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Abstra
tBoolean fun
tions are often represented as binary de
ision diagrams (BDDs). BDDs arepotentially of exponential size in the number of variables of the fun
tion. Boolean fun
tionsdrawn from Pos (the 
lass of positive Boolean fun
tions) and Def (the 
lass of de�nite Booleanfun
tions) are often used to des
ribe the groundness of, and grounding dependen
ies between,program variables in (
onstraint) logi
 programs. Pos-based analyses are often implementedusing BDDs whi
h are sometimes problemati
ally large. Sin
e the 
omplexities of the mostfrequently used domain operations are quadrati
 in the size of the input BDDs, widening BDDsfor spa
e is also a widening for time, hen
e is important for s
alability. Two algorithms forwidening BDDs for spa
e are presented and are dis
ussed (with relation to groundness analysis).
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1 Introdu
tionGroundness analysis is an important theme of logi
 programming and abstra
t interpretation.Groundness analyses identify those program variables bound to terms that 
ontain no variables(ground terms). Groundness information is typi
ally inferred by tra
king dependen
ies amongprogram variables. These dependen
ies are 
ommonly expressed as Boolean fun
tions. For example,the fun
tion x^(y z) des
ribes a state in whi
h x is de�nitely ground, and there exists a groundingdependen
y su
h that whenever z be
omes ground then so does y.Groundness analyses usually tra
k dependen
ies using either Pos [1, 2, 6, 10, 15, 18, 19℄, the
lass of positive Boolean fun
tions, or Def [1, 11, 13, 14℄, the 
lass of de�nite positive fun
tions.Pos is more expressive than Def , but Def analysers 
an be faster [1, 13℄ and, in pra
ti
e, the lossof pre
ision for goal-dependent groundness analysis is usually small [13℄.A 
autious 
ompiler vendor is unlikely to adopt an analysis unless it 
omes with s
alabilityguarantees. For an analysis to be pra
ti
al, both its speed and its memory 
onsumption needremain within reasonable bounds, even for large programs. The time required to analyse a programdepends primarily on the 
ost of ea
h domain operation and the number of times these operationsare applied. The number of times the domain operations are applied relates to the number ofiterations that are required to rea
h the �xpoint. This, in turn, depends on the 
hain length of theunderlying domain.The 
ost of ea
h domain operation required in groundness analysis depends 
riti
ally on the waydependen
ies are represented. Prolog, C and SML based Pos and Def analysers have been 
on-stru
ted around a number of representations: (1) Armstrong et al [1℄ dis
uss Dual Blake Canoni
alForm (DBCF) for representing Boolean fun
tions. (2) Howe and King [13℄ argue that a non-ground(non-orthogonal [1℄) 
lausal representation is well suited to Def . (3) Codish and Demoen [6℄ usea set of possibly non-ground atoms over the alphabet ftrue; falseg to represent the truth table ofa Pos fun
tion. (4) Finally, many authors [1, 2, 10, 18, 19℄ use binary de
ision diagrams (BDDs)and their variants, su
h as redu
ed, ordered binary de
ision diagrams, for Pos.The speed of analysis is related to the 
ompa
tness of its representation. BDDs give a denserepresentation for Pos , hen
e their popularity. However, even BDDs 
an get large, impa
tingon time as well as spa
e. Codish [5℄ gives a series of programs whi
h generate BDDs with sizeexponential in the size of the input program. This motivates widening BDDs for size, that is,trading some pre
ision for a smaller representation. Fe
ht [10℄ suggests one su
h widening. Thiswidening takes as input a BDD for a Pos formula and outputs a BDD that only re
ords whi
hvariables are de�nitely ground. This paper des
ribes two less aggressive widenings for BDDs. Bothalgorithms are quadrati
 in the size of the input BDD. The two algorithms are 
ompared and it isshown that widening BDDs for spa
e is not, in general, enough to bound the number of iterationsof a Pos analysis.The rest of the paper is stru
tured as follows: Se
tion 2 details the ne
essary preliminaries;Se
tion 3 investigates widening for spa
e BDD representations of Boolean fun
tions; Se
tion 4dis
usses related work and Se
tion 5 
on
ludes.2 PreliminariesA Boolean fun
tion is a fun
tion f : Booln ! Bool where n � 0. A Boolean fun
tion 
an berepresented by a propositional formula over a set of variables X where jXj = n. The set ofpropositional formulae over X is denoted by BoolX . Throughout this paper, Boolean fun
tions andpropositional formulae inter
hangeably without worrying about the distin
tion [1℄. The 
onvention2



