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ONCE MORE UNTO THE BREACH...

TOWARDS ARTIFICIAL HOMEOSTASIS?

ABSTRACT

The field of biologically inspired computing has generated many novel, interesting

and useful computational systems. None of these systems alone is capable of

approaching the level of behaviour for which the artificial intelligence and robotics

communities strive. We suggest that it is now time to move on to integrating a number

of these approaches in a biologically justifiable way. To this end we present a

conceptual framework which integrates artificial neural networks, artificial immune

systems and a novel artificial endocrine system. The natural counterparts of these

three components are usually assumed to be the principal actors in maintaining

homeostasis within biological systems. This chapter proposes a system, which

promises to capitalise on the self-organising properties of these artificial systems to

yield artificially homeostatic systems. The components develop in a common

environment and interact in ways which draw heavily on their biological counterparts

for inspiration. A case study is presented, in which aspects of the nervous and

endocrine systems are exploited to create a simple robot controller. Mechanisms for

the moderation of system growth using an artificial immune system are also

presented.

KEYWORDS: Homeostasis, artificial immune systems, artificial neural networks,

artificial endocrine systems, autonomous control, robotics



INTRODUCTION

The practice of drawing inspiration from biological systems for implementation in

computing has a long and reasonably successful history. There remains however a

wide gulf between the capabilities of computer systems and their biological

counterparts. The variety of biological systems which have provided models is

enormous as is the ingenuity of many implementations. Implementations range from

hardware systems such as artificial retinas and neurons (Perrinet and Samuelides

2002), (Mead 1989) through software implementations of neural networks

(Grossberg), (McClelland and Rumelhart 1986), genetic algorithms (Holland 1975),

artificial immune systems (deCastro and Timmis 2002), cellular automata

(Tommassini, Capcarrere et al. 1999) and a host of other techniques. Whilst each of

these systems is undoubtedly extremely valuable in its own right, none has lead to the

type of behaviour which really warrants anything approaching the famous Turing

Test, or is capable of life-like, long-term autonomous operation.

In this chapter we present a way forward which we believe represents an opportunity

for biologically inspired computing in the current mould to break new ground in terms

of generating complex, adaptive, autonomous and crucially: self-organising

computational behaviour. We believe that all these properties are required for the

implementation of systems capable of generating the type of behaviour sought by

researchers in fields such as robotics, artificial intelligence and operating system

design. With this in mind we wish to focus on one of the most impressive abilities of

living organisms: their ability to ensure a reasonably stable internal state despite



wildly changing external environmental factors.  This property, often termed

homeostasis, is a major contributor to an organism's autonomy, and is the biological

embodiment of the type of behaviour described above.

The investigation of animal behaviour by biologists has taken many forms (Aylett

1999), but the basic goal has been to understand the ways in which animals achieve

this on-going autonomy of the individual. Of these approaches, the one which

arguably most directly reflects the interest in on-going autonomy of a homeostatic

nature is the dynamical systems approach. This considers the state of the individual in

some state space which represents the state of the organism at any time. Homeostasis

in such a state space is usually assumed to mean an orbit about some attractor which

represents the “normal” condition for the organism. Clearly the presence of

“attractive” values for particular variables will often lead to this type of cyclic path

through state space, but should probably not be considered an immediate goal when

constructing autonomous systems. This is for several reasons:

• The definition of such state spaces is fraught with problems such as: “What

variables should be included?” and “How should behavioral attributes be

represented?”

• The presence (or absence) of cyclical behaviour is often dependent on external

factors such as the rising and setting of the sun. Thus, we need to define a set of

circumstances under which a particular cyclic path will occur. Due to the

unconstrained nature of the environment in which most workers wish their

systems to operate, this is intractable;

• Once there are a significant number of interacting variables and control systems it

is extremely hard to “design in” such cycles and to verify their presence and



robustness. Thus, systems designed in such a way tend to be of limited complexity

and brittle.

We propose that in the spirit of biologically inspired computing we take one more

lesson from biological systems. This lesson is that the existence of complex

homeostatic systems is due to a series of selective pressures and to self-regulating

growth and development of individual organisms. Thus we wish to create a system

that is capable of developing robust homeostasis in a self-organising manner.

To achieve this we must consider the mechanisms usually associated with

maintenance of homeostasis in organisms of a suitable level of complexity.

OVERVIEW OF THE APPROACH

As researchers we often (rather ambitiously!) wish to emulate the behaviour of

animals such as sheep and dogs (Wilson and Neal 2001) and many other workers even

more ambitiously wish to emulate the behaviour of humans (Fitzpatrick, Metta et al.

2003),(Adams, Breazeal et al. 2000), (Brooks, Breazeal et al. 1999)The mammalian

body and its mechanisms for the maintenance of homeostasis are ripe for exploitation

by computer scientists: nature itself can be perceived as performing computation and

extracting metaphors from such systems has proved extremely useful in the past.

Selecting a level of granularity at which to represent the biological system is not a

simple matter, and systems at both ends of the spectrum have been attempted: genetic

algorithms model complete organisms as part of a population and systems such as

artificial immune systems model interactions at a molecular and cellular level. In the

case of homeostatic behaviour of organisms (which we believe to be a gross property



of organisms as a whole, rather than a reducible feature at a smaller scale) we have

chosen an intermediate level of granularity for several reasons which will become

apparent. There exists a body of literature which discusses the nature of homeostasis,

autopoeisis, autonomy and life itself, which whilst interesting is largely of

philosophical rather than practical use. Esoteric questions about the nature of

boundaries will also for the moment be ignored and a pragmatic common-sense

approach will be taken. At a suitable granularity which we believe to be of

manageable complexity we can consider three major mechanisms for maintenance of

homeostasis in mammals. These are the endocrine system, the immune system and the

neural system. The current focus on identifying mechanisms appropriate for

emulation is now we believe to some extent misguided as many of the artificial

versions of various biological mechanisms perform very well (and to remarkably

similar accuracies) in many situations. We believe that in order to move up to a

different level of behaviour for our systems we must concentrate on the interactions

between the various components that we have been broadly successful in reducing to

their essences.  We do not at this stage feel the need to introduce complex biologically

plausible artificial neural networks, or very detailed models of the immune system,

simple models which capture the essence of the systems will provide a suitable test-

bed and sufficient complexity for a meaningful investigation. Thus we propose to

consider the artificial counterparts of these three biological systems (neural, endocrine

and immune systems) as a tightly coupled set of networks of interaction. Rather

conveniently (and not coincidentally), useful models of two of these components are

already well explored and sufficiently mature to consider as off-the-shelf components

for our system: artificial neural networks and artificial immune systems. The third, the



artificial endocrine system, has been conceived as the final component for our

system's development.

