University of

"1l Kent Academic Repository

Ryder, Chris (2001) Iguana: A management support tool using Haskell and
LDAP. Technical report. , University of Kent at Canterbury

Downloaded from
https://kar.kent.ac.uk/13602/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/13602/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Computer Science at Kent

Iguana:
A management support tool using Haskell and LDAP

Chris Ryder
cr24@ukce.ac.uk

Technical Report No: 6-01
Date: June 2001

Copyright (© 2001 University of Kent at Canterbury
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent CT2 7NF, UK.

Abstract

Haskell is widely used within research and academia but is less well used for “real world”
projects. This paper describes a real world project using Haskell in a larger scale data pro-
cessing application. The project was undertaken jointly by British Airways and the Computing
Laboratory, University Of Kent.

1 Introduction

This paper describes a project undertaken between British Airways and the Computing Laboratory
at the University of Kent. The project involved developing a system in Haskell for use by British
Airways’ Information Security Department.

1.1 Background to the Project

British Airways (hereafter known as BA) have an LDAP (Lightweight Directory Access Protocol)
directory which contains an entry for every member of staff (approximately 100,000) and is used for
many tasks from system authentication to the provision of an on-line telephone directory. Among
the information stored about each employee are their name, employee number, userid, and the
identity of their manager. From this information it is possible to build a model of the management
hierarchy within BA.

A requirement in any large organisation is to measure how it is performing against a variety
of criteria. Frequently this is done by measuring some aspect of each management unit and then
aggregating the scores. Moreover, once management know aggregate scores they invariably want
to “drill down” the organisation to understand which management units are performing well and
which need their attention. For some years, the Information Security department at BA has
been measuring the performance individual management units and, with the recent introduction
of the LDAP directory, wished to produce aggregate reports based on the management structure
represented within it. It was conjectured that Haskell, with its support for structures such as
organisational trees would be well suited to produce such reports quickly, reliably and cheaply.

1.2 What is LDAP ?

A Lightweight Directory Access Protocol (LDAP) directory is a special form of database in which
data is typically read many more times than it is written or modified. It is thus optimised for
reading data.

All entries in an LDAP directory contain a distinguished name (DN), which is a unique identifier
for a given entry. A DN is hierarchical, similar to path names in a file system or domain names in
the Internet world. For example, a textual representation of a DN might look something like:

employeeNumber=123, ou=people, dc=baplc.com

This specifies the unique entry which has the employee number 123, is part of the organisational unit
(ou) “people” and is in the directory whose root is the distinguished component (dc) “baplc.com”
which is guaranteed unique by Internet naming standards. Structuring DNs in such a way makes
searching for a specific DN quicker, and also makes it easier to distribute the directory over multiple
servers (in a similar way to domain name server distribution).

Entries may have other attributes as well as the DN, though they are not compulsory. Attributes
consist of an attribute type and attribute values. These can be thought of as an attribute name and
value. An entry may have only one instance of an attribute type (“name”) but may have multiple

values for that type, e.g, an entry cannot have multiple “telephonenumber” attributes, but may
have a single “telephonenumber” attribute, containing two telephone numbers.

The LDAP protocol is a binary protocol and the data stored within an LDAP directory may be
stored in a proprietary binary format. To aid moving data from one system to another, a textual
representation of entries from an LDAP directory is often used. This textual form is called LDIF
(LDAP Data Interchange Format), which looks like this

uid=12345, ou=People, dc=ldaptest
cn=Fake User
uid=12345

For this entry the DN is “uid=12345, ou=People, dc=1ldaptest” and the entry has two attributes,
a cn (common name) of “Fake User” and a uid (userid) of “12345”. The entries in the BA LDAP
directory have many more attributes, but for this project only those mentioned here are relevant.

Because all the attributes of an entry are not always required, it is possible to ask for just a
subset of the available attributes to be returned from a query. For example :

ldapSearch "(uid=100)" ["cn","telephonenumber"]

would search for the entry with the uid of 100, and return only the common name and telephone
number.

