
Ryder, Chris (2001) Iguana: A management support tool using Haskell and
LDAP. Technical report. , University of Kent at Canterbury

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/13602/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/13602/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Computer S
ien
e at Kent
Iguana:A management support tool using Haskell and LDAP
Chris Ryder
r24�uk
.a
.ukTe
hni
al Report No: 6-01Date: June 2001
Copyright

 2001 University of Kent at CanterburyPublished by the Computing Laboratory,University of Kent, Canterbury, Kent CT2 7NF, UK.

1

Abstra
tHaskell is widely used within resear
h and a
ademia but is less well used for \real world"proje
ts. This paper des
ribes a real world proje
t using Haskell in a larger s
ale data pro-
essing appli
ation. The proje
t was undertaken jointly by British Airways and the ComputingLaboratory, University Of Kent.1 Introdu
tionThis paper des
ribes a proje
t undertaken between British Airways and the Computing Laboratoryat the University of Kent. The proje
t involved developing a system in Haskell for use by BritishAirways' Information Se
urity Department.1.1 Ba
kground to the Proje
tBritish Airways (hereafter known as BA) have an LDAP (Lightweight Dire
tory A

ess Proto
ol)dire
tory whi
h
ontains an entry for every member of sta� (approximately 100,000) and is used formany tasks from system authenti
ation to the provision of an on-line telephone dire
tory. Amongthe information stored about ea
h employee are their name, employee number, userid, and theidentity of their manager. From this information it is possible to build a model of the managementhierar
hy within BA.A requirement in any large organisation is to measure how it is performing against a varietyof
riteria. Frequently this is done by measuring some aspe
t of ea
h management unit and thenaggregating the s
ores. Moreover, on
e management know aggregate s
ores they invariably wantto \drill down" the organisation to understand whi
h management units are performing well andwhi
h need their attention. For some years, the Information Se
urity department at BA hasbeen measuring the performan
e individual management units and, with the re
ent introdu
tionof the LDAP dire
tory, wished to produ
e aggregate reports based on the management stru
turerepresented within it. It was
onje
tured that Haskell, with its support for stru
tures su
h asorganisational trees would be well suited to produ
e su
h reports qui
kly, reliably and
heaply.1.2 What is LDAP ?A Lightweight Dire
tory A

ess Proto
ol (LDAP) dire
tory is a spe
ial form of database in whi
hdata is typi
ally read many more times than it is written or modi�ed. It is thus optimised forreading data.All entries in an LDAP dire
tory
ontain a distinguished name (DN), whi
h is a unique identi�erfor a given entry. A DN is hierar
hi
al, similar to path names in a �le system or domain names inthe Internet world. For example, a textual representation of a DN might look something like:employeeNumber=123, ou=people, d
=bapl
.
omThis spe
i�es the unique entry whi
h has the employee number 123, is part of the organisational unit(ou) \people" and is in the dire
tory whose root is the distinguished
omponent (d
) \bapl
.
om"whi
h is guaranteed unique by Internet naming standards. Stru
turing DNs in su
h a way makessear
hing for a spe
i�
 DN qui
ker, and also makes it easier to distribute the dire
tory over multipleservers (in a similar way to domain name server distribution).Entries may have other attributes as well as the DN, though they are not
ompulsory. Attributes
onsist of an attribute type and attribute values. These
an be thought of as an attribute name andvalue. An entry may have only one instan
e of an attribute type (\name") but may have multiple2

values for that type, e.g, an entry
annot have multiple \telephonenumber" attributes, but mayhave a single \telephonenumber" attribute,
ontaining two telephone numbers.The LDAP proto
ol is a binary proto
ol and the data stored within an LDAP dire
tory may bestored in a proprietary binary format. To aid moving data from one system to another, a textualrepresentation of entries from an LDAP dire
tory is often used. This textual form is
alled LDIF(LDAP Data Inter
hange Format), whi
h looks like thisuid=12345, ou=People, d
=ldaptest
n=Fake Useruid=12345For this entry the DN is \uid=12345, ou=People, d
=ldaptest" and the entry has two attributes,a
n (
ommon name) of \Fake User" and a uid (userid) of \12345". The entries in the BA LDAPdire
tory have many more attributes, but for this proje
t only those mentioned here are relevant.Be
ause all the attributes of an entry are not always required, it is possible to ask for just asubset of the available attributes to be returned from a query. For example :ldapSear
h "(uid=100)" ["
n","telephonenumber"℄would sear
h for the entry with the uid of 100, and return only the
ommon name and telephonenumber.There are numerous
lient-side libraries in several programming languages for a

