
able with circles. 

To justify this, we start by observing that the Circle 
Template representative drawings of the diagram d

tions in Table 2 satisfy the always drawable co
nts. Thus, the representative drawings show that it is 

possible to draw the descriptions in Table 2 with circles. 
In all 15 cases it is trivial to verify that the required areas 
can be achieved by altering the radii and centre points of 
the circles. For instance, for description 20, draw circle 
with area �������. Then compute 
and use this to determine a centre of 

� sufficiently far away from 
overlap occurs. Arguments for the remaining cases are 
equally straightforward, observing that in Case 2a above 
it can be shown that 
then draw a circle, 
the containing curve, 

In general, when 
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rect Venn-2 when it is present. The area
out for Venn-2 can be found using numeric methods 

We finish this subsection 
that all area specifications for Euler
grams are drawable with circles. The Euler
scription 40) is also classified as drawable with circles. It 
is only when there are three curves that drawability pro
lems arise. The following subsections determine whether 
the remaining cases are drawable in a range, are over
constrained, or never drawable with circles.

Circles: Drawable in a Range

This subsection identifies the class of diagram descri
tions that can be drawn with circles in a practical subset 
of area specifications. These are illustrated in Table 3. 
Given a description, 

with circles if it is listed in Table 3. We observe that 
the following conditions are true of the Circle Te
diagrams in Table 3: 

Given a description, �, we say that 
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We finish this subsection by noting our results imply 
that all area specifications for Euler
grams are drawable with circles. The Euler
scription 40) is also classified as drawable with circles. It 
is only when there are three curves that drawability pro
lems arise. The following subsections determine whether 
the remaining cases are drawable in a range, are over
constrained, or never drawable with circles.

Circles: Drawable in a Range

This subsection identifies the class of diagram descri
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grams are drawable with circles. The Euler
scription 40) is also classified as drawable with circles. It 
is only when there are three curves that drawability pro
lems arise. The following subsections determine whether 
the remaining cases are drawable in a range, are over
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Circles: Drawable in a Range 
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1. � is not always drawable with circles (i.e. it is not in 
Table 2), 

2. � does not possess any partial concurrency, and 
3. the three curve labels do not pairwise form a Venn-2. 

 
We call these three conditions the drawable in a range 
with circles conditions. Diagram descriptions that are not 
in Table 3 cannot be drawn as diagrams that satisfy these 
conditions. As with the always drawable case, these con-
ditions completely describe the diagrams with up to three 
curves that are drawable in a range with circles. We have 
the following result:  

given any area specification, �, whose induced de-
scription is drawable in a range with circles, � is 
drawable with circles if and only if an additional con-
straint is satisfied. 

In each of the sections below, we will give such an ad-
ditional constraint, which we call a drawability constraint, 
one for each of the six cases in Table 3; the drawability of 
� with circles is conditional on the relative circle radii and 
centres derived from the area specification we wish to 
represent. The conditions we give do not allow circles to 
touch in the limiting case, so that we avoid splitting the 
containing minimal region into two minimal regions.  

 

4.2.1 Description 6: ∅	�	�	��	��	��� 

Fig. 11 shows a representation of an area specification 
which induces description 6. Since the circles labelled � 
and � form Venn-2, the relative placement of their centre 
points is fixed. Essentially, this means that they cannot be 
moved relative to each other without changing the area 
specification. If the area inside the circle � is fixed, but we 
wish to enlarge the area of ��� (thus reducing the area of 
��) then � would need to move to the right. But then we 
would have an unrequired minimal region, namely ��, 
and the other minimal regions would not all have the cor-
rect areas. Such a specification is undrawable with circles. 
Other alterations of the area specification are, however, 
sometimes drawable. Consider the case where we instead 
wish to reduce the area of ��� by a small amount whilst 
keeping the area of � fixed (thus increasing the area of 
��). Here, � would need to move to the left in order to 
obtain the correct region areas, which is possible without 
introducing extra minimal regions and without making 
minimal region areas incorrect.  

Fig. 11. ∅	�	�	��	��	���	on the limit of drawability. 

Given an area specification, �, which induces �	, the are-
as for the required circles can be computed. The area of 
circle � is easily calculated by adding up the required 
areas for �, ��, �� and ���. Similarly, the areas of � and 
� can be computed. In addition, we can numerically de-
termine the distance between the centre points of � and � 
and between � and �. The distance between the centres of 
� and � must be within a specific range which ensures 
that � is drawn inside �. Using the notation for circle ra-
dius and overlapping distance as introduced at the be-
ginning of Section 4, the drawability constraint on � is: 

 
����,�� < ����,�� and 

2���������− ����,�� < 2���������− ��(�,�). 
 