There are numerous client-side libraries in several programming languages for accessing LDAP
directories. For this project, a C library was used (See Section 3). Further information about
LDAP and the LDAP libraries can be found in [1] and [2].

1.3 The Project
The purpose of the project was twofold :-

1. Each employee within BA is assigned a score in the range 0 to 100 inclusive. These scores
are held in a flat file exported from a spreadsheet. The aim of the project was to implement
a system that generates aggregate scores by taking an average of the individual’s scores and
the scores of their (immediate) subordinates. The information necessary to construct the
management hierarchy is held within the LDAP directory. Figures 1 through 3 illustrate
a particular example of the process in diagrammatic form. The aggregate information is
output in the form of a collection of HTML files that let management view the information
hierarchically. This allows management to quickly spot under-performing management units.

2. To evaluate the suitability of Haskell as a language for implementing large systems involving
interworking with non-Haskell systems in a real problem.

1.4 Tools Used

The bulk of the system was written using the Glasgow Haskell Compiler with a small part written
in C. HaskellDirect was used to allow the Haskell code to call the C code. This is explained in more
detail in Section 3. We additionally experimented with using Lambada to call Java code. This is
touched on in Section 3. Overall, the tools worked well and proved to be useful, particularly in the
case of HaskellDirect.

LDAP Data

employeeNumber=104, ou=People, dc=baplc.com
cn=Unnerving Month

employeenumber=104

uid=u104

manager=employeeNumber=110, ou=People,dc=baplc.com
employeeNumber=111, ou=People, dc=baplc.com
cn=Lovingly Navel

employeenumber=111

uid=u111

manager=employeeNumber=110, ou=People,dc=baplc.com
employeeNumber=110, ou=People, dc=baplc.com
cn=Ralston Redly

employeenumber=110

uid=u116

employeeNumber=117, ou=People, dc=baplc.com
cn=Beatniks Billion

employeenumber=117

uid=u117

manager=employeeNumber=111, ou=People,dc=baplc.com
employeeNumber=129, ou=People, dc=baplc.com
cn=Neutron Pinball

employeenumber=129

uid=u129

manager=employeeNumber=111, ou=People,dc=baplc.com

Scores Data

ul04,67.8
ulll,67.2
ull1,32.3
ull6,56.2
ull7,67.3
ul29,54.6

v

Name:Unnerving Month

Enum:104

UID:u104
Man:employeeNumber-110,ou=people,dc=baplc.com
Scores:67.8

Name:Neutron Pinball

Enum:129

UID:u129
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:54.6

Name:Lovingly Navel

Enum:111

UlD:ul111
Man:employeeNumber=110,ou=people,dc=baplc.com
Scores:67.2, 32.3

Name:Ralston Redly
Enum:110

UID:ul16
Scores:56.2

Name:Beatniks Billion

Enum:117

UlD:u117
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:67.3

Figure 1: Data from the LDAP directory is combined with data from the scores file into a Haskell
data type.

Name:Ralston Redly
Enum:11(

UID:u116
Scores:56.2

Name:Lovingly Navel

Enum:111

UID:u11l
Man:employeeNumber=110,ou=people,dc=baplc.com
Scores:67.2, 32.3

Name:Unnerving Month
Enum:104
UID:u104
Man:employeeNumber=110,ou=people,dc=baplc.com
Scores:67.8

Name:Neutron Pinball
Enum:129
UID:u129
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:54.6

Name:Beatniks Billion

Enum:117

uUiD:u117

Man: 111,0u=| ,dc=baplc.com

Scores:67.3

Figure 2: The Haskell data type is constructed into a tree.

