
A Genetic Algorithm for the P-Median Problem

Elon Santos Correa

Departamento de
Matematica

Colegio Militar de Curitiba
Timoteo Jose Ferreira, 72

Curitiba-PR, Brazil
ZIP Code: 82600-590

Tel. (55) (41) 256-5917
elonsc@yahoo.com

www.geocities.com/elonsc

Maria Teresinha A. Steiner

Departamento de
Matematica

Universidade Federal do
Parana

Centro Politecnico
Curitiba-PR, Brazil

ZIP Code: 81531-990
Tel. (55) (41) 361-3403

tere@mat.ufpr.br

Alex A. Freitas

Departamento de Informatica
Pontificia Universidade

Catolica do Parana
Imaculada Conceicao, 1155

Curitiba-PR, Brazil
ZIP Code: 80215-901

Tel. (55) (41) 330-1669
alex@ppgia.pucpr.br

www.ppgia.pucpr.br/~alex

Celso Carnieri

Departamento de
Matematica

Universidade Federal do
Parana

Centro Politecnico
Curitiba-PR, Brazil

ZIP Code: 81531-990
Tel. (55) (41) 361-3403

carnieri@mat.ufpr.br

Abstract

Facility-location problems have several
applications in telecommunications, industrial
transportation and distribution, etc. One of the
most well-known facility-location problems is
the p-median problem. This work addresses an
application of the capacitated p-median problem
to a real-world problem. We propose a genetic
algorithm (GA) to solve the capacitated p-
median problem. The proposed GA uses not only
conventional genetic operators but also a new
heuristic “hypermutation” operator proposed in
this work. The proposed GA is compared with a
tabu search algorithm.

Keywords: facility location, p-median problem,
genetic algorithms, tabu search.

1 INTRODUCTION
Facility-location problems have several applications in
telecommunications, industrial transportation and
distribution, etc. One of the most well-known facility-
location problems is the p-median problem. This problem
consists of locating p facilities in a given space (e.g.
Euclidean space) which satisfy n demand points in such a
way that the total sum of distances between each demand
point and its nearest facility is minimized. In the non-
capacitated p-median problem, one considers that each
facility candidate to median can satisfy an unlimited
number of demand points. By contrast, in the capacitated
p-median problem each candidate facility has a fixed
capacity, i.e. a maximum number of demand points that it
can satisfy. The p-median problem is NP-hard [Kariv and
Hakimi, 1979]. Therefore, even heuristic methods
specialized in solving this problem require a considerable

computational effort.

In this work we apply the capacitated p-median problem
to a real-world problem, namely the selection of facilities
for a university’s admission examination. The goal is to
select 26 facilities among 43 available facilities. Each
facility has a fixed capacity, i.e. a maximum number of
students who can take an exam at that facility. Each
student must be assigned to exactly one facility. The
selected facilities must satisfy 19710 candidate students
(i.e. students who have applied to the university’s
admission exam). In addition, the 26 facilities must be
selected in such a way that the total sum of the distances
between each student’s home and the facility to which the
student is assigned is minimized.

In order to solve this problem we propose a genetic
algorithm (GA) specific for the capacitated p-median
problem. The proposed GA is compared with a tabu
search algorithm proposed by Glover (unpublished work).

This paper is organized as follows. Section 2 formally
defines the p-median problem and the real-world
application addressed in this work. Section 3 introduces
the proposed GA. Section 4 reports computational results.
Section 5 discusses related work. Finally, section 6
concludes the paper.

2 THE P-MEDIAN PROBLEM

Informally, the goal of the p-median problem is to
determine p facilities in a predefined set with n (n > p)
candidate facilities in order to satisfy a set of demands, so
that the total sum of distances between each demand point
and its nearest facility is minimized. The p facilities
composing a solution for the problem are called medians.

Formally, assuming all vertexes of a graph are potential
medians, the p-median problem can be defined as follows.
Let G = (V, A) an undirected graph where V are the
vertexes and A are the edges. The goal is to find a set of
vertexes Vp ⊂ V (median set) with cardinality p, such that

the sum of the distance between each remaining vertex in
{V – Vp} (demand set) and its nearest vertex in Vp be
minimized.