All animals have an immune system that is used to help keep them healthy.  Artificial

Immune Systems (AIS) have been researched for some years now (deCastro and

Timmis 2002) and have been found to provide powerful and flexible tools for

Computational Intelligence (CI) (deCastro and Timmis 2002), (Bradley and Tyrell

2002),(Forrest, Hofmeyr et al. 1997) to name a few. Initial work in AIS took

inspiration from the basic functionality of the immune system (the ability to

distinguish self cells from non-self cells) (Forrest, Perelson et al. 1994). However, the

view that the immune system operates in such a manner is being questioned and

alternative views are proposed: two such views are the one of self assertion (Varela,

Countinho et al. 1988),(Bersini 2002) and that of the danger theory (Matzinger 2002).

With self assertion models, the system learns new senses of self over time, and will

assert new cells to cover changes in the self. The danger model proposes that the

immune system does not recognise self from non-self, but distinguishes danger from

non-danger. Immunologists are debating this issue, and practitioners in the field of

AIS are assessing the implications of self assertion models and danger models for

artificial immune systems (Bersini 2002), (Aickelin and Cayzer 2002), (Secker,

Freitas et al. 2003).

We propose a mechanism using a self assertion AIS approach, based on the immune

network metaphor (Neal 2003). This can be used in conjunction with a novel artificial

endocrine system (AES) to control the self-organising development of an ANN and

AES by tracking the changes in self that occur during development of the system.



Whilst this approach, for the time-being, ignores the problem of using the AIS for

identification of infective agents and their distinction from novel components of self,

it is not seen as an insoluble problem and other work is tackling this problem of

tracking changes in self whilst continuing to identify infective agents (Kim and

Bentley 2002).

The use of artificial neural networks (ANNs) as a means of mapping inputs to outputs

is very common in Computational Intelligence (CI) (Oyama, Chong et al. 2001).  For

example, in a mobile robot the ANN might connect sensors and actuators.  Typically

(after a learning period) the ANN defines a static, reactive response to a given input,

but this is not the whole story in natural systems.  In humans the endocrine system can

affect the performance of the brain by means of various hormones, such as adrenaline

(Besendovsky and del Ray 1996).   Hormonal signals are also used as controls for

many other processes that help to achieve homeostasis, so their use would appear to

have significant potential for CI. We call such a system employing controlling

hormones, an artificial endocrine system (AES).

Thus the development of the target system is a self-organising process that employs

an artificial endocrine system and an artificial immune system to help shape and

control an artificial neural network. The artificial neural network takes information

from the perceptual channels and controls the state of any actuators that are present.

The AIS and AES are essentially internal components, but in a similar way to its

biological counterpart the AES can also respond to changes in perceptual state.



This chapter suggests a new method for combining ANN, AES and AIS in a single CI

system, which develops an input-output model by means of positive and negative

environmental cues. This chapter details the first steps to realising the proposed

system. It first describes the background to each of these areas, explains how they

might be combined, and suggests the properties that such a system might have and its

advantages over existing systems. As an example, a case study  is set out in which a

robot has to achieve homeostasis, in a changing environment, whilst performing a

simple object avoidance task and basking. It is envisaged that this will be expanded in

the future to include tasks such as foraging or exploration to further test the ideas

presented in this chapter.  An embodied agent application is more demanding than a

simulated agent and thus provides a more exacting test which is less prone to over-

specificity and provides a richer problem space for the agent to explore.

We believe that any plausible test of the system will require an embodied agent in a

non-trivial environment performing several tasks, the successful completion of at least

one of which is required for survival.

There is a body of research that could be considered as potentially relevant to work in

this chapter. To highlight one particular example, work in (Ogata and Sugano)

attempts to create an emotional robot using  “hormones”, but the mechanism differs

dramatically from that proposed in this chapter. Interactive behaviour within humans

is achieved by the robot through complex neural network architectures rather than

hormone controlled responses. Work by (Gadanho and Canamero) also tackles some

of the same problems as are presented here, but in very different ways. Work in the

strong artificial life communities such as (Grand, Cliff et al. 1997), (Ray 1994) and

(Terzopoulus 1994) attempts to create effects of emotions, and alludes to the idea of



hormone control, but again, no implementations like that proposed within this chapter

were undertaken.

BIOLOGICAL MECHANISMS FOR HOMEOSTASIS

Homeostasis is the ability of an organism to achieve a steady state of internal body

function in a varying environment (Besendovsky and del Ray 1996), (Varela 1981),

(Vander, Sherman et al. 1990). This is achieved via complex interactions between a

number of processes and systems within organisms. This section explores the biology

behind the concept of homeostasis. In order to understand this process it is necessary

to examine three of the major systems within organisms; the nervous system, the

endocrine system and the immune system. By examining these systems and their

interactions, it is possible to understand how organisms can achieve this state and

therefore be exploited in the realm of CI. Work in (deCastro and Timmis 2002)

describes at greater length the interactions of the biological systems, and the reader is

directed to there for more detail.

The Nervous System

The nervous system (NS) is central to an organism's ability to process and act upon

stimuli that it receives from an external source. Organisms ranging from slugs to

humans are endowed with a nervous system which ranges in size, ability and function.

This system will then develop over the lifetime of the organism, via processes such as

growth, learning and memory (although not exclusively these).



Organisms are constantly being exposed to a vast number of stimuli, to which they

must react. Stated simply, the NS takes sensory input and generates effector output.

The sensory parts of the NS take input from vision, taste etc., which are stimuli for

effector elements such as muscles. The NS consists of two types of cells: neurons and

glial cells (we currently ignore the role of glial cells). Neurons are responsible for the

firing of small electrical impulses in response to an input signal; neuralgia are cells

which provide a type of support for neurons in the form of providing nutritional

support, guiding development, the maintenance of the neuron environment and so on.

Nearly half of the human nervous system is made from neurons, which are located in

the brain. The basic components of a neuron can be considered as: (1) cell body and

dendrites, (2) the axon and (3) axon terminals. Neurons will stimulate each other

through the passing of an electrochemical signal from the axon of one neuron to the

dendrite of another causing it to be stimulated. This in turn may cause the second

neuron to send an activation (or possibly inhibitory) signal. The combined effect of

the neurons in the network may ultimately stimulate an effector.