4.2.2 Description 10: ∅	�	�	�	��	�� 

Fig. 12 shows a representation of an area specification 
which induces description 10. A change in the values of 
the minimal regions inside the � or � circles could make 
these circles overlap. The rightmost point of the � circle 
cannot be moved any further right and the leftmost point 
of the � circle cannot be moved any further left. Here, � 
forms a Venn-2 with each of � and �, but these two 
curves must not overlap. Thus, we have fixed distances 
between the centre of � and the centres of � and � and a 
lower bound on the distance between the centres of � and 
�. These constraints determine the drawability of �. The 
drawability constraint on � is: 

2��������� > ����,��+ ����,��. 

 
TABLE 3: Drawable in a range with circles, 

and always with convex polygons 
 

Description Circle Template Polygon Template 

6: ∅∅∅∅	A	B 

AB	AC	ABC 

  

10: ∅∅∅∅	A	B	C 

AB	AC 

 
 

12: ∅∅∅∅	A	AB 

AC	ABC 

  

15: ∅∅∅∅	A	B 

AB	ABC 

  

17: ∅∅∅∅	A	B 

AB	AC 

  

26: ∅∅∅∅	A 

AB	AC 

  

B 

C   
 

A 
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Fig. 12. ∅	�	�	�	��	�� on the limit of drawability. 

4.2.3 Description 12: ∅	�	��	��	��� 

Fig. 13 shows a representation of an area specification 
which induces description 12. Here, any enlargement to 
the minimal regions inside �	and �, or � and �, whilst 
keeping the rest fixed, would mean that � or � would go 
outside of �. Thus, such a change to the area specification 
is not drawable with circles. By contrast, reducing the 
areas of these minimal regions would not impact on 
drawability. Again, since � and � form a Venn-2, the dis-
tance between their centres is fixed. Each of � and � must 
have their centre within a certain distance of the centre of 
�, to ensure containment by �. Intuitively, the ‘width’ of 
the Venn-2 formed by � and � must be less than the di-
ameter of �. The drawability constraint on � is: 

 
2��������� > 2���������+ 2���������− ����,��. 

 

Fig. 13. ∅	�	��	��	��� on the limit of drawability. 

4.2.4 Description 15: ∅	�	�	��	��� 

Fig. 14 shows a representation of an area specification 
which induces description 15. Since the relative layout of 
circles � and � is fixed, it is evident that we cannot make 
the circle � any larger without changing the diagram de-
scription. By contrast, we can make the area of � arbitrari-
ly smaller without impacting on drawability. Here, the 
diameter of � must be less than the width of the overlap 
of � and �. The drawability constraint on � is: 

 
����,�� > 2���������. 

 

Fig. 14. ∅	�	�	��	��� on the limit of drawability. 

4.2.5 Description 17: ∅	�	�	��	�� 

Fig. 15 shows a representation of an area specification 
which induces description 17. Since the relative layout of 
circles � and � is fixed, clearly we cannot make the circle 
� any larger without changing the diagram description, 
but we can make it smaller. The drawability constraint on 
� is: 

2��������� < 2���������− ��(�,�). 

Fig. 15. ∅	�	�	��	�� on the limit of drawability. 

4.2.6 Description 26: ∅	�	��	�� 

Fig. 15 shows a representation of an area specification 
which induces description 26. Here, the sum of the diam-
eters of � and � cannot be larger than the diameter of �. 
The drawability constraint on � is: 

 
��������� > ���������+ ������(�). 

Fig. 15. ∅	�	��	�� on the limit of drawability.  

4.3 Circles: Over-Constrained 

This subsection discusses the class of diagram descrip-
tions that can be drawn with circles only for specially 
chosen area specifications. In practice, area specifications 
which induce such descriptions will not be drawable us-
ing circles. Given a description, �, we say that � is over-
constrained if it is listed in Table 4a or Table 4b. We ob-
serve that the following conditions are true of the Circle 
Template diagrams in these tables: 
1. � is not always drawable (i.e. it is not in Table 2),  
2. � is not drawable in a range (i.e. it is not in Table 3), 

and 
3. � does not possess any partial concurrency.  

 
There are five diagram descriptions of this type: 1, 2, 3, 

4 and 7. The circle drawing for these descriptions given in 
Tables 4a and 4b were not produced by our software as it 
is not sensible to give an automatic generation method for 
this class. This is because any input area specification is 
extremely unlikely to be drawable with circles. However, 
Tables 4a and 4b show hand-drawn circle versions for 
illustration. 

