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Finding diverse examples usinggeneti
 algorithms.Colin G. Johnson.Computing Laboratory.University of Kent at Canterbury.Canterbury, Kent, CT2 7NX, England.Email: C.G.Johnson�uk
.a
.uk1 Introdu
tionThe problem of �nding qualitative examples is an interesting yet little studiedma
hine learning problem. Take a set of obje
ts, O and a set of 
lasses C,where ea
h obje
t �ts into one and only one 
lass. Represent this 
lassi�
ationby a total fun
tion f : O ! C. We assume that jrange(f)j � jOj.Sometime this problem is fairly trivial, e.g. is the 
lassi�
ation is repre-sented as a database or if there is an easy way to 
al
ulate a pseudo-inverseof f . Also in some 
ases range(f) is a small subset of C, so targeting membersof C is infeasible. One promising approa
h is to sear
h O.Clearly in doing this we are assuming that there some kind of underlyingstru
ture to f . One approa
h would be to attempt to un
over this stru
turein an expli
it, symboli
 form. However in this paper we use heuristi
 sear
hmethods whi
h sear
h this spa
e without using expli
it representations ofwhi
h areas of the sear
h spa
e are fruitful, et 
etera.There are a number of variants on this problem. In some problem areaswe will know in advan
e how many 
lasses there are, whi
h will give us astopping 
riterion, otherwise we will have to use traditional stopping 
riteriasu
h as GA 
onvergen
e. In some problem areas the 
lasses will be de�nedwith respe
t to some metri
 on C rather than de�ned in advan
e.2 Motivations.The main motivation for studying this problem is that it o

urs in a wide va-riety of situations, and that a general heuristi
 for problems of this type wouldbene�t many di�erent problems (Johnson, 2000). Here are some examples.Consider 
reating test data for 
omputer programs. We would like to
reate one example of a set of data that tests ea
h point in a 
omputerprogram, for example a set of data that ensures 
overage of all lines in aprogram, or one whi
h ensures that all bran
hes in a program are visited.A problem with text-based information retrieval systems (Belew, 2000;van Rijsbergen, 1979) is that a single sear
h term 
an mat
h a number ofqualitatively di�erent kinds of obje
t. If we sear
h for a parti
ular person's



name, then we might get lots of information about other people with thesame name. Careful spe
i�
ation of additional sear
h terms 
an help, but it
an be diÆ
ult to �nd terms or they 
an over-restri
t the sear
h. One ideais to guide the sear
h by looking for pages whi
h are diverse in 
omparisonto 
urrently found do
uments, and then present the user with a number ofdistin
t examples of do
uments satisfying their sear
h 
riteria.Knot theory is a topi
 in mathemati
s whi
h studies the topology of 
losedloops in spa
e (Adams, 1994; Murasugi, 1996). One 
ommon way to studythese obje
ts is to investigate the properties of 2D diagrams whi
h are pro-je
tions of the 3D loops (�gure 1). A well-known problem in this subje
t is�nding an example diagram for ea
h of the topologi
ally distin
t 3D stru
-tures (Hoste, Thistlethwaite, & Weeks, 1998).

Fig. 1. A knot diagram from a three-dimensional loop.Another s
ienti�
 problem o

urs in bioinformati
s (Attwood & Parry-Smith, 1999). Imagine that we have a large set of rules whi
h tell us how 3D
hemi
al stru
tures of some type are formed from their primary stru
ture.We are interested only in the shape that the mole
ule presents to the outsideworld, and we would like to do some experiments in the lab with these 
hem-i
als. However there are many possible primary stru
tures for ea
h shape,and we would like to �nd one of ea
h.A �nal appli
ation is in the CAD in the broadest sense. Evolution 
anbe used to sear
h a spa
e of designs, in
luding geometri
al design, designof networks, ar
hite
ture and design of sound (Bentley, 1999). One way inwhi
h qualitative example �nding 
ould be used would be to give the user anoverview of the design spa
e by pi
king out a wide diversity of examples.