essing LDAPdire
tories. For this proje
t, a C library was used (See Se
tion 3). Further information aboutLDAP and the LDAP libraries
an be found in [1℄ and [2℄.1.3 The Proje
tThe purpose of the proje
t was twofold :-1. Ea
h employee within BA is assigned a s
ore in the range 0 to 100 in
lusive. These s
oresare held in a
at �le exported from a spreadsheet. The aim of the proje
t was to implementa system that generates aggregate s
ores by taking an average of the individual's s
ores andthe s
ores of their (immediate) subordinates. The information ne
essary to
onstru
t themanagement hierar
hy is held within the LDAP dire
tory. Figures 1 through 3 illustratea parti
ular example of the pro
ess in diagrammati
 form. The aggregate information isoutput in the form of a
olle
tion of HTML �les that let management view the informationhierar
hi
ally. This allows management to qui
kly spot under-performing management units.2. To evaluate the suitability of Haskell as a language for implementing large systems involvinginterworking with non-Haskell systems in a real problem.1.4 Tools UsedThe bulk of the system was written using the Glasgow Haskell Compiler with a small part writtenin C. HaskellDire
t was used to allow the Haskell
ode to
all the C
ode. This is explained in moredetail in Se
tion 3. We additionally experimented with using Lambada to
all Java
ode. This istou
hed on in Se
tion 3. Overall, the tools worked well and proved to be useful, parti
ularly in the
ase of HaskellDire
t. 3

employeeNumber=104, ou=People, dc=baplc.com

employeenumber=104
uid=u104
manager=employeeNumber=110, ou=People,dc=baplc.com

cn=Unnerving Month

employeeNumber=111, ou=People, dc=baplc.com

employeenumber=111
uid=u111
manager=employeeNumber=110, ou=People,dc=baplc.com

cn=Lovingly Navel

employeeNumber=110, ou=People, dc=baplc.com
cn=Ralston Redly
employeenumber=110
uid=u116

employeeNumber=117, ou=People, dc=baplc.com

employeenumber=117
uid=u117
manager=employeeNumber=111, ou=People,dc=baplc.com

cn=Beatniks Billion

employeeNumber=129, ou=People, dc=baplc.com

employeenumber=129
uid=u129
manager=employeeNumber=111, ou=People,dc=baplc.com

cn=Neutron Pinball

LDAP Data Name:Unnerving Month
Enum:104
UID:u104

Scores:67.8
Man:employeeNumber−110,ou=people,dc=baplc.com

Name:Neutron Pinball
Enum:129
UID:u129
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:54.6

Name:Lovingly Navel
Enum:111
UID:u111
Man:employeeNumber=110,ou=people,dc=baplc.com
Scores:67.2, 32.3

Name:Ralston Redly
Enum:110
UID:u116
Scores:56.2

Name:Beatniks Billion
Enum:117
UID:u117
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:67.3

u116,56.2
u117,67.3
u129,54.6

u111,32.3
u111,67.2
u104,67.8

Scores Data

Figure 1: Data from the LDAP dire
tory is
ombined with data from the s
ores �le into a Haskelldata type.
Name:Lovingly Navel
Enum:111
UID:u111
Man:employeeNumber=110,ou=people,dc=baplc.com
Scores:67.2, 32.3

Name:Neutron Pinball
Enum:129
UID:u129
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:54.6

Name:Ralston Redly
Enum:110
UID:u116
Scores:56.2

Name:Beatniks Billion
Enum:117
UID:u117
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:67.3

Name:Unnerving Month
Enum:104
UID:u104

Scores:67.8
Man:employeeNumber=110,ou=people,dc=baplc.com

Figure 2: The Haskell data type is
onstru
ted into a tree.4

Name:Lovingly Navel
Enum:111
UID:u111
Man:employeeNumber=110,ou=people,dc=baplc.com
Scores:67.2, 32.3 Agg Score:49.75

Name:Neutron Pinball
Enum:129
UID:u129
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:54.6 Agg Score:54.6

Name:Ralston Redly
Enum:110
UID:u116
Scores:56.2 Agg Score:56.49

Name:Beatniks Billion
Enum:117
UID:u117
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:67.3 Agg Score:67.3

