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Abstract

Boolean functions are often represented as binary decision diagrams (BDDs). BDDs are
potentially of exponential size in the number of variables of the function. Boolean functions
drawn from Pos (the class of positive Boolean functions) and Def (the class of definite Boolean
functions) are often used to describe the groundness of, and grounding dependencies between,
program variables in (constraint) logic programs. Pos-based analyses are often implemented
using BDDs which are sometimes problematically large. Since the complexities of the most
frequently used domain operations are quadratic in the size of the input BDDs, widening BDDs
for space is also a widening for time, hence is important for scalability. Two algorithms for
widening BDDs for space are presented and are discussed (with relation to groundness analysis).



1 Introduction

Groundness analysis is an important theme of logic programming and abstract interpretation.
Groundness analyses identify those program variables bound to terms that contain no variables
(ground terms). Groundness information is typically inferred by tracking dependencies among
program variables. These dependencies are commonly expressed as Boolean functions. For example,
the function zA(y < z) describes a state in which z is definitely ground, and there exists a grounding
dependency such that whenever z becomes ground then so does y.

Groundness analyses usually track dependencies using either Pos [1, 2, 6, 10, 15, 18, 19], the
class of positive Boolean functions, or Def [1, 11, 13, 14], the class of definite positive functions.
Pos is more expressive than Def, but Def analysers can be faster [1, 13] and, in practice, the loss
of precision for goal-dependent groundness analysis is usually small [13].

A cautious compiler vendor is unlikely to adopt an analysis unless it comes with scalability
guarantees. For an analysis to be practical, both its speed and its memory consumption need
remain within reasonable bounds, even for large programs. The time required to analyse a program
depends primarily on the cost of each domain operation and the number of times these operations
are applied. The number of times the domain operations are applied relates to the number of
iterations that are required to reach the fixpoint. This, in turn, depends on the chain length of the
underlying domain.

The cost of each domain operation required in groundness analysis depends critically on the way
dependencies are represented. Prolog, C and SML based Pos and Def analysers have been con-
structed around a number of representations: (1) Armstrong et al [1] discuss Dual Blake Canonical
Form (DBCF) for representing Boolean functions. (2) Howe and King [13] argue that a non-ground
(non-orthogonal [1]) clausal representation is well suited to Def. (3) Codish and Demoen [6] use
a set of possibly non-ground atoms over the alphabet {true, false} to represent the truth table of
a Pos function. (4) Finally, many authors [1, 2, 10, 18, 19] use binary decision diagrams (BDDs)
and their variants, such as reduced, ordered binary decision diagrams, for Pos.

The speed of analysis is related to the compactness of its representation. BDDs give a dense
representation for Pos, hence their popularity. However, even BDDs can get large, impacting
on time as well as space. Codish [5] gives a series of programs which generate BDDs with size
exponential in the size of the input program. This motivates widening BDDs for size, that is,
trading some precision for a smaller representation. Fecht [10] suggests one such widening. This
widening takes as input a BDD for a Pos formula and outputs a BDD that only records which
variables are definitely ground. This paper describes two less aggressive widenings for BDDs. Both
algorithms are quadratic in the size of the input BDD. The two algorithms are compared and it is
shown that widening BDDs for space is not, in general, enough to bound the number of iterations
of a Pos analysis.

The rest of the paper is structured as follows: Section 2 details the necessary preliminaries;
Section 3 investigates widening for space BDD representations of Boolean functions; Section 4
discusses related work and Section 5 concludes.

2 Preliminaries

A Boolean function is a function f : Bool™ — Bool where n > 0. A Boolean function can be
represented by a propositional formula over a set of variables X where |X| = n. The set of
propositional formulae over X is denoted by Bool x. Throughout this paper, Boolean functions and
propositional formulae interchangeably without worrying about the distinction [1]. The convention



of identifying a truth assignment with the set of variables M that it maps to true is also followed.
Specifically, a map ¢ x (M) : P(X) — Boolx is introduced defined by: 9 x (M) = (AM)A(=VX\M).
In addition, the formula AY is often abbreviated as Y.