All of the diagram descriptions in this class include 

B C 

 

 
 

A 

B 
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A 

B C 
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three curve labels that pairwise form a Venn-2. This 
means that the relative layout of each pair of circles is 
essentially fixed and an appropriate diagram is only 
drawable under extreme conditions. For example see Fig. 
17, which gives an example of how Venn-3 is constructed 
from pairs of Venn-2. When combined, the circle centres 
form a triangle with a fixed geometry, so the layout of the 
entire diagram is essentially fixed. Using this fixed rela-
tive positioning of the centres, all of the region areas in 
the Venn-2 diagrams are correct. This means that in a re-
sultant combined diagram the areas of some regions are 
correct. For example the region formed from the union of 
minimal regions �� and ��� is correct. However, the area 
of each of the minimal regions (such as ��) is now fixed 
by how the Venn-2 minimal regions are divided by the 
curve not in the Venn-2 (such as �, which divides �� and 

���). This curve position is fixed in the diagram because 
of the distance of its centre from the centres of the other 
two curves. Hence, achieving the required areas in the 
final diagram is highly unlikely. Only if the area specifica-
tion happens to coincide with the constructed centres and 
radii will the diagram be correct. In practice, this means 
that any real data set which induces one of these diagram 
descriptions will not be drawable with circles. 

 

 
In addition, it is entirely possible that the diagram 

formed from the Venn-2 sub-diagrams has the incorrect 
minimal regions present (this is almost a certainty when a 
triple point is required, (for example description 2, 
∅	�	�	��	��	��	���) as the chance of the Venn-2 con-
structions leading to a point where all three curves inter-
sect is vanishingly small, and an extra minimal region 
could be created. 

4.4 Circles: Never Drawable 

The class of diagram descriptions for which no area speci-
fications exist that can be drawn with circles covers 14 
Euler diagrams, as shown in tables 5a, 5b and 5c. Given a 
description, �, we say that � is never drawable with cir-
cles if it is in one of these three tables. We observe that 
any diagram, �, which represents one of these descrip-

tions satisfies the following condition: 
1. � possesses partial concurrency. 

We call this condition the never drawable with circles 
condition. All of the cases that can be drawn without par-
tial concurrency are covered in the previous classes. Ex-
tending our observations to area specifications, we have 
the following result:  

given any area specification, �, whose induced de-
scription is never drawable with circles, � is not 
drawable with circles. 

To justify this, it is sufficient to observe that any pair of 
curves that must be drawn with partial concurrency can-
not both be circles; here we note that the necessary pres-
ence of partial concurrency can be easily detected at the 
diagram description level for these cases, using the so-
called connectivity conditions given in [8].  

 

5 THREE-POLYGON ANALYSIS 

As noted in Section 4, there are many 3-set area specifica-
tions that cannot be drawn with circles. Any practical 3-
curve drawing system must have some way of dealing 
with these cases. Hence we introduce the notion of draw-
ing area specifications with polygons. Whilst the usability 
of polygon based diagrams may be reduced compared to 
diagrams that only use circles, we can be confident of al-
ways generating accurate diagrams.  

In this section, we derive drawability conditions when 
using convex polygons. As with the circle analysis of Sec-
tion 4, we examine the diagrams in terms of when area 
specifications can be drawn with convex polygons. The 
analysis here is less complete than that for circles due to 

TABLE 4a: Over-constrained with circles, 
always drawable with convex polygons 

 

Description Circle 
Template 

Polygon 
Template 

3: ∅∅∅∅	A	B	C	AB 

AC	ABC 

 

 

7: ∅∅∅∅	A	B	AC 

BC	ABC 

 

 

TABLE 4b: Over-constrained with circles, 
sometimes drawable with convex polygons 

 

Description Circle 
Template 

Polygon 
Template 

1: ∅∅∅∅	A	B	C	AB 

AC	BC	ABC 

 
 

2: ∅∅∅∅	A	B	AB 

AC	BC	ABC 

 

 

4: ∅∅∅∅	A	B	C 

AB	AC	BC 

 

 

B 

C 

A

A 

C 

B 
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B 
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B 
C 

A 
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the variety of constructions, as each diagram description 
requires a tailored construction. The analysis is also made 
significantly more difficult by the increased degrees of 
freedom when drawing diagrams with convex polygons 
over circles. Where the area specification is not drawable 
with convex polygons, we use non-convex polygons. This 
means that any area specification can be drawn with our 
methods. 

Fig. 17. How three Venn-2 pairs join to form Venn-3. 

Clearly, there are a wide variety of ways for drawing 
each description with polygons. Hence we have produced 
a set of preferences that we use when deriving our con-
structions, in order of priority: 
1. Use convex polygons wherever possible. 
2. Minimize the number of concurrent polygon edges. 
3. Minimize the number of polygon vertices. 

However, we relax the third condition when there is 
some significant symmetry in the drawing (for example, 
description 22, ∅	��	��	��, could be drawn with fewer 
vertices, at the expense of symmetry, see Table 5c). 

5.1 Convex Polygons: Always Drawable 

In addition to the descriptions covered in Table 2, the 
other area-specifications always drawable with convex 
polygons are shown in tables 3, 4a and 5a. Justification for 
a diagram description being drawable with convex curves 
depends on the construction used to produce the dia-
gram. The number of diagrams which are always drawa-
ble with convex curves (32) is larger than the number of 
circular diagrams (20) and so 12 individual drawability 
arguments need to be made. We do not provide formal 
arguments for all 12 cases, but note that each one follows 
a similar strategy: argue about how to draw a correct dia-
gram using the Polygon Construction templates shown in 
the tables to achieve the required area specification, 
whilst maintaining convex curves. 

