University of

"1l Kent Academic Repository

Johnson, Colin G. (2001) Finding Diverse Examples with Genetic Algorithms.
In: John, Robert and Birkenhead, Ralph, eds. Developments in Soft Computing.
Advances in Soft Computing . Physica, Heidelberg, Germany, pp. 92-99.

ISBN 978-3-7908-1361-6.

Downloaded from
https://kar.kent.ac.uk/13591/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-3-7908-1829-1 11

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/13591/
https://doi.org/10.1007/978-3-7908-1829-1_11
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Finding diverse examples using
genetic algorithms.

Colin G. Johnson.

Computing Laboratory.

University of Kent at Canterbury.
Canterbury, Kent, CT2 7NX, England.
Email: C.G. Johnson@ukc.ac.uk

1 Introduction

The problem of finding qualitative examples is an interesting yet little studied
machine learning problem. Take a set of objects, O and a set of classes C,
where each object fits into one and only one class. Represent this classification
by a total function f: O — C. We assume that |range(f)| < |O].

Sometime this problem is fairly trivial, e.g. is the classification is repre-
sented as a database or if there is an easy way to calculate a pseudo-inverse
of f. Also in some cases range(f) is a small subset of C, so targeting members
of C is infeasible. One promising approach is to search O.

Clearly in doing this we are assuming that there some kind of underlying
structure to f. One approach would be to attempt to uncover this structure
in an explicit, symbolic form. However in this paper we use heuristic search
methods which search this space without using explicit representations of
which areas of the search space are fruitful, et cetera.

There are a number of variants on this problem. In some problem areas
we will know in advance how many classes there are, which will give us a
stopping criterion, otherwise we will have to use traditional stopping criteria
such as GA convergence. In some problem areas the classes will be defined
with respect to some metric on C rather than defined in advance.

2 Motivations.

The main motivation for studying this problem is that it occurs in a wide va-
riety of situations, and that a general heuristic for problems of this type would
benefit many different problems (Johnson, 2000). Here are some examples.

Consider creating test data for computer programs. We would like to
create one example of a set of data that tests each point in a computer
program, for example a set of data that ensures coverage of all lines in a
program, or one which ensures that all branches in a program are visited.

A problem with text-based information retrieval systems (Belew, 2000;
van Rijsbergen, 1979) is that a single search term can match a number of
qualitatively different kinds of object. If we search for a particular person’s

name, then we might get lots of information about other people with the
same name. Careful specification of additional search terms can help, but it
can be difficult to find terms or they can over-restrict the search. One idea
is to guide the search by looking for pages which are diverse in comparison
to currently found documents, and then present the user with a number of
distinct examples of documents satisfying their search criteria.

Knot theory is a topic in mathematics which studies the topology of closed
loops in space (Adams, 1994; Murasugi, 1996). One common way to study
these objects is to investigate the properties of 2D diagrams which are pro-
jections of the 3D loops (figure 1). A well-known problem in this subject is
finding an example diagram for each of the topologically distinct 3D struc-
tures (Hoste, Thistlethwaite, & Weeks, 1998).

3-D
%
\/ v \Z

GEmIETT e
//@ "/a(//(a/%am

Fig. 1. A knot diagram from a three-dimensional loop.

Another scientific problem occurs in bioinformatics (Attwood & Parry-
Smith, 1999). Imagine that we have a large set of rules which tell us how 3D
chemical structures of some type are formed from their primary structure.
We are interested only in the shape that the molecule presents to the outside
world, and we would like to do some experiments in the lab with these chem-
icals. However there are many possible primary structures for each shape,
and we would like to find one of each.

A final application is in the CAD in the broadest sense. Evolution can
be used to search a space of designs, including geometrical design, design
of networks, architecture and design of sound (Bentley, 1999). One way in
which qualitative example finding could be used would be to give the user an
overview of the design space by picking out a wide diversity of examples.

3 Review.

In this paper we shall use a genetic algorithm (GA) to search for structured
examples. Structured diversity which exploits qualitatively distinct niches in
a population is a feature which evolution is good at producing, so GAs are a
promising basis for developing qualitative example finding algorithms.

Note that this is different from multimodal optimization using GAs (as
surveyed in (Mafoud, 1997)). In multimodal optimization the majority of the
effort is in improving solutions within the classes, whereas in our problems
moving between the classes is the most important part of the algorithm.
There is some common ground with work in AT on computational creativity
(Boden, 1990; Partridge & Rowe, 1994), however in our system novelty is a
predefined characteristic, not something that needs to be ascertained by the
system.