We present below a formulation of the p-median problem
in terms of Integer Programming proposed by Revelle and
Swain (1970). This formulation allows that each vertex be
considered, at the same time, as demand and facility
(potential median), but in many cases (including our real-
world application) demand and facilities belong to
disjoint sets.

Min ∑
=

∑
=

n

i

n

j ijx ijd ia
1 1

 (2.1)

subject to:

∑
=

n

1 j ij x = 1 , i = 1, 2, ..., n (2.2)

 xij ≤ yj , i, j = 1, 2, ..., n (2.3)

∑
=

n

1 j jy = p (2.4)

 xij, yj ∈ {0, 1}, i, j = 1, 2, ..., n (2.5)

where,

n = total number of vertexes in the graph

ai = demand of vertex j.

dij = distance from vertex i to vertex j.

p = number of facilities used as medians.





=
otherwise 0,

jfacility toassigned is i vertex theif 1,
 ijx





=
otherwise 0,

median a as usedfacility a is j vertex theif 1,
 jy

The objective function (2.1) minimizes the sum of the
(weighted) distances between the demand vertexes and
the median set. The constraint set (2.2) guarantees that all
demand vertexes are assigned to exactly one median. The
constraint set (2.3) forbids that a demand vertex be
assigned to a facility that was not selected as a median.
The total number of median vertexes is defined by (2.4)
as equal to p. Constraint (2.5) guarantees that the values
of the decision variables x and y are binary (0 or 1).

Assuming all vertexes of a graph are potential medians,
the p-median problem can be formally defined as follows.
Let G = (V, A) an undirected graph where V are the

vertexes and A are the edges. The goal is to find a set of
vertexes Vp ⊂ V (median set) with cardinality p, such
that: (a) the sum of the distance between each remaining
vertex in {V – Vp} (demand set) and its nearest vertex in
Vp be minimized; and (b) all demand points are satisfied
without violating the capacity restrictions of the median
facilities. By comparison with the p-median problem, the
capacitated p-median problem has the following
additional constraints: (1) Each facility can satisfy only a
limited number of demands (capacity restrictions); and (2)
All demand points must be satisfied by respecting the
capacities of the facilities selected as medians.

2.1 A REAL-WORLD APLICATION

The Federal University of Parana (UFPR), located in
Curitiba, Brazil, was founded in 1912 as the first federal
Brazilian university. It currently offers 61 undergraduate
courses, 84 specialization courses (at the graduate level),
37 M.Sc. or M.A. courses and 21 Ph.D. courses.
Undergraduate students are selected via a written
admission exam applied to all candidate students. For the
2001 admission exam it has been proposed an
optimization in the assignment of candidate students to
the facilities where they will take the exam. The goal was
to assign 19710 candidate students to facilities as close as
possible to their corresponding homes. (In order to obtain
the distance between each candidate student’s home and
each facility, all the addresses in question have been
precisely located in a digitized map of the city of
Curitiba). It was previously determined, for operational
and economic reasons, that an algorithm should select 26
facilities to satisfy all 19710 candidate students, among a
set of 43 candidate facilities. We cast this problem as a
capacitated p-median problem, as follows:

1. The set of 43 facilities (potential exam locations) is
the set V (|V| = 43) of all facilities candidate to
median (actual exam locations).

2. Let Vp ⊂ V (|Vp| = 26) be the set of the 26 selected
exam locations.

3. Each of the 43 potential exam locations can satisfy
only a limited number of candidate students.

4. The goal is to select a set Vp ⊂ V that minimizes the
total sum of distances between each candidate
student’s home and its nearest exam location
(median).

3 THE PROPOSED GA
This section describes our proposed GA for the
capacitated p-median problem, Cap-p-Med-GA.

3.1 INDIVIDUAL REPRESENTATION

Each individual (chromosome) has exactly p genes, where
p is the number of medians, and the allele of each gene
represents the index (a unique id number) of a facility
selected as median. For instance, consider a problem with
15 facilities (potential medians) represented by the
indexes 1,2,...,15. Suppose one wants to select 5 medians.