 
 
 
 

TABLE 5a: Never drawable with circles, always with 
convex polygons 

 

Description Polygon Construction 

9: ∅∅∅∅	A	B	C	AB	ABC 

 

13: ∅∅∅∅	A	AB	BC	ABC 

 

16: ∅∅∅∅	A	B	AC	ABC 

 

18: ∅∅∅∅	A	B	AC	BC 

 

19: ∅∅∅∅	A	B	C	ABC 

 

21: ∅∅∅∅	AB	AC	ABC 

 

25: ∅∅∅∅	A	AB	BC 

 

27: ∅∅∅∅	A	B	ABC 

 

 

32: ∅∅∅∅	AB	AC 
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5.2 Convex Polygons: Drawable in a Range 

The descriptions that are drawable in a range with convex 
polygons are those in Tables 4b and 5b; note that the pol-
ygon construction for diagram template 1, Venn-3, is has 
already been outlined in previous work [12]. Justification 
of drawability in a range is made by considering each of 
the cases. To illustrate the proof strategy, consider as an 
example description 5 in Table 5b. It is easy to see that it is 
possible to make some small changes to the area specifica-
tion without impacting drawability. For instance, to en-
large the area of the minimal region � (inside only the red 
curve) just ‘slide’ one of the left, top, or right edges ap-
propriately. Clearly the template diagram given does not 
allow all area specifications that induce description 5 to 
be drawn with convex curves. There is a lower bound on 
the area of the minimal region �: if we keep all other areas 
fixed, � cannot be reduced arbitrarily whilst maintaining 
convex curves. 
 

TABLE 5b: Never drawable with circles, 
sometimes with convex polygons 

 

Description Polygon Construction 

5: ∅∅∅∅	A	AB	AC	BC	ABC 

 

11: ∅∅∅∅	AB	AC	BC	ABC 

 

 
All of the drawable in a range diagram descriptions 

contain the three region descriptions that are formed of 
exactly two curve labels, namely ��, ��, and ��. For the 
descriptions that also include ���, which are 1, 2, 5 and 
11, a layout of these regions is like that shown on the left 
of Fig. 18. For description 4, the only remaining one in 
this class, the equivalent layout of regions ��, ��, and 
��, without ��� is as shown on the right of Fig. 18. If we 
assume the convexity of the curves, it can be argued that 
the border of the depicted regions is not convex for some 
area specifications. Thus, if the area of a region inside a 
single curve (for example, the region �) is sufficiently 
small then at least one curve must be non-convex (e.g. 
make the area of the region � very small, so the curve 
labelled � becomes non-convex). This contradicts the 
convexity assumption. See Fig. 19 for a non-convex ex-
ample of this type. This argument does not apply to dia-
gram description 11, which does not include a region de-
scription containing exactly one curve label. However in 
this case the non-convexity of at least one curve for many 
area specifications is easy to establish. This is illustrated 

in Fig. 20. The only time all curves will be convex is when 
�, � and � are all at least 180
 (see Fig. 18). 

 

Fig. 18. Sections of two diagrams that have to be drawn with at least 
one non-convex curve. 

Fig. 19. A diagram template 4 with an area specification that results 
in non-convex curves. 

Fig. 20. Diagram template 11 with an area specification that results 
in non-convex curves. 

Whilst we have attempted to find a constructions that 
produce convex curves for most area specifications, there 
may be alternative constructions for each of the diagram 
descriptions that allow area specifications to be drawn in 
a convex manner where they are not with our current 
constructions. Following on from this, it might be that 
some of these drawable in a range with convex polygon 
descriptions are, in fact, always drawable with convex 
curves but we conjecture otherwise. Establishing the non-
drawability of particular area specifications in the convex 
polygon case is difficult due to the number of degrees of 
freedom. We note, though, that our constructions can be 
used to produce a correct drawing of each area specifica-
tion that induce descriptions in this class, if non-convex 
curves are used. 
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5.3 Convex Polygons: Never Drawable 

Unlike circles, the notion of over-constrained does not 
apply to convex polygons because of the greater degrees 
of freedom when using polygons. The class of diagrams 
that can never be drawn with convex curves consists of 
the three diagrams shown in Table 5c. These diagrams 
share the feature that the triple intersection, ���, is not 
present. In addition, all of the double intersections, ��, 
��, and ��, are present and there is at least one single 
intersection missing. We justify that description 8 is never 
drawable with convex polygons; in fact, our proof does 
not actually require that we use polygons: convex curves 
suffice for the truth of the result.  
 