of identifying a truth assignment with the set of variables M that it maps to true is also followed.Spe
i�
ally, a map  X(M) : P(X)! BoolX is introdu
ed de�ned by:  X(M) = (^M)^(:_XnM).In addition, the formula ^Y is often abbreviated as Y .De�nition 2.1 (modelX) The (bije
tive) mapmodelX : BoolX ! P(P(X)) is de�ned by: modelX(f)= fM � X j  X(M) j= fg.Observe that modelX(f) is the set of models of f , whilst P(X) nmodelX(f) is the set of 
ounter-models of f .Example 2.1 If X = fx; yg, then the fun
tion fhtrue; truei 7! true, htrue; falsei 7! false,hfalse; truei 7! false, hfalse; falsei 7! falseg 
an be represented by the formula x ^ y. Also,modelX(x ^ y) = ffx; ygg and modelX(x _ y) = ffxg; fyg, fx; ygg.De�nition 2.2 PosX is the set of positive Boolean fun
tions over X. A fun
tion f is positive i�X 2 modelX(f). Def X is the set of positive fun
tions over X that are de�nite. A fun
tion f isde�nite i� for all M;M 0 2 modelX(f), M \M 0 2 modelX(f).Hasse diagrams for dyadi
 Pos and Def 
an be seen in Fig. 1. Note that Def X � PosX . Oneuseful representational property of Def X is that ea
h f 2 Def X 
an be des
ribed as a 
onjun
tionof de�nite (propositional) 
lauses, that is, f = ^ni=1(yi  Yi) [9℄.Example 2.2 Suppose X = fx; y; zg and 
onsider the following table, whi
h states, for someBoolean fun
tions, whether they are in Def X or PosX and also gives modelX .f Def X PosX modelX(f)false ;x ^ y � � f fx; yg; fx; y; zggx _ y � f fxg; fyg; fx; yg; fx; zg; fy; zg; fx; y; zggx y � � f;; fxg; fzg; fx; yg; fx; zg; fx; y; zggx (y  z) � f fxg; fzg; fx; yg; fx; zg; fx; y; zggtrue � � f;; fxg; fyg; fzg; fx; yg; fx; zg; fy; zg; fx; y; zggNote, in parti
ular, that x_ y 62 Def X (sin
e its set of models is not 
losed under interse
tion) andthat false is in neither PosX nor Def X .De�ning f1 __f2 = ^ff 2 Def X j f1 j= f ^ f2 j= fg, the 4-tuple hDef X ; j=;^; __i is a �nite latti
e,where true and X are the top and bottom elements. Existential quanti�
ation is de�ned byS
hr�oder's Elimination Prin
iple, that is, 9x:f = f [x 7! true℄ _ f [x 7! false℄. Note that iff 2 Def X then 9x:f 2 Def X [1℄.Example 2.3 If X = fx; yg then x __(x$ y) = ^f(x y); trueg = (x y), as 
an be seen in theHasse diagram for dyadi
 Def X (Fig. 1). Note also that x __y = ^ftrueg = true 6= (x _ y).The set of (free) variables in a synta
ti
 obje
t o is denoted var(o). Also, 9fy1; : : : ; yng:f(proje
t out) abbreviates 9y1: : : : :9yn:f and 9Y:f (proje
t onto) denotes 9var(f) n Y:f .Let S be a set partially ordered by �, then C � S is a 
hain i� for all x; y 2 C either x � y ory � x. A 
hain M is maximal i� for all 
hains C � S, jCj � jM j.3



