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Agent-Based Cloud Computing
Kwang Mong Sim, Senior Member, IEEE

Abstract—Agent-based cloud computing is concerned with the design and development of software agents for bolstering cloud service

discovery, service negotiation, and service composition. The significance of this work is introducing an agent-based paradigm for

constructing software tools and testbeds for cloud resource management. The novel contributions of this work include: 1) developing

Cloudle: an agent-based search engine for cloud service discovery, 2) showing that agent-based negotiation mechanisms can be

effectively adopted for bolstering cloud service negotiation and cloud commerce, and 3) showing that agent-based cooperative problem-

solving techniques can be effectively adopted for automating cloud service composition. Cloudle consists of 1) a service discovery agent

that consults a cloud ontology for determining the similarities between providers’ service specifications and consumers’ service

requirements, and 2) multiple cloud crawlers for building its database of services. Cloudle supports three types of reasoning: similarity

reasoning, compatibility reasoning, and numerical reasoning. To support cloud commerce, this work devised a complex cloud

negotiation mechanism that supports parallel negotiation activities in interrelated markets: a cloud service market between consumer

agents and broker agents, and multiple cloud resource markets between broker agents and provider agents. Empirical results show that

using the complex cloud negotiation mechanism, agents achieved high utilities and high success rates in negotiating for cloud resources.

To automate cloud service composition, agents in this work adopt a focused selection contract net protocol (FSCNP) for dynamically

selecting cloud services and use service capability tables (SCTs) to record the list of cloud agents and their services. Empirical results

show that using FSCNP and SCTs, agents can successfully compose cloud services by autonomously selecting services.

Index Terms—Cloud computing, multiagent systems, software agent, service discovery, service composition, negotiation, resource

management

Ç

1 INTRODUCTION

WHEREAS many existing works in cloud computing focus
on the development of infrastructures and tools for

pooling together computational resources, this work com-
plements and supplements existing works in cloud comput-
ing by introducing “agent-based cloud computing”—
applying agent-based approaches to managing cloud
computing infrastructures.

1.1 Cloud Computing

A cloud is a large group of interconnected computers that
extends beyond a single company or enterprise [1], [2]. The
applications and data served by the cloud are accessed via
the Internet by a broad group of users across multiple
enterprises and platforms. A cloud computing system
consists of a collection of interconnected and virtualized
computers dynamically provisioned as one or more unified
computing resource(s) through negotiation of service-level
agreements (SLAs) between providers and consumers [3]. In
cloud computing platforms, resources need to be dynami-
cally (re)configured and aggregated via virtualization [3]
and consumers’ requirements can potentially vary over
time and amendments need to be accommodated.

1.2 Agent-Based Computing

An agent is a computer system that is capable of
autonomous (independent) actions, that is, deciding for

itself and figuring out what needs to be done to satisfy its
design objectives [5]. A multiagent system consists of a
number of agents, which interact with one another [5]. To
successfully interact, agents require the ability to cooperate,
coordinate, and negotiate with each other. Cooperation is
the process when several agents work together and draw
on the broad collection of their knowledge and capabilities
to achieve a common goal. Coordination is the process of
achieving the state in which actions of agents fit in well with
each other. Negotiation is a process by which a group of
agents communicate with one another to try to come to a
mutually acceptable agreement on some matter.

1.3 Agent-Based Cloud Computing

Some of the essential characteristics of cloud computing
include resource pooling and resource sharing. In clouds,
computing resources are pooled to serve multiple consu-
mers, and applications and data are available to and shared
by a broad group of cross-enterprise and cross-platform
users. Resource pooling and sharing involve 1) combining
resources through cooperation among cloud providers,
2) mapping, scheduling, and coordination of shared
resources, and 3) establishment of contracts between
providers and consumers. In agent-based cloud computing,
cooperation, negotiation, and coordination protocols of
agents are adopted to automate the activities of resource
pooling and sharing in clouds.

Supporting autonomous resource mapping and dealing
with changing requests accentuate the need for cloud
resource management systems that are capable of continu-
ously managing the resource reservation process by
monitoring current service requests, amending future
service requests, and autonomously adjusting schedules
and prices to accommodate dynamically changing resource
demands [3]. Sim [4] proposed that software agents are

564 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2012

. The author is with the School of Computing, The University of Kent,
Chatham Maritime, Kent, ME4 4AG, United Kingdom.
E-mail: prof_sim_2002@yahoo.com.

Manuscript received 1 Dec. 2010; revised 4 July 2011; accepted 25 Aug. 2011;
published online 10 Oct. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org and reference IEEECS Log Number TSCSI-2010-12-0154.
Digital Object Identifier no. 10.1109/TSC.2011.52.

1939-1374/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society



appropriate tools for autonomously managing cloud re-
sources. Whereas consumers need to make decisions to
select suitable providers and negotiate with providers to
achieve “ideal” service contracts, providers need to make
decisions for selecting appropriate requests to accept and
execute depending on the availability of resources, both
current and future demands for services, and existing
service obligations. Since agents are capable of making
decisions when carrying out tasks on behalf of their users,
and interacting with other agents through negotiation,
cooperation, and coordination, all the above-mentioned
challenges provide the motivations for adopting autono-
mous agents to allocate resources amid dynamically
changing resource demands.

Agent-based cloud computing is concerned with the
design and development of software agents for bolstering
cloud service discovery, service negotiation, and service
composition [4], [6], [7], [8]. Appendix 1, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSC.2011.52, shows
an overview of applying agent-based approaches to build-
ing software tools and testbeds for some of the phases of a
cloud service life cycle. A cloud service life cycle [9] consists
of: service requirements, service discovery, service negotia-
tion, service composition, and service consumption. In the
service requirements phase, consumers detail the functional
requirements (functions and tasks that a service should
provide), technical requirements (e.g., hardware and oper-
ating systems), and budgetary requirements (acceptable
service cost). The service discovery phase consists of
searching for cloud services that match consumers’ func-
tional, technical, and budgetary requirements. The service
negotiation phase consists of message exchanges between
consumers and brokers, and between brokers and providers
for establishments of service-level agreements. In the
service composition phase, a broker combines a set of
services from multiple providers, and delivers the com-
bined service as a single virtualized service to a consumer.
In the service consumption phase, the service is delivered to
the consumer.

The contributions of this work are:

1. introducing an agent-based paradigm for designing
software tools and testbeds for managing cloud
resources,

2. designing and developing Cloudle—an agent-
based search engine for supporting cloud service
discovery,

3. showing that negotiation protocols in multiagent
systems can be effectively adopted for bolstering
cloud service negotiation and cloud commerce, and

4. showing that cooperative problem-solving para-
digms in multiagent systems can be effectively
adopted for automating cloud service composition.

1.4 Agent-Based Cloud Search Engine

The challenge in the service discovery phase is to run a
query against the cloud services registered in the search
engine’s database by matching consumers’ functional,
technical, and budgetary requirements. When building a
general search engine (e.g., Google), one only needs to
consider the issue of searching for webpages that contain
concepts in a user’s query. The problem of building a search

engine for cloud services is more complex because one needs
to search for services that satisfy three types of require-
ments. The search engine in this work employs a service
discovery agent (SDA) that consults a cloud ontology for
determining the similarities between providers’ functional
and technical specifications of services and consumers’
functional and technical requirements (Section 2).

1.5 Negotiation Agents and Agent-Based Cloud
Commerce

The challenge in cloud service negotiation is to establish
SLAs between consumers and brokers, and between brokers
and service providers. Whereas e-commerce negotiation
mechanisms involve two types of participants (buyers and
sellers) in only one market and participants are not allowed
to breach contracts, the problem of devising a complex
negotiation mechanism for cloud commerce is much more
complex because a complex cloud negotiation mechanism
specifies parallel negotiation activities among three types of
participants (consumers, brokers, and providers) in multiple
interrelated markets and participants are allowed to breach
contracts by paying penalty fees. This work devises a
complex cloud negotiation mechanism by using negotiation
strategies and protocols in multiagent systems [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20] as the basic
building blocks (Section 3).