TABLE 5c: Never drawable with circles, never with 
convex polygons 

 

Description Polygon Construction 

8: ∅∅∅∅	A	B	AB	AC	BC 

 

14: ∅∅∅∅	A	AB	AC	BC 

 

22: ∅∅∅∅	AB	AC	BC 

 

 
Suppose, for a contradiction, that description 8 is 

drawable with convex polygons. Then, in particular, the 
curve � is drawable with a convex polygon. Choose such 
a polygon,  � . Now, since the only two minimal regions 
inside  �  are those with descriptions �� and ��, we see 
that any choice of convex polygons for � and � must run 
concurrently inside  �  in a straight line (otherwise one of 
them would not be convex). This is illustrated in Fig. 21. 
However, to form the minimal region with description 
��, it is then obvious that one of the polygons for � and � 
is necessarily non-convex, contradicting our assumption 
of drawability with convex curves. 

It should be obvious that this argument readily applies 
to the other cases in Table 5c. Hence, all three descriptions 
in Table 5c are never drawable with convex polygons (or 
convex curves). However, the templates shown can be 
adjusted to achieve a drawing of any area specification 
that induces one of these three descriptions. 

 

 
Fig. 21. If � is convex then either � or � must be non-convex. 

6 IMPLEMENTATION 

The drawing methods outlined above have been imple-
mented in Java and draws area specifications with circles 
when possible and with convex or non-convex polygons 
otherwise. Typically, algebraic methods are used to find 
the polygon vertices. However some numeric solutions 
are required (for instance, finding a solution for Venn-2 
drawn with circles) and more general search has been 
implemented in a few cases (for instance Description 22, 
∅	��	��	��, where the central intersection point is de-
rived through a hill climbing search process). To ease the 
calculation of region areas, circles are approximated by 20 
sided shapes. The software is quick enough so that all 
diagrams draw without any apparent delay. The software 
is available online: www.eulerdiagrams.com/Euler3.html. A 
screenshot of the tool can be seen in Fig. 22. More details 
on the implementation are given in the Appendix. 

 

 

Fig. 22. A screenshot of the Euler3 software. 

7 CONCLUSIONS 

In this paper we have shown how to draw all area specifi-
cations requiring up to three curves by using: 

a) circles where possible, 
b) convex polygons where possible, and 
c) with non-convex polygons otherwise. 

Further work in this area could take several directions. 
Firstly, examining other shapes is likely to be a profitable 
line of attack. Ellipses are both a desirable shape and have 
more degrees of freedom than circles (having a centre, 
major axis, a minor axis and a rotation). Using ellipses 
instead of circles should allow many more area specifica-
tions to be drawn with nice geometric shapes. Alternative 

C

B
A
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constructions using polygons with a greater number of 
vertices may also prove fruitful, for instance to generate 
diagrams with rectangular regions, which may be easier to 
compare than the region shapes presented here. Tangential 
to this, is the notion of dynamic data sets, where the input 
data changes over time. It would be interesting to explore 
which constructions are best for maintaining the user’s 
mental model of the diagram as the data varies over time. 

Other work involves extending this research beyond 
three sets. An individual analysis of each case for larger 
diagrams is likely to be infeasible. However, general prin-
ciples can be derived from results in this paper (such as the 
reducibility of diagrams and presence of partial concurren-
cy), which can be used when extending the layout tech-
niques to Euler-n. For instance, we trivially see that any 
area specification which reduces to a diagram description 
of an Euler-3 class can now be drawn. A little more subtly, 
we can detect the presence of sub-descriptions that are 
over-constrained or not drawable with circles on the basis 
of our results. For example, if a diagram description, �, 
contains three curve labels that form an over-constrained 
sub-description then � will either be over-constrained or 
undrawable with circles. We also note work in Bayesian 
reasoning with Euler diagrams [11] which uses diagram-
text hybrids. This provides inspiration for further work in 
mixing notations, along with a discussion of more fun-
damental issues regarding the perception of these kinds 
of diagram. 

Finally, we wish to establish when approximate draw-
ings of area specifications are effective, which will be help-
ful when exact drawings are not possible. From a user per-
spective, an approximate result that still communicates the 
required information might be acceptable, particularly if 
that approximate result is drawn with preferred geometric 
shapes over convoluted curve shapes. Understanding what 
is acceptable as an approximate result (perhaps through 
empirical research) could help with this decision. 
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DIAGRAM GENERATION 

Here we detail the methods used to generate the di
grams, implemented in the code available at: 
www.eulerdiagrams.com/E

evident. Some can be drawn with 
where the curves can be placed directly using geometric 
operations. Others require the use of a numerical a
proach. Yet others have a 
applied to position various points.

 Analytical Methods

The diagram types in this section 
metric operations to either 
of circles, or the points of 
gram types that use circles 
ircles that form a Venn

circle area is simply the addition of 
gle set, from which the circle radius can be c
Analytical methods 
gon layouts. 