In our GA, the individual [2, 7, 5, 15, 10] represents a
candidate solution for the problem where facilities 2, 5, 7,
10 and 15 have been selected as medians. In Cap-p-Med-
GA the genome is interpreted as a set of facility indexes,
in the mathematical sense of set - i.e. there are no
duplicated indexes and there is no ordering among the
indexes.

3.2 FITNESS EVALUATION

In essence, the fitness of an individual is given by the
value of the objective function for the solution
represented by the individual - as measured by formula
(2.1). However, there is a caveat in the computation of the
fitness of an individual. Note that Cap-p-Med-GA is used
only to optimize the choice of the 26 medians, out of the
43 facilities. However, the computation of formula (2.1)
requires that each of the 19710 candidate students be
assigned to exactly one of the selected medians (i.e. the
facility where the student will take the admission exam).

This assignment is done by a procedure that is used by
Cap-p-Med-GA as a black box. Since this procedure is
orthogonal to the use of a GA, it will not be described in
detail here. For details the reader is referred to Correa
(2001). Here we just mention the basic idea of this
procedure. Once the 26 medians are selected, this
procedure tries to assign each candidate student to the
median (exam location) that is the nearest one to its home.
The problem is that, since each median has a fixed
capacity, some candidate students will have to be
assigned to the second (or third, fourth, ...) nearest median
to their homes. Suppose there is an assignment conflict -
e.g. there is just one vacancy in one median, and that
median is the nearest one for two candidate students. In
this case the student-assignment procedure prefers to
assign to that median the student that would be most
prejudiced if she was assigned to its second nearest
median. A student is “prejudiced” to the extent of the
difference between two distances, namely the distance
between her home and her nearest median and the
distance between her home and her second nearest
median. Once the student-assignment procedure is
complete, the fitness of an individual can be computed by
formula (2.1).

3.3 SELECTION

We use a ranking-based selection method proposed by
Mayerle (1996), given by the formula below.

Select(R)=






















 +++
=∈

2

 P)
2

rnd(P 4.1 1-
 - P j / R jr ,

 (3.1)

where R is a list R = (r1, r2, ..., rp), with P individuals
sorted in increasing order by fitness value, rnd ∈ [0, 1) is
a uniformly-distributed random number and the

symbol  b denotes the greatest integer smaller than or

equal to b. Formula (3.1) returns the position in the list R
of the individual to be selected. The formula is biased to
favor the selection of individuals in early positions of the
list - i.e. the best (smallest fitness) individuals.

The population evolves according to the steady-state
method. The offspring produced by crossover (and
possibly mutation) is inserted into the population only if
they have a better (smaller) fitness than the worst
individual of the current population.

3.4 CROSSOVER

As a preprocessing step for the possible application of
crossover, Cap-p-Med-GA computes two exchange
vectors, one for each parent, as follows. For each gene of
parent 1, Cap-p-Med-GA checks whether the allele
(facility index) of that gene is also present (in any
position) at the genome of parent 2. If not, that facility
index is copied to the exchange vector of parent 1. This
means that facility index may be transferred to parent 2 as
a result of crossover, since this transfer would not create
any duplicate facility indexes in parent 2’s genotype. The
same procedure is performed for each facility index in the
genotype of parent 2. For instance, let the two parents be
the facility-index vectors [1, 2, 3, 4, 5] and [2, 5, 9, 10,
12]. Their respective exchange vectors are: vp1 = [1, 3, 4]
and vp2 = [9, 10, 12]. Once the facility indexes that can be
exchanged have been identified, the crossover operator
can be applied, as follows.

No fixed crossover probability is used in Cap-p-Med-GA.
Crossover is performed whenever the two parents are not
equal to each other, i.e. whenever there is at least one
facility index in the exchange vectors of parent 1 and
parent 2. If the two parents are equal to each other, i.e.
their exchange vectors are empty, one of the parents is
reproduced unaltered for the next generation and the other
parent is deleted, to avoid that duplicate individuals be
inserted into the population.