Name:Unnerving Month
Enum:104
UID:u104

Scores:67.8 Agg Score:63.23
Man:employeeNumber=110,ou=people,dc=baplc.com

Figure 3: The aggregate s
ores are
al
ulated.1.5 Why Haskell ?The proje
t required the system to be developed qui
kly and
heaply. Sin
e the system is intendedto be used by only one department at BA, and is not operationally
riti
al, it was felt that it wasworthwhile for BA to experiment with Haskell for this proje
t.The proje
t
onsists of an algorithmi
 part and an I/O part. Be
ause the algorithmi
 part
onsisted of building a tree stru
ture, it was thought that Haskell would be parti
ularity suited tothe task. Having de
ided on Haskell, we were left with two main
hoi
es for languages to use forthe low-level I/O. These were Java and C. The original
hoi
e of Java as the interfa
ing languageproved unworkable in pra
ti
e (see Se
tion 3) and so C was used.1.6 Overview of PaperThe remainder of this paper is divided up thus : Se
tion 2 explains the proje
t task in greaterdetail. Se
tion 3 details the software tools we used to
omplete the proje
t. Se
tion 4 shows howwe �nally implemented the system. Se
tion 5 introdu
es the problems we en
ountered during theproje
t, and how we solved them. Se
tion 6 presents our
on
lusions from this proje
t.1.7 A
knowledgementsA
knowledgements go to BA, for suggesting and funding the proje
t. Domini
 Steinitz, BA, forsuggest the problem and for general advi
e during the proje
t. Simon Thompson, UKC, for helpand advi
e during the proje
t, and for editing this paper. Eri
 Meijer, for help and advi
e withLambada. Claus Reinke, UKC, for support with understanding laziness. Graham Walter, BA, foradvi
e on LDAP. Paul Barnett, BA, for system support at BA.
5

2 Deeper dis
ussion of proje
tSolving the problem
an be divided into three phases. The �rst is reading in the data to work with,the se
ond is
onstru
ting the tree stru
ture and the �nal phase is outputting the results.2.1 Reading InputThe input to the program
omes from two sour
es, the LDAP dire
tory and the s
ores �le. Readingthe s
ores �le is a trivial parsing exer
ise.Reading of the data from the LDAP dire
tory is more interesting. Unfortunately, there areno LDAP
lient libraries available for Haskell. Be
ause of this it was ne
essary to use a C LDAPlibrary and use HaskellDire
t to interfa
e to it. HaskellDire
t provides
ode to
onvert betweenHaskell values and C values. This is
alled marshalling. The reverse pro
ess,
onverting C valuesinto Haskell values is
alled un-marshalling. This introdu
es some overhead (illustrated in Figure4) when requesting an item from the LDAP dire
tory. For instan
e, in the example query in Se
tion1.2, the following steps must be taken to
omplete the query :1. The parameters to the ldapSear
h
ommand must be marshalled into C values. This requiresthat they are
opied into C variables, taking both time and spa
e.2. The appropriate C fun
tion is
alled.3. The LDAP query is transmitted over the network. This
reates a time delay.4. The result(s) of the query are also sent over the network,
reating further delay.5. The returned results must be un-marshalled into Haskell values. This again requires thatthey values are
opied.6. The result of the query is of type[(AttributeName,[AttributeValue℄)℄where both AttributeName and AttributeValue are of type String. This is not an easytype to manipulate so it is likely to be parsed into a more useful Haskell data type. e.g, forthe example query :Person Name PhoneNoThere are a few things we
an do to minimise these overheads. First, making one LDAP requestthat returns several results is more eÆ
ient in terms of marshalling overhead than sending lots ofsmall queries. This is be
ause marshalling only o

urs on
e, when the query is initiated; there isstill an un-marshalling overhead for every entry returned, but there is little that
an be done aboutthis. An additional method to minimise both the time and spa
e overhead is to use asyn
hronous
ommuni
ation with the LDAP dire
tory. The time overhead is redu
ed be
ause it is possible toun-marshall one result while the next result is being sent a
ross the network.The reason for the de
reased spa
e usage is less obvious. When a syn
hronous request is sentto an LDAP dire
tory, the request blo
ks until all the results have been returned. Hen
e, all thoseresults must be stored somewhere until the request is
omplete. The result is that a large
hunk ofmemory is used to bu�er all the results in the LDAP library before they are then un-marshalled.6

Haskell Program

H/Direct

LDAP Library (C)