Throughout this appendix, where circle methods can 
be applied for a range of diagrams, the decision to use 
circles or polygons is dependent on the constraints
in Section 4.2. If the constraints hold, the circle type can 
be used, otherwise the polygon type is used

Table A1a shows the circle types that can be dra
with analytical methods
these cases are trivial to 

 

TABLE A1a: 

Description

24: ∅∅∅∅	A	AB	ABC

26: ∅∅∅∅	A	AB	AC

28: ∅∅∅∅	A	B	AC
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, implemented in the code available at: 
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circles or polygons is dependent on the constraints

. If the constraints hold, the circle type can 
be used, otherwise the polygon type is used

Table A1a shows the circle types that can be dra
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TABLE A1a (continued)

30: ∅∅∅∅	A	B	C 

31: ∅∅∅∅	AB	ABC 

33: ∅∅∅∅	A	ABC 

34: ∅∅∅∅	A	BC 

35: ∅∅∅∅	A	AB 

36: ∅∅∅∅	A	B 

37: ∅∅∅∅	ABC 

38: ∅∅∅∅	AB 

39: ∅∅∅∅	A 

40: ∅∅∅∅ 
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Table A1b shows the polygon types that can be drawn 
using analytical methods. This includes all the polygon 
equivalents of the analytic circle types (cases 24, 26, 28, 30, 
31, 33, 34, 35, 36, 37, 38, 39, 40). In these cases the triangles 
are equilateral, so their edge lengths are determined by 
the area required. 

More interesting cases in Table A1b are those that can 
be drawn using circles but not with analytical methods, 
but can be drawn with polygons using analytical meth-
ods. These are: 

• Case 6 Rectangles are used because triangles can-
not be guaranteed to work when some of the re-
gions are very small. Here the region combining 
regions �� and ��� is drawn as a square, and the 
remaining region positions are calculated so that 
lines have even distance separation. 

• Case 8 The largest of �� and �� is formed into an 
equilateral triangle. The smaller of the two has the 
same height and so its base can then be calculated. 
The bases of these two triangles form the base of 
the triangle formed from �� and ��. The leftmost 
points on �� and �� are moved vertically so that 
they are distributed evenly between the upper 
right and lower right edges of curve �. The trian-
gle �� has the same base as ��, so its height can 
be calculated. The rightmost point is placed on a 
line that extends the top left edge of ��. If possi-
ble, a top right point of the curve � is placed to ex-
tend the top left edge of curve �. However, if edge 
crossings occur an extra point is added so that 
curve � can route towards the centre of the dia-
gram, following the other curves more closely. 

• Case 10 Non-regular triangles are used. First the 
triangle representing curve � is defined. The value 
for region � is split using a calculation that divides 
it based on the ratio of �� to ��. The splits are 
added to �� or �� as appropriate, and the largest 
value is taken. Let’s assume this is ��. The value 
can be used to form a right angled triangle with 
two equal sides (base and height). This allows the 
calculation of �� with its share of the value of re-
gion �, as it must have the same height. The base 
of the triangle for curve � is then the base of the 
two triangles. Triangle forming regions �� and �� 
can then be derived, and the height of these ex-
tended to form triangles for curves � and �, with a 
suitable padding so that the extension above and 
below the � triangle are equal and the hypotenus-
es are parallel to the lines on the � triangle. 

• Case 12 Two congruent triangles are used. One is 
for the curve �, the other contains all the non-
empty regions except region �. It is this second 
one that is calculated first, by applying the method 
used for polygon case 32 (given below) on the val-
ues for region �� and 	�� + ���. The height of 
this triangle is used for the base of the inner trian-
gle for region ���. The right point of ���	is 
placed on the appropriate point of the line formed 
from the left point of �� and a point half way be-
tween the two rightmost points of ��. The triangle 

for � is placed at the same centre point as the inner 
triangle. 

• Case 14 An equilateral triangle is formed for re-
gions �, �� and ��. The ratio of �� to �� is used 
to decide the point where the bases of the two tri-
angles meet. The height of each can then be calcu-
lated, and the leftmost points are placed on a point 
on the line formed from the left point of curve � 
and the midpoint of their respective bases. The 
height of �� is calculated, and placed on a point 
that continues the left bottom edge of the �� tri-
angle. 

• Case 15 This is formed from the triangle construc-
tion of diagram type number 29 (given below) and 
adding the inner equilateral triangle into the cen-
tre of the middle intersection for the curve �. 

• Case 17 This uses the construction of case 29 (giv-
en below). A congruent polygon to the left region 
is added into the middle of that region for the 
curve �. 

• Case 20 This is constructed from Case 29, given be-
low, but with an extra equilateral triangle. 

• Case 23 This the same construction as Case 29, 
given below, but with a concurrent triangle. 

• Case 23 This the same construction as Case 29, 
given below, but with an extra equilateral triangle 
forming region ���. 

• Case 29 Equilateral triangles are used, so the sizes 
and positions of all triangles is trivially derivable 
from the height of the triangles. 