Crossover is performed as follows. A random natural
number c, varying from 1 to the number of elements in
the exchange vectors minus 1, is generated. This number
c determines how many facility indexes of each exchange
vector will be actually swapped between the two parents.
We emphasize that this procedure guarantees that there
will be no duplicate facility index in any of the two
children produced by crossover.

3.5 MUTATION

Mutation is performed as follows. The gene being
mutated has its current allele replaced by another
randomly-generated allele (a facility index), subject to the
restriction that the new facility index is not present in the
current genotype of the individual.

3.6 HEURISTIC HYPERMUTATION

This is a new heuristic operator proposed in this work. It
is based on knowledge about the problem being solved.

This operator is applied right after the random generation
of the initial population, and after that it is applied with a
fixed probability (e.g. 0.5%) to each iteration of the
steady-state method (i.e. each selection of two parents,
possibly followed by crossover and conventional
mutation). This operator starts by randomly selecting a
percentage (e.g. 10%) of the individuals of the population.
Then it tries to improve the fitness of each of the selected
individuals as follows. For each gene of the individual, it
tries to replace its facility index by each facility index that
is not currently present in the genotype of the individual.
For each gene, the replacement that most improves the
individual’s fitness is performed. Note that this is a very
computationally expensive operator, since each time it is
applied a large number of fitness functions needs to be
performed. The cost-effectiveness of this application-
specific, computationally-expensive operator will be
evaluated in section 4.

More precisely, the heuristic hypermutation operator
proposed in this work is implemented as follows:

Procedure HYPERMUTATION:

Step 1.

Randomly select a subset of 10% of the individuals
from the entire population.

Step 2.

FOR EACH individual X selected in Step 1 DO

Let H be the set of facility indexes that are not
currently present in the genotype of individual X

FOR EACH facility index “i” included in set H DO

BEST = X

FOR EACH facility index “j” that is currently
present in the genotype of the individual X DO

Let Y be a new individual with the set of
facilities given by: (X – {j}) ∪ {i}

Calculate the fitness of Y

If fitness(Y) < fitness(BEST) then

BEST = Y

END FOR

If fitness(BEST) < fitness(X) then

X = BEST

END FOR

Insert the new X into the population, replacing the
old X

END FOR

To illustrate the use of the hypermutation operator,
consider a very simple example with only 5 facilities,
labeled {1, 2, 3, 4, 5}, out of which we want to select 3
medians. Consider an individual X, selected to undergo
hypermutation, containing the facilities {1, 4, 5}. Hence,

the set H is the set {2, 3}, and BEST = X = {1, 4, 5}. The
algorithm first let j = 2, so that the following new
individuals are evaluated: {2, 4, 5}, {1, 2, 5} and {1, 4,
2}. Suppose the best of these 3 individuals is {1, 2, 5},
which is also better than the original {1, 4, 5}. Then the
algorithm let BEST = {1, 2, 5}. At this point the algorithm
let j = 3, so that the following new individuals are
evaluated: {3,2, 5}, {1, 3, 5}, {1, 2, 3}. Suppose the best
of these 3 individuals is {3,2,5}, but this individual is not
better than the previously best individual {1,2,5}. Then
BEST remains associated with the individual {1,2,5}. At
this point all indexes in H have been tried, so the current
value of BEST, {1,2,5}, replaces the original individual X
in the population. This process is performed for each
individual undergoing hypermutation.

4 COMPUTATIONAL RESULTS

As mentioned earlier, the problem being solved consists
of selecting 26 medians out of 43 facilities. Therefore,

there are 26
43C = 421,171,648,758 (roughly 421 billion)

candidate solutions.

The proposed GA was evaluated by comparing it with
another heuristic algorithm developed for the problem,
namely a tabu search algorithm. The tabu search
algorithm used here is our implementation of the
algorithm proposed by (Glover, personal communication).
In essence, this tabu search algorithm works as follows.

