
Howe, Jacob M. and King, Andy (2001) Widening BDDs. University of Kent,
School of Computing, 9 pp.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/13611/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/13611/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Computer S
ien
e at Kent
Widening BDDs
Ja
ob M. Howe and Andy KingTe
hni
al Report No: 5-01Date: May 2001
Copyright

 2001 University of Kent at CanterburyPublished by the Computing Laboratory,University of Kent, Canterbury, Kent CT2 7NF, UK.

Abstra
tBoolean fun
tions are often represented as binary de
ision diagrams (BDDs). BDDs arepotentially of exponential size in the number of variables of the fun
tion. Boolean fun
tionsdrawn from Pos (the
lass of positive Boolean fun
tions) and Def (the
lass of de�nite Booleanfun
tions) are often used to des
ribe the groundness of, and grounding dependen
ies between,program variables in (
onstraint) logi
 programs. Pos-based analyses are often implementedusing BDDs whi
h are sometimes problemati
ally large. Sin
e the
omplexities of the mostfrequently used domain operations are quadrati
 in the size of the input BDDs, widening BDDsfor spa
e is also a widening for time, hen
e is important for s
alability. Two algorithms forwidening BDDs for spa
e are presented and are dis
ussed (with relation to groundness analysis).

1

1 Introdu
tionGroundness analysis is an important theme of logi
 programming and abstra
t interpretation.Groundness analyses identify those program variables bound to terms that
ontain no variables(ground terms). Groundness information is typi
ally inferred by tra
king dependen
ies amongprogram variables. These dependen
ies are
ommonly expressed as Boolean fun
tions. For example,the fun
tion x^(y z) des
ribes a state in whi
h x is de�nitely ground, and there exists a groundingdependen
y su
h that whenever z be
omes ground then so does y.Groundness analyses usually tra
k dependen
ies using either Pos [1, 2, 6, 10, 15, 18, 19℄, the
lass of positive Boolean fun
tions, or Def [1, 11, 13, 14℄, the
lass of de�nite positive fun
tions.Pos is more expressive than Def , but Def analysers
an be faster [1, 13℄ and, in pra
ti
e, the lossof pre
ision for goal-dependent groundness analysis is usually small [13℄.A
autious
ompiler vendor is unlikely to adopt an analysis unless it
omes with s
alabilityguarantees. For an analysis to be pra
ti
al, both its speed and its memory
onsumption needremain within reasonable bounds, even for large programs. The time required to analyse a programdepends primarily on the
ost of ea
h domain operation and the number of times these operationsare applied. The number of times the domain operations are applied relates to the number ofiterations that are required to rea
h the �xpoint. This, in turn, depends on the
hain length of theunderlying domain.The
ost of ea
h domain operation required in groundness analysis depends
riti
ally on the waydependen
ies are represented. Prolog, C and SML based Pos and Def analysers have been
on-stru
ted around a number of representations: (1) Armstrong et al [1℄ dis
uss Dual Blake Canoni
alForm (DBCF) for representing Boolean fun
tions. (2) Howe and King [13℄ argue that a non-ground(non-orthogonal [1℄)
lausal representation is well suited to Def . (3) Codish and Demoen [6℄ usea set of possibly non-ground atoms over the alphabet ftrue; falseg to represent the truth table ofa Pos fun
tion. (4) Finally, many authors [1, 2, 10, 18, 19℄ use binary de
ision diagrams (BDDs)and their variants, su
h as redu
ed, ordered binary de
ision diagrams, for Pos.The speed of analysis is related to the
ompa
tness of its representation. BDDs give a denserepresentation for Pos , hen
e their popularity. However, even BDDs
an get large, impa
tingon time as well as spa
e. Codish [5℄ gives a series of programs whi
h generate BDDs with sizeexponential in the size of the input program. This motivates widening BDDs for size, that is,trading some pre
ision for a smaller representation. Fe
ht [10℄ suggests one su
h widening. Thiswidening takes as input a BDD for a Pos formula and outputs a BDD that only re
ords whi
hvariables are de�nitely ground. This paper des
ribes two less aggressive widenings for BDDs. Bothalgorithms are quadrati
 in the size of the input BDD. The two algorithms are
ompared and it isshown that widening BDDs for spa
e is not, in general, enough to bound the number of iterationsof a Pos analysis.The rest of the paper is stru
tured as follows: Se
tion 2 details the ne
essary preliminaries;Se
tion 3 investigates widening for spa
e BDD representations of Boolean fun
tions; Se
tion 4dis
usses related work and Se
tion 5
on
ludes.2 PreliminariesA Boolean fun
tion is a fun
tion f : Booln ! Bool where n � 0. A Boolean fun
tion
an berepresented by a propositional formula over a set of variables X where jXj = n. The set ofpropositional formulae over X is denoted by BoolX . Throughout this paper, Boolean fun
tions andpropositional formulae inter
hangeably without worrying about the distin
tion [1℄. The
onvention2