Definition 2.1 (modelx) The (bijective) map modelx : Boolx — P(P(X)) is defined by: model x (f)
={M C X |¢x(M) |= f}.

Observe that model x(f) is the set of models of f, whilst P(X) \ model x(f) is the set of counter-
models of f.

Example 2.1 If X = {z,y}, then the function {(true,true) — true, (true, false) — false,
(false,true) — false, (false, false) — false} can be represented by the formula z A y. Also,

modelx (z Ay) = {{z,y}} and modelx (z Vy) = {{z}, {y}, {z,y}}.

Definition 2.2 Posx is the set of positive Boolean functions over X. A function f is positive iff
X € modelx(f). Defx is the set of positive functions over X that are definite. A function f is
definite iff for all M, M" € model x (f), M N M' € model x(f).

Hasse diagrams for dyadic Pos and Def can be seen in Fig. 1. Note that Def y C Posx. One
useful representational property of Def y is that each f € Def y can be described as a conjunction
of definite (propositional) clauses, that is, f = Al_, (y; < Y;) [9].

Example 2.2 Suppose X = {z,y,z} and consider the following table, which states, for some
Boolean functions, whether they are in Def x or Posx and also gives model x.

f Defy Posx model x (f)
false 0
TNy . e |{ {z,y}, {z,y,2}}
zVy o | { {zh{yh,  Azwh Az 2} {y, 2} {zy, 2}
Ty . o | {0.{=},  {z}{=y}, {z,2}, {z,y,2}}
z < (y < 2) o | { A}, {zhAzyhi{n, 2}, {z,y,2}}
true . o {0, {z}, {y}, {z}, {z.y} {=, 2}, {y, 2}, {z,y,2}}

Note, in particular, that  Vy & Def x (since its set of models is not closed under intersection) and
that false is in neither Posx nor Def x.

Defining fiVfa = A{f € Defx | fi E f A f2 E f}, the 4-tuple (Def x, =, A, V) is a finite lattice,
where true and X are the top and bottom elements. Existential quantification is defined by
Schroder’s Elimination Principle, that is, 3z.f = flz — true] V flz — false]. Note that if
f € Def x then Jz.f € Def  [1].

Example 2.3 If X = {z,y} then zV(z < y) = A{(z < y),true} = (z < y), as can be seen in the
Hasse diagram for dyadic Def y (Fig. 1). Note also that zVy = A{true} = true # (z V y).

The set of (free) variables in a syntactic object o is denoted war(o). Also, IH{y1,...,yn}.f
(project out) abbreviates Jyj. ... . Jyn.f and FY.f (project onto) denotes Fvar(f)\ Y.f.

Let S be a set partially ordered by =<, then C' C S is a chain iff for all z,y € C either z < y or
y < z. A chain M is maximal iff for all chains C C S, |C| < |M].
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Figure 1: Hasse diagrams

3 Widening for Space and Time

Classically [8], widening is a method for enforcing termination in abstract interpretation. It consists
of using a widening operator on a join semi-lattice L(C,U), 7 : LXL — L, such that for all z,y € L,
zCzyyand y C zv/y and for all increasing chains 1 E z2 C ..., the increasing chain defined
by yo = %o, ..., ¥it1 = Y;i V Ti+1 18 not strictly increasing.

Widening also can be applied to domains that satisfy the ascending chain condition in order
to accelerate convergence of a fixpoint calculation. In this situation, it is usual to widen a single
abstraction in isolation, rather than in the context of an increasing chain. This is because the
tractability of an analysis depends, in part, on keeping all the intermediate abstractions small (not
just those abstractions that occur, for instance, as call and answer patterns [17]). Intermediate
abstractions, by definition, are not recorded in a database, thus the previous abstractions are not
available to a widening to aid extrapolation. In this section, this widening in isolation approach is
applied to BDDs.

A binary decision diagram (BDD) is a rooted, directed acyclic graph. Terminal nodes are
labelled 0 or 1 and non-terminal nodes are labelled by a variable and have arcs directed towards
two child nodes. In the following, BDDs have the additional properties that: 1) each path from the
root to a node respects a given ordering on the variables, 2) a variable cannot occur multiply in a
path, 3) no subBDD occurs multiply. Such BDDs are known as reduced, ordered binary decision
diagrams and give a unique representation for every Boolean function.