Consider the set V of all candidate facilities and Vp ⊂ V,
|Vp| = p, the initial set of randomly-selected medians. Each
“move” (operator) of the tabu search is a procedure that
consists of adding (ADD), removing (REMOVE) or
swapping (SWAP) in Vp the median that leads to the best
(smallest) value of the objective function (2.1). The
moves of adding, removing and swapping are sequentially
performed, so that the number of medians in the set Vp,
will vary in the range: p - 1 ≤ |Vp| ≤ p + 1.

This phenomenon is called “strategic oscillation”. It helps
to avoid a convergence to a local optimum.

The ADD, REMOVE and SWAP moves are implemented
as follows:

Procedure ADD:

Select a candidate facility from {V – Vp} which when
added to Vp results in the best possible value of
solution. Then add this candidate facility to Vp. Note
that each ADD move considers |V – Vp| facilities as
candidate to be added to the current solution (i.e. 17
or 18 facilities for the real-world problem addressed in
this work).

Procedure REMOVE:

Select a median from Vp which when removed from
Vp results in the best possible value of solution. Then
move this median into {V – Vp} (removing it from
Vp). Note that each REMOVE move considers |Vp|
medians as candidate to be removed from the current

solution (i.e. 26 or 27 medians for the real-world
problem addressed in this work).

Procedure SWAP:

Select two facilities, one median from Vp and one
facility from {V – Vp}, which, when swapped, result
in the greatest improvement in the feasible solution
value (all possible pair-wise exchanges are
considered). Each SWAP move considers |Vp| x |V –
Vp| pairs of facilities as candidate to be swapped (i.e.
26 x 17 = 442 candidate pairs for the real-world
problem addressed in this work).

A tabu list memorizes the number of the iteration in
which each median was added to a solution. During a
certain number of iterations (called tabu tenure), it is
forbidden to re-insert that median to the current solution,
i.e. the corresponding move is a tabu (forbidden) move.
The aspiration criterion used consists of allowing the tabu
restriction to be ignored if the quality of the new solution
produced by a tabu move is better than the quality of the
best solution generated up to now by the search.

For a comprehensive, detailed discussion about tabu
search in general the reader is referred to the book by
Glover and Laguna (1997).

The experiments involved a comparison between two
versions of Cap-p-Med-GA and the above-described tabu
search algorithm. The first version of Cap-p-Med-GA is a
full version of the algorithm, using all the genetic
operators described in section 3. This version can be
considered a hybrid GA/local search algorithm, since the
heuristic hypermutation operator effectively incorporates
problem-dependent knowledge into the GA. By contrast,
the second version of Cap-p-Med-GA is a pure GA,
which was obtained by simply switching off the heuristic
hypermutation operator - i.e. this operator is never
applied. In other words, it uses all the genetic operators
described in section 3 except the heuristic hypermutation
operator. This second version of Cap-p-Med-GA was
included in our experiments to evaluate the cost-
effectiveness of our proposed heuristic hypermutation
operator in a controlled manner.

All results reported in this section were obtained on a
Pentium III PC with 550MHz and 128 Mbytes of RAM.
In order to make the comparison between the three
algorithms (the two versions of Cap-p-Med-GA and the
tabu search) as fair as possible, we have carefully
determined the number of iterations performed by each
algorithm in such a way that all the three algorithms
evaluate roughly the same number of candidate solutions.
This is fair because in the three algorithms the majority of
processing time is by far taken by candidate-solution
evaluation. More precisely, the algorithms’ parameters
determining the number of evaluated candidate solutions
were set as follows:

Cap-p-Med-GA with heuristic hypermutation:

Population Size = 100
Number of iterations = 1000

Probability of conventional mutation = 1%
Probability of heuristic hypermutation = 0.5%
Number of individuals that are selected for undergoing
hypermutation = 10% of Population Size = 10

Cap-p-Med-GA without heuristic hypermutation:

Population Size = 100
Number of iterations = 12100
Probability of conventional mutation = 1%

Tabu Search

Number of iterations = 150
Tabu tenure = 10

Note that Cap-p-Med-GA without heuristic
hypermutation performs many more iterations than Cap-
p-Med-GA with heuristic hypermutation, to compensate
for the fact that, when heuristic hypermutation is applied
at a given iteration, a very large number of candidate
solutions are evaluated in that iteration. The small number
of iterations of tabu search also reflects that fact that in a
single iteration of the search (consisting of all possible
adding, removing and swapping moves) many different
candidate solutions are evaluated.