3 Review.In this paper we shall use a geneti
 algorithm (GA) to sear
h for stru
turedexamples. Stru
tured diversity whi
h exploits qualitatively distin
t ni
hes ina population is a feature whi
h evolution is good at produ
ing, so GAs are apromising basis for developing qualitative example �nding algorithms.Note that this is di�erent from multimodal optimization using GAs (assurveyed in (Mafoud, 1997)). In multimodal optimization the majority of thee�ort is in improving solutions within the 
lasses, whereas in our problemsmoving between the 
lasses is the most important part of the algorithm.There is some 
ommon ground with work in AI on 
omputational 
reativity(Boden, 1990; Partridge & Rowe, 1994), however in our system novelty is aprede�ned 
hara
teristi
, not something that needs to be as
ertained by thesystem.4 Requirements for an algorithm.In this problem there is no way to extrinsi
ally assign a measure of qualityto a solution, i.e. the individual solutions do not have a �tness. In order to�nd solutions to these kinds of problems we might 
hoose to assign a �tness,either by setting intermediate targets or by assigning �tness \on the 
y" inea
h generation, or we might 
hange the sele
tion s
heme entirely.This la
k of an external �tness measure means that asking how the algo-rithms presented below 
ompare with \traditional" GAs is not a meaningfulquestion. GAs are not in themselves optimizers|instead they are robustadaptive systems, variants of whi
h (GA fun
tion optimizers|GAFOs) 
anbe used for optimization (De Jong, 1993; Harvey, 1997). This kind of ro-bust adaptivity 
an be used to apply GAs to problems where the idea of anoptimum is absent.Some basi
 features of an algorithm for solving su
h problems:� Some \substru
tures" will be 
apable of being built upon to form obje
tsfrom many di�erent 
lasses. The algorithm must be able to exploit thefruitful substru
tures that it \�nds", either symboli
ally or subsymboli-
ally� The algorithm must be 
apable of moving qui
kly onto other areas ofsear
h spa
e on
e an area has been mined out.� Similarly, the algorithm must re
ognize when it is in an unprodu
tivearea of the sear
h spa
e and move onto other areas.� The algorithm should not return to unprodu
tive or mined out areas ofthe sear
h spa
e.A basi
 s
heme that we 
an adopt is to use the traditional GA re
ombi-nation and mutation operators but to 
reate new sele
tion s
heme. This isbased on an on-the-
y s
heme whi
h gives a �tness value to ea
h individual



in ea
h generation, based on whether that individual has given eviden
e thatit 
ontains fruitful substru
tures on whi
h novel solutions 
an be built.5 Some test problems.In this paper we present results from two test problems. In the �rst problem(the grid problem) the solutions 
onsist of strings of letters 
hosen from the setfL;R;U;Dg. The 
lassi�
ation is based around a 100� 100 grid of numbers(�gure 2), where most of the grid is �lled with the number 1, ex
ept for four21� 21 regions, ea
h square of whi
h is �lled with a di�erent number. For agiven solution string we begin by at the point (50; 50) in the grid, and move[L℄eft, [R℄ight, [U℄p or [D℄own as we read along the string. The square inwhi
h we end up is the 
lass to whi
h that string belongs. If the string endsup outside of the grid it is assigned the 
lass 1.
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 . . .

 . . .
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Fig. 2. The grid, with two sample solution paths.The se
ond problem is a variant on the knot problem des
ribed earlier.In this problem we 
onstru
t knots by braids, i.e. sets of strings whi
h rundownwards and whi
h 
ross ea
h other at a �nite number of points. We
an turn these into knots by joining up the strings with loops (�gure 3).Geneti
 operators are re
ombination by 
utting and rejoining two braids, andmutation by repla
ing one 
rossing by a random other 
rossing at the sameposition (�gure 3). We 
an asso
iate a polynomial (the Jones polynomial) toea
h braid (Adams, 1994), and sear
h for one example of a braid for ea
hvalid polynomial1.1 Thanks to Hugh Morton, University of Liverpool, for supplying 
omputer pro-grams for the 
al
ulation of knot invariants.