The size of a BDD representing a Posy formula is potentially 21¥!. Since the most frequently
used BDD operations are quadratic in the size of the BDD, widening the BDD for size is also a
widening for time. Codish [5] gives a series of programs which generate BDDs with an exponential
(in the size of the program) number of distinct nodes; this example coupled with the experimental
work of Fecht [10] motivates widening BDDs for space.

The most promising representation of Pos using BDDs is the GER factorisation of Bagnara
and Schachte [2, 18]. This hybrid representation consists of three components: a set of ground
variables (G), a set of equivalent variables (E), and a BDD for more complex dependencies (R).
This significantly reduces the size of the representation. A simple widening for Pos is to replace
the R component with the logical constant 1. This corresponds to widening to a subdomain of
Posx, namely EPosx [12], whose chain length is | X |+ 1. This is an attractive technique, since the
widening is independent of the variable ordering of the BDD. Notice that a more precise widening
is likely to depend on the variable ordering, since this impacts on the size of a BDD. Also note that
widening a BDD representing a Def function to another Def function is problematic, as BDDs are
not closely related to functions closed under model intersection. Thus BDDs appear unsuitable for



implementing Def.

Given a size bound, [, widening a BDD representing a function f € Posx results in a function
g, whose size does not exceed [, such that f = ¢g. Notice that X | ¢, since X | f, thus
g € Posx. The loss of precision that results from widening BDDs can be quantified in terms of the
number of extra models of the widened function. Moreover, suppose f = g1 and f |= g2, where
|model x (g1)| < |model x(g2)| and the sizes of g; and g, do not exceed [, then the widening should
be biased towards selecting g;. Two algorithms (one sample based, one heuristic) that follow this
tactic are described below. In the following, let |g| denote the number of nodes in the BDD ¢ and
let || g|| be a measure of the number of countermodels, defined as follows: || g||= (|| g¢|l + [l 9¢)/2,
where g; and g are the subBDDs rooted at the children of g and ||0[|= 1, || 1||= 0.

3.1 Sample Based Widening

The sample based widening is an iterative algorithm that, at each stage, removes at least one node
from a BDD g. The algorithm is parameterised by a constant size limit [ and proceeds as follows.
Calculate |g| and choose k > 1 nodes n1,...,n; of g at random. If n; has a child whose size does
not exceed [, then let h; denote the join of the subBDDs rooted at the children of n;. Otherwise let
h; denote the constant 1. Construct g; from g by replacing the subBDD at n; with h;. If |g;| > |g]
then reassign h; to 1 and re-compute |g;|. Observe that for all 1 <i <k, |g;| < |g|. Compute r} =
| gill/|gi| for each n; and let r7 . = max{rf | 1 <i < k}. If |gmqz| <[, stop and return gy, as the
result of the widening. Otherwise reapply the procedure with ¢ replaced with ¢p,qs-

This widening is O(m?) in both space and time in the number of nodes, m, of the input g. To
see this, observe that computing |g| is O(m). Note that given |g|, the test |g;| > |g| is O(m) since
at most m + 1 nodes of g; need to be considered. Each join operates on (at least) one subBDD
whose size does not exceed the constant [. Thus each join has complexity O(m). Replacing the
subBDD at n; with h; is also O(m) as is computing || g;|| and |g;|. The number of iterations of the
loop is at most m — [ and hence the widening is O(m?).

Notice that the reliability of the widening depends primarily on the size of the sample (rather
than on |g|). For example, with a sample of 32 nodes, there is (at least) a 97% probability that
Nmaz 18 in the top 10% of the all the nodes of g according to the r} ranking.