1.6 Agent-Based Cloud Service Composition

The challenge in cloud service composition is to dynami-
cally put together a set of services provided by multiple
service providers to form a single unified service to be
delivered to a consumer. Various providers need to work
together and draw upon each other’s service capabilities. To
automate cloud service composition, this work adopts 1) a
focused selection contract net protocol (FSCNP) for dynamically
selecting cloud services and 2) service capability tables (SCTs)
to record the list of cloud agents and their services.

2 CLOUD SEARCH ENGINE AND CLOUD CRAWLERS

Whereas preliminary ideas of Cloudle were reported in [23],
[24], [25], this work presents a new architecture of Cloudle
(Fig. 1) consisting of a service discovery agent, a cloud
ontology, a database of cloud services, multiple cloud crawlers
(Section 2.3), and a web interface.

In the previous design [23], [24], [25], Cloudle relied solely
on cloud service providers to register their services in the
database of cloud services. In the new Cloudle architecture,
in addition to allowing service providers to register their
services in Cloudle’s database, cloud crawlers are also used
to build and maintain Cloudle’s database (Section 2.3)—this
is a novel feature that enhances the previous architecture of
Cloudle reported in [23], [24], [25].

Consumers enter their queries for cloud services using
Cloudle’s web interface (Appendices 2 and 3, available in the
online supplemental material). The inputs to Cloudle consist
of a consumer’s functional, technical, and budgetary require-
ments for a cloud service. The SDA has four submodules:

1. a query processor,
2. a service reasoning module,
3. a price and time slot matching module, and
4. a service rating module.
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Using the query processor, the SDA extracts essential

keywords such as cloud concepts and the price and

schedule specifications from consumers’ queries.
The SDA consults a cloud ontology (Appendix 4,

available in the online supplemental material) to reason
about the similarity between a consumer’s functional and
technical requirements and providers’ functional and tech-
nical specifications of services. A cloud ontology consists of a
set of cloud computing concepts and the interrelationships
among cloud concepts to facilitate the reasoning about
cloud services. In this work, the cloud ontology consists of
over 400 concepts. At the top level of the cloud ontology
[26], cloud services are generally classified into

1. Infrastructure as a service (IaaS) which provides
computational resources (e.g., Amazon’s EC2 pro-

vides VMs),
2. Data as a service (DaaS) which allows users to store

data at remote disks (e.g., Amazon’s S3),
3. Software as a service (SaaS) which delivers special-

purpose software, remotely accessed via the Internet
(e.g., Salesforce’s CRM),

4. Platform as a service (PaaS) that supplies cloud
developers with programming-level environments
(e.g., Google App Engine provides a python runtime
environment and API for applications to interact
with Google’s cloud runtime environment), and

5. Communication as a service (CaaS) that provides
dedicated bandwidth, network security, encryption,
and network monitoring.

Using the cloud ontology, the SDA carries out: 1) similarity

reasoning, 2) compatibility reasoning, and 3) numerical

reasoning (Section 2.1). Additionally, using the price and

time slot module, the SDA determines the level of matching

between the price and schedule constraints of both

consumers and providers (Section 2.2). Using the service

rating module, the service provided by each provider is

rated according to the similarity between the functional and
technical specifications of both the consumer and the
provider. The output consists of a list of cloud services
ordered in terms of the matching similarities between the
functional, technical, and budgetary constraints specified by
the consumer and service providers (Appendix 5, available
in the online supplemental material).

2.1 Service Reasoning

Given that Cloudle needs to satisfy three types of require-
ments: 1) functional, 2) technical, and 3) budgetary, some-
times, it may be difficult to find services that will exactly
match these three types of requirements.

Similarity reasoning is designed to increase the chance of
finding relevant alternatives of a service. For instance, if an
exact matching service is beyond a consumer’s price range,
other similar services within the price range may be
suggested. An intuitive way to determine the degree of
similarity between two concepts x and y is to determine
how much x and y share in common. In similarity
reasoning, the SDA determines the similarity between x
and y by counting their common reachable nodes. Let �ðxÞ
(respectively, �ðyÞ) be the set of nodes upwards reachable
from x (respectively, y) including x (respectively, y) itself.
For example, in the graph of general ontology (Fig. 2),
�ðxÞ ¼ 4 and �ðyÞ ¼ 3. Let �ðxÞ \ �ðyÞ be the number of
reachable nodes shared by x and y. �ðxÞ \ �ðyÞ is a measure
of the common features between x and y. In Fig. 2,
�ðxÞ \ �ðyÞ ¼ 2. There are several ways to define a function
for determining the degree of similarity between x and y
[27]. One way to measure the degree of similarity between x
and y is to measure the number of common features
between x and y from the perspective of x as follows:

simðx; yÞ ¼ �ðxÞ \ �ðyÞ
�ðxÞ

����
����:

Another way is to measure the number of common features
between x and y from the perspective of y as follows:

simðy; xÞ ¼ �ðxÞ \ �ðyÞ
�ðyÞ

����
����:

In Fig. 2, simðx; yÞ ¼ 2=4 and simðy; xÞ ¼ 2=3, which are
different because simðy; xÞ > simðx; yÞ. To take both mea-
sure methods into consideration, a generalized similarity
function for x and y can be defined by taking the weighted
average of both measure methods as follows:

simðx; yÞ ¼ � �ðxÞ \ �ðyÞ
�ðxÞ

����
����þ ð1� �Þ �ðxÞ \ �ðyÞ�ðyÞ

����
����; ð1Þ
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where � 2 ½0; 1�. An example is given in Appendix 6,
available in the online supplemental material. In Appen-
dix 6, � is set to 0.5 so that both measure methods are given
equal consideration. simðx; yÞ ¼ 0 means that x is totally
not similar to y, and simðx; yÞ ¼ 1 means that x is fully
similar to y.

Compatibility reasoning is designed to compare two
sibling nodes in a cloud ontology, e.g., determining the
compatibility between two different versions of a software.
The rationale for devising compatibility reasoning is
because using similarity reasoning, the SDA cannot distin-
guish between two different versions of a software concept.
For example, in the partial Windows ontology in Fig. 3,

�ðWindows98Þ ¼ �ðWindowsV istaÞ ¼ �ðWindows7Þ ¼ 2;

�ðWindows98Þ \ �ðWindowsV istaÞ
¼ �ðWindows98Þ \ �ðWindows7Þ
¼ �ðWindowsV istaÞ \ �ðWindows7Þ ¼ 1;

and simðWindows98;WindowsV istaÞ
¼ simðWindows98;Windows7Þ
¼ simðWindowsV ista;Windows7Þ ¼ 1=2:

Hence, using similarity reasoning, the SDA cannot reason
about the differences among sibling concepts.

Since two sibling nodes representing two different
versions of a software will have a high degree of similarity,
but differ only in terms of their chronological ordering, the
function for measuring the compatibility of two concepts x
and y consists of: 1) measuring the degree of similarity
between x and y, and 2) differentiating between x and y in
terms of their chronological ordering as follows:

compatðx; yÞ ¼ simðx; yÞ þ ð�
jcx�cyjÞ
�

; ð2Þ

where cx and cy are the label values of x and y respectively,
and sim(x,y) is defined in (1). cx and cy represent the
chronological orderings of different versions of a software.
In (2), sim(x,y) is a coarse-grain measurement because x and
y being different versions of a software will have a high
degree of similarity and ð�jcx�cyjÞ=� is a fine-grain measure-
ment because x and y will have a small degree of difference.
It is also intuitive to think that the degree of difference will
depend on the chronological ordering. For instance,
compared to WindowsVista, Windows95 will have less
features compatible with Windows7. In the previous design
of Cloudle [23], [24], [25], the compatibility function was
defined as follows:

compatðx; yÞ ¼ simðx; yÞ þ ð0:8
jcx�cyjÞ
10

: ð3Þ

Equation (2) in this work generalizes (3) in [23], [24], [25].
This is because one can set different values for 0 < � < 1
and 1 � � <1. The most essential component in ð�jcx�cyjÞ=�

is the term jcx � cyj. When jcx � cyj is large (respectively,
small), x and y are less (respectively, more) compatible. An
example is given in Appendix 7, available in the online
supplemental material. In Appendix 7, � and � are set to 0.8
and 10, respectively.

