
Johnson, Colin G. (2001) Finding Diverse Examples with Genetic Algorithms. 
 In: John, Robert and Birkenhead, Ralph, eds. Developments in Soft Computing. 
Advances in Soft Computing . Physica, Heidelberg, Germany, pp. 92-99. 
ISBN 978-3-7908-1361-6. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/13591/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1007/978-3-7908-1829-1_11

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/13591/
https://doi.org/10.1007/978-3-7908-1829-1_11
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Finding diverse examples usinggeneti algorithms.Colin G. Johnson.Computing Laboratory.University of Kent at Canterbury.Canterbury, Kent, CT2 7NX, England.Email: C.G.Johnson�uk.a.uk1 IntrodutionThe problem of �nding qualitative examples is an interesting yet little studiedmahine learning problem. Take a set of objets, O and a set of lasses C,where eah objet �ts into one and only one lass. Represent this lassi�ationby a total funtion f : O ! C. We assume that jrange(f)j � jOj.Sometime this problem is fairly trivial, e.g. is the lassi�ation is repre-sented as a database or if there is an easy way to alulate a pseudo-inverseof f . Also in some ases range(f) is a small subset of C, so targeting membersof C is infeasible. One promising approah is to searh O.Clearly in doing this we are assuming that there some kind of underlyingstruture to f . One approah would be to attempt to unover this struturein an expliit, symboli form. However in this paper we use heuristi searhmethods whih searh this spae without using expliit representations ofwhih areas of the searh spae are fruitful, et etera.There are a number of variants on this problem. In some problem areaswe will know in advane how many lasses there are, whih will give us astopping riterion, otherwise we will have to use traditional stopping riteriasuh as GA onvergene. In some problem areas the lasses will be de�nedwith respet to some metri on C rather than de�ned in advane.2 Motivations.The main motivation for studying this problem is that it ours in a wide va-riety of situations, and that a general heuristi for problems of this type wouldbene�t many di�erent problems (Johnson, 2000). Here are some examples.Consider reating test data for omputer programs. We would like toreate one example of a set of data that tests eah point in a omputerprogram, for example a set of data that ensures overage of all lines in aprogram, or one whih ensures that all branhes in a program are visited.A problem with text-based information retrieval systems (Belew, 2000;van Rijsbergen, 1979) is that a single searh term an math a number ofqualitatively di�erent kinds of objet. If we searh for a partiular person's



name, then we might get lots of information about other people with thesame name. Careful spei�ation of additional searh terms an help, but itan be diÆult to �nd terms or they an over-restrit the searh. One ideais to guide the searh by looking for pages whih are diverse in omparisonto urrently found douments, and then present the user with a number ofdistint examples of douments satisfying their searh riteria.Knot theory is a topi in mathematis whih studies the topology of losedloops in spae (Adams, 1994; Murasugi, 1996). One ommon way to studythese objets is to investigate the properties of 2D diagrams whih are pro-jetions of the 3D loops (�gure 1). A well-known problem in this subjet is�nding an example diagram for eah of the topologially distint 3D stru-tures (Hoste, Thistlethwaite, & Weeks, 1998).

Fig. 1. A knot diagram from a three-dimensional loop.Another sienti� problem ours in bioinformatis (Attwood & Parry-Smith, 1999). Imagine that we have a large set of rules whih tell us how 3Dhemial strutures of some type are formed from their primary struture.We are interested only in the shape that the moleule presents to the outsideworld, and we would like to do some experiments in the lab with these hem-ials. However there are many possible primary strutures for eah shape,and we would like to �nd one of eah.A �nal appliation is in the CAD in the broadest sense. Evolution anbe used to searh a spae of designs, inluding geometrial design, designof networks, arhiteture and design of sound (Bentley, 1999). One way inwhih qualitative example �nding ould be used would be to give the user anoverview of the design spae by piking out a wide diversity of examples.



3 Review.In this paper we shall use a geneti algorithm (GA) to searh for struturedexamples. Strutured diversity whih exploits qualitatively distint nihes ina population is a feature whih evolution is good at produing, so GAs are apromising basis for developing qualitative example �nding algorithms.Note that this is di�erent from multimodal optimization using GAs (assurveyed in (Mafoud, 1997)). In multimodal optimization the majority of thee�ort is in improving solutions within the lasses, whereas in our problemsmoving between the lasses is the most important part of the algorithm.There is some ommon ground with work in AI on omputational reativity(Boden, 1990; Partridge & Rowe, 1994), however in our system novelty is aprede�ned harateristi, not something that needs to be asertained by thesystem.4 Requirements for an algorithm.In this problem there is no way to extrinsially assign a measure of qualityto a solution, i.e. the individual solutions do not have a �tness. In order to�nd solutions to these kinds of problems we might hoose to assign a �tness,either by setting intermediate targets or by assigning �tness \on the y" ineah generation, or we might hange the seletion sheme entirely.This lak of an external �tness measure means that asking how the algo-rithms presented below ompare with \traditional" GAs is not a meaningfulquestion. GAs are not in themselves optimizers|instead they are robustadaptive systems, variants of whih (GA funtion optimizers|GAFOs) anbe used for optimization (De Jong, 1993; Harvey, 1997). This kind of ro-bust adaptivity an be used to apply GAs to problems where the idea of anoptimum is absent.Some basi features of an algorithm for solving suh problems:� Some \substrutures" will be apable of being built upon to form objetsfrom many di�erent lasses. The algorithm must be able to exploit thefruitful substrutures that it \�nds", either symbolially or subsymboli-ally� The algorithm must be apable of moving quikly onto other areas ofsearh spae one an area has been mined out.� Similarly, the algorithm must reognize when it is in an unprodutivearea of the searh spae and move onto other areas.� The algorithm should not return to unprodutive or mined out areas ofthe searh spae.A basi sheme that we an adopt is to use the traditional GA reombi-nation and mutation operators but to reate new seletion sheme. This isbased on an on-the-y sheme whih gives a �tness value to eah individual