3.2 Heuristic Widening

The sample based widening will lose precision if the sampling is unfortunate. This motivates a
widening based on a heuristic. Ideally, a widening will remove many nodes whilst introducing few
extra models. The algorithm will proceed by ranking the nodes of the BDD by their suitability
for removal and replacing the most suitable node with 1. The nodes of the new BDD are ranked
and the procedure is repeated until the resulting BDD has fewer than [ nodes. For each node
n; of the BDD g (with m nodes) consider h;, the subBDD rooted at m;. For each h; the ratio
rh = (|| hill . Epep.27P1)/| hsi] is calculated, where P; is the set of paths from the root of g to n;, |p|
the length of p, |h;| < |g| — |¢'| and ¢ is the result of replacing h; with 1 in g. |h;] is calculated
by counting the number of nodes is the subBDD rooted at n; which have only one parent in g. Let
rh . =min{r? | 1 <i < m} and replace the subBDD rooted at 7, by 1. If the resulting BDD
has less than [ nodes, then stop, otherwise the procedure is reapplied.

Note that |h;] is less than or equal to the number of the nodes removed by replacing the
subBDD rooted at n; by 1 for two reasons. Firstly, nodes with more than one parent, but whose
parents all have n; as an ancestor, are not counted. In fact these will be removed. Secondly, there
may be a subBDD which occurs in both the old and the new BDD that has extra parents in the
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Figure 2: BDDs for Example 3.1

new BDD.

This widening is also O(m?) in both space and time in the number of nodes, m, of the input
BDD g. To see this, observe that counting the number of parents (references) to each node n; of
g, and computing |h;| for each n;, can all be computed in a single pass over g in O(m) time. The
sets P; can be computed in a single pass of g in O(m). Replacing the subBDD at n; with 1 is also
O(m), as is computing || h;||. The number of iterations of the loop is at most m — [, since each
iteration must remove at least one node. Hence the widening is O(m?).

Example 3.1 This example illustrates the application of the two widenings to the BDD for y A
(xV (wAz)), which is 1. in Fig. 2 (where the left branch is the true branch and the right branch is
the false branch). The variable ordering is alphabetical, and the constant size limit [ is 4. Observe
that the size of BDD 1. is 6. Following the sample based widening, nodes (2), (3) and (5) were chosen
at random (using a die). The subBDDs located at (2), (3) and (5) all have a child of size less than
[. The construction of the g; for the 3 nodes result in the BDDs 2., 3. and 4., respectively. The r}
for 2., 3. and 4. are (5/8)/3=5/24, (9/16)/5=9/80 and (5/8)/5=1/8, respectively. Hence BDD 2.
is the result of the widening (as its size is less than [).

Following the heuristic widening, v/ is calculated for each node, giving v = ((11/16).1)/5=11/80,
ri=((5/8)-(1/2))/3=5/48, vl = ((3/4).(1/2))/1=3/8, 7l = ((1/2).(1/2))/0 = o0, rL = ((3/4).(1/4))/2=3/32,
rh = ((1/2).(1/8))/1=1/16. Hence node 6 is replaced by 1, to give BDD 2. as the result of the
widening (as its size is less than /). Notice that both widenings result in the same BDD and this
includes just one extra model.

3.3 Comparison of the Widenings

The two widenings are in some sense dual. The sample based widening is biased towards a loss of
precision in node selection, whereas the heuristic widening is biased towards a loss of precision in
pruning. More exactly, on the one hand, by computing joins (if possible), the first widening retains
some precision in its pruning step. On the other hand, it relies on random sampling for node



selection. Conversely, by using a heuristic, the second widening is likely to locate good candidate
nodes for elimination, but this elimination can lose significant precision. It is unclear which tactic is
the most effective, as the precision of both techniques depends in part on the number of iterations
required.

It is desirable for a widening to be linear. Although both widenings detailed above are quadratic,
both could be made linear by bounding the number of iterations about the loop by a constant (say,
[), returning 1 if the number of iterations exceeds this limit. This would then reduce the complexity
of the widenings to O(m), at the expense of precision. However, assuming that the input BDDs
are not excessively large, quadratic behaviour is acceptable.