Def fx;ygx ^ yx x$ y yx y y  xtrue
Posfx;ygx ^ yx x$ y yx y x _ y y  xtrue

Figure 1: Hasse diagrams3 Widening for Spa
e and TimeClassi
ally [8℄, widening is a method for enfor
ing termination in abstra
t interpretation. It 
onsistsof using a widening operator on a join semi-latti
e L(v;t),5 : L�L! L, su
h that for all x; y 2 L,x v x5 y and y v x5 y and for all in
reasing 
hains x1 v x2 v : : :, the in
reasing 
hain de�nedby y0 = x0; : : : ; yi+1 = yi5 xi+1 is not stri
tly in
reasing.Widening also 
an be applied to domains that satisfy the as
ending 
hain 
ondition in orderto a

elerate 
onvergen
e of a �xpoint 
al
ulation. In this situation, it is usual to widen a singleabstra
tion in isolation, rather than in the 
ontext of an in
reasing 
hain. This is be
ause thetra
tability of an analysis depends, in part, on keeping all the intermediate abstra
tions small (notjust those abstra
tions that o

ur, for instan
e, as 
all and answer patterns [17℄). Intermediateabstra
tions, by de�nition, are not re
orded in a database, thus the previous abstra
tions are notavailable to a widening to aid extrapolation. In this se
tion, this widening in isolation approa
h isapplied to BDDs.A binary de
ision diagram (BDD) is a rooted, dire
ted a
y
li
 graph. Terminal nodes arelabelled 0 or 1 and non-terminal nodes are labelled by a variable and have ar
s dire
ted towardstwo 
hild nodes. In the following, BDDs have the additional properties that: 1) ea
h path from theroot to a node respe
ts a given ordering on the variables, 2) a variable 
annot o

ur multiply in apath, 3) no subBDD o

urs multiply. Su
h BDDs are known as redu
ed, ordered binary de
isiondiagrams and give a unique representation for every Boolean fun
tion.The size of a BDD representing a PosX formula is potentially 2jXj. Sin
e the most frequentlyused BDD operations are quadrati
 in the size of the BDD, widening the BDD for size is also awidening for time. Codish [5℄ gives a series of programs whi
h generate BDDs with an exponential(in the size of the program) number of distin
t nodes; this example 
oupled with the experimentalwork of Fe
ht [10℄ motivates widening BDDs for spa
e.The most promising representation of Pos using BDDs is the GER fa
torisation of Bagnaraand S
ha
hte [2, 18℄. This hybrid representation 
onsists of three 
omponents: a set of groundvariables (G), a set of equivalent variables (E), and a BDD for more 
omplex dependen
ies (R).This signi�
antly redu
es the size of the representation. A simple widening for Pos is to repla
ethe R 
omponent with the logi
al 
onstant 1. This 
orresponds to widening to a subdomain ofPosX , namely EPosX [12℄, whose 
hain length is jXj+1. This is an attra
tive te
hnique, sin
e thewidening is independent of the variable ordering of the BDD. Noti
e that a more pre
ise wideningis likely to depend on the variable ordering, sin
e this impa
ts on the size of a BDD. Also note thatwidening a BDD representing a Def fun
tion to another Def fun
tion is problemati
, as BDDs arenot 
losely related to fun
tions 
losed under model interse
tion. Thus BDDs appear unsuitable for4