The Endocrine System

Within an organism, chemicals known as hormones implement a regulatory

mechanism acting directly at an individual cell level. This system, the endocrine

system, is responsible for the production and storage of these chemicals (Vander,

Sherman et al. 1990). Hormones are also produced by neurons and immune cells such

as T-cells, but for the current purposes these mechanisms will be ignored. These

hormones have a great deal of influence over a large number of bodily functions and

are key actors in the maintenance of homeostasis. Hormones have many functions



which affect behavior, assist growth, drive reproduction and so on. Typically,

production of a hormone is in response to a change in state of the organism. Such

changes are detected via the nervous system, immune system or by changes in other

hormone or metabolite levels. Hormones are released into the blood or lymph system

and are able to reach virtually all the tissues within the organism. It is quite possible

(and normal) that there will be a number of different hormones present in the blood or

lymph at any one time.  However, not all cells will react to all hormones, as the

response to hormones is highly specific: only certain cells are capable of responding

to certain hormones. When a hormone locates its particular target cell, a binding takes

place through specific receptors on the cells. Receptors on the target cell are usually

located in one of two sites: within the cell nucleus (steroid hormone receptors) or in

the plasma membrane (non-steroid hormone receptors, e.g., proteins, amines, and

peptides). Non-steroid hormones decay and are ultimately removed from the organism

at various rates. Built into the system is a mechanism by which hormones such as

these will decay. This decay rate may well be a few minutes, but could potentially be

a number of days. When a hormone binds with a receptor on the cell membrane, it

stimulates internal signals to the appropriate sites within the cell, which in turn alter

the cell's activity. Additionally, it can be noted that one hormone’s presence can have

an effect on another hormone.

Hormones are produced in various glands located around the body, including the

ovaries, pancreas, adrenal glands, thymus, thyroid, hypothalamus and pituitary gland.

Each of these glands produces hormones specific for certain tasks. For example, the

hypothalamus produces hormones in response to signals from the nervous system and

affects other glands within the body. The thymus is responsible for the development



and selection of T-cells within the immune system, hormones are produces here to

stimulate the development of these T-cells and other lymph tissue.  As can be seen,

the endocrine system produces hormones that can affect body performance (such as

steroids) but also hormones that interact with other body system to affect their

performance.

The Immune System

The immune system is a remarkable, and complex, natural defence mechanism, which

responds to foreign invaders called pathogens. Organisms typically have two lines of

immunity, innate (inherited at birth) and adaptive (also known as acquired) which

develops over the lifetime of the organism. However this is not the case for all

organisms, such as the shark, which has a very powerful innate immune system and

no acquired immune system. The innate immune system has first contact with any

pathogenic substance and in a large amount of cases, this is all that is needed to

remove the pathogenic material from the organism. However, there are many times

the innate immune system is insufficient and cannot remove the infection. If this is the

case, then the pathogen is passed over to the adaptive immune system.

The adaptive immune system primarily consists of B- and T-lymphocytes (cells).

Through receptors on the cell, they are capable of binding with pathogenic material

(antigens). Binding will occur between the receptors (paratopes) and antigen receptors

(epitopes) if the affinity between the two is above a certain threshold. If a T-cell

successfully binds an antigen this will cause the T-cell to stimulate B-cells through

the emission of lymphokines.  Additionally, B-cells can also bind with antigens, and



therefore a notion of antigenic affinity is created. The B-cells receive stimulation from

this interaction with the antigen. Through the combination of these two interactions

(antigens and T-cells) a B-cell then becomes stimulated and reaches a threshold at

which it transforms into a blast cell. These blast cells then produce large amounts of

clones (in proportion to antigenic affinity: the higher the affinity, the larger the

number of clones produced) and also a large number of free antibodies, which

undergo somatic hypermutation to increase the diversity of the immune response. This

whole process is known as affinity maturation and is part of the clonal selection

theory (Burnet 1959), which is the term used to identify the process described above.

These antibodies (with the assistance of killer T-cells) will remove the antigen from

the system. The immune system maintains an immune memory of cells, so that when

exposed to the same (or slightly different) antigen, a quicker secondary response can

be elicited which results in quicker removal of the infection.

The immune system remembers encounters with antigenic material (Tizzard 1988).

There are a number of theories on how the immune system remembers encounters

with antigenic material, with the most favoured view being that of clonal selection

and memory cells (Burnet 1959). However, a theory first proposed in (Jerne 1974)

suggested an idiotypic network and the immune network theory. Although not widely

accepted, this theory is interesting especially for computer scientists and is the model

which we choose to exploit. The idiotypic network was devised to explain the

stimulation of B-cells in the absence of antigens. This is achieved by stimulation and

suppression between cells via a network communicating via idiotypes on paratopes.

The network acts as a self-organising and self-regulatory mechanism that captures

antigenic information. Notable work in (Farmer, Packard et al. 1986) further explored



the immune network theory and created a simple model of the idiotypic network,

which was further extended by (Perelson 1989). It can be noted that such a self-

regulated system is akin to a homeostatic system, i.e. is capable of maintaining its

own internal steady state.

Interactions between Biological Systems

So far, attention has been given to three systems within an organism: the nervous

system, endocrine system and immune system. These systems do not act

independently but as one large complex system.

First, immune, neural and endocrine cells can express receptors for each other. This

allows interaction and communication between cells and molecules all three ways.

Secondly, it appears that products from immune and neural systems can exist in

lymphoid, endocrine and neural tissue at the same time. This indicates that there is a

bi-directional link between the nervous system and immune system. Third, it would

seem that both endocrine and neural systems can affect the immune system. There is

evidence to suggest that by stimulating areas of the brain it is possible to affect certain

immune responses, and also that stress (which is regulated by the endocrine system)

can suppress immune responses: this is also reciprocal in that immune cells can affect

endocrine and neural systems. The action of various endocrine products on the neural

system is accepted to be an important stimulus of a wide variety of behaviours. These

range from behaviours such as flight and sexual activity to sleeping and eating.



The primary function of the immune system is to defend the body against foreign

invaders and malfunctioning cells. There are a wide variety of components that are

used to achieve this, ranging from the bone marrow to lymph nodes. We currently

propose to exploit the ability of the immune system to eliminate cells from the body.

This will not exclude our exploitation of the other mechanisms that the immune

system fulfils at a later stage in the development of the system. The immune system

displays a number of interactions with other biological systems including the

following: immune cell populations have receptor profiles for modulators such as

neurotransmitters and endocrine hormones; and immune products also exist in

neuroendocrine tissues (deCastro and Timmis 2002).

The nervous system's functions are the reception of stimuli, with the transmission of

nerve impulses and activation of muscle (or effector) mechanisms. The nervous

system has a number of interactions, which can be summarised as follows. Neural

cells express receptors for cytokines, hormones and neuro-transmitters. The brain can

stimulate defense mechanisms against infection, thus engaging the immune system.

The hypothalamus within the brain, controls the pituitary and other endocrine glands

and it is known that neural products coexist in immune and endocrine tissues

(deCastro and Timmis 2002).

