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Abstract—In search-based graph drawing methods there are
typically a number of parameters that control the search algo-
rithm. These parameters do not affect the fitness function, but
nevertheless have an impact on the final layout. One such search
method is hill climbing, and, in the context of schematic layout, we
explore how varying three parameters (grid spacing, the starting
distance of allowed node movement and the number of iterations)
affects the resultant diagram. Although we cannot characterize
schematics completely and so cannot yet automatically assign
parameters for diagrams, we observe that when parameters are
set to values that increase the search space, they also tend to
improve the final layout. We come to the conclusion that hill-
climbing methods for schematic layout are more prone to reaching
local optima than had previously been expected and that a wider
search, as described in this paper, can mitigate this, so resulting
in a better layout.

I. INTRODUCTION

Search-based methods for graph drawing have been suc-
cessfully used for a number of years. Despite taking a rela-
tively long time to produce layouts, they have a number of
advantages, including that of targeting a fitness function that
explicitly includes layout metrics, so allowing a direct measure
of the quality of a graph.

Schematic layout, often called the metro map layout prob-
lem, is a variant on the graph drawing problem where a number
of aesthetics are present, including the requirement that edges
are restricted to a limited number of angles, typically octilin-
earity. Search is a common method for attempting to solve
the schematic layout problem, perhaps because force directed
techniques struggle to meet the aesthetic requirements [S]. As
a result this problem seems suitable for further investigation
in improving the effectiveness of search in graph layout.

Current search-based methods for schematic layout include
hill-climbing and mixed integer programming. The results
from hill-climbing methods for schematic layout have been
positively compared to some published maps [8], and allow
easy implementation of layout criteria. Current hill-climbing
methods also provide plenty of room for performance im-
provements on criteria calculations. Mixed integer program-
ming techniques are able to escape local minima, producing
high-quality schematics at the cost of optimisation time [6].
However, it is hard to implement new criteria and there is less
potential for optimization.

Parameter optimization in search has been widely stud-
ied [1] and relates to the problem of metaoptimization [7].
Search-based methods for the general graph drawing problem
include simulated annealing [4] and genetic algorithms [2];
however, these methods make a wide search of the problem

Peter Rodgers
Department of Computer Science
The University of Kent, Canterbury
Email: P.J.Rodgers@kent.ac.uk

space, which requires many recalculations of fitness, so are
not considered feasible with the computationally heavy fitness
function required in schematic layout. It is one of the goals of
the research described in this paper to see if a wider search can
be conducted, whilst keeping runtime within computationally
sensible bounds. This implies that both performance improve-
ments to the fitness calculation are needed, and that a narrower
search algorithm than the more general methods is required.
Due to the large performance improvement potential and ease
of addition of new criteria, we have chosen to use hill-climbing
for our automated schematic layout method.

Any search-based algorithm relies on the setting of a num-
ber of parameters. In the case of hill climbing, the parameters
we considered in this paper were: grid spacing; the starting
distance of node movement; and the number of iterations that
the algorithm lasted for. We were interested in seeing if we
could increase the search of the problem space by varying these
parameters. As they are typically set in an ad-hoc manner,
we aimed to discover if current hill-climbing schematic layout
had a tendency to reach local optima, indicating that current
search-based methods are prone to sub-optimal results. As a
consequence, we hoped to improve the layout of schematic
diagrams drawn by search-based methods.

The method for calculating metrics described in this paper
is considerably faster than previous techniques, hence permit-
ting more alternatives to be examined and so widening the
search of the problem space. We examined four well known
metro maps and our results indicate that the variation in final
layout as the parameters change has underlying trends, but the
result is unpredictable for specific parameter sets. In addition,
the difference in final layout can be large, often between sets of
parameters that have values that are close together. We interpret
this as indicating that the system reaches a relatively poor local
optima frequently and that there is no general characterization
of parameter sets for any of the maps. As a result, in general,
increasing the search space by attempting multiple layouts with
different parameters results in a better schematic than can be
reached by a single search using a single parameter set.