implementing Def .Given a size bound, l, widening a BDD representing a fun
tion f 2 PosX results in a fun
tiong, whose size does not ex
eed l, su
h that f j= g. Noti
e that X j= g, sin
e X j= f , thusg 2 PosX . The loss of pre
ision that results from widening BDDs 
an be quanti�ed in terms of thenumber of extra models of the widened fun
tion. Moreover, suppose f j= g1 and f j= g2, wherejmodelX(g1)j � jmodelX(g2)j and the sizes of g1 and g2 do not ex
eed l, then the widening shouldbe biased towards sele
ting g1. Two algorithms (one sample based, one heuristi
) that follow thista
ti
 are des
ribed below. In the following, let jgj denote the number of nodes in the BDD g andlet k gk be a measure of the number of 
ountermodels, de�ned as follows: k gk= (k gtk + k gfk)=2,where gt and gf are the subBDDs rooted at the 
hildren of g and k0k= 1, k1k= 0.3.1 Sample Based WideningThe sample based widening is an iterative algorithm that, at ea
h stage, removes at least one nodefrom a BDD g. The algorithm is parameterised by a 
onstant size limit l and pro
eeds as follows.Cal
ulate jgj and 
hoose k � 1 nodes n1; : : : ; nk of g at random. If ni has a 
hild whose size doesnot ex
eed l, then let hi denote the join of the subBDDs rooted at the 
hildren of ni. Otherwise lethi denote the 
onstant 1. Constru
t gi from g by repla
ing the subBDD at ni with hi. If jgij � jgjthen reassign hi to 1 and re-
ompute jgij. Observe that for all 1 � i � k, jgij < jgj. Compute rsi =kgik=jgij for ea
h ni and let rsmax = maxfrsi j 1 � i � kg. If jgmaxj � l, stop and return gmax as theresult of the widening. Otherwise reapply the pro
edure with g repla
ed with gmax.This widening is O(m2) in both spa
e and time in the number of nodes, m, of the input g. Tosee this, observe that 
omputing jgj is O(m). Note that given jgj, the test jgij � jgj is O(m) sin
eat most m + 1 nodes of gi need to be 
onsidered. Ea
h join operates on (at least) one subBDDwhose size does not ex
eed the 
onstant l. Thus ea
h join has 
omplexity O(m). Repla
ing thesubBDD at ni with hi is also O(m) as is 
omputing kgik and jgij. The number of iterations of theloop is at most m� l and hen
e the widening is O(m2).Noti
e that the reliability of the widening depends primarily on the size of the sample (ratherthan on jgj). For example, with a sample of 32 nodes, there is (at least) a 97% probability thatnmax is in the top 10% of the all the nodes of g a

ording to the rsi ranking.3.2 Heuristi
 WideningThe sample based widening will lose pre
ision if the sampling is unfortunate. This motivates awidening based on a heuristi
. Ideally, a widening will remove many nodes whilst introdu
ing fewextra models. The algorithm will pro
eed by ranking the nodes of the BDD by their suitabilityfor removal and repla
ing the most suitable node with 1. The nodes of the new BDD are rankedand the pro
edure is repeated until the resulting BDD has fewer than l nodes. For ea
h nodeni of the BDD g (with m nodes) 
onsider hi, the subBDD rooted at ni. For ea
h hi the ratiorhi = (khik :�p2Pi2�jpj)=bhi
 is 
al
ulated, where Pi is the set of paths from the root of g to ni, jpjthe length of p, bhi
 � jgj � jg0j and g0 is the result of repla
ing hi with 1 in g. bhi
 is 
al
ulatedby 
ounting the number of nodes is the subBDD rooted at ni whi
h have only one parent in g. Letrhmin = minfrhi j 1 � i � mg and repla
e the subBDD rooted at nmin by 1. If the resulting BDDhas less than l nodes, then stop, otherwise the pro
edure is reapplied.Note that bhi
 is less than or equal to the number of the nodes removed by repla
ing thesubBDD rooted at ni by 1 for two reasons. Firstly, nodes with more than one parent, but whoseparents all have ni as an an
estor, are not 
ounted. In fa
t these will be removed. Se
ondly, theremay be a subBDD whi
h o