Data copied
in both

directions

Network

Time Delay

LDAP Directory

Figure 4: Overhead asso
iated with an LDAP queryConversely, using an asyn
hronous query means the sear
h request returns immediately, butthe fun
tion to retrieve a result blo
ks until either a result is returned or the query ends. Hen
e,if the program
an un-marshal and pro
ess the results more qui
kly than they are returned fromLDAP, only a very small number of results will ever be stored in the bu�er of the LDAP libraryprior to pro
essing.2.2 Building the treeTo
onstru
t the management hierar
hy from the data retrieved from LDAP it is ne
essary to
onsider two points.First, the only information within the LDAP dire
tory from whi
h to build the managementhierar
hy is the manager attribute of the entries. Thus, it is ne
essary to build the tree in a \bottom-up" manner from the manager ba
k pointers. This should not be a problem for a fun
tional languagesu
h as Haskell.Se
ondly, the
onsisten
y of the data within the LDAP dire
tory is not guaranteed. Entriesmay not have a manager attribute (in whi
h
ase they are \top-level" managers) or entries mayhave a manager attribute, but it might
ontain the DN of an entry that no longer exists. Su
hentries be
ome \top-level" entries but must be distinguished from those entries with no managerattribute.It is worth noting that it is possible to
al
ulate aggregate s
ores in two ways. They
an be
al
ulated, from the bottom up, as the tree is
onstru
ted, or they
an be
al
ulated by walkingover the tree on
e it has been
onstru
ted.2.3 Outputting the resultsThe output of the tree is relatively trivial. There are a number of
hoi
es for the format of theoutput. Our original intention was to produ
e a Comma Separated Variable (CSV) �le, but thisresulted in a �le that was too long to load into the Mi
rosoft Ex
el spreadsheet. It would be possibleto output other formats su
h as XML, however we eventually settled on using HTML.HTML was
hosen as the output format for a number of reasons. It is simple to produ
e, whi
hredu
ed the amount of time spent on the output module of the program. HTML also o�ers easyways to represent hierar
hi
al data. This, along with the wide availability of web browsers for manyplatforms, made HTML a good
hoi
e.
7

LDAP Directory

Network

OpenLDAP SDK

LDAPPrimC

LDAPPrim

ScoresReader

Tree Building Code

ScoreCalculator

HTMLWriter

LDAPReader

Haskell Code

C Code

Figure 5: Simpli�ed model of the program ar
hite
ture.3 More About The Tools UsedThe program was initially developed using GHC 4.04 and HDire
t 0.16, whi
h seemed to be theonly
ompatible versions at the time the proje
t was started in July 2000. Later on we moved toGHC 4.08 when HDire
t 0.17 was released.HaskellDire
t [3℄ [4℄ is an IDL (Interfa
e De�nition Language) to Haskell
ompiler. It allowsyou to write des
riptions of C libraries in IDL and generate Haskell
ode that will allow you to
allthe library from Haskell and vi
e versa.To do this it uses the Foreign Fun
tion Interfa
e[5℄ built into newer Haskell
ompilers, andprovides some libraries of its own that provide marshalling and un-marshalling fun
tions. [6℄ and[7℄ have more information on the subje
t.HaskellDire
t also provides fa
ilities for
alling Java from Haskell using Lambada [8℄. Lambadais still in the early stages of development. Be
ause of this, it proved to be tri
ky to
ompile andwas also rather buggy in use. It has great potential, but requires more development.GHC
an be tri
ky to
ompile from sour
e, due to bootstrapping problems (as it is written inHaskell), and eventually we used a pre-
ompiled binary. On
e up and running, GHC is very stable.A useful feature of GHC is its ability to generate Make�le dependen
ies for a given program.We had some problems �nding a
ompatible
ombination of HaskellDire
t and GHC versions,due to
hanges in the Foreign Fun
tion Interfa
e. On
e
ompatible version had been found,HaskellDire
t worked well for straight forward marshalling/un-marshalling but some problems wereen
ountered when un-marshalling the result of a fun
tion that returned
har** (an array of strings).HaskellDire
t un-marshalled this into [Ptr℄, instead of [String℄. This was �xed by modifying themarshalling
ode by hand.4 Implementation OverviewThis se
tion o�ers a brief overview of the �nal implementation. It is not an exa
t des
ription ofthe implementation, but o�ers a general idea of how the program works.The program has a layered stru
ture. Ea
h layer is generally self
ontained in a single sour
e�le or module. The only ex
eption to this is the tree-building
ode whi
h is a
tually in several �les.Some of the layers are written in C rather than Haskell. The stru
ture is illustrated in Figure 5.8