In numerical reasoning, the SDA reasons about the
similarity between two numeric concepts (e.g., CPU speed
and memory size) relative to the maximum and minimum
values as follows:

Simða; b; cÞ ¼ 1� a� b
Maxc �Minc

����
����; ð4Þ

where a and b are numeric values and c is a concept. An
example is given in Appendix 8, available in the online
supplemental material.

2.2 Price and Time Slot Matching

In matching price and time slot, the SDA attempts to search
for providers with cloud services that have available time
slots that match the specified time slots of consumers and with
small price difference between the acceptable prices of the
provider and consumer. A utility function UU is used to
evaluate the level of matching for each potential match Mk

between the respective prices and schedules of a consumer
and a provider. The utility of Mk is given as follows:

UðMkÞ ¼ wP � UP
�
Pprov

min

�
þ wT � UT

�
TprovS

�
;

where wP and wT are a consumer’s preference for more
matching service prices and more matching time slots,
respectively, and wP þ wT ¼ 1. UP ðPprov

min Þ is a consumer’s
price utility defined as follows:

UP
�
Pprov

min

�
¼
�
Pcons

max � P
prov
min

�
=Pcons

max ;

where Pcons
max is the maximum acceptable price for a

consumer, and Pprov
min is the minimum acceptable price for a

provider. UP ðPprov
min Þ ! 0 if Pprov

min ! Pcons
max since there will be

little or no room for negotiation of price. UP ðPprov
min Þ ! 1 if

Pprov
min ! 0 since there will be plenty of room for negotiation.

UT ðTprovS Þ is a consumer’s time slot utility defined as follows:

UT
�
TprovS

�
¼
�
TconsS \ TprovS

�
=TconsS ;

where TconsS is the range of possible time slots that the
consumer expects to reserve a time slot to utilize a service,
and TprovS is the range of time slots that a service is available.
It is assumed that TconsS is greater than the actual time slot
(end time � start time) that a consumer will utilize a service.
UT ðTprovS Þ ! 1 (respectively, UT ðTprovS Þ ! 0) if there are
more (respectively, less) overlap between TconsS and TprovS .

2.3 Cloud Crawlers

Many parallel threads of the cloud crawler are deployed to
gather information about cloud service providers. The
architecture of a cloud crawler is shown in Fig. 4.

It consists of a crawling agent, a URL filter softbot
(a software agent), and a database agent. The crawling agent
traverses the WWW to extract webpages that are relevant to
cloud computing services. Starting from a root URL that is
predefined by a user, the crawler agent traverses websites
by following hyperlinks. As the crawling agent visits a
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website, its fetcher module downloads a copy of the
webpage, then examines the contents and extracts the link
data (consisting of URLs and hyperlinks) and the contents of
the webpage by parsing the downloaded document (strip-
ping away the html tags). The fetcher module stores the
extracted contents in a shared content memory and updates
the link data in the crawling agent’s link database. Using an
ontology of cloud concepts that is built using protégé, the
URL filter softbot examines the contents of webpages stored
in the shared content memory and determines if the
contents are relevant to cloud services. The URL filter
softbot scans the texts in each document that are stored in
the shared content database to search for cloud concepts in
the ontology. A document that contains more cloud
concepts receives a higher score. The database agent
examines relevant documents in the shared content memory
by extracting the name of the service provider, service type,
price, and technical specifications such as CPU speed and
RAM capacity. All such information together with the URL
of the webpage will be stored in Cloudle’s database.

3 CLOUD COMMERCE AND NEGOTIATION AGENTS

In a cloud business model, consumers pay service providers
for consumption of computing capabilities. It was noted in
[3] that a market-oriented approach for managing cloud
resources is necessary for regulating the supply and
demand through flexible and dynamic pricing.

Cloud market. A market model for trading cloud resources
described in [3] consists of resource/service providers,
consumers, and brokers. Brokers purchase resource capa-
cities from providers, compose multiple resources from
different providers into bundled services, then sublease the
unified services to consumers. Each broker accepts requests
from multiple consumers and each consumer can also
submit its service requests to many brokers. Consumers,
brokers, and providers are bound to service contracts
through SLAs that specify the details of the service to be
provided agreed upon by all cloud participants, and the
penalties for violating the expectations. Such a market
provides an infrastructure for 1) connecting disparate
clouds from different providers, 2) allowing consumers to
select appropriate services that can satisfy their resource
requirements, and 3) allowing service providers to effec-

tively set the prices of their computing resources based on
market conditions, consumer demand, and their current
levels of resource utilization. To date, even though service
providers have inflexible pricing for cloud resources, it is
envisioned that a market infrastructure described in [3] will
enable variable cloud service pricing based on market
conditions. Sim [6], [8] suggests that automated negotiation
is an appropriate economic model to facilitate flexible
pricing of cloud services based on varying demand from
consumers and varying supply from providers.

Agent-based testbed. Fig. 5 shows the design of an agent-
based testbed for simulating cloud commerce [6], [8]. It
consists of provider agents and consumer agents acting on
behalf of resource providers and consumers, respectively,
and a set of broker agents. Broker agents accept service
requests from consumer agents, purchase resources from
provider agents, dynamically compose a collection of
resources to satisfy consumer agents’ requirements, then
sublease the service to consumer agents. In doing so, broker
agents need to carry out negotiation activities in two types of
markets. In a cloud service market, broker agents negotiate
with consumer agents for mutually acceptable terms to
establish SLAs for satisfying service requirements from
consumers. In cloud resource markets, broker agents negotiate
with resource providers for reserving resources.

Cloud negotiation model. Fig. 6 shows a cloud negotiation
mechanism for facilitating the negotiation activities 1) be-
tween consumer agents and broker agents and 2) between
broker agents and provider agents. Since each broker agent
can accept requests from many consumer agents and each
consumer agent can also submit its requirements and
requests to many broker agents, it is envisioned that a
many-to-many negotiation model be adopted for negotiation
between consumer agents and broker agents. Since a cloud
service may be dynamically composed using multiple types
of cloud resources, each broker agent can potentially
negotiate in multiple types of cloud resource markets with
multiple groups of cloud providers that provide different
types of cloud resources. Hence, a concurrent one-to-many
negotiation mechanism is adopted to facilitate concurrent
negotiation activities between broker agents and different
groups of provider agents.

3.1 Multilateral Service Negotiation

For the many-to-many negotiation between consumer
agents and broker agents, a market-driven negotiation strategy
[16], [17], [18], [19], [20] and a bargaining-position-estimation
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strategy [13] are used to determine the amounts of

concessions.
Negotiation protocol. The following negotiation protocol

[12], [14] is used for specifying the multilateral negotiation

activities between consumer and broker agents:

. Negotiation proceeds in a series of rounds.

. Adopting Rubinstein’s alternating offers protocol
[29], a pair of consumer and broker agents negotiates
by making proposals in alternate rounds.

. Multiple consumer-broker agent pairs can negotiate
deals simultaneously.

. When an agent makes a proposal, it proposes a deal
from their space of possible deals (e.g., consisting of
the most desirable price, the least desirable (reserve)
price, and those prices in between). Typically, an
agent proposes its most preferred deal initially.

. If no agreement is reached, negotiation proceeds to
the next round. At every round, an agent determines
its amount of concession using the strategy de-
scribed below.