The computational results obtained by the three
algorithms are reported in Table 4.1.

Table 4.1: Computational Results

GA with
heuristic

hypermutat.

GA without
heuristic

hypermutat.

Tabu

search

No. of eval.
solutions 24,200 24,300 24,301

run time 01:43:34 01:43:21 01:23:37

average
distance 2.33 Km 2.40 Km 2.37 Km

total
distance 45,999 Km 47,313 Km 46,660 Km

% nearest
facility 83% 79% 82%

The first row of Table 4.1 indicates the number of
candidate solutions evaluated by each algorithm. The
second row indicates the run time taken by each
algorithm, in the format hours:minutes:seconds. Note that
the three algorithms had about the same run time. This is
a result of our having carefully determined the number of
iterations of each algorithm so that each one evaluates
roughly the same number of candidate solutions, as
mentioned above. Therefore, a comparison among the
three algorithms with respect to the quality of their
produced solution is fair. The other rows of Table 4.1 are
indicators of quality of the produced solution, as follows.

The third and fourth rows report respectively the average
and total distance traveled by the students, measured in
Km. The distance traveled by each student is the distance
between the student’s home and the facility (median) to
which the student was assigned. The average distance is
simply the total distance traveled by all 19710 students
divided by 19710. The fifth row reports the percentage of
students that were assigned to the facility that is indeed
the facility nearest to the student’s home, which is the
ideal assignment for a student. Overall the three
algorithms did a good job, managing to assign about 80%
of the students to their ideal (nearest) facility.

With respect to both the minimization of average (or
total) distance traveled by students and maximization of
the percentage of students assigned to their nearest
facility, the best algorithm was Cap-p-Med-GA with the
heuristic hypermutation operator. The second best
algorithm was tabu search. The worst algorithm was Cap-
p-Med-GA without the heuristic hypermutation operator.
Therefore, these results are evidence (in this application)
for the cost-effectiveness of extending a conventional GA
with a problem-dependent, heuristic operator.

5 RELATED WORK

Hosage and Goodchild (1986) (H&G) seem to have been
the first researchers to develop a GA for the p-median
problem. They used a simple GA, with conventional
genetic operators. Each candidate solution was
represented by a binary string, where each bit corresponds
to a facility index. Each allele (1 or 0) indicates whether
or not the corresponding facility is selected as a median.
If the number of bits set to “1” is different from p the
solution is deemed invalid and a penalty (proportional to
the extent of restriction violation) is applied to the fitness
of the individual. H&G tested their GA in a problem
where the goal was to select 3 medians out of 20 facilities
(i.e. n = 20, p = 3). They used a population of 25
individuals (P = 25), and did experiments with different
numbers of generations, varying from 120 to 210. In
experiments with randomly-generated problem instances,
the GA obtained the optimal solution in about 70% and
90% of the problem instances, when running the GA for
120 and 210 generations, respectively. At first glance
these are good results. However, the GA uses a classic
binary individual representation, which is not very
suitable for this problem. It wastes memory and
processing time. The problem instances used to evaluate

the algorithm had only 1140 candidate solutions (3
20C).

However, the GA generates and evaluates 2905 and 5065
solutions, when it is run for 120 and 210 generations,
respectively. Although there are only 1140 candidate
solutions, the search space for the GA is 220 (all possible
binary strings of length 20). Roughly 99.9% of the
possible individuals are invalid solutions, and the GA
wastes time analyzing them. Our work clearly avoids this
problem, since the individual representation used in our

work considers only candidate solutions with exactly the
desired number of medians.