Name:Ralston Redly
Enum:110

UID:u116

Scores:56.2 Agg Score:56.49

Name:Lovingly Navel

Enum:111

UiD:u111

Man: 110,0u=| dc=baplc.com
Scores:67.2, 32.3 Agg Score:49.75

Name:Unnerving Month
Enum:104
UID:u104
Man:employeeNumber=110,ou=people,dc=baplc.com
Scores:67.8 Agg Score:63.23

Name:Neutron Pinball

Enum:129

UID:u129
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:54.6 Agg Score:54.6

Name:Beatniks Billion

Enum:117

uUiD:u117
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:67.3 Agg Score:67.3

Figure 3: The aggregate scores are calculated.

1.5 Why Haskell ?

The project required the system to be developed quickly and cheaply. Since the system is intended
to be used by only one department at BA, and is not operationally critical, it was felt that it was
worthwhile for BA to experiment with Haskell for this project.

The project consists of an algorithmic part and an I/O part. Because the algorithmic part
consisted of building a tree structure, it was thought that Haskell would be particularity suited to
the task. Having decided on Haskell, we were left with two main choices for languages to use for
the low-level I/O. These were Java and C. The original choice of Java as the interfacing language
proved unworkable in practice (see Section 3) and so C was used.

1.6 Overview of Paper

The remainder of this paper is divided up thus : Section 2 explains the project task in greater
detail. Section 3 details the software tools we used to complete the project. Section 4 shows how
we finally implemented the system. Section 5 introduces the problems we encountered during the
project, and how we solved them. Section 6 presents our conclusions from this project.

1.7 Acknowledgements

Acknowledgements go to BA, for suggesting and funding the project. Dominic Steinitz, BA, for
suggest the problem and for general advice during the project. Simon Thompson, UKC, for help
and advice during the project, and for editing this paper. Eric Meijer, for help and advice with
Lambada. Claus Reinke, UKC, for support with understanding laziness. Graham Walter, BA, for
advice on LDAP. Paul Barnett, BA, for system support at BA.

2 Deeper discussion of project

Solving the problem can be divided into three phases. The first is reading in the data to work with,
the second is constructing the tree structure and the final phase is outputting the results.

2.1 Reading Input

The input to the program comes from two sources, the LDAP directory and the scores file. Reading
the scores file is a trivial parsing exercise.

Reading of the data from the LDAP directory is more interesting. Unfortunately, there are
no LDAP client libraries available for Haskell. Because of this it was necessary to use a C LDAP
library and use HaskellDirect to interface to it. HaskellDirect provides code to convert between
Haskell values and C values. This is called marshalling. The reverse process, converting C values
into Haskell values is called un-marshalling. This introduces some overhead (illustrated in Figure
4) when requesting an item from the LDAP directory. For instance, in the example query in Section
1.2, the following steps must be taken to complete the query :

1. The parameters to the 1dapSearch command must be marshalled into C values. This requires
that they are copied into C variables, taking both time and space.

2. The appropriate C function is called.
3. The LDAP query is transmitted over the network. This creates a time delay.
4. The result(s) of the query are also sent over the network, creating further delay.

5. The returned results must be un-marshalled into Haskell values. This again requires that
they values are copied.

6. The result of the query is of type
[(AttributeName, [AttributeValue])]

where both AttributeName and AttributeValue are of type String. This is not an easy
type to manipulate so it is likely to be parsed into a more useful Haskell data type. e.g, for
the example query :

Person Name PhonelNo

There are a few things we can do to minimise these overheads. First, making one LDAP request
that returns several results is more efficient in terms of marshalling overhead than sending lots of
small queries. This is because marshalling only occurs once, when the query is initiated; there is
still an un-marshalling overhead for every entry returned, but there is little that can be done about
this. An additional method to minimise both the time and space overhead is to use asynchronous
communication with the LDAP directory. The time overhead is reduced because it is possible to
un-marshall one result while the next result is being sent across the network.

The reason for the decreased space usage is less obvious. When a synchronous request is sent
to an LDAP directory, the request blocks until all the results have been returned. Hence, all those
results must be stored somewhere until the request is complete. The result is that a large chunk of
memory is used to buffer all the results in the LDAP library before they are then un-marshalled.