of identifying a truth assignment with the set of variables M that it maps to true is also followed.Spe
i�
ally, a map X(M) : P(X)! BoolX is introdu
ed de�ned by: X(M) = (^M)^(:_XnM).In addition, the formula ^Y is often abbreviated as Y .De�nition 2.1 (modelX) The (bije
tive) mapmodelX : BoolX ! P(P(X)) is de�ned by: modelX(f)= fM � X j X(M) j= fg.Observe that modelX(f) is the set of models of f , whilst P(X) nmodelX(f) is the set of
ounter-models of f .Example 2.1 If X = fx; yg, then the fun
tion fhtrue; truei 7! true, htrue; falsei 7! false,hfalse; truei 7! false, hfalse; falsei 7! falseg
an be represented by the formula x ^ y. Also,modelX(x ^ y) = ffx; ygg and modelX(x _ y) = ffxg; fyg, fx; ygg.De�nition 2.2 PosX is the set of positive Boolean fun
tions over X. A fun
tion f is positive i�X 2 modelX(f). Def X is the set of positive fun
tions over X that are de�nite. A fun
tion f isde�nite i� for all M;M 0 2 modelX(f), M \M 0 2 modelX(f).Hasse diagrams for dyadi
 Pos and Def
an be seen in Fig. 1. Note that Def X � PosX . Oneuseful representational property of Def X is that ea
h f 2 Def X
an be des
ribed as a
onjun
tionof de�nite (propositional)
lauses, that is, f = ^ni=1(yi Yi) [9℄.Example 2.2 Suppose X = fx; y; zg and
onsider the following table, whi
h states, for someBoolean fun
tions, whether they are in Def X or PosX and also gives modelX .f Def X PosX modelX(f)false ;x ^ y � � f fx; yg; fx; y; zggx _ y � f fxg; fyg; fx; yg; fx; zg; fy; zg; fx; y; zggx y � � f;; fxg; fzg; fx; yg; fx; zg; fx; y; zggx (y z) � f fxg; fzg; fx; yg; fx; zg; fx; y; zggtrue � � f;; fxg; fyg; fzg; fx; yg; fx; zg; fy; zg; fx; y; zggNote, in parti
ular, that x_ y 62 Def X (sin
e its set of models is not
losed under interse
tion) andthat false is in neither PosX nor Def X .De�ning f1 __f2 = ^ff 2 Def X j f1 j= f ^ f2 j= fg, the 4-tuple hDef X ; j=;^; __i is a �nite latti
e,where true and X are the top and bottom elements. Existential quanti�
ation is de�ned byS
hr�oder's Elimination Prin
iple, that is, 9x:f = f [x 7! true℄ _ f [x 7! false℄. Note that iff 2 Def X then 9x:f 2 Def X [1℄.Example 2.3 If X = fx; yg then x __(x$ y) = ^f(x y); trueg = (x y), as
an be seen in theHasse diagram for dyadi
 Def X (Fig. 1). Note also that x __y = ^ftrueg = true 6= (x _ y).The set of (free) variables in a synta
ti
 obje
t o is denoted var(o). Also, 9fy1; : : : ; yng:f(proje
t out) abbreviates 9y1: : : : :9yn:f and 9Y:f (proje
t onto) denotes 9var(f) n Y:f .Let S be a set partially ordered by �, then C � S is a
hain i� for all x; y 2 C either x � y ory � x. A
hain M is maximal i� for all
hains C � S, jCj � jM j.3