. Negotiation between two agents terminates 1) when
an agreement is reached, or 2) with a conflict when
one of the bargaining agents’ deadline is reached.

. An agreement is reached if a consumer agent CA1

and a broker agent BA1 propose deals P 1
CA and P 1

BA,

respectively, such that either 1) UðP 1
CAÞ � UðP 1

BAÞ or

2) UðP 1
BAÞ � UðP 1

CAÞ, where P 1
CA and P 1

BA represent

the buying and selling prices of a cloud service,

respectively, and U is a utility function.

Negotiation strategy. In a cloud service market where

consumers compete for computing services and brokers

compete to provide services, a market-oriented approach

for regulating the supply and demand of cloud services is

appropriate. To model dynamic pricing of cloud services,

consumer and broker agents adopt a market-driven approach

when making concessions similar to that in [16], [17], [18],

[19], [20]. In [16], [17], [18], [19], [20], a market-driven agent

(MDA) determines the appropriate amounts of concessions

using a combination of three negotiation functions: time

(TT ) function, opportunity (OO) function, and competition

(CC) function.

Time function. Since consumers are generally sensitive to
deadlines in acquiring computing services, and deadlines
may also affect brokers’ scheduling and composition of
services, it is intuitive to consider time when formulating
the negotiation decision functions. A consumer agent’s
time-dependent concession-making strategies can be classi-
fied into: 1) conservative (maintaining the initial price until
an agent’s deadline is almost reached), 2) conciliatory
(conceding rapidly to the reserve price), and 3) linear
(conceding linearly) [16], [17], [18], [19], [20]. Let IPCA and
RPCA be the initial and reserve prices of a consumer agent,
respectively. Based on its time-dependent concession
making function, the consumer agent’s price proposal at
negotiation round t is given as follows:

PCAðtÞ ¼ IPCA þ
t

�CA

� ��CA
ðRPCA � IPCAÞ;

where �CA is the consumer agent’s deadline for acquiring a
service, 0 < �CA <1 is the concession making strategy.
Three classes of strategies are specified as follows:
Conservative (�CA > 1), Linear (�CA ¼ 1), and Conciliatory
(0 < �CA < 1). Details are given in [16], [17], [18], [19], [20].

Opportunity function. Since a consumer agent can submit
service requests to multiple broker agents and a broker
agent also receives requests from many consumers, both
consumer and broker agents should also be programmed to
consider outside options. The OO function in [16], [17], [18],
[19], [20] determines the amount of concession based on 1)
trading alternatives (i.e., outside options) and 2) differences
in utilities generated by the proposal of an agent and the
counter-proposal(s) of its opponent(s). When determining
opportunity, it was shown in [16], [19] that if there is a large
number of trading alternatives, the likelihood that an
agent’s opponent proposes a bid/offer that is potentially
close to the agent’s own offer/bid may be high. For
instance, if there is a large number of broker agents in the
cloud service market, then there may be a higher chance
that one or more broker agents propose prices that are close
to the proposed price of a consumer agent. Nevertheless, it
would be difficult for an agent to reach a consensus if none
of the so many options are viable (i.e., there are large
differences between the proposal of the agent and the
counter-proposals of all its opponents). On this account,
the OO function in [16], [17], [18], [19], [20] determines the
probability of reaching a consensus on an agent’s own term
by considering 1) trading alternatives (i.e., the outside
options), and 2) differences between its proposal and the
proposals of each of its opponent (i.e., the viability of each
option). The general idea is that if the probability of
reaching a consensus on its own terms is high (respectively,
low), an agent should make a smaller (respectively, larger)
amount of concession. Details for deriving the probability
of reaching a consensus are given in [16], [19] and are
omitted here due to space limitation.

Competition function and market rivalry. Since both
consumers compete for services and brokers compete to
provide services, market rivalry and competition should
also be modeled. Furthermore, different degrees of
competition need to be considered since both demand for
and supply of services may vary. However, in [16], [19],
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the CC function determines the amount of competition of an
MDA by considering the number of competitors and the
number of available options in the market. In a market
with m consumers and n brokers, a consumer agent C1 has
m� 1 competitors fC2; . . . ; Cmg and n trading partners
fB1; . . . ; Bng. The probability that C1 is not the most
preferred trading partner of any Bj 2 fB1; . . . ; Bng is
(m� 1Þ=m. Hence, the probability that C1 is not the most
preferred trading partner of all Bj 2 fB1; . . . ; Bng is
½ðm� 1Þ=m�n. In general, the probability that C1 is
considered the most preferred trading partner by at least
one of Bj 2 fB1; . . . ; Bng is

Cðm;nÞ ¼ 1� ½ðm� 1Þ=m�n;

where m and n are the numbers of consumer agents
(including C1) and broker agents, respectively.

In a cloud service market, whereas a consumer may have
information about the number of brokers or providers
providing the services it requires, it may not have knowl-
edge of the number of consumers competing for the same
type of service because consumers generally do not broad-
cast their requests to other consumers.

Bargaining position and incomplete information. In the
absence of the knowledge of the number of consumers
competing for the same type of service, one of the possible
ways to model market rivalry and competition in negotia-
tion is to consider an agent’s bargaining position Bp (called
the BP-estimation (BPE) strategy) [13]. In a favorable market
(respectively, unfavorable market), a consumer agent is in an
advantageous (respectively, disadvantageous) Bp because there
are more (respectively, fewer) broker agents providing cloud
services and fewer (respectively, more) consumers competing
for cloud services. In a balanced market, a consumer is in a
generally neutral Bp as the supply of cloud services is not
significantly more than the demand for services. Since a
consumer agent does not know the number of its
competitors, one method for estimating Bp at each negotia-
tion round t is to consider the concession patterns of each
broker agent. If broker agents are making relatively larger
(respectively, smaller) concessions, then it is likely that the
consumer agent is in a relatively favorable (respectively,
unfavorable) Bp. Similarly, the Bp of a broker agent can also
be estimated by considering the concession patterns of each
consumer agent.

A consumer agent’s Bp can be determined as follows. (A
broker agent’s Bp can also be determined in a similar way).
Let �i

BAðtÞ ¼ Pi
BAð0Þ � Pi

BAðtÞ be the difference between
the initial and the current proposals of each broker agent
BAi, and �iBAðtÞ ¼ Pi

BAðt� 1Þ � Pi
BAðtÞ be the difference

between BAi’s proposals in the previous and current
rounds. Let BpðtÞ be a consumer agent’s Bp at round t.
BpðtÞ is derived by averaging the ratio of 1) the amount of
concession in the current round �iBAðtÞ and 2) the average
amount of concession in the previous t rounds �i

BAðtÞ=t.
More formally,

BP ðtÞ ¼ avg
i

t � �iBAðtÞ
�i
BAðtÞ

� �
:

If BP ðtÞ � 1, the consumer agent is more likely to be in a
disadvantageous bargaining position (e.g., the consumer is
in an unfavorable market). If BP ðtÞ � 1, it is likely that many

broker agents are making smaller concessions at round t,
i.e., the average of �iBAðtÞ is likely to be relatively smaller.

If BP ðtÞ � 1, then there are generally many broker
agents making larger concessions, and the consumer agent
is more likely to be in an advantageous bargaining position
(e.g., the consumer agent is in a favorable market).