Haskell Program

Data copied
in both H/Direct)
directions LDAP Directory
LDAP Library (C)

Network

Time Delay

Figure 4: Overhead associated with an LDAP query

Conversely, using an asynchronous query means the search request returns immediately, but
the function to retrieve a result blocks until either a result is returned or the query ends. Hence,
if the program can un-marshal and process the results more quickly than they are returned from
LDAP, only a very small number of results will ever be stored in the buffer of the LDAP library
prior to processing.

2.2 Building the tree

To construct the management hierarchy from the data retrieved from LDAP it is necessary to
consider two points.

First, the only information within the LDAP directory from which to build the management
hierarchy is the manager attribute of the entries. Thus, it is necessary to build the tree in a “bottom-
up” manner from the manager back pointers. This should not be a problem for a functional language
such as Haskell.

Secondly, the consistency of the data within the LDAP directory is not guaranteed. Entries
may not have a manager attribute (in which case they are “top-level” managers) or entries may
have a manager attribute, but it might contain the DN of an entry that no longer exists. Such
entries become “top-level” entries but must be distinguished from those entries with no manager
attribute.

It is worth noting that it is possible to calculate aggregate scores in two ways. They can be
calculated, from the bottom up, as the tree is constructed, or they can be calculated by walking
over the tree once it has been constructed.

2.3 Outputting the results

The output of the tree is relatively trivial. There are a number of choices for the format of the
output. Our original intention was to produce a Comma Separated Variable (CSV) file, but this
resulted in a file that was too long to load into the Microsoft Excel spreadsheet. It would be possible
to output other formats such as XML, however we eventually settled on using HTML.

HTML was chosen as the output format for a number of reasons. It is simple to produce, which
reduced the amount of time spent on the output module of the program. HTML also offers easy
ways to represent hierarchical data. This, along with the wide availability of web browsers for many
platforms, made HTML a good choice.

[] Haskell Code

HTML Writer [ccoode
ScoreCalculator
Tree Building Code
LDAPReader ScoresReader
LDAPPrim
LDAPPrimC LDAP Directory
OpenL.DAP SDK
Network

Figure 5: Simplified model of the program architecture.

3 More About The Tools Used

The program was initially developed using GHC 4.04 and HDirect 0.16, which seemed to be the
only compatible versions at the time the project was started in July 2000. Later on we moved to
GHC 4.08 when HDirect 0.17 was released.

HaskellDirect [3] [4] is an IDL (Interface Definition Language) to Haskell compiler. It allows
you to write descriptions of C libraries in IDL and generate Haskell code that will allow you to call
the library from Haskell and vice versa.

To do this it uses the Foreign Function Interface[5] built into newer Haskell compilers, and
provides some libraries of its own that provide marshalling and un-marshalling functions. [6] and
[7] have more information on the subject.

HaskellDirect also provides facilities for calling Java from Haskell using Lambada [8]. Lambada
is still in the early stages of development. Because of this, it proved to be tricky to compile and
was also rather buggy in use. It has great potential, but requires more development.

GHC can be tricky to compile from source, due to bootstrapping problems (as it is written in
Haskell), and eventually we used a pre-compiled binary. Once up and running, GHC is very stable.
A useful feature of GHC is its ability to generate Makefile dependencies for a given program.

We had some problems finding a compatible combination of HaskellDirect and GHC versions,
due to changes in the Foreign Function Interface. Omnce compatible version had been found,
HaskellDirect worked well for straight forward marshalling/un-marshalling but some problems were
encountered when un-marshalling the result of a function that returned char** (an array of strings).
HaskellDirect un-marshalled this into [Ptr], instead of [String]. This was fixed by modifying the
marshalling code by hand.

4 Implementation Overview

This section offers a brief overview of the final implementation. It is not an exact description of
the implementation, but offers a general idea of how the program works.