Def fx;ygx ^ yx x$ y yx y y xtrue
Posfx;ygx ^ yx x$ y yx y x _ y y xtrue

Figure 1: Hasse diagrams3 Widening for Spa
e and TimeClassi
ally [8℄, widening is a method for enfor
ing termination in abstra
t interpretation. It
onsistsof using a widening operator on a join semi-latti
e L(v;t),5 : L�L! L, su
h that for all x; y 2 L,x v x5 y and y v x5 y and for all in
reasing
hains x1 v x2 v : : :, the in
reasing
hain de�nedby y0 = x0; : : : ; yi+1 = yi5 xi+1 is not stri
tly in
reasing.Widening also
an be applied to domains that satisfy the as
ending
hain
ondition in orderto a

elerate
onvergen
e of a �xpoint
al
ulation. In this situation, it is usual to widen a singleabstra
tion in isolation, rather than in the
ontext of an in
reasing
hain. This is be
ause thetra
tability of an analysis depends, in part, on keeping all the intermediate abstra
tions small (notjust those abstra
tions that o

ur, for instan
e, as
all and answer patterns [17℄). Intermediateabstra
tions, by de�nition, are not re
orded in a database, thus the previous abstra
tions are notavailable to a widening to aid extrapolation. In this se
tion, this widening in isolation approa
h isapplied to BDDs.A binary de
ision diagram (BDD) is a rooted, dire
ted a
y
li
 graph. Terminal nodes arelabelled 0 or 1 and non-terminal nodes are labelled by a variable and have ar
s dire
ted towardstwo
hild nodes. In the following, BDDs have the additional properties that: 1) ea
h path from theroot to a node respe
ts a given ordering on the variables, 2) a variable
annot o

ur multiply in apath, 3) no subBDD o

urs multiply. Su
h BDDs are known as redu
ed, ordered binary de
isiondiagrams and give a unique representation for every Boolean fun
tion.The size of a BDD representing a PosX formula is potentially 2jXj. Sin
e the most frequentlyused BDD operations are quadrati
 in the size of the BDD, widening the BDD for size is also awidening for time. Codish [5℄ gives a series of programs whi
h generate BDDs with an exponential(in the size of the program) number of distin
t nodes; this example
oupled with the experimentalwork of Fe
ht [10℄ motivates widening BDDs for spa
e.The most promising representation of Pos using BDDs is the GER fa
torisation of Bagnaraand S
ha
hte [2, 18℄. This hybrid representation
onsists of three
omponents: a set of groundvariables (G), a set of equivalent variables (E), and a BDD for more
omplex dependen
ies (R).This signi�
antly redu
es the size of the representation. A simple widening for Pos is to repla
ethe R
omponent with the logi
al
onstant 1. This
orresponds to widening to a subdomain ofPosX , namely EPosX [12℄, whose
hain length is jXj+1. This is an attra
tive te
hnique, sin
e thewidening is independent of the variable ordering of the BDD. Noti
e that a more pre
ise wideningis likely to depend on the variable ordering, sin
e this impa
ts on the size of a BDD. Also note thatwidening a BDD representing a Def fun
tion to another Def fun
tion is problemati
, as BDDs arenot
losely related to fun
tions
losed under model interse
tion. Thus BDDs appear unsuitable for4