In the remainder of this paper, Sect. II provides an overview
of the algorithm used to layout schematics, along with a de-
scription of the performance improvements and the algorithm
parameters. Section III provides the results from the testing
process, as well as our interpretation. Finally, Sect. IV gives
our conclusions and outlines possible future work.

II. OVERVIEW OF THE METHOD

Inspired by the methods developed in [8], our automated
layout algorithm uses a multicriteria hill-climbing search



TABLE 1. MAPS USED
Map Junctions  Stations  Edges
Washington 9 77 53
Vienna 10 80 63
Mexico City 24 123 120
Sydney 24 151 103
TABLE II. PARAMETERS AND VALUES USED
Parameters Values
Grid Spacing 8, 10, 12, 14
Start Distance 13, 14, 15, 16, 17
Iterations 8, 12, 16, 20

technique. This method operates by attempting to lower a
set of measurable criteria by performing modifications to
the schematic. There are two stages: firstly, the nodes are
positioned; and secondly, the labels are positioned. In this
paper we targeted performance improvements on the first, node
positioning, as this is the major bottleneck.

There are three key parameters to the method. These are:

1) Grid Spacing: A grid is placed over the canvas, and
each schematic node must be positioned on a grid point.
This parameter defines the grid resolution in pixels. When
altered, this parameter affects the start layout as the nodes
are initially snapped to the grid. It will also alter the
number of potential sites that they can be positioned in
when they move, and the distance by which they can
move.

2) Start Distance: This parameter defines the initial (and
maximum) distance the nodes can be moved, in terms of
grid positions. A method is applied to reduce this distance
over the duration of the optimization, as explained below.

3) Iterations: In an iteration, every node and cluster of
nodes is examined to see if its location can be improved.
Once an iteration has completed, the distance the nodes
can move in the following iteration is evaluated. The
initial iteration always uses the start distance, and the last
iteration always uses a distance of one grid space. The
distance is represented by an integer, and decreases along
a floored linear interpolation between the initial and final
iterations, so is not always reduced between iterations.

The method uses a series of criteria to calculate the
aesthetic fitness. Each of these criterion has its own metric for
calculating a value on the current schematic representing how
well it adheres to the criterion. Using this value we can then
calculate, weight, and sum it with all other values to produce
a total fitness for the current schematic. The algorithm will
attempt to reduce the total fitness value by moving around
nodes, or clusters of nodes, and recalculating the required
values. A node can be either a junction (station with a degree
of greater than 2) or a line bend point. A total fitness value of
zero would indicate that all criteria have been perfectly met.
The criteria include:

1) Octilinearity. Lines should be at multiples of 45°.
2) Edge Length. Line sections between nodes should be a
standard length.
3) Line Straightness:
a) Total. The entirety of the line should be as straight as
possible.

TABLE III. OVERALL TIME IMPROVEMENTS (IN MINUTES)
Diagram Avg. Before  Avg. After  Speedup (times faster)
‘Washington 36.872 4.630 8.0
Vienna 51.929 10.581 4.9
Mexico 234.982 27.475 8.6
Sydney 518.813 61.340 8.5

TABLE IV. LAYOUT TIME IMPROVEMENTS BY CRITERIA (IN MINUTES)

Criteria Avg. Before  Avg. After  Speedup (times faster)

Octilinearity 1.251 0.040 313

Edge Length 6.534 0.041 159.4

Line Straightness 13.289 3.062 43

Edge Crossings 14.671 1.870 7.9

Occlusions 110.223 5.257 21.0

b) Through Nodes. Lines sections passing through junc-
tions should be kept as straight as possible.

4) Edge Crossings. Lines should not cross other lines.
5) Occlusion. Nodes should not occlude parts of any edges.

Nodes can be moved in eight directions; North, North-East,
East, South-East, South, South-West and West.

The initial implementation of the search method in [3] was
not optimized for performance, making the layout slow and so
attempting the type of experimentation here was infeasible.
As a consequence, we spent some effort improving the per-
formance of the method in order to make it run faster. The
main performance increase is gained by caching all individual
criteria fitness values for nodes and edges and re-using these
as much as possible. We detect graph items that have moved
and only recalculate the fitness values that were affected; these
are then summed with the unaffected, previously calculated,
values.