Finally, the endocrine system's function is to secrete hormones into the blood and

other body fluids, with the aim being to regulate metabolism, growth etc. There are a

large number of components that make up the system including glands such as the

thyroid, pineal and the thymus. These glands are closely related to three fundamental

activities in which we are interested: growth, release of hormones to the brain, and



immune system development. There are a number of interactions that the endocrine

system is involved with: endocrine cells express receptors for cytokines, hormones,

and neuro-transmitters; hormones provide feedback to the brain that affect neural

processing; hormones including the reproductive hormones also affect the

development of the nervous system. Again, endocrine products also exist in both

immune and nervous tissue (deCastro and Timmis 2002). A good example of the

close coupling between the neural and endocrine systems is the hypothalamus:

The hypothalamus is an excellent example of the interactions between these three

major physiologic systems of the human body. Anatomically, the hypothalamus is part

of the brain; it is located beneath the thalamus in the diencephalon. Signals from the

limbic system are the primary neural trigger for the hypothalamus. Electrochemical

signals from the hypothalamus trigger the auto-nomic nervous system as well as the

pituitary. Nevertheless, the hypothalamus also produces a variety of hormones that

are conveyed through a group of blood vessels to the pituitary, triggering the release

or inhibition of the corresponding pituitary hormones. Furthermore the hypothalamus

is an integral part of a series of feedback loops which not only regulate many

systemic physiologic processes, but also adjust those processes to deal with

environmental or internal changes and/or threats to the organism. As part of this

feedback system, the hypothalamus senses the amount of certain hormones in the

blood, the amount of neural stimulation in the limbic system, and the amount of

certain thymic hormones. This information is then processed by the hypothalamus and

adjustments in both neural and hormonal secretions are accomplished. The

adjustment can be either to restore homeostasis or to move in either direction from it,



depending upon the result of the combined information processed by the

hypothalamus. (deCastro and Timmis 2002) pp 176.

A FRAMEWORK FOR ARTIFICIAL HOMEOSTASIS

We now wish to propose a framework for creating systems based on analogues of the

biological systems described above. The concept of a framework for CI is not new,

and amongst many others work in (deCastro and Timmis 2002) argued that a

framework would consist of:

• a representation of the components of the system;

• mechanisms by which to evaluate interactions of these components;

• procedures for adaptation.

Under such a conceptualisation, it is easier to discuss how such systems may be

combined to form a more complex system. Table 1 captures the salient features of our

proposed system in this context.

Framework
Element

ANN AES AIS

Representation Neuron Endocrine gland Lymphocyte
Evaluations Activation function Time delayed

activation function
Affinity measures

Adaptation Learning
algorithms

Hormone structure
update

Immune algorithms

Table 1- ANN, AES and AIS in a simple framework



Artificial Counterparts of the Biological Systems

Significant work has been done in extracting useful metaphors from the nervous

system for the creation of artificial neural networks of a huge variety of types and

functionalities (Haykin 1999). Work is now emerging in the field of artificial immune

systems (deCastro and Timmis 2002), but little work has been done on artificial

endocrine systems (AES). This section will discuss ANN and AES and postulate that

through the combination of these approaches and an AIS it may be possible to create

an artificial system capable of developing homeostatic behaviour in a manner

analogous to biological systems.

Neural Networks

Artificial Neural Networks (ANN) are parallel distributed processing systems that are

constructed via the connection of simple processing elements known as artificial

neurons (McClelland and Rumelhart 1986). ANN have been applied to a vast array of

problem areas such as machine vision e.g. (Sandini, Bosero et al. 1989) and robot

control (Oyama, Chong et al. 2001). Figure 1 is a graphical depiction of a simple

artificial neuron. In order to be of any practical use, individual neurons are connected

together to form networks. These networks are trained in order to be able to perform

an input-output mapping, of an input (x) through the constant adjusting of the weights

(wi) until the ANN produces some output (y). The weights can be adjusted via a

number of learning algorithms,  backpropogation being one of the most popular. An

artificial neuron can be represented mathematically as:
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Initially we propose to use a relatively standard neural network system augmented

with the AES and AIS components.

Figure 1 - A simple artificial neuron

The case study presented in this chapter shows how we propose to augment this basic

artificial neuron, with interactions from an artificial endocrine system.

We expect to be able to use a standard learning rule (such as backpropogation) to

perform weight-updates in the standard way, and to initially make no explicit

allowance for interactions from the AES. This is not to say that they will not affect



how the weights alter during the learning process: clearly with an algorithm such as

backpropogation any alteration in activity of neurons (such as those caused by AES

interactions) will affect the weight update mechanism. We expect this to have

significant effects at times, and also envisage that hormones affecting synaptic

plasticity (and thus learning rate) will also be easy to incorporate. Clearly there are

many complex interactions to be studied in this area once the initial mechanisms have

been shown to be of value.

Artificial Endocrine Systems

Work in (Neal and Timmis 2003) proposes a new biologically inspired technique

known as an Artificial Endocrine System (AES). The role of the AES is to provide a

medium-term regulatory control mechanism for the behaviour of the system. The AES

proposed consists of gland cells which produce and secrete hormones in response to

external stimuli. The amount of hormone secreted is expressed as rg for a gland g:

∑
=

=
nx

i
igg xr

0

α

Equation 3

where αg is the rate at which hormones are released for a particular gland g, xi is the

input to that gland and n is the number of inputs to that gland. This is a similar

mechanism to that employed in neural network models.

The level of hormone is subject to geometric decay:

β•=+ gg tctc )()1(

Equation 4



where c(t)g is the hormone concentration at a time t for a gland g and β is the decay

constant.

Membrane receptors located on artificial neurons and artificial immune system

components are sensitive to hormones, thus providing a mechanism for the regulation

of the ANN and AIS by the AES. Gland cells produce, secrete and record the

concentration of hormones present in the system. Each gland cell secretes a specific

hormone, represented by a simple string of bits. Within the integrated AES-ANN-AIS

the hormone sensitive membranes of cells simply have a list of hormone receptors

(again, represented as bit patterns) to which hormones are matched and a cell-specific

action associated with each receptor. At present, perfect matches of hormone to

receptor are considered (though this is not necessarily required: imperfect matches

should generate lesser reactions). In the natural endocrine system, hormones are

transported throughout the body: the same effect is achieved in the artificial endocrine

system through the matching of each hormone secreted to the receptors on each cell's

membrane in turn. A record of the current concentration of a hormone is maintained

in the gland cell which secretes the hormone, and is then used to moderate the

strength of reaction.

True to the analogy with the biological endocrine system, different cell types react to

particular hormones, in different ways. The actions which are triggered in individual

cells can vary according to four factors: the hormone which is detected, its

concentration, the type of receiving cell and the individual cell's make-up. The former

two of these factors are explained above, but the latter require further explanation.

The type of cell receiving the hormone signal will clearly dictate what actions it is



capable of performing. For example, a neural cell may lower (or raise) its threshold

value or increase (or decrease) its sensitivity to one or many of its inputs; a gland cell

may increase (or decrease) secretion rate of a hormone; and an AIS cell (such as a B-

cell) may increase (or decrease) its affinity threshold. The precise make-up of cells is

fixed when they are added to the system. This may include variations in membrane

characteristics (abilities to receive hormone signals), the effects that those signals

have within the cell and other cell-type-specific characteristics such as connectivity

pattern of a neuron etc. Cells are integrated into the neural, endocrine or immune

system as appropriate and may then be culled by the immune system if the immune

system is sufficiently stimulated to do so. This will depend on how different the cell is

from those already present (which the AIS will tolerate) and on the state of the AES at

the time. Of course the AIS will also be gradually extending the range of cells  that it

tolerates, and thus after a period of time new cells will be added to its repertoire and

thus be safe from attack by the AIS.