implementing Def .Given a size bound, l, widening a BDD representing a fun
tion f 2 PosX results in a fun
tiong, whose size does not ex
eed l, su
h that f j= g. Noti
e that X j= g, sin
e X j= f , thusg 2 PosX . The loss of pre
ision that results from widening BDDs
an be quanti�ed in terms of thenumber of extra models of the widened fun
tion. Moreover, suppose f j= g1 and f j= g2, wherejmodelX(g1)j � jmodelX(g2)j and the sizes of g1 and g2 do not ex
eed l, then the widening shouldbe biased towards sele
ting g1. Two algorithms (one sample based, one heuristi
) that follow thista
ti
 are des
ribed below. In the following, let jgj denote the number of nodes in the BDD g andlet k gk be a measure of the number of
ountermodels, de�ned as follows: k gk= (k gtk + k gfk)=2,where gt and gf are the subBDDs rooted at the
hildren of g and k0k= 1, k1k= 0.3.1 Sample Based WideningThe sample based widening is an iterative algorithm that, at ea
h stage, removes at least one nodefrom a BDD g. The algorithm is parameterised by a
onstant size limit l and pro
eeds as follows.Cal
ulate jgj and
hoose k � 1 nodes n1; : : : ; nk of g at random. If ni has a
hild whose size doesnot ex
eed l, then let hi denote the join of the subBDDs rooted at the
hildren of ni. Otherwise lethi denote the
onstant 1. Constru
t gi from g by repla
ing the subBDD at ni with hi. If jgij � jgjthen reassign hi to 1 and re-
ompute jgij. Observe that for all 1 � i � k, jgij < jgj. Compute rsi =kgik=jgij for ea
h ni and let rsmax = maxfrsi j 1 � i � kg. If jgmaxj � l, stop and return gmax as theresult of the widening. Otherwise reapply the pro
edure with g repla
ed with gmax.This widening is O(m2) in both spa
e and time in the number of nodes, m, of the input g. Tosee this, observe that
omputing jgj is O(m). Note that given jgj, the test jgij � jgj is O(m) sin
eat most m + 1 nodes of gi need to be
onsidered. Ea
h join operates on (at least) one subBDDwhose size does not ex
eed the
onstant l. Thus ea
h join has
omplexity O(m). Repla
ing thesubBDD at ni with hi is also O(m) as is
omputing kgik and jgij. The number of iterations of theloop is at most m� l and hen
e the widening is O(m2).Noti
e that the reliability of the widening depends primarily on the size of the sample (ratherthan on jgj). For example, with a sample of 32 nodes, there is (at least) a 97% probability thatnmax is in the top 10% of the all the nodes of g a

ording to the rsi ranking.3.2 Heuristi
 WideningThe sample based widening will lose pre
ision if the sampling is unfortunate. This motivates awidening based on a heuristi
. Ideally, a widening will remove many nodes whilst introdu
ing fewextra models. The algorithm will pro
eed by ranking the nodes of the BDD by their suitabilityfor removal and repla
ing the most suitable node with 1. The nodes of the new BDD are rankedand the pro
edure is repeated until the resulting BDD has fewer than l nodes. For ea
h nodeni of the BDD g (with m nodes)
onsider hi, the subBDD rooted at ni. For ea
h hi the ratiorhi = (khik :�p2Pi2�jpj)=bhi
 is
al
ulated, where Pi is the set of paths from the root of g to ni, jpjthe length of p, bhi
 � jgj � jg0j and g0 is the result of repla
ing hi with 1 in g. bhi
 is
al
ulatedby
ounting the number of nodes is the subBDD rooted at ni whi
h have only one parent in g. Letrhmin = minfrhi j 1 � i � mg and repla
e the subBDD rooted at nmin by 1. If the resulting BDDhas less than l nodes, then stop, otherwise the pro
edure is reapplied.Note that bhi
 is less than or equal to the number of the nodes removed by repla
ing thesubBDD rooted at ni by 1 for two reasons. Firstly, nodes with more than one parent, but whoseparents all have ni as an an
estor, are not
ounted. In fa
t these will be removed. Se
ondly, theremay be a subBDD whi
h o