The program has a layered structure. Each layer is generally self contained in a single source
file or module. The only exception to this is the tree-building code which is actually in several files.
Some of the layers are written in C rather than Haskell. The structure is illustrated in Figure 5.

The layers below the tree building code are concerned only with providing data to the higher
levels. They could easily be replaced or modified to import data from some other source.

The tree building code works by creating a large I0Array (a mutable array) which is large
enough to hold all the entries from the LDAP. Each element of the array holds a Person. A Person
consists of the following data.

e Data for the person from the LDAP directory.

e Data for the person from the scores file (initially empty).

e Indices of all subordinates entries in the array (initially empty).
e The aggregate score for this entry (initially empty).

The data from the LDAP directory is read directly into this array. Next, a hash table is created
that maps a person’s DN to their index in the array. This is done by walking over the array adding
each entry’s index and DN into the hash table.

Once the hash table is created, it is then possible to construct the hierarchy tree. This is done
by walking over the array adding each Person’s index into their manager’s subordinate list. To do
this, it is necessary to find an entry in the array from a DN. This is the purpose of the hash table.

So, after two passes over the array, the hierarchy tree is constructed. The next step is to read
in the scores data from the scores file. Unfortunately, the scores file uses the UID attribute of an
entry as the key. To be able to read in the scores data it is necessary to replace the hash table with
one that maps the UID attribute (userid) of an entry to its index. This is done with another pass
over the array. This makes it possible to read each line of the scores file and fill in the appropriate
elements in the array.

From this point it is possible to walk over the tree using a simple recursive algorithm to calculate
the aggregate scores. This gives a completed tree, which can then be displayed.

The display is handled by the HTMLWriter module. This uses a recursive algorithm to walk over
the tree and generates a directory containing HTML files. It would be easy to modify or replace
this module to output the results in a different format.

5 Problems Faced

There were two main areas where problems occurred during this project. The first area, interfacing
to LDAP, was mainly caused by bugs in software and incompatibilities between versions as described
in Section 3.

The second and bigger area where problems occurred was in memory usage. At the minimum it
is necessary to store a person’s DN, their manager’s DN, their user ID and their scores; we also store
their CN (common name) for pretty output. A DN string is, on average, about 50-60 characters
long. With the large number of entries that need to be worked on this memory usage can grow to
be quite large.

Early attempts at storing the results and building the hierarchy tree resulted in programs that
worked fine for small test directories (approximately 2000 entries), but used large (greater than
400MB) amounts of memory on realistic directories of approximately 100,000 entries. Since the
program was intended to run on a computer with 160MB RAM this was unacceptable.

From the experiments we made to reduce memory usage it appears that Strings in Haskell can
be expensive in memory usage. For this reason, the two DNs that were stored for each person were
converted to MD5 checksums [9]. MD5 is a method of generating a message digest (a “fingerprint”)

from a given string. It is conjectured that it is computationally infeasible to produce two strings
with the same message digest. Using MD5 checksums significantly reduced the memory usage
because an MD5 checksum is 128 bits long. This is represented in Haskell as a String of sixteen
characters. There is a small risk that two DNs may be encoded to the same checksum value, but this
was considered an acceptable risk. Although reducing the DNs to checksums reduced the memory
usage it was still unacceptably large.

Another cause of high memory usage was due to the way data from the scores file needed to
be merged with the data from the LDAP directory. The LDAP directory uses DNs to identify
individual people, and so DNs were used as the unique identifiers for building the hierarchy tree.
However the scores file uses a person’s userid to identify people. Because of this it was necessary
to have some way of mapping userids to DNs. Experiments were made with balanced trees (both
implemented by hand, and using Haskell’s FiniteMap) but this made a large contribution to the
memory usage.