4 Requirements for an algorithm.

In this problem there is no way to extrinsically assign a measure of quality
to a solution, i.e. the individual solutions do not have a fitness. In order to
find solutions to these kinds of problems we might choose to assign a fitness,
either by setting intermediate targets or by assigning fitness “on the fly” in
each generation, or we might change the selection scheme entirely.

This lack of an external fitness measure means that asking how the algo-
rithms presented below compare with “traditional” GAs is not a meaningful
question. GAs are not in themselves optimizers—instead they are robust
adaptive systems, variants of which (GA function optimizers—GAFOs) can
be used for optimization (De Jong, 1993; Harvey, 1997). This kind of ro-
bust adaptivity can be used to apply GAs to problems where the idea of an
optimum is absent.

Some basic features of an algorithm for solving such problems:

e Some “substructures” will be capable of being built upon to form objects
from many different classes. The algorithm must be able to exploit the
fruitful substructures that it “finds”, either symbolically or subsymboli-
cally

e The algorithm must be capable of moving quickly onto other areas of
search space once an area has been mined out.

e Similarly, the algorithm must recognize when it is in an unproductive
area of the search space and move onto other areas.

e The algorithm should not return to unproductive or mined out areas of
the search space.

A basic scheme that we can adopt is to use the traditional GA recombi-
nation and mutation operators but to create new selection scheme. This is
based on an on-the-fly scheme which gives a fitness value to each individual

in each generation, based on whether that individual has given evidence that
it contains fruitful substructures on which novel solutions can be built.

5 Some test problems.

In this paper we present results from two test problems. In the first problem
(the grid problem) the solutions consist of strings of letters chosen from the set
{L,R,U, D}. The classification is based around a 100 x 100 grid of numbers
(figure 2), where most of the grid is filled with the number 1, except for four
21 x 21 regions, each square of which is filled with a different number. For a
given solution string we begin by at the point (50, 50) in the grid, and move
[L]eft, [R]ight, [U]p or [D]Jown as we read along the string. The square in
which we end up is the class to which that string belongs. If the string ends
up outside of the grid it is assigned the class 1.

100

234567...
42434445, ..

N e

ool 1420

Fig. 2. The grid, with two sample solution paths.

The second problem is a variant on the knot problem described earlier.
In this problem we construct knots by braids, i.e. sets of strings which run
downwards and which cross each other at a finite number of points. We
can turn these into knots by joining up the strings with loops (figure 3).
Genetic operators are recombination by cutting and rejoining two braids, and
mutation by replacing one crossing by a random other crossing at the same
position (figure 3). We can associate a polynomial (the Jones polynomial) to
each braid (Adams, 1994), and search for one example of a braid for each
valid polynomial®.

! Thanks to Hugh Morton, University of Liverpool, for supplying computer pro-
grams for the calculation of knot invariants.

Il 4l
HHHL

(a) A braid. (b) The braid becomes (c) Recombinations on braids (d) Mutating braids
aknot

-l

(

Fig. 3. Operations on braids.

6 Results.

We have been experimenting with a number of variations of genetic algo-
rithms for the test problem. As discussed above there is no extrinsic fitness
function, therefore we create a fitness measure on the fly in each generation.

6.1 On the fly fitness allocation.

The simplest way to do this is to give a score of 1 to those members of the cur-
rent population which are “novel”, defined to mean that their classifications
have not occurred in any previous generations, and 0 otherwise. We have also
investigated a variation on this, which attempts to strengthen those individu-
als which have fruitful substructures within them by assigning a higher score
to those solutions which come from parent solutions that have produced a
diverse range of solutions. Firstly we create a new population by crossover
and mutation, using the fitness values generated in the previous generation.
We then tally up the total number of novel children had by each parent, and
then assign this total score to each of their children (figure 4). This is then
used as a fitness measure in a traditional GA framework. Comparisons are
given in figure 5(c).

6.2 Crossover with random strings.

In some experiments we introduced a number of random strings into the pop-
ulation at each generation. The aim of this was to see whether these strings
would crossover with other strings which contain good substructures but help
to exploit those substructures. This was tried for a number of problems and
proved unsuccessful—see figure 5(a) for the results for the grid problem.

6.3 Mutation rates.

Experiments have been carried out with a number of different mutation rates
(figure 5(b)). Over a number of experiments, including the one outlined here,
the most successful mutation rate was typically much higher than the muta-
tion rate for GAs used for optimization, with a mutation rate of 0.1 being

Stage 1. Identify the novel solutions
&S J \/ e
Stage 2. Pass fitness back to parents

0 1 2 2
& J \/ ®
Stage 3. Pass the accumulated fitness back to the children

2
-

WURA

Fig. 4. An algorithm for enhancing fruitful substructures. Those structures which
come from parents which have the most number of novel children receive the highest
fitness.

best contrasted with rates of 0.01-0.001 (Mitchell, 1996) or the reciprocal
of bitstring-length (Béck, 1996) for GAFOs. This is likely to be caused by
the mutation being a major source of the ability of this algorithm to find
novel solutions based around existing ones, rather than being a “background
operator” to prevent convergence as with GAFOs.