Empirical result. Experiments were carried out in [30] to
evaluate the performance of agents adopting 1) the time-
dependent strategy (considering only the time function),
2) the MDA strategy, and 3) the BPE strategy in consumer-
favorable, balanced, and consumer-unfavorable markets. In
the experiments, different consumer-to-broker ratios are
used to simulate different market types. To simulate
consumer-favorable (respectively, consumer-unfavorable)
markets, consumer-to-broker ratios of 1:3, 1:5, and 1:10
(respectively, 3:1, 5:1, and 10:1) were used and a consumer-
to-broker ratio of 1:1 is used to simulate a balanced market.
A consumer agent’s utility is used as a performance measure
and a consumer agent’s utility function is defined as follows:

UCAðPCÞ ¼ umin þ
RPCA � PC
RPCA � IPCA

� �
;

where IPCA and RPCA are the consumer agent’s initial and
reserve prices, PC is the agreement price of both the
consumer and broker agents, and umin is the minimum
utility that a consumer agent receives for reaching a deal at
its reserve price. For the purpose of experimentation, the
value of umin is defined as 0.1. A consumer agent receives a
utility of zero if it cannot reach an agreement with any
broker agent before its deadline. Fig. 7 shows the utility of
consumer agents adopting all three negotiation strategies
for consumer-to-broker ratios of 1:10, 1:5, 1:3, 1:1, 3:1, 5:1,
and 10:1. It can be seen from Fig. 7 that consumer agents
adopting the BPE and MDA strategies generally achieved
significantly higher utilities than consumer agents adopting
the time-dependent strategy. Consumer agents adopting
the BPE and MDA strategies can better respond to different
market conditions because they do not make excessive
(respectively, inadequate) amounts of concessions in favor-
able (respectively, unfavorable) markets.

Even though for some consumer-to-broker ratios, con-
sumer agents adopting the BPE strategy did not achieve
higher utilities than consumer agents adopting the MDA
strategy (and it was proven in [16] that agents adopting
MDA negotiate optimally), the BPE strategy does not
require agents to have complete knowledge of the numbers
of consumers and brokers in the cloud service market.

An analysis of MDA and BPE strategies. Whereas [30]
provides empirical evidence comparing MDA with BPE
under consumer-to-broker ratios of 1:10, 1:5, 1:3, 1:1, 3:1, 5:1,
and 10:1, this work extends and generalizes the empirical
results in [30] by analyzing the behaviors of agents adopting
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the MDA and BPE strategies under extremely large and
extremely small consumer-to-broker ratios as follows.

For MDA, to model competition from a consumer agent’s
perspective, let m be the number of consumers and n be the
number of brokers. Since each consumer agent has m� 1
competitors, let m0 denotes m� 1.

Hence, Cðm;nÞ ¼ 1� ½ðm� 1Þ=m�n can be rewritten as

Cðm;nÞ ¼ 1� ðm0=ðm0 þ 1ÞÞn:

It can be shown that Cðm;nÞ ! 1 as m0=n! 0 as follows:

lim
m0
n!0

Cðm;nÞ ¼ 1� m0

m0 þ 1

� �n
¼ 1�

m0

n n

m0 þ 1

 !n

¼ 1:

Similarly, it can also be shown that Cðm;nÞ ! 0 as m0=n!
1 as follows:

lim
m0
n!1

Cðm;nÞ ¼ 1� m0

m0 þ 1

� �n
¼ 1� 1

�
1þ 1

m0

� �m0 ! n
m0

:

Since limm0!1ð1þ 1
m0Þ

m0 ¼ e, ð1þ 1
m0Þ

m0 is finite. As m0=n!
1 it follows that n=m0 ! 0. Therefore,

lim
m0
n!1

Cðm;nÞ ¼ 1� 1

�
1þ 1

m0

� �m0 !0

¼ 1� 1 ¼ 0:

For BPE, the analyses are as follows.
As m0=n! 0, there will be fewer consumer agents

competing for services and more broker agents providing
services, which means that consumer agents will be in an
increasingly more favorable market and broker agents will
be in an increasingly more unfavorable market. Hence,
broker agents are increasingly more likely to make larger
amounts of concessions, and �iBAðtÞ ! 1. Hence, it follows
that BpðtÞ ! 1.

As m0=n!1, there will be more consumer agents and
fewer broker agents. Broker agents will be in an increasingly
more favorable market. Hence, broker agents are increas-
ingly more likely to make smaller amounts of concessions,
and �iBAðtÞ ! 0. Hence, it follows that BpðtÞ ! 0.

In MDA, Cðm;nÞ ! 1 as m0=n! 0, a consumer agent
faces little or no competition. In BPE, BpðtÞ ! 1 as
m0=n! 0, a consumer agent has the best Bp. Hence, as
m0=n! 0, a consumer agent adopting MDA and a con-
sumer agent adopting BPE will make little or no concession.
Consequently, they are both more likely to achieve high
utilities. As m0=n!1, Cðm;nÞ ! 0, a consumer agent
adopting MDA faces extremely stiff competition, and since
BpðtÞ ! 0, a consumer agent adopting BPE has the worst Bp.
Hence, they will make very large amounts of concessions.
In summary, as m0=n! 0 (respectively, m0=n!1), then
Cðm;nÞ ! 1 and BpðtÞ ! 1 (respectively, Cðm;nÞ ! 0,
and BpðtÞ ! 0), and it follows that the utility of a consumer
approaches 1 (respectively, 0).

3.2 Concurrent Cloud Resource Negotiation

For concurrent negotiation of multiple SLAs, a concurrent
negotiation protocol adapted from [10] is adopted. Fig. 8
shows a concurrent negotiation mechanism of a broker
agent for establishing multiple SLAs for a collection of cloud
resources. It consists of a coordinator which coordinates the

parallel negotiation activities for acquiring n different types
of cloud resources in n different cloud resource markets. In
each cloud resource market, a broker agent establishes an
SLA by negotiating simultaneously with multiple provider
agents for one type of cloud resource. Furthermore, both
broker and provider agents can be freed from a contract
(i.e., an agent can decommit a contract) by paying penalty
fees to their opponents [31], [32]. The reasons for allowing
decommitments are as follows: 1) if a broker agent cannot
acquire ALL its required resources before its deadline, it can
release those resources acquired so that providers can
assign them to other broker agents, and 2) it allows a broker
agent that has already reached an intermediate contract for
a resource to continue to search for better deals before the
entire concurrent negotiation terminates. In negotiating for
one type of cloud resource in a resource market, there is a
commitment manager that manages both commitments and
decommitments of (intermediate) contracts. In summary,
two algorithms are needed for the concurrent negotiation
mechanism: 1) an algorithm for establishing SLAs and
managing commitments and decommitments of contracts
(see Algorithm 1) and 2) an algorithm for coordinating the
parallel negotiation activities (see Algorithm 2).

Contracting and SLAs. At each negotiation round, the
commitment manager determines whether to accept the
proposed offers from the provider agents or whether to
renege on an intermediate contract (to break an existing
contract and take up a new and more favorable contract by
paying a penalty fee). However, it is inefficient for a broker
agent to simply accept all acceptable proposals from
provider agents and select the best proposal from them
because it may be forced to pay a large amount of penalty
fees for reneging on many deals. Since a cloud resource can
be requested by multiple broker agents simultaneously, a
provider agent can renege on an intermediate contract
established with a broker agent. A broker agent determines
if each provider agent’s proposal Pi

jðtÞ is acceptable by first
estimating the chance that a provider agent PAi

j will renege
on a contract, and compute the expected payoff of Pi

jðtÞ
taking into account the chance that PAi

j may break a
contract. The general idea in estimating the reneging
probability of PAi

j is that if a broker agent reaches a
tentative agreement with PAi

j at a price that is much lower
(respectively, higher) than the average price of all provider
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agents, then there is a higher (respectively, lower) chance that
PAi

j will renege on the contract. Computing the expected
utility of Pi

jðtÞ considers both the outcomes that 1) PAi
j will

renege on a contract and 2) PAi
j will abide by the contract.

Pi
jðtÞ is acceptable to a broker agent if it generates an

expected utility that is higher than the utility of the broker
agent’s own price proposal for the resource. Algorithm 1
[10] specifies the steps for commitment management.