In some cases, in particular edge crossings and occlusion,
detecting items that have been affected by a node movement is
not trivial as a change in the position of a single edge can affect
edges or nodes along its length. In order to avoid having to re-
check the moved edge with every other edge and junction, we
place a second grid over the entire schematic. At the start of
layout, each edge is examined and the edges that pass through
grid cells are identified. This edge location grid is updated
each time an edge is moved. Using such a grid to monitor
the location of edges speeds up the testing for edge crossings
and occlusions when checking for each, as the method can
identify a subset of all nodes and edges as potential occlusion
or crossing candidates by the grid squares in which changes
have been made.

Table I lists the maps on which the testing has been per-
formed, along with the number of junctions, stations and edges.
The maps were chosen as being representative of reasonably
sized schematics that demonstrated different characteristics
and for which we could easily access the data. The table is
listed by ascending order of the total number of junctions
and stations. Table III shows the overall time performance
increases gained by the algorithm improvements on each map.
As seen in the table, there is a large performance increase
from the implemented changes, averaging a 7.5 times speed
improvement across the four schematics. This improvement in
run time made the testing feasible by allowing us to carry out
the required experiments in a reasonable time frame. Table IV



TABLE V. VIENNA RESULTS

Rank Map ID  Start Distance  Iterations  Grid Spacing  Fitness
1 46 15 20 10 0.972
2 78 17 20 10 0.981
3 58 16 16 10 0.986
4 62 16 20 10 0.986
5 74 17 16 10 0.986
6 42 15 16 10 1.037
7 30 14 20 10 1.135
8 70 17 12 10 1.180
9 54 16 12 10 1.195
10 10 13 16 10 1.317
40 53 16 12 8 2174
80 68 17 8 14 4.233

shows a breakdown of the time improvements on a per-
criterion basis. There was a substantial performance increase
per criterion, averaging 44.8 times faster. This is higher than
the performance increase on the overall running time due to the
algorithm performing other tasks that have not been optimized,
such as label placement.

The timings were performed on an ASUS Eee Pad Trans-
former TF101 running the Android operating system, version
3.2.1. The device runs on a 1GHz NVIDIA Tegra 2 with 1GB
of RAM.

To test how changing the parameters impacts on the final
diagram, we developed a test rig that would allow us to explore
a variety of settings for the chosen parameters. The range of
values for the parameters were decided by informal testing
and are given in Sect. III. The testing rig outputs images of
each schematic, and a file containing the fitness value of each.
From this data, we investigated how modifying the parameters
relates to the final fitness value. Of course, we can also pick
the best layout (the one with best fitness) from those generated
to be our output schematic.

III. RESULTS AND ANALYSIS

In this section we present the results from the testing
of each of the four maps. We have chosen Vienna as an
example in which to go into more detail because it provides
good variation in layout between the different runs. Diagrams
generated from the other examples can been seen in the
Appendix.

Table II lists the values used for each parameter. Running
a map from Table I with all possible parameter configurations
from Table II results in a total of 80 layouts. Table V shows an
abridged table of the Vienna schematic results from the testing
rig along with the parameter settings for each. It shows the top
ten best schematics by fitness value, the median schematic and
the single worst. An immediate trend can be seen from this
table with a grid spacing value of ten appearing in all the best
fitness values. For other maps, data given in the Appendix,
only Sydney shows a similar trend, the other two maps do
show some grouping by grid spacing, but in these cases it is
less conclusive as the best grid also appears much lower down
the ranking. For the four maps, only two share the same grid
spacing in the best map, and there is no correlation between
map size and grid spacing. As a result, it appears that grid
spacing is perhaps the most important parameter to explore;
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however, there are no patterns evident that would allow the
derivation of an ideal grid spacing for a particular map.

From Table V we can also see that there is a continuing
improvement in fitness at the top of the list. This pattern, where
the best fitness is found for only one set of parameters is also
shown in two other maps (see the Appendix). We believe this is
an indication that the system is not converging on the optimum
solution, and so an even wider examination of the search space
may be required to achieve the best final layout.