In order AES-ANN interactions to be useful, the hormone levels affect the input

weights in the ANN. Figure 2 provides a simple graphical representation of how this

is achieved. Here the recorded hormone level affects each input weight on a particular

neuron. It is easier to see this when these interactions are described mathematically as
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Equation 5

where in this case xi and wi are the same as Equation 1 and ng is the number of glands

in the system, C is the concentration of hormone, S is the sensitivity of the connection

for receptor i to hormone j and M is the match between the receptor i and hormone j

and is defined as:
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Equation 6

where dis is a distance measure function.

Figure 2 - The effect of endocrine interaction on the artificial neuron

Equation 1 and Equation 5 can now be compared. It should be noted that the new

equation for the AES-ANN interaction is simple augmentation of the original

equation, with the application of hormone levels applied to each input weight in the

neuron. It should also be noted that this new AES augmented neuron bares a passing

resemblance to the Sigma Pi Neurons (McClelland and Rumelhart 1986), however it

is fundamentally different upon further examination.

Artificial Immune Systems

True to the analogy with the immune system, ultimately we propose to utilise the

immune system metaphor in two ways. The first is for the AIS to act as a growth

regulator for cells within the artificial system. Within the system, cells correspond to

B-cells (AIS cells), neurons, endocrine glands and connections between these. As it is



proposed that this system will develop over time, some mechanism for controlling

growth is required. The role of the AIS will be to remove cells and or connections that

have a detrimental impact on the functioning of the system. The other role of the AIS

will be to act in the more traditional manner of responding to pathogenic agents

(which could be environmental changes, inputs from sensors, malfunctioning parts of

the robot) and affect the ANN and AES accordingly. The AIS will be implemented

using an immune network algorithm.

The immune network theory proposes that the B-cells in the body interact with each

other to maintain the immune memory. The mechanism proposed is that B-cells

which are capable of recognising similar (but not necessarily identical) patterns are

also capable of recognising and stimulating each other (Jerne 1974). Thus a dynamic

feedback mechanism can maintain parts of the immunological memory which are not

frequently stimulated. Clearly however not all B-cells have sufficient stimulation to

survive indefinitely and thus some will die out. In the human immune system T-cells

both perform a surveillance role and interact with B-cells which complicates the

mechanism somewhat. In our artificial immune system the role of T-cells is currently

ignored. In the real immune system there are very large numbers of identical B-cells

to deal with each type of infection. In an artificial system such repetition can be coded

without representing all the identical cells individually. Fortunately the concept of a

recognition ball which represents a region of antigen space that is covered by a

particular type of B-cell can replace the repetition of individuals (Perelson 1989).

So our AIS consists of a network of artificial recognition balls (ARB) which are

linked together if they are close to each other in antigen space (see (Neal 2003) for a

more detailed description of the algorithm). Items to be tested (such as cells recently



added to the system) can be considered to be points in this antigen space, and thus

proximity can be defined as a simple distance function. The proximity required to

evoke a reaction from an ARB is called its affinity threshold and determines whether

an item is recognised by the AIS or not. Items falling outside this range evoke a

primary immune response which attempts to extend the capability of the AIS to deal

with the new item. If the hormones controlling the activity of the AIS (specifically the

fitness hormone) indicate that the system is performing poorly, then the item will be

removed rapidly. If however the system is performing well, then the killer immune

response will be suppressed and the item (such as a beneficial new cell or connection)

will survive and the repertoire of the AIS will be extended to cover it. This is

effectively adding the new cell to the AIS definition of self.

PROPOSED MECHANISMS FOR ARTIFICIAL HOMEOSTASIS

The control mechanism proposed, unites in a single framework the techniques

presented above. It is argued that a system that allows the low-level interaction of

(computational) neural, immune and endocrine systems provides much scope for the

construction and self-organising development of highly functional computational

intelligences. The structure proposes to follow to some degree the biological realities

of cell proliferation, differentiation and apoptosis. Cells that are added to the system

are differentiated on a very restrictive epigenetic landscape. Components added will

become one of: neurons, synapses, B cells, hormone producers or connections to

hormone producers. These types have been chosen as they are usually seen as being

fundamental to control of behaviour and maintenance of homeostasis in mammals.



The Grand View

The various components of the system will be implemented using relatively standard

machine learning components for the neural and immune systems. This is not possible

for the endocrine system as there is not an established literature concerning the

implementation of artificial endocrine systems and therefore, this chapter has

proposed such a mechanism that will be employed.

The functions performed by the natural endocrine system are both diverse and

pervasive. The release of hormones into the bodily fluids and blood-stream permits

their rapid transport throughout the body. An artificial endocrine system (AES) must

be capable of such global activity. The natural endocrine system plays a pivotal role

in initiation and regulation of a huge variety of homeostatic functions. The artificial

system must be capable of such interactions. The innate endocrine components

outlined in this chapter (control of growth, epigenesis and apoptosis) are only

examples of what is a much more general mechanism. The growth of the artificial

endocrine system is an on-going process which allows the development (via cell

reproduction and mutation) of new hormones and new hormone release mechanisms.

The hormones released by the AES will be globally applied to the cells in the system

which react dependent upon their type and sensitivity. Novel reactions to hormones

may be generated by the component cells of the different parts of the system (also via

cell reproduction and mutation). The sensitivity to hormones of all cells in the system

will be defined by a membrane definition associated with each cell. Membranes

provide various binding sites for hormones generated and are capable of inhibition

and excitation of the cell in question. Binding sites on the membranes are defined as



bit strings which are related to hormones in circulation by checking the hamming

distance between the binding site pattern and the hormone molecule pattern.

Concentrations of hormones are increased by endocrine cells which release their

particular hormone molecule into the system. The concentrations are decreased by the

continuous breakdown of the molecules in circulation. This breakdown rate varies

between hormones. The release of a particular hormone molecule by a particular

gland cell may be triggered or suppressed by several mechanisms. These are:

• A particular pattern of activity on a perceptual channel (or channels)

• A particular pattern of activity in the artificial neural system

• A particular pattern of activity in the artificial immune system

• The presence of a hormone (or hormones) at a particular concentration

Thus a gland cell must be allowed to monitor any of several state indicators internal

and external to the system. In order to achieve this it must be permitted to "connect"

in various ways. These must include:

• Connections directly to perceptual channels

• Connections to the outputs of artificial neurons

• Connections to monitor the stimulation level of artificial immune system

components

In addition to these connections, gland cells must have a membrane definition as

described above. The combination of these sources of stimulation provides a suitable

complexity of stimuli for the gland cells and provides scope for the evolution of



useful and interesting functionality in the AES.A large degree of commonality exists

between the various cell types of the system. The functionality of the various cell

types can be summarised as follows.