urs in both the old and the new BDD that has extra parents in the5

w(1)""" HHHx(2) x(3)""" bbb ZZy(4) y(5) 0���� ����1 0 z(6) 0%%ee1 01. y ^ (x _ (w ^ z))
w##### HHH x ZZy 0����1 02. y ^ (x _w)w"""x�� HHHy y���� ����1 0 z 0%%ee1 03. y ^ (w ! (x _ z))
w""" HHHx x""" bbb ZZy z 0���� ����1 0 1 04. (x ^ y) _ (w ^ z ^ (x! y))Figure 2: BDDs for Example 3.1new BDD.This widening is also O(m2) in both spa
e and time in the number of nodes, m, of the inputBDD g. To see this, observe that
ounting the number of parents (referen
es) to ea
h node ni ofg, and
omputing bhi
 for ea
h ni,
an all be
omputed in a single pass over g in O(m) time. Thesets Pi
an be
omputed in a single pass of g in O(m). Repla
ing the subBDD at ni with 1 is alsoO(m), as is
omputing k hik. The number of iterations of the loop is at most m � l, sin
e ea
hiteration must remove at least one node. Hen
e the widening is O(m2).Example 3.1 This example illustrates the appli
ation of the two widenings to the BDD for y ^(x_ (w^ z)), whi
h is 1. in Fig. 2 (where the left bran
h is the true bran
h and the right bran
h isthe false bran
h). The variable ordering is alphabeti
al, and the
onstant size limit l is 4. Observethat the size of BDD 1. is 6. Following the sample based widening, nodes (2), (3) and (5) were
hosenat random (using a die). The subBDDs lo
ated at (2), (3) and (5) all have a
hild of size less thanl. The
onstru
tion of the gi for the 3 nodes result in the BDDs 2., 3. and 4., respe
tively. The rsifor 2., 3. and 4. are (5/8)/3=5/24, (9/16)/5=9/80 and (5/8)/5=1/8, respe
tively. Hen
e BDD 2.is the result of the widening (as its size is less than l).Following the heuristi
 widening, rhi is
al
ulated for ea
h node, giving rh1 = ((11/16).1)/5=11/80,rh2=((5/8).(1/2))/3=5/48, rh3 = ((3/4).(1/2))/1=3/8, rh4 = ((1/2).(1/2))/0 =1, rh5 = ((3/4).(1/4))/2=3/32,rh6 = ((1/2).(1/8))/1=1/16. Hen
e node 6 is repla
ed by 1, to give BDD 2. as the result of thewidening (as its size is less than l). Noti
e that both widenings result in the same BDD and thisin
ludes just one extra model.3.3 Comparison of the WideningsThe two widenings are in some sense dual. The sample based widening is biased towards a loss ofpre
ision in node sele
tion, whereas the heuristi
 widening is biased towards a loss of pre
ision inpruning. More exa
tly, on the one hand, by
omputing joins (if possible), the �rst widening retainssome pre
ision in its pruning step. On the other hand, it relies on random sampling for node6

sele
tion. Conversely, by using a heuristi
, the se
ond widening is likely to lo
ate good
andidatenodes for elimination, but this elimination
an lose signi�
ant pre
ision. It is un
lear whi
h ta
ti
 isthe most e�e
tive, as the pre
ision of both te
hniques depends in part on the number of iterationsrequired.It is desirable for a widening to be linear. Although both widenings detailed above are quadrati
,both
ould be made linear by bounding the number of iterations about the loop by a
onstant (say,l), returning 1 if the number of iterations ex
eeds this limit. This would then redu
e the
omplexityof the widenings to O(m), at the expense of pre
ision. However, assuming that the input BDDsare not ex
essively large, quadrati
 behaviour is a

eptable.It is surprising to observe that even widening a BDD to jXj nodes is not suÆ
ient to avoid
hainof exponential size. Consider the program in Example 3.2. Ordering the variables alphabeti
ally,the size of the BDD for ea
h of the iterates does not ex
eed jXj. Also note that the wideningsabove
an be applied to the R
omponent of the GER fa
torisation, ensuring that groundness andsimple bidire
tional dependen
ies are retained.Example 3.2 The following program is the arity 4 instan
e of the s
hema given by Codish in [5℄.
hain(
,
,
,
).
hain(v,
,
,
) :-
hain(, v, v, v).
hain(w, v,
,
):-
hain(w, , v, v).
hain(w, x, v,
):-
hain(w, x, , v).
hain(w, x, y,):-
hain(w, x, y,).The results of Pos-based su

