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Abstract 

  A potential acceleration of a quantum open system is of fundamental interest in quantum computation, 

quantum communication, and quantum metrology. In this paper, we investigate on the “quantum speed-up 

capacity” which reveals the potential ability of a quantum system to be accelerated. We explore evolution of the 

speed-up capacity in different quantum channels for two-qubit states. We find although the dynamics of the 

capacity is variety in different kinds of channels, it is positive in most situations which are considered in the 

context except one. We give the reasons for the different features of the dynamics. Anyway, the speed-up capacity 

can be improved by memory effect. We find two ways which may be used to control the capacity in experiments: 

selecting an appropriate coefficient of an initial state or changing memory degree of environments.   

Keywords: quantum speed-up capacity, quantum speed limit, two-qubit open systems, quantum channel, 

  memory effect 
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1 Introduction 

Whether a quantum system has a potential capacity to be accelerated is an important question 

in a quantum process. A concept which may weigh this question is 

Q S L
C a p

 




 
（ ）

, (1) 

where QSL is a quantum speed limit(QSL) time[1-6] and   is an actual evolution time. As the 

physical meaning of Eq. (1) will be revealed in next section, it gives a percentage of potential 

acceleration of a quantum system. It may play a decisive role in quantum computation[7-8], 

quantum communication[9-10], quantum optimal control[11-14] and quantum metrology[15-17].  

With using Eq. (1), it is obvious that the QSL time which has been studied in recent 

years[18-25] need to be calculated to obtain the speed-up capacity. A unified lower bound of a 

QSL time involved Mandelstam-Tamm(MT)[26] and Margolus-Levitin(ML)[27] types in open 

systems has been derived by Deffner and Lutz[22]. It has also been confirmed that ML type bound 

based on the operator norm provides a sharpest bound of the QSL time in open systems and 

non-Markovianity leads to a smaller QSL time. The QSL time of a multi-qubit open system has 

now caught increasing attention. Since it has been found that the QSL time can be reduced with a 

special class of multi-qubit states in an amplitude-damping channel even in a memoryless 

environment[28], three interesting questions arise: 1) What is a common case for the speed-up 
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capacity of multi-qubit open systems in different types of quantum channels? 2) Does memory 

effect play a same role to the speed-up capacity in different channels? 3) What will happen when 

the memory degree is changed? In this paper we consider these queries in two-qubit systems and 

show that even different quantum channels lead to different speed-up capacity, the capacity exists 

in most cases. We demonstrate that the capacity will be benefit from a memory environment. 

Moreover, two key factors which may be helpful to control the speed-up capacity of a quantum 

process in experiments are found.  

The paper is structured as follows. In Sec 2 we interpret the physical meaning of the 

speed-up capacity and deal with the dynamics of multi-qubit open systems by Kraus operators. 

Evolution of the speed-up capacity of typical two-qubit states in different quantum channels 

without memory effect is explored and explained respectively in Sec 3. Memory and memory 

degree effect on the speed-up capacity are discussed in Sec 4. Finally, the results obtained in this 

work are summarized in Sec 5.     

 

2 The quantum speed-up capacity and dynamics of multi-qubit open systems    

With the form of Eq. (1), it can be seen that the speed-up capacity is just a ration of 

difference between   and 
QSL
  to  . Since QSL  and   are the minimal evolution time and 

the actual evolution time respectively, the difference between them represents a time length of 

which may be potentially reduced in the evolution. Therefore greater difference causes more 

potential time that may be speeded up. In this sense, Eq. (1) gives a maximal percentage of the 

evolution of a system, by which the process can be accelerated in theory with a given actual 

evolution time. This is the exact physical meaning of Eq. (1) as the definition of the quantum 

speed-up capacity. To obtain the capacity, the QSL time which can be derived by combining the 

results of MT and ML bounds[3-4,14,29] need to be calculated. A definition of the QSL time in 

open systems is[22,24,28,30-31] 
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ihs i
A    are the operator norm, trace norm and the Hilbert-Schmidt norm, respectively. 

i  is the singular value of A [32].  