The addition of cells to the system is currently envisaged as stochastic in nature and

occurs at a rate determined by a combination of the growth hormone and epigenetic

hormone concentrations. At any given time the state of the system will be monitored

by the AIS, and thus there will be knowledge of "self" encoded which represents the

current state. Clearly when a cell is added to the system this state will alter and the

AIS will identify the new neuron as "non-self". This will result in the AIS beginning

the process of killing the cell at a particular rate. The rate of this process is however

controlled (as are most other processes in the system) by the concentrations of various

hormones. Of these hormones, the fitness hormone (the generation of which is

inhibited and stimulated by negative and positive reinforcement stimuli respectively)

is very important. If the fitness hormone is being secreted in large quantities then the

time taken for the new cell to elicit a full reaction from the AIS is drastically

increased. This allows sufficient time for the AIS to extend its definition of self to

include the new neuron. As the processes of cloning and mutation are continuously

ongoing in the AIS, this may occur and prevent the culling of the cell without any

further intervention from other mechanisms. If however the fitness hormone

concentration is low then the process will proceed apace, and the cell will be

destroyed rapidly. Thus if, for example, a neuron is added which increases the fitness

it is likely to survive due to its influence in increasing the fitness hormone

concentration. Neurons which decrease the fitness will have the opposite effect and

are thus more likely to be culled rapidly. Clearly this type of simple selection requires



a low rate of change of the system in order to ensure that the mechanisms have time to

take effect and in order to ensure that changes caused by cells added at the same time

do not always cancel each other out.

The system as a whole thus has the ability to add cells to each of its three internal

components in ways suitable to each. The three components have the ability to

interact in complex networks and to develop feedback control in an ongoing way

under pressure of positive and negative reinforcement. Over time the system will add

cells to its three components and we expect it to develop complex control strategies in

a self-organising fashion. We hope that such controllers will display stability of

external and internal behaviour that can be described as emergent homeostasis. Table

2 summarises the basic functionality of the three main cell types contained within the

system.

ConnectivityCell Type Hormone
Sensitive

Membrane Perceptual
Channels

Neural
Outputs

Actuators

Comments

Endocrine Yes Input Input None Produce
hormones to
regulate
internal
processes

Neural Yes Input Input Output Read
perceptual
channels and
active
actuators

Immune Yes None None None Monitor
internal state
and cull cells
that inhibit
performance

Table 2- Summary of Cell Type Functionality



External
system
boundary

Components for Artificial Homeostasis

There are four innate components at the beginning of development of the system.

These are engineered to ensure a suitable starting point for development to begin.

There are three sets of cells that constitute embryonic starting points for the

development of the three components described above, namely: the neural system, the

immune system and the endocrine system. In addition to these there is the external

boundary of the system which provides access to sensory apparatus and actuators.

Each of these innate components will now be described, illustrating the necessary

starting points required for each component and how each of these components will

develop over time.

Figure 3- Overall System View of an Integrated Artificial Homeostatic Controller. All three
components interact at various levels to achieve artificial homeostasis

Stimulus
ANN

AES

AIS

Actuator



The Innate Neural System and its Development

At the outset, a minimal neural network is constructed linking a number of the

perceptual units and actuators which are available to the system. This minimal system

may be of arbitrary design, but it is to be expected that the initial network will be

hard-wired to generate basic reflexive innate behaviour, which can be then used as a

bootstrap for development. The artificial neural system fulfils the same role as that

played by the natural neural system in that it will connect to both the sensory

apparatus and the actuators (effectors) of the system. This will in turn, allow reactive

behaviour to be elicited. Cells created by the system, which differentiate to become

neurons will be inserted into the network using a suitable insertion mechanism and

will be evaluated with respect to the overall fitness of the system: thus allowing the

ANN to ''grow'' over time. If there is a sustained drop in the overall system fitness

after the addition of a particular neuron to the network then that node may be culled.

This culling process will be triggered by one of the modes of operation of the AIS that

is built into the system. Neurons that exhibit other behaviour, such as firing

continuously or for a very large proportion of the time, may also be culled by the AIS

as these will not be regarded as normal behaviour, as they could be potentially

damaging to the system overall. Clearly neural cells may monitor perceptual channels

and stimulate external activity directly. This neural activity may be moderated by

hormones released by the artificial endocrine system, but only in a relatively

homogeneous fashion. That is to say that functionally identical neurons will be

affected identically by hormones at any one time. The neurons will be standard

summation and squashing function units as are typically used in many ANN systems.



The Innate Artificial Endocrine System

It is proposed that the initial population of gland cells will be small and consist of

cells that secrete a limited number of hormones that are key to the development and

control of the initial cell population in the system. Three fundamental factors are

required however. These are growth hormone, fitness hormone and an epigenetic

control hormone. The growth hormone will be secreted by a gland cell which

monitors the size of the current population of cells in the system and via a negative

feedback mechanism (more cells implies less hormone release) achieve a steady state

size of cell population. The fitness hormone will be secreted each time an

improvement in performance is detected in order to suppress apoptosis of new cells

which have recently been added to the system. Here, performance can be considered a

measure of items such as battery consumption, distance covered, possible faults

occurring in mechanical components and so on. We expect that this will encourage

retention of novel cells which improve performance. The epigenetic control hormone

will be released by a cell which monitors the relative sizes of the populations in each

of the parts of the system, and via a negative feedback system maintain a dynamic

equilibrium between the components. Clearly these hormones must act directly on

cells which are added to the system and affect the cells which are produced. Cells in

the artificial endocrine system can monitor the internal state of the system as well as

the perceptual channels to regulate the release of their individual hormones. The

hormones can only indirectly (by affecting the AIS and neural system) affect the

external behaviour of the system.



The Innate Artificial Immune System

The initial immune system will be based on an idiotypic network model (Neal 2003),

and will contain a small number of components which recognise the cells that are

present within the innate parts of the other components of the system (the endocrine

cells and the neural cells) as self. Thus any new cells generated that vary significantly

in their properties from the initial sets may be recognised as non-self and as such will

possibly elicit a destructive response from the AIS. In order to select those cells that

are possibly of benefit to the overall performance of the system, when an

improvement in performance is detected a suppression of the immune system's

destructive power will be required accompanied by an increase in its ability to expand

its definition of self, via the mechanisms of self assertion inherent within the immune

network model. This suppression will be elicited by the release of a hormone from a

cell in the innate artificial endocrine system which is sensitive to improvements in

performance (as described above). In general, cells in the AIS will be sensitive to

hormone concentration and will be capable of being suppressed or stimulated by

them. The cells in the AIS will only be capable of detecting and destroying cells

within the system that are persistently classified as non-self. This labelling is however

continuously modified as the idiotypic network of the AIS evolves. The cells in the

AIS will not directly affect the external behaviour of the system via its actuators, or

monitor directly the perceptual channels. The AIS in this case interacts with both the

neural and endocrine systems. With the former, removing redundant or useless

neurons or promoting the inclusion of good neurons. With the latter, the AIS responds

to the level of the fitness hormone in the system: for example, with higher levels of

fitness hormones decreasing the culling mechanisms of the AIS.