ess pattern groundness analysis of this program are summarised bythe table below, where i is the iteration number, fa
ti is the (single) new fa
t whi
h is added inthe ith interpretation and fi is the formula whi
h des
ribes the
hain(w; x; y; z) atoms in the ithinterpretation. i fa
ti fi i fa
ti fi1
hain(
;
;
;
) w ^ x ^ y ^ z 2
hain(
;
;
;) w ^ x ^ y3
hain(
;
; ;
) w ^ x ^ (y _ z) 4
hain(
;
; ;) w ^ x5
hain(
; ;
;
) w ^ (x _ (y ^ z)) 6
hain(
; ;
;) w ^ (x _ y))7
hain(
; ; ;
) w ^ (x _ y _ z) 8
hain(
; ; ;) w9
hain(;
;
;
) w _ (x ^ y ^ z) 10
hain(;
;
;) w _ (x ^ y)11
hain(;
; ;
) w _ (x ^ (y _ z)) 12
hain(;
; ;) w _ x13
hain(; ;
;
) w _ x _ (y ^ z) 14
hain(; ;
;) w _ x _ y15
hain(; ; ;
) w _ x _ y _ z 16
hain(; ; ;) true4 Related workMauborgne [16℄ shows how to perform stri
tness analysis of higher-order fun
tions with typedde
ision graphs (TDGs) [3℄. A TDG [3℄ is a BDD variant in whi
h the de
ision node for ea
hvariable xi is additionally tagged with a polarity. The polarity information enables the TDG forthe fun
tion f(xi; : : : ; xn) to share its nodes with the TDG for :f(xi; : : : ; xn) (if both fun
tionso

ur together) and thus a TDG
an en
ode some fun
tions more
ompa
tly than a
lassi
 BDD[4℄. Nevertheless, Mauborgne [16℄ advo
ates widening TDGs for spa
e. He proposes an operatorO(l; f) that takes, as input, a TDG that en
odes a fun
tion f and returns, as output, a TDG g withat most l nodes su
h that f j= g. The �rst widening he proposes is at least O(n4) in the numberof nodes in the input TDG. This is be
ause (one iteration of) the widening algorithm
omputes7

the meet of ea
h pair of nodes in the TDG and meet is O(n2). To improve eÆ
ien
y, Mauborgnesuggests a se
ond widening that
onsists of taking a TDG of n nodes and
omputing the TDGsf1; : : : ; fn obtained by repla
ing node i with 1. The fi are �ltered to remove those TDGs whose sizeex
eed n=2. Of the remaining fi, an fmax is sele
ted whi
h \gives the best result". The widening isreapplied to fmax if its TDG
ontains more than l nodes. This widening appears to be O(n2) time(assuming that it takes O(n) steps to assess the a

ura
y of ea
h of the �ltered fi). Both of thesewidenings
ould be adapted to BDDs. However, the O(n4) algorithm appears to be too expensiveto be pra
ti
al. The O(n2) algorithm is more aggressive than the widenings presented in Se
tion5, whilst its
omplexity is in the same
lass.Za�anella et al. [20℄ propose several widenings for domain the Sharing. Sin
e there exists anisomorphism between Sharing and Pos [7℄, these widenings
an be reinterpreted as widenings forPos . However, it is not
lear that these widenings
an be applied to a BDD eÆ
iently.5 Con
lusionThis paper has proposed two widenings for spa
e for BDDs. Sin
e the size of the representationsof Boolean fun
tions impa
t on the
omplexity of domain operations, the widenings improve bothspa
e and time aspe
ts of groundness analysis. and help to ensure that program analysis remainstra
table and s
ales smoothly. However, it was also shown that widening BDDs for spa
e does notne
essarily restrain
hain length.Further experimental work will quantitatively assess the widenings. It is suspe
ted that isdiÆ
ult to better quadrati