6.4 Comparisons with random search.

Figures 5(d) and 5(e) present comparisons against random search for these
two test problems. One difficulty here is that random search gives a good
performance anyway for the grid problem, so a major next step in this kind
of work is finding better test problems which are harder to solve by brute
force methods. There is a more general difficulty in presenting results on
problems such as these. An aim of the research is to demonstrate that general
heuristics can be used for these kinds of problems, but criteria for success are
problem dependent, but for test problems we have no criteria for success and
comparison with random search is not ideal.

1800 T T T T T T T T 1400

1600
1200 04

1400

1200

Number of nove

o 20 20)) 100 120 140 10 180 1 20 a0 60 80 100 120 140 160
‘Generations. Generations

(a) Random strings (grid) (b) Mutation rates (grid)

- 1800

1600 3.way passback

1400 P // 7 simple selection

o

0 &

1/ |

(c) Selection schemes (grid) (d) Comparison with random (grid)

-~ fandom search
oA

o 20 0 60 80 100 120 140 160
Generation

(e) Comparison with random (braid)

Fig. 5. Results.

7 Future work.

Other variants on the algorithm are worthy of further investigation, e.g. pre-
liminary experiments on using hypermutation to prevent the algorithm get-
ting stuck when the number of novel solutions is small have proven fruitful.
Future work will include looking for rigourous, tunable test problems, e.g.
analogies with royal road functions (Mitchell, Forrest, & Holland, 1992), and
deceptive problems (Goldberg, 1987); theoretical analyses, e.g. investigating
how Holland’s schema theorem (Holland, 1975) might explain the discov-
ery and exploitation of fecund substructures; and application to real-world

problems.

References

Adams, C. A. (1994). The knot book. W.H. Freeman.

Attwood, T., & Parry-Smith, D. (1999). Introduction to bioinformatics.
Addison Wesley Longman.

Béck, T. (1996). Evolutionary algorithms in theory and practice. Oxford
University Press.

Belew, R. K. (2000). Finding out about : information retrieval and other
technologies for seeking knowledge. Cambridge University Press. (In
preparation)

Bentley, P. J. (Ed.). (1999). FEvolutionary design by computers. Academic
Press.

Boden, M. (1990). The creative mind: Myths and mechanisms. Abacus.

De Jong, K. (1993). Genetic algorithms are NOT function optimizers. In
L. Whitley (Ed.), Foundations of genetic algorithms 2 (pp. 5-17). Mor-
gan Kauffmann.

Goldberg, D. E. (1987). Simple genetic algorithms and the minimal decep-
tive problem. In L. D. Davis (Ed.), Genetic algorithms and simulated
annealing. Morgan Kaufmann.

Harvey, I. (1997). Cognition is not computation: Evolution is not optimisa-
tion. In W. Gerstner, A. Germond, M. Hasler, , & J.-D. Nicoud (Eds.),
Proceedings of the seventh international conference on artificial neural
networks (pp. 685—690). Springer-Verlag.

Holland, J. H. (1975). Adaptation in natural and artificial systems. MIT
Press. (Second edition 1992)

Hoste, J., Thistlethwaite, M., & Weeks, J. (1998). The first 1,701,936 knots.
The Mathematical Intelligencer, 20(4), 33-48.

Johnson, C. G. (2000). Understanding complex systems through examples:
a framework for qualitative example finding. In P. A. Gelepithis (Ed.),
Complez intelligent systems. Kingston University.

Mafoud, S. W. (1997). Niching methods. In T. Bick, D. B. Fogel,
& 7. Michalewicz (Eds.), Handbook of evolutionary computation (pp.
C6.1.1-C6.1.4). Oxford University Press / Institute of Physics.

Mitchell, M. (1996). An introduction to genetic algorithms. Bradford
Books/MIT Press.

Mitchell, M., Forrest, S., & Holland, J. (1992). The royal road for genetic
algorithms : Fitness landscapes and GA performance. In F. Varela
& P. Bourgine (Eds.), Towards a practice of autonomous systems :
Proceedings of the first european conference on artificial life. MIT Press.

Murasugi, K. (1996). Knot theory and its applications. Birkh&user.

Partridge, D., & Rowe, J. (1994). Computers and creativity. Intellect Books.

van Rijsbergen, C. J. (1979). Information retrieval. London: Butterworths.