The early version of the program stored data from the LDAP directory in a list of type [Person].
It then converted this list into a balanced tree that mapped a userid to a Person. At that point the
scores were read from the scores file into the entries in the balanced tree. This merged the scores
and LDAP data together. Next, the balanced tree was modified so that it was possible to search
for the entry with a specific manager attribute. The program then walked over the balanced tree
finding all the entries who had incorrect or missing manager attributes. These entries formed the
root nodes of the hierarchy tree (actually a forest). From these entries, the whole hierarchy was
constructed in a top-down fashion using the following data type.

data Tree = Manager Person [Treel
| Sub Person

The main users of memory in this process were the original (large) list, and the two balanced trees
(although the final hierarchy tree also used a big chunk).

To combat this memory usage we eventually used a single mutable array (I0Array) and made
several passes over this array. We used indices stored with the data in the array to build the
hierarchy tree within the array, rather than building an explicit tree. Although it would have been
nice to only make passes over the array, it is still necessary to have some mapping between DNs and
indices and also between userids and indices (although not at the same time). For this purpose,
a second mutable array was used to create a hash table (using chaining for handling collisions).
This used significantly less memory than the previous approach which built balanced trees and an
explicit hierarchy tree.

Although this improved version was closer to running in an acceptable amount of memory it
still required more memory than was available. After further investigation it appeared that parts of
the program were being lazy in an unforeseen way. Experimenting with forced evaluation in parts
of the program (particularly the parsers) resulted in a dramatic reduction in memory usage. After
this result, further parts of the program were modified to force evaluation, before it was settled on
which parts of the program benefited from lazy evaluation and which parts didn’t. At this point
the program was running in a satisfactory amount of memory.

6 Conclusions

In this section we will try to summarise our observations during this project. The biggest problem
faced in the project was controlling memory usage. It proved to be quite difficult to monitor
and understand memory usage in the program. Profiling tools helped but we experienced some

10

difficulty profiling programs using the FFI. This appeared to be fixed in GHC 4.08. Additionally,
there appears to be little solid documentation on how to interpret the output of the profiling tools.
Such documentation would greatly increase the usability of the profiling tools. Because of these
problems, the memory usage was mostly controlled through trial and error. This approach worked
because this is a relatively small program but such an approach would not be possible on a larger
scale. It is also interesting to note that, in this instance, lazy evaluation was more of a hindrance
than a help. Indeed, the program ended up with large parts of the code having an imperative style
to them. This was not our original intention but was forced upon us by the need to reduce memory
usage.

It was pleasing to see how well Haskell interacted with other languages, although it was not
always straightforward to generate correct marshalling code. However, once the marshalling code
was correctly written the interaction between the two languages was perfect. It is the opinion of
the author that this is an important area of the language. Haskell cannot “stand alone”; it must
be able to interact well with other languages. HaskellDirect provides a good base from which to do
this.

Using Haskell in this project enabled us to quickly build a working system and as such showed
it is possible to build systems cheaply with Haskell. Unfortunately, there is not enough experience
of using Haskell on large scale problems. It is also unfortunate that understanding the memory
usage of lazy Haskell problems can be very tricky. This was where a large amount of time was lost
during the project.

All in all, Haskell shows great promise for this kind of application. We believe that Haskell will
be a suitable language given time and extra tools to ease the understanding of memory usage.

References
[1] RFC2251, http://wuw.ietf.org/rfc/rfc2251.txt
[2] Howes, T., Smith, M. and Good, G. Understanding And Deploying LDAP Directory Services
[3] http://www.haskell.org/hdirect

[4] Finne, S., Leijn, D., Meijer, E., and Peyton Jones, S. H/Direct: a binary foreign language interface for
Haskell.

[5] Finne, S. A foreign function interface for Haskell
[6] Finne, S., Leijn, D., Meijer, E., and Peyton Jones, S. Calling hell from heaven and heaven from hell.

[7] Peyton Jones, S. Tackling the Awkward Squad: monadic input/output, concurrency, exceptions, and
foreign-language calls in Haskell

[8] Meijer, E. and Finne, S. Lambada, Haskell as a better Java.

[9] RFC1321, http://wuw.ietf.org/rfc/rfc1321.txt

11