omplexity for a BDD widening whilst retaining good pre
ision and itwould be insightful to formalise this intuition.A
knowledgementsWe thank Floren
e Benoy, Mike Codish, Pat Hill and Jan-Georg Smaus for interesting dis
ussions.This work was supported, in part, by EPSRC grant GR/MO8769.Referen
es[1℄ T. Armstrong, K. Marriott, P. S
ha
hte, and H. S�ndergaard. Two Classes of Boolean Fun
-tions for Dependen
y Analysis. S
ien
e of Computer Programming, 31(1):3{45, 1998.[2℄ R. Bagnara and P. S
ha
hte. Fa
torizing Equivalent Variable Pairs in ROBDD-Based Imple-mentations of Pos. In Algebrai
 Methodology and Software Te
hnology, volume 1548 of Le
tureNotes in Computer S
ien
e, pages 471{485. Springer-Verlag, 1999.[3℄ J.-P. Billon. Perfe
t Normal Forms for Dis
rete Programs. Te
hni
al Report 87019, BullCorporate Resear
h Center, 1987.[4℄ R. Bryant. Symboli
 Boolean Manipulation with Ordered Binary-De
ision Digrams. ACMComputing Surveys, 24(3):293{318, 1992.[5℄ M. Codish. Worst-Case Groundness Analysis Using Positive Boolean Fun
tions. Journal ofLogi
 Programming, 41(1):125{128, 1999.[6℄ M. Codish and B. Demoen. Analysing Logi
 Programs using \prop"-ositional Logi
 Programsand a Magi
 Wand. Journal of Logi
 Programming, 25(3):249{274, 1995.8

[7℄ M. Codish, H. S�ndergaard, and P. Stu
key. Sharing and Groundness Dependen
ies in Logi
Programs. ACM Transa
tions on Programming Languages and Systems, 21(5):948{976, 1999.[8℄ P. Cousot and R. Cousot. Abstra
t Interpretation: A Uni�ed Latti
e Model for Stati
 Analysisof Programs by Constru
tion or Approximation of Fixpoints. In Prin
iples of ProgrammingLanguages, pages 238{252. ACM Press, 1977.[9℄ P. Dart. On Derived Dependen
ies and Conne
ted Databases. Journal of Logi
 Programming,11(2):163{188, 1991.[10℄ C. Fe
ht. Abstrakte Interpretation Logis
her Programme: Theorie, Implementierung, Gener-ierung. PhD thesis, Universit�at des Saarlandes, 1997.[11℄ M. Gar
��a de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier, G. Janssens, andW. Simoens. Global Analysis of Constraint Logi
 Programs. ACM Transa
tions on Program-ming Languages and Systems, 18(5):564{614, 1996.[12℄ A. Heaton, M. Abo-Zaed, M. Codish, and A. King. A Simple Polynomial Groundness Analysisfor Logi
 Programs. Journal of Logi
 Programming, 45(1{3):143{156, 2000.[13℄ J. M. Howe and A. King. Implementing Groundness Analysis with De�nite Boolean Fun
tions.In European Symposium on Programming, volume 1782 of Le
ture Notes in Computer S
ien
e,pages 200{214. Springer-Verlag, 2000.[14℄ A. King, J.-G. Smaus, and P. Hill. Quotienting Share for Dependen
y Analysis. In EuropeanSymposium on Programming, volume 1576 of Le
ture Notes in Computer S
ien
e, pages 59{73.Springer-Verlag, 1999.[15℄ K. Marriott and H. S�ndergaard. Pre
ise and EÆ
ient Groundness Analysis for Logi
 Pro-grams. ACM Letters on Programming Languages and Systems, 2(4):181{196, 1993.[16℄ L. Mauborgne. Abstra
t Interpretation Using Typed De
ision Graphs. S
ien
e of ComputerProgramming, 31(1):91{112, 1998.[17℄ P. Mildner. Type Domains for Abstra
t Interpretation: A Criti
al Study. PhD thesis, Universityof Uppsala, 1999. Uppsala Theses in Computer S
ien
e, 31.[18℄ P. S
ha
hte. Pre
ise and EÆ
ient Stati
 Analysis of Logi
 Programs. PhD thesis, Departmentof Computer S
ien
e, The University of Melbourne, Melbourne, Australia, 1999.[19℄ P. Van Hentenry
k, A. Cortesi, and B. Le Charlier. Evaluation of the Domain Prop. Journalof Logi
 Programming, 23(3):237{278, 1995.[20℄ E. Za�anella, R. Bagnara, and P. Hill. Widening Sharing. In Prin
iples and Pra
ti
e ofDe
larative Programming, volume 1702 of Le
ture Notes in Computer S
ien
e, pages 414{431.Springer-Verlag, 1999.
9