External Boundary

The external boundary of the system provides an interface to the world that receives

sensory input via perceptual channels which in the first instance will be considered to

simply be streams of real-valued numbers. These perceptual channels can only be

monitored by connections to cells in the neural system and endocrine system. In

addition to the perceptual channels the boundary provides actuators which can be

activated by neural outputs only.

THE CASE STUDY

Preliminary work to test the framework outlined above has begun, and is showing

great promise for the future (see Neal and Mendao 2003 and Neal and Timmis 2003).

Whilst this work does not demonstrate the techniques in their entirety it does

demonstrate the efficacy of some of the mechanisms proposed. From initial

implementations and some (prolonged) initial experimentation it seems that the

mechanisms for control of neural networks via hormone suppression and excitation

have effects within the bounds of our expectations.

In this case study we first present an outline of the controller, which has already been

implemented and tested the innate neural and endocrine system, as discussed in the

previous section. An outline of a more ambitious implementation extending this initial

work is then proposed. All of this work was carried out using an ActivMedia 2DX

mobile robot platform equipped with sixteen ultrasound range-sensors arranged



around its perimeter, a camera equipped with a panoramic mirror to provide a 360°

field of view  and an internal battery charge state sensor (although this has not yet

been exploited). Whilst throughout this case study we will use this robot architecture

we feel that there is nothing restricting the controller architecture to this particular

robot or type of robot. Indeed we intend to extend this work using a variety of

different platforms. Locomotion is achieved by driving the wheels independently at

varying speeds and currently these motors are the only actuators available to the

controller.

Initial work in (Neal, M. and J. Timmis (2003)) demonstrated that hormone

mechanisms similar to those proposed here could lead to interesting and potentially

useful medium-term (in the range of a few minutes to several hours) changes in the

behaviour of robot controllers. Experiments described in (Neal and Mendao 2003)

used a more general version of this artificial neuro-endocrine interaction mechanism

to elicit cyclic behaviour using two independent neural networks and a pair of

endocrine cells producing and releasing hormones to control them.

The controller contained two neural networks which were independently trained to

perform two different tasks. The first was trained to move the robot to a position on a

black placard placed on the floor, and the second was trained to move the robot to a

position on top of a white placard placed nearby. The background around the placards

was a grey carpet. The neural networks used a simple 16 input (plus one bias), 4

hidden, 2 output architecture, and took a simple greyscale camera image which was

divided into 16 segments and averaged as input. The outputs were simply the motor

speeds that were required in order to drive the robot toward the targets as required.



The training of the networks used the standard backpropagation weight update

mechanism, and they were given a fixed concentration of the hormone to which they

were sensitive. This ensured that the networks were effectively trained to carry out

their tasks. These were tested independently and functioned well: as would normally

be expected. This formed the neural part of the controller.

The endocrine part of the controller consisted of two endocrine cells which were

sensitive to the maximum brightness present in the image. These cells produced

hormone at a rate controlled proportionally by this intensity level, as well as having a

“background” production rate which did not vary. Early versions of the endocrine

elements released their hormone directly to the neural system, but later

experimentation showed that in order to avoid heavy damping of the dynamics of the

system a “store and release” mechanism was required. Whilst this is an important

detail (and well worthy of further experimentation) we do not feel that such technical

details are at stake here (see Neal and Mendao 2003). One of these cells had a

negatively weighted input, and the other positive, thus one produced more hormone

when the white placard was visible and the other produced more when the black

placard was visible. The hormone which was produced when white was visible

stimulated the network trained to seek the white placard, and the hormone produced

when black was visible stimulated the network trained to seek the black placard. The

endocrine cells were functionally very similar to the neural network elements, and it

would certainly be possible to use weight update mechanisms such as

backpropagation to train them to release hormone in the same way as neural networks.

It is worth reiterating the point that although the endocrine cells look very much like

neural network elements, they are different in that their effects are potentially global



within the system and that they have very different time dynamics (the hormone is

produced, released and decayed in very different ways from the activation of neural

network elements).

The controller constructed this way showed three notable effects:

1) Neural networks which are “over-driven” and “under-driven” through the

endocrine mechanisms presented here still exhibit useful behaviour.

2) It is possible to use this endocrine mechanism to perform a type of sub-

symbolic action selection.

3) The overall dynamics of such a system can be interesting: in this case we

observed reliably periodic behaviour.

The first two of these effects came as no great surprise, as we had already seen hints

of this in (Neal and Timmis 2003), but the latter was what we were hoping to achieve.

The robot was seen to repeatedly move from the white placard to the black placard,

and back again, pausing for a few minutes on each. In addition to the externally

observable cyclic behaviour, the internal state of the endocrine system showed

interesting periodic effects (see figure 5). Whilst this is in itself not terribly complex

or difficult to achieve using standard symbolic approaches, we believe that the ability

to combine behaviour from a number of neural networks in a way which is governed

by the environment opens the way to much more interesting subsymbolic control

mechanisms which are capable of developing themselves whilst responding in

appropriate ways to their environment. Clearly this has not yet been shown, but we



believe that a mechanism such as the AIS mechanism proposed will provide sufficient

self-organizational properties and stability to complete the picture presented here.

The next controller under consideration is intended to “roam” in a varying

environment avoiding collisions with objects (including people and furniture), seek a

charging station when required and periodically seek the white and black placards.

The design proposed contains a variety of elements which can be summarised as

follows:

Black and white seeking ANN modules:

These will be trained and function exactly as described above.

An ANN obstacle avoidance module:

This module is a neural network with seventeen input nodes (one connected to each

ultrasound range sensor and one bias input), two hidden nodes and two output nodes.

All layers are fully connected. The two output nodes directly drive the wheel motors

(one left and the other right). The weights in the network are set so as to generate

turns away from any obstacle into unobstructed areas. This is relatively easy to

achieve in a manner similar to Braitenburg’s vehicles (Braitenburg 1984).

An ANN charge seeking module:

This module consists of 17 input nodes (sixteen connected to the camera in the same

way as described for the black seeking and white seeking above, and the other a bias

node) connected to four hidden nodes, which in turn connect to the same two output



nodes as the obstacle avoidance neural network module. This network will be trained

to move towards a bright red light mounted on top of the charging station.

Black seek promoting and white seek promoting endocrine cells:

These will function exactly as described above for the initial implementation.