The layers below the tree building
ode are
on
erned only with providing data to the higherlevels. They
ould easily be repla
ed or modi�ed to import data from some other sour
e.The tree building
ode works by
reating a large IOArray (a mutable array) whi
h is largeenough to hold all the entries from the LDAP. Ea
h element of the array holds a Person. A Person
onsists of the following data.� Data for the person from the LDAP dire
tory.� Data for the person from the s
ores �le (initially empty).� Indi
es of all subordinates entries in the array (initially empty).� The aggregate s
ore for this entry (initially empty).The data from the LDAP dire
tory is read dire
tly into this array. Next, a hash table is
reatedthat maps a person's DN to their index in the array. This is done by walking over the array addingea
h entry's index and DN into the hash table.On
e the hash table is
reated, it is then possible to
onstru
t the hierar
hy tree. This is doneby walking over the array adding ea
h Person's index into their manager's subordinate list. To dothis, it is ne
essary to �nd an entry in the array from a DN. This is the purpose of the hash table.So, after two passes over the array, the hierar
hy tree is
onstru
ted. The next step is to readin the s
ores data from the s
ores �le. Unfortunately, the s
ores �le uses the UID attribute of anentry as the key. To be able to read in the s
ores data it is ne
essary to repla
e the hash table withone that maps the UID attribute (userid) of an entry to its index. This is done with another passover the array. This makes it possible to read ea
h line of the s
ores �le and �ll in the appropriateelements in the array.From this point it is possible to walk over the tree using a simple re
ursive algorithm to
al
ulatethe aggregate s
ores. This gives a
ompleted tree, whi
h
an then be displayed.The display is handled by the HTMLWriter module. This uses a re
ursive algorithm to walk overthe tree and generates a dire
tory
ontaining HTML �les. It would be easy to modify or repla
ethis module to output the results in a di�erent format.5 Problems Fa
edThere were two main areas where problems o

urred during this proje
t. The �rst area, interfa
ingto LDAP, was mainly
aused by bugs in software and in
ompatibilities between versions as des
ribedin Se
tion 3.The se
ond and bigger area where problems o

urred was in memory usage. At the minimum itis ne
essary to store a person's DN, their manager's DN, their user ID and their s
ores; we also storetheir CN (
ommon name) for pretty output. A DN string is, on average, about 50-60
hara
terslong. With the large number of entries that need to be worked on this memory usage
an grow tobe quite large.Early attempts at storing the results and building the hierar
hy tree resulted in programs thatworked �ne for small test dire
tories (approximately 2000 entries), but used large (greater than400MB) amounts of memory on realisti
 dire
tories of approximately 100,000 entries. Sin
e theprogram was intended to run on a
omputer with 160MB RAM this was una

eptable.From the experiments we made to redu
e memory usage it appears that Strings in Haskell
anbe expensive in memory usage. For this reason, the two DNs that were stored for ea
h person were
onverted to MD5
he
ksums [9℄. MD5 is a method of generating a message digest (a \�ngerprint")9

from a given string. It is
onje
tured that it is
omputationally infeasible to produ
e two stringswith the same message digest. Using MD5
he
ksums signi�
antly redu
ed the memory usagebe
ause an MD5
he
ksum is 128 bits long. This is represented in Haskell as a String of sixteen
hara
ters. There is a small risk that two DNs may be en
oded to the same
he
ksum value, but thiswas
onsidered an a

eptable risk. Although redu
ing the DNs to
he
ksums redu
ed the memoryusage it was still una