Algorithm 1. Commitment management

At each negotiation round t, do the following:

1. Estimate the reneging probability of each provider

agent PAi
j

2. Compute the expected utility of each provider agent’s
proposal Pi

jðtÞ
3. Determine if each Pi

jðtÞ is acceptable

4. If there are proposals that are acceptable then

i.the broker agent sends a request for contracts to

all corresponding provider agents

ii. waits for the confirmation of contract from

each PAi
j

5. If the broker agent receives one or more confirmation
of contracts then

the broker agent accepts the contract that

generates the highest expected utility

else

the broker agent revises its proposal by making

concession.

Coordination. In designing an algorithm for coordinating
concurrent negotiations for establishing multiple SLAs,
three factors are essential for a broker agent: 1) successfully
establishing all SLAs for the required set of cloud resources
needed for composing a service requested by a consumer
agent, 2) obtaining the cheapest possible price for the
collection of resources, and 3) establishing all SLAs rapidly.
Since the dynamic configuration of a personalized collection
of resources requires the establishment of SLAs between a
broker agent and multiple cloud resource provider agents,
the failure of any one-to-many negotiation for establishing
one SLA will result in the failure of the entire concurrent
negotiation. Hence, ensuring a high negotiation success rate
is most pertinent. This paper adopts a utility-oriented
coordination (UOC) strategy [10] for coordinating concurrent
multiple one-to-many negotiations. In the UOC strategy, an
agent always prefers higher utility when it can guarantee a
high success rate. Coordination of the concurrent negotia-
tion activities generally consists of 1) predicting the change
in expected payoff in each one-to-many negotiation, and
2) deciding whether the consumer agent should proceed
with or terminate the entire concurrent negotiation. Algo-
rithm 2 [10] illustrates the steps for coordination in UOC.

Algorithm 2. Coordination

At each negotiation round t, do the following:

For each resource Ri,

1. The commitment manager CMi determines if the
proposal Pi

jðtÞ of each provider agent PAi
j for resource Ri

is acceptable for the broker agent (i.e., Pi
jðtÞ falls into the

agreement zone ½IP i
BA;RP

i
BAÞ of the broker agent)

2. If Pi
jðtÞ is acceptable for the broker agent, it will be

placed into an acceptable list for Ri

3. If any acceptable list is empty then
the coordinator cannot complete the concurrent

negotiation

else

i.predict the change in utility in each one-to-many

negotiation in the next round tþ 1 using the

information on negotiation status supplied by each

CMi

ii. decide whether to terminate or proceed with
the concurrent negotiation based on the prediction

of the change in utility in tþ 1 for each

one-to-many negotiation.

Empirical results. Experiments were carried out in [10] to
compare the UOC strategy with the patient coordination
strategy (PCS) in [33] for coordinating n concurrent one-to-
many negotiations in n cloud resource markets. In PCS, a
broker agent terminates all concurrent one-to-many nego-
tiations when it acquires all required resources without
considering time constraint. Since there may be different
supply-and-demand patterns for different types of cloud
resources, for a broker agent acquiring n types of cloud
resources, the market types for each cloud resource market
can be broker-favorable (fewer brokers acquiring cloud
resources and more providers supplying cloud resources),
balanced (equal number of brokers and providers), or
broker-unfavorable (more brokers and fewer providers). To
compare UOC with PCS, six types of n cloud resource
markets are simulated:

1. all n cloud resource markets are favorable,
2. most of the n cloud resource markets are favorable,
3. all n cloud resource markets are balanced,
4. most of the n cloud resource markets are balanced,
5. all n cloud resource markets are unfavorable, and
6. most of the n cloud resource markets are unfavorable.

The following three performance measures were used.

1. Utility. The utility of a broker agent (UBA) is
determined as follows:

UBA ¼

1

n

Xn
i¼1

ðUi
BAðPiÞ � �iÞ;

if all Cloud resources are obtained;

0; otherwise;

8>>><
>>>:

where Ui
BA is the utility of a broker agent obtained

by establishing a contract for cloud resource Ri at the
price of Pi, and �i is the total amount of penalty fee
that the broker agent should pay for Ri.

2. Success rate. A concurrent negotiation is considered
successful if a broker agent can successfully negotiate
for all of n types of cloud resources. Otherwise, the
concurrent negotiation is considered unsuccessful.

3. Negotiation speed. The negotiation speed of a broker
agent is determined as follows:

SBA ¼ tBA=�BA;

where tBA is the total number of rounds taken to
complete negotiation and �BA is the broker agent’s
deadline. 0 � SBA � 1, such that SBA ! 1 (respec-
tively, SBA ! 0) implies that a broker agent achieves
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a slower (respectively, faster) negotiation speed
because it completes the entire concurrent negotia-
tion near (respectively, long before) its deadline.

Space limitation precludes all results from being pre-
sented here and Figs. 9a, 9b, 9c, 9d, 9e, and 9f only show the
graphs for the empirical results in n cloud resource markets
that are all favorable and all unfavorable. These represent the
extreme cases when all the required cloud resources are
comparatively more plentiful and all the required cloud
resources are comparatively scarcer, respectively.

From Figs. 9a, 9b, 9c, 9d, 9e, and 9f, it can be seen that
broker agents adopting UOC achieved significantly higher
utilities, higher success rates, and faster speed than broker
agents adopting PCS. Broker agents adopting UOC
achieved a higher success rate because it is relatively more
difficult for a broker agent to meet the terminating
condition in PCS. It is more difficult to have all CMi in
a situation where each CMi has a provider j offering a
proposal Pi

jðtÞ that generates an expected utility that is
higher than the utility of the broker agent’s own price
proposal for the cloud resource. Broker agents adopting
UOC can achieve faster negotiation speed than agents
adopting PCS because broker agents adopting UOC can
potentially terminate the entire concurrent negotiation
before all CMi’s reach agreements (in the sense of having
a provider’s proposal that is better than or equal to its own
proposal). Furthermore, since UOC takes into consideration
the utility changes in future negotiation rounds, broker
agents adopting UOC is more likely to achieve higher
utilities than agents adopting PCS.

4 AGENT-BASED CLOUD SERVICE COMPOSITION

Service composition in cloud computing generally requires

1. coordination and interaction among cloud partici-
pants (consumers, brokers, and providers),

2. automation of service selection,
3. dynamic (re)configuration of distributed and paral-

lel services, and
4. dealing with incomplete information about the

existence and location of cloud providers and their
services.

The novelty of this work is proposing the ideas of

1. using service capability tables (SCTs) to enable
agents to record the cloud services provided by
other agents in the cloud systems,

2. devising a focused selection contract net protocol
(FSCNP) for specifying the interactions of cloud
agents,

3. evaluating the performance of cloud agents equipped
with SCTs that contain different degrees of knowl-

edge of the service capabilities of other agents, and
4. analyzing the number of messages exchanged

among agents in FSCNP in the worst case and
showing that FSCNP enhances the efficiency of
classical contract net protocol (CNP) [21].

In FSCNP, agents focus on selecting relevant cloud services
by consulting SCTs, thereby reducing the number of
messages exchanged among cloud agents.

4.1 Agent-Based Testbed

An agent-based testbed for bolstering cloud service
composition was implemented using Java and JADE
framework. The testbed (Fig. 10) consists of web services
(WSs), resource agents (RAs), service provider agents
(SPAs), broker agents (BAs) and consumer agents (CAs).

Web services. A WS is an interface to a software
application or a resource (e.g., database, storage space) that
can be remotely accessed.

Resource agent. An RA manages and controls access to a
web service, i.e., an RA is a service wrapper. An RA accepts
requests from an SPA or other RAs to fulfill a service
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requirement and transmits its service output to the
requesting agent.