It is surprising to observe that even widening a BDD to | X | nodes is not sufficient to avoid chain
of exponential size. Consider the program in Example 3.2. Ordering the variables alphabetically,
the size of the BDD for each of the iterates does not exceed |X|. Also note that the widenings
above can be applied to the R component of the GER factorisation, ensuring that groundness and
simple bidirectional dependencies are retained.

Example 3.2 The following program is the arity 4 instance of the schema given by Codish in [5].

chain(c, ¢, ¢, ¢).

chain(v, ¢, ¢, ¢) :- chain(_, v, v, v).

chain(w, v, ¢, c¢):- chain(w, _, v, v).
chain(w, z, v, ¢):- chain(w, z, _, v).
chain(w, z, y, _):- chain(w, z, y, ).

The results of Pos-based success pattern groundness analysis of this program are summarised by
the table below, where i is the iteration number, fact; is the (single) new fact which is added in
the " interpretation and f; is the formula which describes the chain(w,z,y, z) atoms in the "
interpretation.

1 fact; fi 1 fact; fi

1 chain(c,c,c,c) wATAYyAz 2 chain(c,c,c,.) wAzT Ay

3 chain(c,c,,c) wAzA(yVz) | 4 chain(c,c,_, ) wAx

5 chain(c,_,c,c) wA(zV(yAz))| 6 chain(c,_,c,) wA (zVy))

7 chain(c,_,_,¢) wA(zVyVz) 8 chain(c, -, _, ) w

9 chain(_,c,c,c) wV (zAyAz) |10 chain(_,c,c,-) wV (zAy)
11 chain(_,c,,¢) wV(zA(yVz))|12 chain(,c,_,.) wV
13 chain(,_,¢c,c) wVzV(yAz) |14 chain(_,,c,) wVzVy
15 chain(, _, _,¢) wVzVyVz |16 chain(,,_, _, ) true

4 Related work

Mauborgne [16] shows how to perform strictness analysis of higher-order functions with typed
decision graphs (TDGs) [3]. A TDG [3] is a BDD variant in which the decision node for each
variable z; is additionally tagged with a polarity. The polarity information enables the TDG for
the function f(z;,...,z,) to share its nodes with the TDG for —f(z;,...,z,) (if both functions
occur together) and thus a TDG can encode some functions more compactly than a classic BDD
[4]. Nevertheless, Mauborgne [16] advocates widening TDGs for space. He proposes an operator
V(I, f) that takes, as input, a TDG that encodes a function f and returns, as output, a TDG g with
at most [ nodes such that f = g. The first widening he proposes is at least O(n*) in the number
of nodes in the input TDG. This is because (one iteration of) the widening algorithm computes



the meet of each pair of nodes in the TDG and meet is O(n?). To improve efficiency, Mauborgne
suggests a second widening that consists of taking a TDG of n nodes and computing the TDGs
f1,--., fn obtained by replacing node ¢ with 1. The f; are filtered to remove those TDGs whose size
exceed n/2. Of the remaining f;, an fy,4, is selected which “gives the best result”. The widening is
reapplied to fpae if its TDG contains more than [ nodes. This widening appears to be O(n?) time
(assuming that it takes O(n) steps to assess the accuracy of each of the filtered f;). Both of these
widenings could be adapted to BDDs. However, the O(n?) algorithm appears to be too expensive
to be practical. The O(n?) algorithm is more aggressive than the widenings presented in Section
5, whilst its complexity is in the same class.

Zaffanella et al. [20] propose several widenings for domain the Sharing. Since there exists an
isomorphism between Sharing and Pos [7], these widenings can be reinterpreted as widenings for
Pos. However, it is not clear that these widenings can be applied to a BDD efficiently.

5 Conclusion

This paper has proposed two widenings for space for BDDs. Since the size of the representations
of Boolean functions impact on the complexity of domain operations, the widenings improve both
space and time aspects of groundness analysis. and help to ensure that program analysis remains
tractable and scales smoothly. However, it was also shown that widening BDDs for space does not
necessarily restrain chain length.

Further experimental work will quantitatively assess the widenings. It is suspected that is
difficult to better quadratic complexity for a BDD widening whilst retaining good precision and it
would be insightful to formalise this intuition.
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