eptably large.Another
ause of high memory usage was due to the way data from the s
ores �le needed tobe merged with the data from the LDAP dire
tory. The LDAP dire
tory uses DNs to identifyindividual people, and so DNs were used as the unique identi�ers for building the hierar
hy tree.However the s
ores �le uses a person's userid to identify people. Be
ause of this it was ne
essaryto have some way of mapping userids to DNs. Experiments were made with balan
ed trees (bothimplemented by hand, and using Haskell's FiniteMap) but this made a large
ontribution to thememory usage.The early version of the program stored data from the LDAP dire
tory in a list of type [Person℄.It then
onverted this list into a balan
ed tree that mapped a userid to a Person. At that point thes
ores were read from the s
ores �le into the entries in the balan
ed tree. This merged the s
oresand LDAP data together. Next, the balan
ed tree was modi�ed so that it was possible to sear
hfor the entry with a spe
i�
 manager attribute. The program then walked over the balan
ed tree�nding all the entries who had in
orre
t or missing manager attributes. These entries formed theroot nodes of the hierar
hy tree (a
tually a forest). From these entries, the whole hierar
hy was
onstru
ted in a top-down fashion using the following data type.data Tree = Manager Person [Tree℄| Sub PersonThe main users of memory in this pro
ess were the original (large) list, and the two balan
ed trees(although the �nal hierar
hy tree also used a big
hunk).To
ombat this memory usage we eventually used a single mutable array (IOArray) and madeseveral passes over this array. We used indi
es stored with the data in the array to build thehierar
hy tree within the array, rather than building an expli
it tree. Although it would have beenni
e to only make passes over the array, it is still ne
essary to have some mapping between DNs andindi
es and also between userids and indi
es (although not at the same time). For this purpose,a se
ond mutable array was used to
reate a hash table (using
haining for handling
ollisions).This used signi�
antly less memory than the previous approa
h whi
h built balan
ed trees and anexpli
it hierar
hy tree.Although this improved version was
loser to running in an a

eptable amount of memory itstill required more memory than was available. After further investigation it appeared that parts ofthe program were being lazy in an unforeseen way. Experimenting with for
ed evaluation in partsof the program (parti
ularly the parsers) resulted in a dramati
 redu
tion in memory usage. Afterthis result, further parts of the program were modi�ed to for
e evaluation, before it was settled onwhi
h parts of the program bene�ted from lazy evaluation and whi
h parts didn't. At this pointthe program was running in a satisfa
tory amount of memory.6 Con
lusionsIn this se
tion we will try to summarise our observations during this proje
t. The biggest problemfa
ed in the proje
t was
ontrolling memory usage. It proved to be quite diÆ
ult to monitorand understand memory usage in the program. Pro�ling tools helped but we experien
ed some10

diÆ
ulty pro�ling programs using the FFI. This appeared to be �xed in GHC 4.08. Additionally,there appears to be little solid do
umentation on how to interpret the output of the pro�ling tools.Su
h do
umentation would greatly in
rease the usability of the pro�ling tools. Be
ause of theseproblems, the memory usage was mostly
ontrolled through trial and error. This approa
h workedbe
ause this is a relatively small program but su
h an approa
h would not be possible on a largers
ale. It is also interesting to note that, in this instan
e, lazy evaluation was more of a hindran
ethan a help. Indeed, the program ended up with large parts of the
ode having an imperative styleto them. This was not our original intention but was for
ed upon us by the need to redu
e memoryusage.It was pleasing to see how well Haskell intera
ted with other languages, although it was notalways straightforward to generate
orre
t marshalling
ode. However, on
e the marshalling
odewas
orre
tly written the intera
tion between the two languages was perfe
t. It is the opinion ofthe author that this is an important area of the language. Haskell
annot \stand alone"; it mustbe able to intera
t well with other languages. HaskellDire
t provides a good base from whi
h to dothis.Using Haskell in this proje
t enabled us to qui
kly build a working system and as su
h showedit is possible to build systems
heaply with Haskell. Unfortunately, there is not enough experien
eof using Haskell on large s
ale problems. It is also unfortunate that understanding the memoryusage of lazy Haskell problems
an be very tri
ky. This was where a large amount of time was lostduring the proje
t.All in all, Haskell shows great promise for this kind of appli
ation. We believe that Haskell willbe a suitable language given time and extra tools to ease the understanding of memory usage.Referen
es[1℄ RFC2251, http://www.ietf.org/rf
/rf
2251.txt[2℄ Howes, T., Smith, M. and Good, G. Understanding And Deploying LDAP Dire
tory Servi
es[3℄ http://www.haskell.org/hdire
t[4℄ Finne, S., Leijn, D., Meijer, E., and Peyton Jones, S. H/Dire
t: a binary foreign language interfa
e forHaskell.[5℄ Finne, S. A foreign fun
tion interfa
e for Haskell[6℄ Finne, S., Leijn, D., Meijer, E., and Peyton Jones, S. Calling hell from heaven and heaven from hell.[7℄ Peyton Jones, S. Ta
kling the Awkward Squad: monadi
 input/output,
on
urren
y, ex
eptions, andforeign-language
alls in Haskell[8℄ Meijer, E. and Finne, S. Lambada, Haskell as a better Java.[9℄ RFC1321, http://www.ietf.org/rf
/rf
1321.txt
11