Dibble and Densham (D&D) (1993) proposed a GA with
an individual representation more suitable for the p-
median problem. Each individual has exactly p genes, and
each gene represents a facility index. This is the same
representation as the one used in our work. They used
only conventional genetic operators. By contrast, we have
developed a problem-dependent operator for the p-median
problem, as discussed earlier. D&D applied their GA to a
problem where the goal was to select 9 medians among
150. They used population size P = 1000 and 150
generations. They compared the results of their GA with
the results obtained by the heuristic algorithm of Teitz
and Bart (1968), which is a heuristic algorithm
specialized for the p-median problem. Although the GA
took a considerably longer processing time, both
algorithms produced similar solutions.

Moreno-Perez et al. (1994) also developed a GA for the
p-median problem. The individual representation is the
same as the one used by D&D. They used only
conventional genetic operators. Once again, this is in
contrasts with our work, which proposed a problem-
dependent operator for the p-median problem, as
discussed earlier. One distinguishing feature of the GA
proposed by Moreno-Perez et al. is that they used multiple
population groups (colonies), which exchange candidate
solutions with each other (via migration). The authors
claim that this method helps to avoid premature
convergence to a local optima. In the above reference the
authors did not compare their proposed GA with any
other algorithm, so it is difficult to say how cost-effective
the algorithm is.

Erkut et al. (2001) also developed a GA for the p-median
problem. Each individual also has exactly p genes
representing a set of p selected medians. In addition to
conventional genetic operators, they use the “String-of-
Change Operator” independently suggested by Booker
(1987) and Fairley (1991). This operator uses a string of
change, which consists of a binary vector generated for
each parent of a crossover. The parents are passed to an
exclusive OR (XOR) operator. The expression a XOR b is
defined as 1 if a ≠ b and 0 otherwise. For instance,
applying XOR to the parents [10, 9, 12, 24, 7, 3] and [10,
9, 7, 8, 12, 3] one would obtain the binary vector [0, 0, 1,
1, 1, 0]. In order to avoid that crossover produces
offspring identical to the parents, only the genes between
the first “1” and the last “1” in the parents can be selected
as crossover points.

The basic idea of this string-of-change operator is
conceptually similar to the exchange vector used in our
work. However, we believe our exchange vector is more
suitable for the p-median problem, based on the following
rationale. In order to identify the facility indexes that can
be swapped between the parents, our exchange vector
mechanism considers that each individual contains a
(unordered) set of facility indexes. By contrast, the string-
of-change, XOR mechanism considers that each

individual contains a (ordered) list of facility indexes. For
instance, in the above example, the facility indexes 12 and
7 were identified as possible crossover points by the
string-of-change operator, despite the fact that they are
present in both parents, since the position of their
occurrence in the genotype is different in the two parents.
By contrast, those two facility indexes would not be
included in our exchange vector, since they occur in both
parents. After all, the position of a facility index in the
genotype is arbitrary, from the viewpoint of specifying a
candidate solution. E.g., the set of medians {7, 12}
represents the same solution as the set of medians {12, 7},
which is not recognized by the string-of-change operator.

6 CONCLUSIONS AND FUTURE WORK
We have proposed a GA for the capacitated p-median
problem, and have applied it to a real-world problem with
a quite large search space, containing roughly 421 billion
(4,21 x 1011) candidate solutions. Our GA uses an
individual representation and genetic operators developed
specifically for the p-median problem.

In particular, we have proposed a heuristic hypermutation
operator, to be used in addition to crossover and
conventional mutation operators. We did experiments
comparing two versions of our GA, one with this new
operator and the other one without it, with a tabu search
algorithm. The results show that: (a) the tabu search
algorithm outperforms the GA without the heuristic
hypermutation operator; but (b) the GA with the proposed
heuristic hypermutation operator outperforms the tabu
search algorithm. These results are evidence for the cost-
effectiveness of the proposed heuristic operator, since all
three algorithms evaluated roughly the same number of
candidate solutions during their search. The user
considered the solution produced by the GA (with the
heuristic operator) very satisfactory.

Some directions for future research are as follows.
Concerning the p-median problem, it seems worthwhile to
develop new algorithms for this problem based on
relatively new heuristic algorithms, such as Scatter
Search and Path Relinking. These new heuristic
algorithms, also related to evolutionary algorithms, have
produced better results than GAs and tabu search in some
combinatorial optimization algorithms (Glover, 1999).