(c) Recombinations on braids   (d) Mutating braids (b) The braid becomes
a knot

(a) A braid. Fig. 3. Operations on braids.6 Results.We have been experimenting with a number of variations of geneti
 algo-rithms for the test problem. As dis
ussed above there is no extrinsi
 �tnessfun
tion, therefore we 
reate a �tness measure on the 
y in ea
h generation.6.1 On the 
y �tness allo
ation.The simplest way to do this is to give a s
ore of 1 to those members of the 
ur-rent population whi
h are \novel", de�ned to mean that their 
lassi�
ationshave not o

urred in any previous generations, and 0 otherwise. We have alsoinvestigated a variation on this, whi
h attempts to strengthen those individu-als whi
h have fruitful substru
tures within them by assigning a higher s
oreto those solutions whi
h 
ome from parent solutions that have produ
ed adiverse range of solutions. Firstly we 
reate a new population by 
rossoverand mutation, using the �tness values generated in the previous generation.We then tally up the total number of novel 
hildren had by ea
h parent, andthen assign this total s
ore to ea
h of their 
hildren (�gure 4). This is thenused as a �tness measure in a traditional GA framework. Comparisons aregiven in �gure 5(
).6.2 Crossover with random strings.In some experiments we introdu
ed a number of random strings into the pop-ulation at ea
h generation. The aim of this was to see whether these stringswould 
rossover with other strings whi
h 
ontain good substru
tures but helpto exploit those substru
tures. This was tried for a number of problems andproved unsu

essful|see �gure 5(a) for the results for the grid problem.6.3 Mutation rates.Experiments have been 
arried out with a number of di�erent mutation rates(�gure 5(b)). Over a number of experiments, in
luding the one outlined here,the most su

essful mutation rate was typi
ally mu
h higher than the muta-tion rate for GAs used for optimization, with a mutation rate of 0.1 being



Stage 1. Identify the novel solutions

Pass fitness back to parentsStage 2.

1 2

Stage 3. Pass the accumulated fitness back to the children
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Fig. 4. An algorithm for enhan
ing fruitful substru
tures. Those stru
tures whi
h
ome from parents whi
h have the most number of novel 
hildren re
eive the highest�tness.best 
ontrasted with rates of 0.01{0.001 (Mit
hell, 1996) or the re
ipro
alof bitstring-length (B�a
k, 1996) for GAFOs. This is likely to be 
aused bythe mutation being a major sour
e of the ability of this algorithm to �ndnovel solutions based around existing ones, rather than being a \ba
kgroundoperator" to prevent 
onvergen
e as with GAFOs.6.4 Comparisons with random sear
h.Figures 5(d) and 5(e) present 
omparisons against random sear
h for thesetwo test problems. One diÆ
ulty here is that random sear
h gives a goodperforman
e anyway for the grid problem, so a major next step in this kindof work is �nding better test problems whi
h are harder to solve by brutefor
e methods. There is a more general diÆ
ulty in presenting results onproblems su
h as these. An aim of the resear
h is to demonstrate that generalheuristi
s 
an be used for these kinds of problems, but 
riteria for su

ess areproblem dependent, but for test problems we have no 
riteria for su

ess and
omparison with random sear
h is not ideal.
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(e) Comparison with random (braid)Fig. 5. Results.7 Future work.Other variants on the algorithm are worthy of further investigation, e.g. pre-liminary experiments on using hypermutation to prevent the algorithm get-ting stu
k when the number of novel solutions is small have proven fruitful.Future work will in
lude looking for rigourous, tunable test problems, e.g.analogies with royal road fun
tions (Mit
hell, Forrest, & Holland, 1992), andde
eptive problems (Goldberg, 1987); theoreti
al analyses, e.g. investigatinghow Holland's s
hema theorem (Holland, 1975) might explain the dis
ov-ery and exploitation of fe
und substru
tures; and appli
ation to real-worldproblems.
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