A popular and convenient description which indicates the dynamics of a state in a quantum 

channel is Kraus representation[33]. With this description, the evolution of a state   can be 

written in form of     

         t K t K t
 



 
†

,                     (3) 



where the operators K


 are the so-called Kraus operators and satisfy K K
 


†

 for all t . 

When the system is composed of N  subsystems with independent environment respectively, Eq. 

(3) is replaced by[34] 

        
N Nt K K K K

   
 

        † †
.      (4) 

By using Eq. (4), the evolution of a multi-qubit system can be evaluated.  

                   

3 Evolution of the speed-up capacity in different quantum channels  

Now we focus on the evolution of the speed-up capacity of two-qubit states in different 

quantum channels where the N  in Eq. (4) equals to 2. The operator norm which has been proved 

that provides a sharpest bound[22] is used here. Two classes of typical Bell-type initial state,  

a a     and a a     with coefficient a , are 

considered as the initial states respectively. The evolved state t  is used as the target state to 

show the dynamics of the capacity. 

 

3.1 Amplitude-damping channel 

This channel represents the dissipative interaction between a qubit and its environment. The  

Hamiltonian model for the process can be written as follow[35]:  

       
AD k k k k k k k

k k
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where 


 are the raising and lowering operators with 0  being the transition frequency of the 

qubit. Here k  denotes different field modes of the reservoir where 
k k

a a
†

is the 

annihilation(creation) operator and 
k

g  is the coupling constant. A damped Jaynes-Cummings 

model is considered with 
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where   defines the spectral width and 0  quantifies the coupling strength. The decoherence 

function of the model is 
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where  0

2 2d . The environment is Markovian(memoryless) when 2/0   , 

otherwise a non-Markovian(memory effect) environment is caused[36-40]. The Kraus operators of 

this model are given as 
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where the damping parameter )(tp  equals to )(2 tG . The evolution can be easily expanded to 

two-qubit systems by using Eq. (4). 

The speed-up capacity of   and   as a function of the scaled time t  and 

coefficient a  without memory effect is shown in Fig.1. It can be found that   always has no 

speed-up capacity no matter how long it evolves. Yet   has a nonzero speed-up capacity at the 

initial time (except a  ) and then it increases to an invariant value within a short time evolving. 

The capacity is in inverse proportion to coefficient a . These phenomena mean that   has 

reached the best accelerated performance in this channel, while   can obtain a further 

acceleration even when the environment is memoryless. It is an important character for state 

selecting in experiments. 

 

Fig.1 Evolution of the speed-up capacity of (a)   and (b)   in an amplitude-damping 

channel as a function of scaled time t  and coefficient a  with =50 . 

 

3.2 Phase-damping channel 

This process describes a pure dephasing type of interaction between a qubit and a bosonic  

reservoir. The Hamiltonian is written as follow[35]:  

    
P D z k k k z k k k k

k k

H a a g a g a        
† †

.          (9) 

A spectral density of an Ohmic-like form is considered here: 
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where s  is the Ohmic parameter and c  is the cutoff frequency of the environment. By   

changing the relationship for s and constant 1, we obtain different Ohmic spectra which 

corresponds to sub-Ohmic environments( 1s ), Ohmic environments( 1s ), and super-Ohmic 

environments( 1s ), respectively. Besides, 2s  may cause a memory effect with zero T [41]. 

Kraus operators of this channel are given as 
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where )(tp  is a dephasing parameter and can be calculated by     
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t
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here )(t  is the dephasing rate and indicated as   

     )]arctan(sin[)(])(1[)( 2/2 tsstwt c

s
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,        (13) 

where )(s  represents the Euler function. It also can be easily expanded to two-qubit systems 

by using Eq.(4). 

Evolution of the speed-up capacity of   and   in this channel are much different 

from those in an amplitude-damping channel. A biggest distinction is that   and   do not 

have a different speed-up capacity anymore. As shown in Fig.2, the two classes of states have a 

same invariant speed-up capacity when coefficient a  is same in a memoryless environment. 