urs in both the old and the new BDD that has extra parents in the5



w(1)""" HHHx(2) x(3)""" bbb       ZZy(4) y(5) 0���� ����1 0 z(6) 0%%ee1 01. y ^ (x _ (w ^ z))
w##### HHH x       ZZy 0����1 02. y ^ (x _w)w"""x�� HHHy y���� ����1 0 z 0%%ee1 03. y ^ (w ! (x _ z))
w""" HHHx x""" bbb       ZZy z 0���� ����1 0 1 04. (x ^ y) _ (w ^ z ^ (x! y))Figure 2: BDDs for Example 3.1new BDD.This widening is also O(m2) in both spa
e and time in the number of nodes, m, of the inputBDD g. To see this, observe that 
ounting the number of parents (referen
es) to ea
h node ni ofg, and 
omputing bhi
 for ea
h ni, 
an all be 
omputed in a single pass over g in O(m) time. Thesets Pi 
an be 
omputed in a single pass of g in O(m). Repla
ing the subBDD at ni with 1 is alsoO(m), as is 
omputing k hik. The number of iterations of the loop is at most m � l, sin
e ea
hiteration must remove at least one node. Hen
e the widening is O(m2).Example 3.1 This example illustrates the appli
ation of the two widenings to the BDD for y ^(x_ (w^ z)), whi
h is 1. in Fig. 2 (where the left bran
h is the true bran
h and the right bran
h isthe false bran
h). The variable ordering is alphabeti
al, and the 
onstant size limit l is 4. Observethat the size of BDD 1. is 6. Following the sample based widening, nodes (2), (3) and (5) were 
hosenat random (using a die). The subBDDs lo
ated at (2), (3) and (5) all have a 
hild of size less thanl. The 
onstru
tion of the gi for the 3 nodes result in the BDDs 2., 3. and 4., respe
tively. The rsifor 2., 3. and 4. are (5/8)/3=5/24, (9/16)/5=9/80 and (5/8)/5=1/8, respe
tively. Hen
e BDD 2.is the result of the widening (as its size is less than l).Following the heuristi
 widening, rhi is 
al
ulated for ea
h node, giving rh1 = ((11/16).1)/5=11/80,rh2=((5/8).(1/2))/3=5/48, rh3 = ((3/4).(1/2))/1=3/8, rh4 = ((1/2).(1/2))/0 =1, rh5 = ((3/4).(1/4))/2=3/32,rh6 = ((1/2).(1/8))/1=1/16. Hen
e node 6 is repla
ed by 1, to give BDD 2. as the result of thewidening (as its size is less than l). Noti
e that both widenings result in the same BDD and thisin
ludes just one extra model.3.3 Comparison of the WideningsThe two widenings are in some sense dual. The sample based widening is biased towards a loss ofpre
ision in node sele
tion, whereas the heuristi
 widening is biased towards a loss of pre
ision inpruning. More exa
tly, on the one hand, by 
omputing joins (if possible), the �rst widening retainssome pre
ision in its pruning step. On the other hand, it relies on random sampling for node6



sele
tion. Conversely, by using a heuristi
, the se
ond widening is likely to lo
ate good 
andidatenodes for elimination, but this elimination 
an lose signi�
ant pre
ision. It is un
lear whi
h ta
ti
 isthe most e�e
tive, as the pre
ision of both te
hniques depends in part on the number of iterationsrequired.It is desirable for a widening to be linear. Although both widenings detailed above are quadrati
,both 
ould be made linear by bounding the number of iterations about the loop by a 
onstant (say,l), returning 1 if the number of iterations ex
eeds this limit. This would then redu
e the 
omplexityof the widenings to O(m), at the expense of pre
ision. However, assuming that the input BDDsare not ex
essively large, quadrati
 behaviour is a

eptable.It is surprising to observe that even widening a BDD to jXj nodes is not suÆ
ient to avoid 
hainof exponential size. Consider the program in Example 3.2. Ordering the variables alphabeti
ally,the size of the BDD for ea
h of the iterates does not ex
eed jXj. Also note that the wideningsabove 
an be applied to the R 
omponent of the GER fa
torisation, ensuring that groundness andsimple bidire
tional dependen
ies are retained.Example 3.2 The following program is the arity 4 instan
e of the s
hema given by Codish in [5℄.
hain(
, 
, 
, 
).
hain(v, 
, 
, 
) :- 
hain( , v, v, v).
hain(w, v, 
, 
):- 
hain(w, , v, v).
hain(w, x, v, 
):- 
hain(w, x, , v).
hain(w, x, y, ):- 
hain(w, x, y, ).The results of Pos-based su