A caution promoting endocrine cell:

This endocrine cell is connected directly to all of the ultrasound range sensors, and is

stimulated to release hormone when they are registering obstacles close by. As

suggested earlier this hormone release is proportionate to this stimulation (i.e. closer

objects cause more hormone to be released). The hormone released has a stimulatory

effect on all of the synapses in the “obstacle avoidance” neural network module, and

thus leads to more sensitive and more rapid detection and avoidance of objects.

A tiredness endocrine cell:

This endocrine cell is connected only to the battery charge state sensor and is

stimulated to release more hormone as the battery voltage decreases. This hormone

has an inhibitory effect on the synapses connecting to the output nodes of the obstacle

avoidance neural network module and an excitatory effect on the synapses in the

charge seeking module. This will perform a similar action selection role as was

observed for the black and white seeking modules described above.



These elements are intended to demonstrate a variety of features:

ANN interactions between modules:

Clearly there is nothing novel about interaction between neural network elements.

However we feel that it is worth highlighting the highly “connectable” nature of

ANNs and the fact that pre-trained (or manually set) networks can be combined

intelligently. This implies that partially designed systems can be built (using

combinations of pre-fabricated components) and used or subsequently trained further

in slightly different configurations. Clearly such interactions would be capable of

producing surprising results, but that does not preclude the successful use of either

manual or automated methods for introducing links between previously trained neural

systems, or indeed other components.

Endocrine mechanisms and selective sensitivity:

The use of several different endocrine cells which release different hormones

highlights the fact that this mechanism provides immense flexibility for the

suppression and excitation of large numbers of neurons without the use of overly

connected neural network architectures or unpredictable recurrent architectures. The

fact that the hormones affect subsets of the synapses in the neural system and that

their effects can be combined further highlights this flexibility. This is most obvious

when considering the output nodes which drive the motors. These node's synapses are

stimulated by the caution promoting hormone, but are inhibited by the tiredness

hormone. Clearly there will at times be conflicting signals, but this will often lead to a

useful compromise as it will in this case. If the battery voltage is a little low and the

robot is not currently being “threatened” by close by obstacles the motor speeds will



be reduced to save energy; however if close-by obstacles are encountered the level of

caution promoting hormone will increase leading to more rapid motor movement to

try to remove the threat. Clearly a trade-off between obstacle proximity and power

usage will be made via this simple mechanism. The time period required for the decay

of the hormone levels will help to eliminate problems with rapid oscillations in

behaviour patterns which tend to occur in some other types of controller, but

interestingly seem absent in most animal behaviour studies (McFarland 1999).

The potential for modularity:

Clearly the design employed here is modular in nature and we would argue that each

of the components in this example is easily comprehensible. This goes some way to

addressing the frequently highlighted problems with sub-symbolic systems (and

especially ANNs): namely that they are opaque to examination, and that they cannot

take advantage of previously existing knowledge. We would argue that these

complaints are most obvious when dealing with large fully-connected networks and

that the types of structure presented here will allow some degree of examination and

certainly some “engineering-in” of domain specific knowledge. Even if subsequent

automated development of the system leads to significant additions and alterations, it

is possible to engineer-in some domain specific knowledge, and it is likely that

structures that are engineered-in at the start will remain recognisable for a significant

period.



The potential for partial design and (automated) refinement:

We propose that automated stochastic development could be used to develop the types

of controller under consideration here. Possible mechanisms for this include:

connection of new inputs to neurons, connection of new inputs to endocrine cells,

addition of neurons, addition of endocrine cells, addition of receptors for a particular

hormone to a neuron or endocrine cell, and of course removal of any of these. It is

easy to imagine both successful and unsuccessful changes of these types. We assume

that we have some measure of success or failure in order to assess such changes. In

this example we may wish to choose some function of the battery voltage and

proximity to obstacles. This function could be used to ascertain if performance had

improved or worsened after a particular change to the controller. An example of an

advantageous change might be the addition of inhibitory receptors sensitive to the

tiredness hormone to synapses in the black seeking and white seeking neural

networks. This should reduce the likelihood of the robot being “distracted” by white

or black seeking activity when the battery charge state is low. This may result in a

higher battery charge state on average and thus positive reinforcement and retention

of such an addition. An example of a disadvantageous change might be the addition of

an excitatory neural connection from the input node in the charge seeking network

directly to the output node responsible for driving the left wheel. This would result in

a continual propensity to turn to the right which is likely to both reduce the

effectiveness of the obstacle avoidance network and to consume more battery power

in the process. It is easy to imagine mechanisms which allow the rolling back or

retention of such changes dependent on performance.



Figure 4 - The Artificial Neural Network augmented with the Artificial Endocrine Gland.  There
are 16 sensor inputs, 2 hidden layer nodes and 2 output nodes. Each output node controls either
the left motor or right motor control. The shaded area indicates that the hormonal gland
influences the neurons in the network.

Figure 5 – Oscillations in behaviour observed in the black-seeking/white-seeking robot controller.
The line shows the path  followed by the robot over a period of 22 minutes.



Figure 6 – Oscillations in concentration of black-seek promoting hormone for the same
experiment as presented in figure 5. The plot only shows the first half of the run for clarity. Note
that the rate at which hormone is produced and stored (“Hormone held within endocrine cell”)
varies, this is dependent on the perceptual state of the robot at the time. Also note that when
hormone is released from the cell the free hormone concentration increases accordingly (“free
concentration of hormone”).

CONCLUSIONS

This chapter has shown what we believe to be a viable route to implementing

computational intelligence which surpasses current biologically inspired approaches.

We believe that the current range of biologically inspired methods is approaching the

limits of the capabilities of systems which will be of use as “one size fits all” stand-

alone techniques. We envisage the future of biologically inspired computing to be in

the integration of sets of these techniques into more structured and more complex

architectures which have a better chance of achieving the levels of intelligence to

which we aspire as robotics and AI researchers. Whilst the approach taken here

represents a relatively naive view of the systems which are responsible for



homeostasis in mammals, we believe that such caricatures of biological systems have

proved to be successful in the past in fields such as artificial neural networks, and are

still showing benefits in emerging fields such as artificial immune systems. We

believe that simplistic approaches such as that presented here should at least be

eliminated before moving on to more complex, more biologically plausible techniques

which may be required to fully realise our goal of artificial homeostasis.

Our system has taken a small subset of the currently viable biologically motivated

computation approaches and using suitable biologically motivated interactions

between them has set down a framework within which we believe artificial

homeostasis at the level of complete organisms is achievable. Whilst this remains an

open question we are working towards this goal, and are not yet prepared to abandon

the biologically motivated approach to robotics and AI: we will attempt to imitate the

action of the tiger for a little longer.

Once more unto the breach, dear friends, once more,

Or close the wall up with our English dead!

In peace there 's nothing so becomes a man

As modest stillness and humility;

But when the blast of war blows in our ears,

Then imitate the action of the tiger:

Stiffen the sinews, summon up the blood. (Shakespeare)
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