There is a non-monotonic relationship between the capacity and coefficient a . This relationship 

also can be used to select an appropriate state for experiment aim.                    

 

Fig.2 Evolution of the speed-up capacity of (a)   and (b)   in a phase-damping 

channel as a function of scaled time 
c
t  and coefficient a  with =1s , =1c . 



3.3 Bit flip, Phase flip, and Bit-phase flip channels 

These three channels are all under the Markov approximation in which memory effect does  

not exist. The unified Lindblad operator of them in a single –qubit system is 

           
i i

d
t t t

dt
       ,                   (14) 

where   is the time-independent dephasing rate and 
i

  is the Pauli matrix with 

i x y z denote bit flip, phase-bit flip, and phase flip channels, respectively. The set of Kraus 

operators for each one of these channels are given as[34]    
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where p t t   .                       

In these three channels the speed-up capacity of   and   are same. The evolution in 

a bit flip channel is shown in Fig.3. It can be seen that the capacity in this channel rises from zero 

to a very small value within a short time. The relationship between the finial value and coefficient 

a  is still non-monotonic but different to it is in a phase-damping channel. The dynamics in a 

phase flip channel is similar to it is in a phase-damping channel as shown in Fig.4. This 

phenomenon is easy to be understood since it has been known that a phase-damping channel and a 

phase flip channel are exactly a same quantum operation[42]. In Fig.5 it is found that the speed-up 

capacity in a bit-phase flip channel is same as it is in a bit flip channel. This phenomenon can been 

easily confirmed in mathematics by using Eq. (2), (4) and (15).                         

 

Fig.3 Evolution of the speed-up capacity of (a)   and (b)   in a bit flip channel as a 

function of scaled time t  and coefficient a  with =10 .                    



 

Fig.4 Evolution of the speed-up capacity of (a) 
1  and (b) 

2  in a phase flip channel 

as a function of scaled time t  and coefficient a  with =10 .                                        

 

Fig.5 Evolution of the speed-up capacity of (a) 
1  and (b) 

2  in a bit-phase flip 

channel as a function of scaled time t  and coefficient a  with =10 .   

 

3.4 Explaining for the different features of the speed-up capacity in different channels   

Now we investigate on the reason of why the speed-up capacity has such different features in 

different channels. Two main different characters are interpreted here: 1) Why the capacity of 

1  and 
2  are vastly different in an amplitude-damping channel but exactly the same in 

other channels we have considered? 2) Why the capacity is always exist in most situations we 

have considered and what conditions should be satisfied when the capacity is disappeared such as 

1  in an amplitude-damping channel? With answering to question 2), the results can be 

generalized to general scenarios.            

Substituting Eq. (2) into Eq. (1), we have 
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The reduced density matrices of the states 
1  and 

2  at time t can be written as  
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Then we can obtain 
2 2 * 2

1 1 1 22 23 23 33( ) 1 ( ) (1 )t                 and 
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2 2 2 44 14 14 11( ) 1 ( ) (1 )t                . In phase-damping, Bit flip, 

Phase flip, and Bit-phase flip channels we find that 

'

11 33=  ,
'

22 44=  ,
'

33 11=  ,
'

44 22=  ,
'

14 23=  ,
'

23 14=   are always satisfied during the 

evolution. Therefore 1 1 1( )t   always equals to 2 2 2( )t   in these channels. On 

the other hand, 
1( ( ))tL t and 

2( ( ))tL t  have the same singular values[32,43] due to the 

symmetry between 
1( )t  and 

2 ( )t . This is the exact reason for why the capacity of 
1  

and 
2  are the same in these channels by using Eq. (16). When we come to the case that in an 

amplitude-damping channel, it is found that the symmetry between 
1( )t  and 

2 ( )t  is 

destroyed in diagonal elements. Accordingly, the capacity of 
1  and 

2  are different in this 

channel.    