 
Some diagram types that cannot be drawn with circles 

can be drawn with polygons using analytical methods: 
• Case 3 The triple intersection is formed from a 

square. The diagonal of the square forms the base 
for triangles that have an area calculated from half 
the triple intersection area plus one of the double 
intersections, hence the height of these triangles 
can be derived. The height of these two triangles 
forms the base for the triangle including region � 
and half the double and triple intersections. The 
base and heights of triangles including regions � 
and � can also be derived by similar means. 

• Case 5 The base and height of the triple intersec-
tion are that of an equilateral triangle of the same 
area. The actual position of the top of the triangle 
is placed so the top of �� and �� are equal. �� is 
placed below the triple intersection triangle. If the 
diagram can be drawn in a convex manner, an 
equal padding from the left right and top of the 
other points is calculated for the curve �. If curve 
� must be non-convex, then an extra point to 
‘dent’ curve � at the top is created, and the points 
around curve � are placed so that there is an even 
separation. 

• Case 7 An equilateral triangle is formed as the pe-
rimeter of regions � and ��. All the remaining 
points are formed from triangles with the same 
base as the equilateral triangle. 

• Case 9 The � and � curves are formed from equi-
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lateral triangles and places appropriately. The 
height of the ��� triangle can be found as its base 
is the same as the base of the triangle formed from 
the intersection of curves � and �. This triangle is 
then extended downwards by a suitable amount to 
form the � region. 

• Case 13 The construction of case 29 (given above) 
is used for the values of regions �, � and 
�� + ���. The height of the ��� triangle can be 
derived as its base is the intersection between the 
� and � curves 

• Case 16 The construction of case 29 (given above) 
is used for the values of regions �, � and ���. 
Then, the extra points in curve � are formed, first 
by finding an appropriate point on the line be-
tween the left curve � point and halfway along the 
gaps on the left of curve � where there is no con-
currency. If this cannot produce a diagram because 
the points are to the left of the other curve � 
points, the � curve is drawn as a triangle. This 
works because, in that case, the �� value is small. 

• Case 18 The method used for polygon case 32 
(given below) is applied on the values for regions 
�� and ��. Taking the smallest of � + �� and 
� + ��, it is made congruent to the triangle it sur-
rounds and placed so that its vertical edge is on 
top of the vertical edge of the other two diagrams. 
This forms the height of the larger triangle, so that 
its base can then be calculated. 

• Case 19 The triple intersection is drawn as an equi-
lateral triangle, the edges of which form the bases 
of the other triangles, whose height can then be 
calculated. They point directly away from the cen-
tre of the equilateral triangle. 

• Case 21 The method used for polygon diagram 
type number 32 (given below) is applied on the 
values for region �� and �� + ���. The height of 
this triangle is used for the base of the inner trian-
gle for region ���. The right point of ���	is 
placed on the appropriate point of the line formed 
from the left point of �� and a point half way be-
tween the two rightmost points of ��. 

• Case 25 This uses the construction of case 29 (giv-
en above) for the three regions. A polygon for the 
curve � is added that fills the rightmost region. 

• Case 32 The equilateral triangle height and base of 
the largest of �� or �� is calculated. The base also 
forms the base of the smaller triangle, so its height 
can be calculated. The left and rightmost points of 
the triangles are placed in a position so that the 
base of the larger triangle can be formed. 

 
 
 
 
 
 
 
 
 

TABLE A1b: Analytical polygon diagram types 
 

Description Construction 

3: ∅∅∅∅	A	B	C	AB	AC	ABC 

 

5: ∅∅∅∅	A	AB	AC	BC	ABC 

 

6: ∅∅∅∅	A	B	AB	AC	ABC 

 

7: ∅∅∅∅	A	B	AC	BC	ABC 

 

8: ∅∅∅∅	A	B	AB	AC	BC 

 

9: ∅∅∅∅	A	B	C	AB	ABC 

 

10: ∅∅∅∅	A	B	C	AB	AC 

 

12: ∅∅∅∅	A	AB	AC	ABC 

 

13: ∅∅∅∅	A	AB	BC	ABC 

 

14: ∅∅∅∅	A	AB	AC	BC 
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15: 

16: 

17: 

18: 

19: 

21: 

23: 

24: 

TABLE A1b (continued)

15: ∅∅∅∅	A	B	AB	ABC

16: ∅∅∅∅	A	B	AC	ABC

17: ∅∅∅∅	A	B	AB	AC

18: ∅∅∅∅	A	B	AC	BC

19: ∅∅∅∅	A	B	C	ABC

20: ∅∅∅∅	A	B	C	AB 

21: ∅∅∅∅	AB	AC	ABC

23: ∅∅∅∅	A	BC	ABC 

24: ∅∅∅∅	A	AB	ABC 

25: ∅∅∅∅	A	AB	BC 

26: ∅∅∅∅	A	AB	AC 

 

TABLE A1b (continued)

AB	ABC 

A	B	AC	ABC 

AB	AC 

A	B	AC	BC 

A	B	C	ABC 

 