Concerning the real-world application problem addressed
in this paper, it would be interesting to extend the
problem definition to find high-quality solutions (i.e.
keeping the distance traveled by the students as small as
possible) with a smaller number of selected medians. This
would lead to a reduction in the costs of application of the
university’s admission exam, without increasing too much
the distance traveled by the students. Going further, a
more elaborated algorithm could perhaps directly consider
the trade-off between minimizing the distance traveled by
the students (which suggests selecting a larger number of
medians) and minimizing the costs of the admission exam
(which suggests selecting a smaller number of medians).

Finally, from a GA viewpoint, an interesting research
direction is to investigate whether the heuristic
hypermutation operator proposed in this work can be
adapted to work, in a cost-effective manner, with other
combinatorial optimization problems.

ACKNOWLEDGMENTS

We are very grateful to Fred Glover and Erhan Erkut, for
having sent us papers on tabu search and GA algorithms
applied to the p-median problem. In particular, as
mentioned in the text, Fred Glover suggested us the tabu
search algorithm implemented in this work.

REFERENCES

BOOKER, L. B. Improving Search in Genetic
Algorithms. In: Genetic Algorithms and Simulated
Annealing (Edited by L. Davis), 61-73, Morgan
Kauffmann, Los Altos, CA, 1987.

CORREA, Elon S. Algoritmos Geneticos e Busca Tabu
Aplicados ao Problema das P-Medianas. (In Portuguese)
M.Sc. Mestrado em Metodos Numericos em Engenharia.
Universidade Federal do Parana (UFPR). Curitiba,
Brazil. 2000.

DIBBLE, C.; DENSHAM, P. J. Generating Interesting
Alternatives in GIS and SDSS Using Genetic Algorithms.
GIS/LIS symposium, University of Nebraska, Lincoln,
1993.

ERKUT, Erhan; BOZKAYA, Burçin; ZHANG, Jianjun.
An Effective Genetic Algorithm for the p-median
Problem. (In press.) 2001.

FARLEY, A. Comparison of Choosing the Crossover
Point in the Genetic Crossover Operation. Technical
Report. Dept. of Computer Science, University of
Liverpool, 1991.

GLOVER, Fred; LAGUNA, Manuel. Tabu Search.
Kluwer Academic Publishers, University of Colorado,
1997.

GLOVER, Fred. Scatter Search and Path Relinking.
Graduate School of Business, University of Colorado,
Boulder, Technical Report, 1999.

GLOVER, Fred. Tabu Search for the p-median Problem.
(Unpublished paper).

GOLDBERG, David E. Genetic Algorithms in Search,
Optimization and Machine Learning. Menlo Park, CA:
Addison-Wesley, 1989.

GOODCHILD, M. F.; NORONHA, V. Location-
Allocation for Small Computers. University of Iowa,
Monograph number 8, 1983.

HOSAGE, C. M.; GOODCHILD, M. F. Discrete Space
Location-Allocation Solutions from Genetic Algorithms.
Annals of Operational Research, 6, 35-46, 1986.

KARIV, O.; HAKIMI, S. L. The p-median problems. In:
An Algorithmic Approach to Network Location
Problems. SIAM Journal on Applied Mathematics,

Philadelphia, 37, 539-560, 1979.

MAYERLE, S. F. Um algoritmo genetico para o
problema do caixeiro viajante. (In Portuguese) Technical
Report. Florianopolis-SC, Brazil: UFSC, 1996.

MORENO-PEREZ, J. A.; MORENO-VEGA, J. M.;
MLADENOVIC, N. Tabu Search and Simulated
Annealing in p-median Problems. Talk at the Canadian
Operational Research Society Conference, Montreal,
1994.

REVELLE, C.; SWAIN, R. Central Facilities Location.
Geographical Analysis, 2, 30-42, 1970.

TAITZ, M. B.; BART, P. Heuristic Concentration: Two-
Stage Solution Construction. Operational Research
Society, London, 16, 955-961, 1968.