Service provider agent. An SPA manages a service
provider’s resources by controlling and organizing RAs.
An SPA delegates some of the service requests it receives to
RAs. See Appendix 9, available in the online supplemental
material. RAs managed by the same SPA share a common
set of objectives and they can delegate tasks among each
other. For example, an SPA can even delegate some RAs to
carry out decomposition of large tasks and allow these RAs
to delegate subtasks to other RAs for processing. An SPA
may also interact with other SPAs. To fulfill a service
requirement, an RA may need the services or resources of
other RAs that are not administered by its SPA. Hence, an
RA makes a service requests through its SPA, which in turn
contacts other SPAs for acquiring the services or resources.
For instance, a computing service provider may need
additional storage space for an unusually large amount of
results derived from processing some tasks. In this case, an
RA requiring additional storage space makes the requests
through its SPA, which in turn searches for and collaborates
with a storage SPA to acquire more storage space.

Broker agent. A BA is a mediator between CAs and SPAs.
A BA composes a set of resources from multiple SPAs, and
provides a single virtualized service to CAs.

Consumer agent. CAs submit consumers’ service requests
to BAs, which in turn contacts SPAs to acquire a set of
resources. See Appendix 10, available in the online
supplemental material.

4.2 Acquaintance Network and Service Capability
Table

In [34], an agent’s acquaintance network (AN) is a matrix in
which the columns record the list of acquaintances (i.e., the
list of agents that an agent knows), and the rows represent
the service capabilities of the acquaintances. See Appen-
dix 11, available in the online supplemental material.

Even though SCTs are reminiscent of the idea of ANs,
they differ in terms of both the information stored and
volatility. An AN only records the service capabilities of
agents in the system. An SCT augments an AN by recording
both: 1) the service capabilities of agents in the cloud system
and 2) the states of cloud agents. A cloud agent can be in one
of the following states: {“available,” “unreachable,” “failed,”
“busy”}. An agent is in the “available” (respectively,
“unreachable”) state when it responds (respectively, does
not respond) to the request of another agent. If an agent has
the service capabilities to satisfy the request of another agent
but is unable to entertain the request (e.g., its server is
down), then the agent is said to be in the “failed” state. An
agent is in the “busy” state when it is executing a job request
of some agent. In the agent-based cloud computing testbed,
the states of cloud agents will change as they interact with
other agents. Since the states of cloud agents can change
frequently, the information stored in SCTs are more volatile
than that in ANs. For instance, in ANs, the capability tables
may be updated only when new agents join the system or
when existing agents leave the system.

Consumer agents’ SCTs. Each CA maintains an SCT of
BAs. However, each CA only records the list of BAs (and
their locations and states) that it knows but not the service
capabilities of BAs. This is because BAs may accept

potentially any service requests from CAs, then subcontract
the service requests to other BAs or SPAs.

Broker agents’ SCTs. A BA maintains two SCTs: 1) an SCT
of other BAs together with their locations and their states,
and 2) an SCT of SPAs together with their locations, service
capabilities, and their states. Since a BA may accept service
requests without being totally certain that it can enlist the
services of SPAs with the required service capabilities, a BA
may also enlist another BA for satisfying consumer agents’
requirements. Hence, a BA needs to maintain SCTs of both
BAs and SPAs.

Service provider agents’ SCTs. An SPA maintains two
SCTs: 1) an SCT of other SPAs and 2) an SCT of RAs under
its administration. Both SCTs record the locations of agents,
their service capabilities, and their states. When delegating
service requests to its RAs, an SPA consults its SCT of RAs.
The capabilities of an SPA are the aggregation of all the
capabilities of the RAs under its administration.

Resource agents’ SCTs. An RA maintains an SCT of other
sibling RAs under the administration of the SPA. The SCT
contains the locations of other RAs, their resource capabil-
ities, and their states. If an RA is unable to fulfil a service
requirement delegated by its SPA, it can subdelegate the
service request to another sibling RA.

4.3 SCTs and Focused Selection Contract Net
Protocol

All agents in the testbed (Fig. 10) adopt FSCNP which
considerably augments and extends the classical CNP [21]
for selecting and subcontracting cloud resources to satisfy
consumers’ service requirements. In CNP, agents have two
roles: manager (client) or contractor (server). An agent
requiring the services or resources of other agents plays the
role of a manager and sends request messages or call-for-
proposals to other agents. Agents playing the role of a
contractor listen to call-for-proposals, evaluate the list of
call-for-proposals, and submit bids for contracts. Managers
evaluate the bids from contractors to provide the service,
and award the contract to the most appropriate contractor
based on its service capabilities.

FSCNP differs from CNP in the following ways by
allowing agents to:

1. focus their service selections by interacting only with
other agents that provide the relevant services,

2. assume multiple roles,
3. propagate and integrate the service results obtained

from the multiple concurrent subcontracting inter-
actions, and

4. react to failures by restarting the contracting process.

Focused selection. In the multiagent systems literature, AN
and CNP are independent approaches of cooperative
problem-solving [34]. In CNP, an agent attempts to select
the services of other agents by broadcasting its requests to
all other agents in the systems. In FSCNP, an agent consults
its SCT to determine to which agents in the cloud system it
should send its request message. By only sending messages
to selected agents with relevant service capabilities, the
interactions among cloud agents in FSCNP are more
efficient because 1) the number of messages exchanged
among cloud agents are considerably reduced, and 2) cloud
agents only focus on interacting with a subset of agents in
the cloud system that provides the relevant cloud services.
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Playing multiple roles. In FSCNP, an agent can play the
role of a contractor by accepting requests for performing a
service to satisfy the set of requirements from a requesting
cloud agent, and can concurrently play the roles of multiple
managers to subcontract the service requests it received to
other cloud agents. In CNP, an agent can only play the role
of either a manager or a contractor at a time.

Integrating results and dealing with failures. Agents in
FSCNP can propagate as well as integrate the service
results obtained from the multiple concurrent subcontract-
ing interactions. This is particularly essential to cloud
service composition in this work because a BA needs to
compose and combine a set of resources from multiple
SPAs, and provides a single virtualized service to CAs.
Furthermore, a cloud agent in FSCNP can react to failures
by restarting a (sub)contracting process and keep track of
its previous interactions by updating the states of other
cloud agents recorded in its SCTs. In CNP, agents are not
designed to combine results from multiple concurrent
subcontracting interactions and they do not record the
states of other agents.

Empirical results. To evaluate the self-organization cap-
abilities of agents, a series of experiments was conducted in
[35], [36] using the agent-based testbed in Section 4.1, and all
the agents adopted FSCNP and SCTs. Existing approaches in
multiagent systems using AN only specify that an acquain-
tance network is a partial representation of the capabilities of
other agents but do not examine the effect of having different
degrees of knowledge represented in an AN. This work
studies the effect of having different degrees of knowledge
represented in an SCT by conducting experiments to
evaluate the performance of cloud agents when they are
equipped with SCTs that contain different degrees of
knowledge of the service capabilities of other agents. By
having more (respectively, less) knowledge of the service
capabilities of other agents in the cloud system, a cloud agent
is said to be strongly (respectively, weakly) connected to
other agents. Three sets of experiments were carried out
using different connectivity degrees of SCTs: 1) weakly
connected SCTs (having 1 to 33 percent knowledge of the
service capabilities of other agents), 2) moderately connected
SCTs (having 34 to 66 percent knowledge of the service
capabilities of other agents), and 3) strongly connected SCTs
(having 67 to 100 percent knowledge of the service
capabilities of other agents). These experiments are designed
to evaluate the agents’ abilities to interact among themselves
for autonomous (re)configuration and reselection of cloud
services in response to failure of the resources. When RAs
fail, the resources they manage cannot be accessed and there
is a need for agents to reorganize among themselves to
reconfigure a new set of resources to satisfy the service
requirements. In the experiments, RAs were designed to fail
with different failure probabilities of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, and 1.0. Two performance measures were
used: 1) the number of successful service compositions and
2) the number of messages exchanged. Whereas measuring
the number of successful service compositions for different
failure probabilities of RAs provides a means to evaluate the
effectiveness of using FSCNP and SCTs to automate cloud
service composition, recording the number of messages
exchanged among agents measures the efficiency of agent-
based cloud service composition.