ess pattern groundness analysis of this program are summarised bythe table below, where i is the iteration number, fa
ti is the (single) new fa
t whi
h is added inthe ith interpretation and fi is the formula whi
h des
ribes the 
hain(w; x; y; z) atoms in the ithinterpretation. i fa
ti fi i fa
ti fi1 
hain(
; 
; 
; 
) w ^ x ^ y ^ z 2 
hain(
; 
; 
; ) w ^ x ^ y3 
hain(
; 
; ; 
) w ^ x ^ (y _ z) 4 
hain(
; 
; ; ) w ^ x5 
hain(
; ; 
; 
) w ^ (x _ (y ^ z)) 6 
hain(
; ; 
; ) w ^ (x _ y))7 
hain(
; ; ; 
) w ^ (x _ y _ z) 8 
hain(
; ; ; ) w9 
hain( ; 
; 
; 
) w _ (x ^ y ^ z) 10 
hain( ; 
; 
; ) w _ (x ^ y)11 
hain( ; 
; ; 
) w _ (x ^ (y _ z)) 12 
hain( ; 
; ; ) w _ x13 
hain( ; ; 
; 
) w _ x _ (y ^ z) 14 
hain( ; ; 
; ) w _ x _ y15 
hain( ; ; ; 
) w _ x _ y _ z 16 
hain( ; ; ; ) true4 Related workMauborgne [16℄ shows how to perform stri
tness analysis of higher-order fun
tions with typedde
ision graphs (TDGs) [3℄. A TDG [3℄ is a BDD variant in whi
h the de
ision node for ea
hvariable xi is additionally tagged with a polarity. The polarity information enables the TDG forthe fun
tion f(xi; : : : ; xn) to share its nodes with the TDG for :f(xi; : : : ; xn) (if both fun
tionso

ur together) and thus a TDG 
an en
ode some fun
tions more 
ompa
tly than a 
lassi
 BDD[4℄. Nevertheless, Mauborgne [16℄ advo
ates widening TDGs for spa
e. He proposes an operatorO(l; f) that takes, as input, a TDG that en
odes a fun
tion f and returns, as output, a TDG g withat most l nodes su
h that f j= g. The �rst widening he proposes is at least O(n4) in the numberof nodes in the input TDG. This is be
ause (one iteration of) the widening algorithm 
omputes7



the meet of ea
h pair of nodes in the TDG and meet is O(n2). To improve eÆ
ien
y, Mauborgnesuggests a se
ond widening that 
onsists of taking a TDG of n nodes and 
omputing the TDGsf1; : : : ; fn obtained by repla
ing node i with 1. The fi are �ltered to remove those TDGs whose sizeex
eed n=2. Of the remaining fi, an fmax is sele
ted whi
h \gives the best result". The widening isreapplied to fmax if its TDG 
ontains more than l nodes. This widening appears to be O(n2) time(assuming that it takes O(n) steps to assess the a

ura
y of ea
h of the �ltered fi). Both of thesewidenings 
ould be adapted to BDDs. However, the O(n4) algorithm appears to be too expensiveto be pra
ti
al. The O(n2) algorithm is more aggressive than the widenings presented in Se
tion5, whilst its 
omplexity is in the same 
lass.Za�anella et al. [20℄ propose several widenings for domain the Sharing. Sin
e there exists anisomorphism between Sharing and Pos [7℄, these widenings 
an be reinterpreted as widenings forPos . However, it is not 
lear that these widenings 
an be applied to a BDD eÆ
iently.5 Con
lusionThis paper has proposed two widenings for spa
e for BDDs. Sin
e the size of the representationsof Boolean fun
tions impa
t on the 
omplexity of domain operations, the widenings improve bothspa
e and time aspe
ts of groundness analysis. and help to ensure that program analysis remainstra
table and s
ales smoothly. However, it was also shown that widening BDDs for spa
e does notne
essarily restrain 
hain length.Further experimental work will quantitatively assess the widenings. It is suspe
ted that isdiÆ
ult to better quadrati
 
omplexity for a BDD widening whilst retaining good pre
ision and itwould be insightful to formalise this intuition.A
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