Figure 3 shows the original geographic layout of Vienna,
used as the starting point by the algorithm. Figures 4, 5
and 6 show the best, median and worst final schematics for
Vienna respectively. We have included the median, as this is
the expected layout when parameters are arbitrarily chosen
from the ranges used in this paper. In this case, the fitness of
the best diagram is 44.71% of the median. Various cases of
local optima are visible in the median Vienna diagram, Fig. 5.
For example, the median diagram has generally worse line
straightness than the best diagram, Fig. 4, which can be seen
in nearly all lines. Many more cases of local optima can be
seen in the worst diagram, Fig. 6, which along with much
poorer line straightness, has multiple edges which break the
octilinearity criterion.

Besides Vienna, we have also included the geographic and
best layout of Sydney from the tests, shown in Figures 7 and
8 respectively. An abridged table of results for Sydney can be
found in the Appendix. Geographic and best images of Mexico
and Washington, along with results, can also be found in the
Appendix.

When the parameters are set in an ad-hoc fashion, and



Fig. 3. Vienna - Geographic Map

Fig. 4. Vienna - Rank 1 (Fitness = 0.972)

the wider search done here is not performed (as in the case
in most current layout methods), the expected output layout is
the median fitness value, and we can investigate how much our
best diagram improves on this. In the case of Washington the
best is 95.68% of the median, for Mexico the best is 86.79% of
the median, and for Sydney the best is 91.28% of the median.
As the percentage for Vienna was 44.71%, this implies that
in some cases, something close to the best diagram can be
found with a wide range of parameters, so allowing a more
constrained (and faster) search to be applied. In other cases, a
more restricted search will produce a much worse diagram.

It has been mentioned that a small change in the algorithm
parameters can make a very large difference to the resultant
layout. An example of this is the top ranked Mexico layout
which has a fitness of 2.667, with parameters: start distance
13, iterations 20, grid spacing 14. A change from 20 to 16
iterations (one step in our testing) results in a drop to rank 50
and a fitness of 3.217.

Figure 1 shows the cumulative mean fitness for each param-
eter value. The graph indicates that, for number of iterations
and starting distance, a larger parameter value is likely to lead
to a layout with a better fitness; these trends also hold true
on the map-specific graphs for start distance and iterations
shown in the Appendix. Increasing both of these parameters
increases the search space, so indicating that an even wider
search will tend to produce a better diagram. Grid spacing,
which, as discussed previously, has the greatest effect upon
the resulting layout’s fitness, tends to produce better results
when a smaller value is used.

However, Fig. 2, which shows the mean fitness value of
each layout produced by varying the grid spacing, does not
show this trend on a by-map basis. This graph has been
included because, unlike search distance and iterations, a clear
trend cannot be seen in the data. Although grid spacing has a
large effect on the fitness value of the produced layouts, there is
no single optimum grid spacing value for all layouts, and each



Fig. 5. Vienna - Rank 40 (Fitness = 2.174)

Fig. 6. Vienna - Rank 80 (Fitness = 4.233)

has a specific value at which the best layouts are produced. In-
terestingly, Mexico and Sydney, which are comparatively large
maps with similar sizes, display opposite trends in terms of
grid spacing, with Mexico favouring the larger spacing values
and Sydney the smallest. Further investigation is required by
examining a larger variation of grid spacing in order to try to
identify any global trends.

IV. CONCLUSION

When implementing any multicriteria search method, many
parameters are used to configure the algorithm, including those
studied in this paper. With the algorithm we present here, the
fitness of the best schematic layout is typically considerably
better than a layout that might be found by an ad-hoc method
for assigning parameter values. As a result, our algorithm
generates better layouts than previous schematic search-based
methods.

We have shown that for all four maps there is a slight
trend towards better layouts being produced by more iterations
and a greater start distance. This behaviour is expected, as
increasing these parameters allows the system to evaluate
more station positions, but at the potential cost of greater
run time. Unlike number of iterations and start distance, grid
spacing did not display a clear trend for improving fitness
across all schematics, but results obtained did indicate that
each schematic has a ‘best’ grid spacing value at which a
lower fitness is more commonly produced. Although trends
have been identified in all parameters, the best layouts are not
when all the parameters are at their best settings as indicated
by the trends; there is considerable variation.