Figs. 11a and 11b show the number of successful
compositions and the number of messages exchanged for
agents adopting 1) weakly connected SCTs, 2) moderately
connected SCTs, and 3) strongly connected SCTs under
different failure probabilities of SCTs. From Figs. 11a and
11b, it can be observed that with an increase in the
probability of failure of RAs, agents adopting strongly
connected SCTs achieved the highest number of successful
compositions but exchanged the largest number of mes-
sages. Agents adopting strongly connected SCTs have a
large pool of acquaintances and are more likely to have
higher chances of acquiring more cloud resources. Hence,
they have a higher probability of successfully acquiring the
required cloud resources to compose cloud services.
However, since all agents follow FSCNP, agents adopting
strongly connected SCTs exchange more messages in the
process of service composition.

Analyzing the number of messages exchanged. The number
of messages sent by an agent relies on the degree of
knowledge of the service capabilities of other agents
recorded in its SCT. An example to analyze the number
of messages sent by a BA is as follows (due to space
limitation, the analyses of other agents, e.g., SPAs and RAs
will not be given here). When a CA submits a service
request to the BA, the BA needs to subcontract the service
requests to p SPAs, and p depends on the number of
requirements submitted by the CA. For each subcontract,
the BA consults its SCT to select q SPAs and send q call-for-
proposal messages to these SPAs. For each subcontract,
when the BA receives the proposal messages from the q
SPAs, the BA will send out q response messages consisting
of 1 accept-proposal to SPAk and q � 1 reject-proposals to
fSPA1; . . . ; SPAk�1; SPAkþ1; . . . ; SPAqg. Suppose that SPAk

suddenly enters the “failed” state, the failure is propagated
to the BA. Then, the BA sends q � 1 call-for-proposal
messages to fSPA1; . . . ; SPAk�1; SPAkþ1; . . . ; SPAqg, and
in turn, the BA will receive q � 1 responses. This process
continues until the BA awards the subcontract to an SPA
that is in the “available” state. Thus, in the worst case, the
BA sends:

pð2q þ 2ðq � 1Þ þ 2ðq � 2Þþ; � � � ;þ2ð2Þ þ 2ð1ÞÞ
¼ 2pðq þ ðq � 1Þ þ ðq � 2Þþ; � � � ;þð2Þ þ ð1ÞÞ
¼ 2pðqðq þ 1Þ=2Þ ¼ p	qðq þ 1Þ

messages. In strongly (respectively, weakly) connected
SCTs, q will be larger (respectively, smaller), and hence,
more messages are exchanged as evidenced by Fig. 11b.
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Fig. 11. Empirical results of agent-based cloud service composition.



With a probability of 1.0 of entering the “failure” state, close
to 900 messages were exchanged among agents with
strongly connected SCTs and only less than 200 messages
for agents with weakly connected SCTs. Furthermore, if BAs
follow CNP [21], and if there are a total of t SPAs, and q < t,
then in the worst case, the number of messages exchanged
will be p	tðtþ 1Þ, which can potentially be much larger than
p	qðq þ 1Þ. Hence, FSCNP is more efficient than CNP in
terms of the number of messages exchanged.

5 CONCLUSION AND FUTURE WORK

The novelty and significance of this work are that by
introducing the idea of applying the agent paradigm to
building software tools and testbeds for managing cloud
resources, this work advances the state of the art in two
ways. From the perspective of cloud computing, this work
contributes to the field of cloud resource management by
devising several novel approaches for facilitating cloud
service discovery, service negotiation, and service composi-
tion. From the perspective of multiagent systems, this work
demonstrates the application of 1) cooperative problem-
solving paradigms to automating cloud service composition,
2) complex and concurrent negotiations to cloud commerce,
and 3) software agents to building a cloud search engine.

The contributions of this work are detailed as follows:

1. Cloudle. An agent-based cloud service search engine
was developed. To the best of the author’s knowl-
edge, Cloudle is the first search engine designed
specifically for discovering cloud services. The
novelty of Cloudle is that it is a multicriteria search
engine that accepts as its inputs functional, technical,
and budgetary requirements from consumers. Its
SDA reasons about the similarities among cloud
services and determines different levels of matching
between the respective prices and schedules of a
consumer and a provider. A cloud ontology and
three novel types of service reasoning: similarity
reasoning, compatibility reasoning, and numerical
reasoning are devised. Multiple cloud crawlers
maintain Cloudle’s database by extracting relevant
webpages from the WWW.

2. A complex cloud negotiation mechanism was
devised to support cloud commerce. To the best of
the author’s knowledge, this complex negotiation
mechanism is the earliest work to support concur-
rent negotiation activities in interrelated markets: a
cloud service market between consumer agents and
broker agents, and multiple cloud resource markets
between broker agents and provider agents. In the
multilateral negotiation in a cloud service market,
empirical results show that consumer agents adopt-
ing the BPE and MDA strategies can better respond
to different market conditions because they do not
make excessive (respectively, inadequate) amounts
of concessions in favorable (respectively, unfavor-
able) markets. Whereas empirical evidence in [30]
only compared the behaviors of MDA and BPE in a
small number of consumer-to-broker ratios, this work
generalizes the results in [30] by providing a
mathematical analysis of MDA and BPE in very
extreme markets (e.g., when the consumer-to-broker

ratio approaches infinity or zero). In the concurrent
negotiations in multiple cloud resource markets,
empirical results show that broker agents adopting
UOC achieved significantly higher utilities, higher
success rates, and faster speed than broker agents
adopting PCS. By introducing the novel idea that
negotiation activities are not restricted to only one
market and concurrent negotiation activities can be
carried out in multiple interrelated cloud markets,
this work offers an entirely new branch of thinking
in agent-based negotiations [37], [38].

3. To automate cloud service composition, the FSCNP
was devised for specifying the interactions of cloud
agents and SCTs were used to record the service
capabilities of cloud agents. In FSCNP, agents focus
on selecting relevant cloud services by consulting
SCTs, thereby reducing the number of messages
exchanged among cloud agents. Empirical results
show that agents generally achieved higher success
rates in composing cloud services, and agents
adopting strongly connected SCTs achieved the
highest number of successful compositions but
exchanged the largest number of messages. An
analysis on the number of messages exchanged
among agents in FSCNP was also carried out to
study the worst case.

This paper has reported some of the ongoing work in the
Multiagent and Cloud Computing Systems Laboratory, led
by the author. Reporting some of the earliest works by the
author in adopting the agent paradigm for designing and
constructing software tools and testbeds for cloud resource
management, this paper has only taken the first step to
show that agent-based problem-solving approaches and
protocols provide effective methods for managing cloud
resources. Some of the future work and challenges are
given as follows:

1. In its present form, the cloud negotiation mechanism
reported in Section 3 only considers negotiation of
resource pricing but does not consider negotiation of
other issues such as QoS and time slot negotiation.
One of the unaddressed issues in cloud service
negotiation is to devise a negotiation mechanism for
cloud agents to reach agreements on resource price
and QoS, as well as other parameters such as the
time slot for scheduling of services.

2. Given that cloud services can be dynamically re-
moved or added, creating and maintaining the SCTs
of cloud agents can be a difficult problem. Devising
some mechanisms to automatically record and main-
tain a cloud agent’s list of acquaintances and their
service capabilities is among the list of unaddressed
issues in agent-based cloud service composition.

3. A more sophisticated service selection mechanism
may be needed to deal with changing consumers’
requirements. For example, owing to its changing
job requirements, a consumer may request more
storage capacity in addition to its current requests
contracted to a broker.

It is hoped that this paper will shed new light in
designing and constructing software tools for cloud resource
management, and inspire others to take up the challenge
of conducting research in agent-based cloud computing.
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