AB	AC	ABC 

 

A	AB	ABC 

 

 

TABLE A1b (continued) 
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28: 

29: 

30: 

31: 

32: 

33: 

34: 

35: 

36: 

37: 

38: 
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TABLE A1b (continued)

27: ∅∅∅∅	A	B	ABC 

28: ∅∅∅∅	A	B	AC 

29: ∅∅∅∅	A	B	AB 

30: ∅∅∅∅	A	B	C 

31: ∅∅∅∅	AB	ABC 

32: ∅∅∅∅	AB	AC 

33: ∅∅∅∅	A	ABC 

34: ∅∅∅∅	A	BC 

35: ∅∅∅∅	A	AB 

36: ∅∅∅∅	A	B 

37: ∅∅∅∅	ABC 

38: ∅∅∅∅	AB 

39: ∅∅∅∅	A 

40: ∅∅∅∅ 
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TABLE A1b (continued)
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TABLE A1b (continued) 
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A.2 Numeric approximation 

The diagram types in this section require a numeric ap-
proximation. In this case, bisection is used. 

One important case is where two circles that form a 
Venn-2 are present. Here, numerical approximation has to 
be used to find the distance of the circle centres. These are 
shown in Table A2a. In all these cases, the � coordinate of 
the circle centre is the same for all circles in the diagram, 
so the position of the circle centres is easily defined. 
Where two pairs of circles form a Venn-2 (cases 6 and 10), 
two numerical approximations are applied. 

 

TABLE A2a: Numeric approximation circle diagram 
types 

 

Description Construction 

6: ∅∅∅∅	A	B	AB	AC	ABC 

 

10: ∅∅∅∅	A	B	C	AB	AC 

 

12: ∅∅∅∅	A	AB	AC	ABC 

 

15: ∅∅∅∅	A	B	AB	ABC 

 

17: ∅∅∅∅	A	B	AB	AC 

 

20: ∅∅∅∅	A	B	C	AB 

 

23: ∅∅∅∅	A	BC	ABC 

 

29: ∅∅∅∅	A	B	AB 

 

 
One polygon diagram type makes use of a numerical 

approximation (Table A2b). This is: 
• Case 2 The region ��� is drawn as a equilateral 

triangle. Triangles are formed for �� and �� that 
have a base which is an edge of the middle trian-
gle. They are placed so that their top edges are in a 
straight line. A numerical approximation is used 
for placing the bottom point of the �� triangle. It 
is positioned so that the two angles connecting the 

�� triangle to �� and �� are equal, maximizing 
the chances of a convex diagram. If a convex dia-
gram is possible then curves � and � are extended 
by a suitable amounts and joined up at the far left 
and right. If a convex diagram is not possible then 
curves A and B are extended by a set amount and 
an extra point added between either or both of the 
left � point and bottom � point or between the 
right � point and the bottom � point. 

 

TABLE A2b: Numeric approximation polygon diagram 
type 

 

Description Construction 

2: ∅∅∅∅	A	B	AB	AC	BC	ABC 

 

 

A.3 Search based methods 

Here, some aspect of the drawing process needs a 
more general search. A hill-climbing approach is used. 
The diagrams are given in Table A3: 

• Case 1 This diagram type is described in the pre-
vious literature [11]. The region ��� is formed as 
an equilateral triangle and a search method moves 
it around, and consequently the points on the 
double intersections, namely ��, �� and ��, are 
moved until the ‘cut-outs’ in the core are mini-
mized. If the diagram can be drawn in a convex 
manner, then the curves are drawn with one addi-
tional point. Otherwise, if the diagram is non-
convex, three additional points are required to 
form each curve, so that the curves can dip inside 
the cut-outs. 

• Case 4 A triangle is formed for the three intersec-
tion points where two curves meet. The lines 
crossing the middle can then be placed to make 
the two set areas correct. A search, varying the tri-
angle is made until the ‘cut-outs’ are of equal size. 
The outside segments of the curves can then be 
added, with one extra point if the diagram is con-
vex, and three, dipping into the cut outs, added if 
the diagram is non-convex. 

• Case 11 The triple intersection is an equilateral tri-
angle. The outer points each form a triangle with 
an edge of the inner triangle as their base. They are 
placed by a search based method that test the posi-
tion of all three along lines that maintain the cor-
rect height from their base to achieve convex 
curves if possible. 

• Case 22 An equilateral triangle is formed from 
��+��+��. The middle point is found by search-
ing the space inside the triangle until a position is 
found where all three of the regions have the cor-
rect area. 
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TABLE A3: Numeric approximation polygon diagram 
types 

 

Description Construction 

1: ∅∅∅∅	A	B	C	AB	AC	BC	ABC 

 

4: ∅∅∅∅	A	B	C	AB	AC	BC 

 

11: ∅∅∅∅	AB	AC	BC	ABC 

 

22: ∅∅∅∅	AB	AC	BC 

 

 
 