We have begun work on examining parameters for improv-
ing layout and characterizing maps. However, much future
work needs to be done. Firstly, other parameters may be
investigated, for example, the number of bend points on di-
agrams and those that control clustering. Secondly, the current
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Fig. 8. Sydney - Rank 1 (Fitness = 19.387)

parameters have not been fully explored, including looking
at the limits of the trends currently identified in this paper.
We could also develop more sophisticated characterizations
of diagrams such as geographic density variance, or examine
if radial and orbital schematic characteristics have an effect
and so can aid the choice of parameter value. Finally, we have
evidence that the most optimal layout has not yet been reached
with our current method, and so further investigation with a
wider search is an important next step towards generating the
best possible schematic layouts.
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Appendix
TABLE VI FITNESS STATISTICS BY MAP
Schematic Mean  Median Mode SD IQR
‘Washington 4.358 4.258 4.634 0222 0.489
Vienna 2.327 2.197 2221 1.043  0.601
Mexico 3.179 3.139 3.073 0.306 0.304
Sydney 21.924 21926 23232 1.681 2.675
TABLE VIL STATISTICS BY PARAMETER VALUE
Parameters Mean Median Mode Standard Deviation IQR
Grid Spacing
8 7354 4.116 19.730  7.223 5471
10 7.421 3.879 4.144 8.004 6.143
12 8.361 3.624 2221 9.090 6.461
14 8.653  4.434 4.634 8.353 5.907
Start Distance
13 0.043 4.178 19.663  8.264 5318
14 7.992  4.205 19.660  8.268 5.466
15 7.928 4.133 19.730  8.215 5.468
16 7911 4.133 19.730  8.193 5.486
17 7.861  4.105 2.221 8.200 5.339
Iterations
8 8.081  4.205 2221 8.197 5.425
12 7976  4.145 2221 8.213 5.323
16 7.884  4.144 2221 8.221 5.542
20 7.848 4.144 2221 8.227 5.488
TABLE VIIL WASHINGTON RESULTS
Rank Map ID  Start Distance  Iterations  Grid Spacing  Fitness
1 226 17 8 10 4.074
2 202 15 16 10 4.116
3 206 15 20 10 4.116
4 214 16 12 10 4.116
5 201 15 16 8 4.122
6 205 15 20 8 4.122
7 213 16 12 8 4.122
8 225 17 8 8 4.135
9 170 13 16 10 4.144
10 174 13 20 10 4.144
40 211 16 8 12 4.258
80 209 16 8 8 4777
TABLE IX. VIENNA RESULTS
Rank Map ID  Start Distance  Iterations  Grid Spacing  Fitness
1 46 15 20 10 0.972
2 78 17 20 10 0.981
3 58 16 16 10 0.986
4 62 16 20 10 0.986
5 74 17 16 10 0.986
6 42 15 16 10 1.037
7 30 14 20 10 1.135
8 70 17 12 10 1.180
9 54 16 12 10 1.195
10 10 13 16 10 1.317
40 53 16 12 8 2.174
80 68 17 8 14 4.233

TABLE X.

MEXICO RESULTS

Rank Map ID  Start Distance  Iterations  Grid Spacing  Fitness
1 96 13 20 14 2.667
2 108 14 16 14 2.667
3 112 14 20 14 2.667
4 124 15 16 14 2.667
5 128 15 20 14 2.667
6 139 16 16 12 2.802
7 143 16 20 12 2.802
8 155 17 16 12 2.802
9 159 17 20 12 2.845
10 94 13 20 10 2.847
40 151 17 12 12 3.073
80 81 13 8 8 4.111
TABLE XI. SYDNEY RESULTS
Rank Map ID  Start Distance  Iterations  Grid Spacing  Fitness
1 317 17 20 8 19.387
2 257 14 8 8 19.660
3 261 14 12 8 19.660
4 265 14 16 8 19.660
5 269 14 20 8 19.660
6 241 13 8 8 19.663
7 245 13 12 8 19.663
8 249 13 16 8 19.663
9 253 13 20 8 19.663
10 305 17 8 8 19.719
0 26 14 12 10 21237
80 263 14 12 12 24332
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