in eah generation, based on whether that individual has given evidene thatit ontains fruitful substrutures on whih novel solutions an be built.5 Some test problems.In this paper we present results from two test problems. In the �rst problem(the grid problem) the solutions onsist of strings of letters hosen from the setfL;R;U;Dg. The lassi�ation is based around a 100� 100 grid of numbers(�gure 2), where most of the grid is �lled with the number 1, exept for four21� 21 regions, eah square of whih is �lled with a di�erent number. For agiven solution string we begin by at the point (50; 50) in the grid, and move[L℄eft, [R℄ight, [U℄p or [D℄own as we read along the string. The square inwhih we end up is the lass to whih that string belongs. If the string endsup outside of the grid it is assigned the lass 1.
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Fig. 2. The grid, with two sample solution paths.The seond problem is a variant on the knot problem desribed earlier.In this problem we onstrut knots by braids, i.e. sets of strings whih rundownwards and whih ross eah other at a �nite number of points. Wean turn these into knots by joining up the strings with loops (�gure 3).Geneti operators are reombination by utting and rejoining two braids, andmutation by replaing one rossing by a random other rossing at the sameposition (�gure 3). We an assoiate a polynomial (the Jones polynomial) toeah braid (Adams, 1994), and searh for one example of a braid for eahvalid polynomial1.1 Thanks to Hugh Morton, University of Liverpool, for supplying omputer pro-grams for the alulation of knot invariants.



(c) Recombinations on braids   (d) Mutating braids (b) The braid becomes
a knot

(a) A braid. Fig. 3. Operations on braids.6 Results.We have been experimenting with a number of variations of geneti algo-rithms for the test problem. As disussed above there is no extrinsi �tnessfuntion, therefore we reate a �tness measure on the y in eah generation.6.1 On the y �tness alloation.The simplest way to do this is to give a sore of 1 to those members of the ur-rent population whih are \novel", de�ned to mean that their lassi�ationshave not ourred in any previous generations, and 0 otherwise. We have alsoinvestigated a variation on this, whih attempts to strengthen those individu-als whih have fruitful substrutures within them by assigning a higher soreto those solutions whih ome from parent solutions that have produed adiverse range of solutions. Firstly we reate a new population by rossoverand mutation, using the �tness values generated in the previous generation.We then tally up the total number of novel hildren had by eah parent, andthen assign this total sore to eah of their hildren (�gure 4). This is thenused as a �tness measure in a traditional GA framework. Comparisons aregiven in �gure 5().6.2 Crossover with random strings.In some experiments we introdued a number of random strings into the pop-ulation at eah generation. The aim of this was to see whether these stringswould rossover with other strings whih ontain good substrutures but helpto exploit those substrutures. This was tried for a number of problems andproved unsuessful|see �gure 5(a) for the results for the grid problem.6.3 Mutation rates.Experiments have been arried out with a number of di�erent mutation rates(�gure 5(b)). Over a number of experiments, inluding the one outlined here,the most suessful mutation rate was typially muh higher than the muta-tion rate for GAs used for optimization, with a mutation rate of 0.1 being



Stage 1. Identify the novel solutions

Pass fitness back to parentsStage 2.

1 2

Stage 3. Pass the accumulated fitness back to the children
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Fig. 4. An algorithm for enhaning fruitful substrutures. Those strutures whihome from parents whih have the most number of novel hildren reeive the highest�tness.best ontrasted with rates of 0.01{0.001 (Mithell, 1996) or the reiproalof bitstring-length (B�ak, 1996) for GAFOs. This is likely to be aused bythe mutation being a major soure of the ability of this algorithm to �ndnovel solutions based around existing ones, rather than being a \bakgroundoperator" to prevent onvergene as with GAFOs.6.4 Comparisons with random searh.Figures 5(d) and 5(e) present omparisons against random searh for thesetwo test problems. One diÆulty here is that random searh gives a goodperformane anyway for the grid problem, so a major next step in this kindof work is �nding better test problems whih are harder to solve by brutefore methods. There is a more general diÆulty in presenting results onproblems suh as these. An aim of the researh is to demonstrate that generalheuristis an be used for these kinds of problems, but riteria for suess areproblem dependent, but for test problems we have no riteria for suess andomparison with random searh is not ideal.
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(e) Comparison with random (braid)Fig. 5. Results.7 Future work.Other variants on the algorithm are worthy of further investigation, e.g. pre-liminary experiments on using hypermutation to prevent the algorithm get-ting stuk when the number of novel solutions is small have proven fruitful.Future work will inlude looking for rigourous, tunable test problems, e.g.analogies with royal road funtions (Mithell, Forrest, & Holland, 1992), anddeeptive problems (Goldberg, 1987); theoretial analyses, e.g. investigatinghow Holland's shema theorem (Holland, 1975) might explain the disov-ery and exploitation of feund substrutures; and appliation to real-worldproblems.
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