Next we come to explain the second character. The definition of QSL  is originally derived 

from the inequality which has been obtained as the nonunitary generalization[22] 
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By using the relationship  000 )()(  tttt LtrL   and the von Neumann trace 

inequality for operators[44,45], we get  
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Integrating Eq. (19) over time, it is found that 
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By substituting Eq. (20) into Eq. (16), 0apC  is obtained. This is the reason for why in most 

situations the capacity is positive. Obviously, the condition which causes the capacity equals to 

zero is the same condition which leads to equal sign in the von Neumann trace inequality. From 

this we can see that the evolution of state   in an amplitude-damping channel reaches the 

condition and the capacity is disappeared in this case. Moreover, since Eq. (20) is a general 

equation which is independent of the values of the parameters of quantum channels and always set 

up in different dynamical processes, the results may be generalized to general occasions and more 

specific research will be proceeded in further work.  

 

4 Memory and memory degree effect   

In this section we will explore the scenarios in which the memory effect is emerged. How to 

distinguish whether the environment is a memory or memoryless one has been described in 

previous section. In an amplitude-damping channel we see things become a little different from 

previous when the system is affected by memory. As shown in Fig.6, 
1  still has no speed-up 

capacity at the beginning, but suddenly rises to an invariant value which has nothing to do with a . 

For 
2  the circumstance is similar to what happens in a memoryless environment, however it 

takes a shorter time to reach the invariant value which is higher than it is in a memoryless 

environment.  

 

Fig.6 Evolution of the speed-up capacity of (a) 
1  and (b) 

2  in an 

amplitude-damping channel as a function of scaled time t  and coefficient a  with =50 . 

Dynamics of the speed-up capacity in a phase-damping channel with memory effect is shown 

in Fig.7. Although it seems to be a same one to it is in a memoryless environment, it is found that 

the capacity is slightly rising to a higher value within a short time evolving when the environment 

is in memory as shown in Fig.8.                   



 

Fig.7 Evolution of the speed-up capacity of (a) 
1  and (b) 

2  in a phase-damping 

channel as a function of scaled time 
c
t  and coefficient a  with =5s , =1c .                  

 

Fig.8 Contrast of the speed-up capacity of (a) 
1  and (b) 

2  between a memory and a 

memoryless environment in a phase-damping channel with 5.0a . 

Overall, despite the dynamics of the capacity is different in varieties of channels, it can draw 

a conclusion that memory effect causes more potentially accelerated ability in two-qubit open 

systems, which in fact is a powerful supplement to the result that non-Markoviantity may reduce 

the QSL time in a Jaynes-Cummings model of a single qubit open system[22]. It also testifies the 

generalization of the relationship between the non-Markovianity and the QSL time. Since the 

intrinsic reason of why quantum speedup connects directly with the non-Markovianity in single 

qubit open systems has been revealed in [46], our result about the relationship between the 

quantum speed-up capacity and the non-Markovianity in two-qubit open systems may also be 

explained by using the conclusion of [46].  

Finally we deal with the question that what will happen if the memory degree is changed. We 

know that memory effect comes from non-Markovianity of the environment. So if the degree of 

non-Markovianity is higher, the memory degree is higher. It has been proved that the degree of 

non-Markovianity is in proportion to the coupling strength 0  in a damped Jaynes-Cummings 



model[37]. Therefore the memory degree is also in proportion to the 0  in a damped 

Jaynes-Cummings model. The speed-up capacity of 
1  and 

2  as a function of scaled time 

t  and 0  is shown in Fig.9. It is found that higher the memory degree leads to better speed-up 

capacity. Namely, more memory effect, more potential acceleration. It is remarkable that when 

0  is high enough, there is a short fluctuation for 
1  before it reaches the invariant speed-up 

capacity. Since some methods which may control the speed of the evolution of single qubit 

systems in theory and experiments have been presented[46-57], our results may make some 

contribution to experiments in further work.   

 

Fig.9 Evolution of the speed-up capacity of (a)
1  and (b) 

2   in an 

amplitude-damping channel as a function of scaled time t  and the coupling strength 0 (in 

proportion to memory degree) with =50 , 5.0a . 

 

5 Conclusion 

In summary, we present a formula to feature the speed-up capacity of a quantum system. We 

find the capacity has different dynamics in varieties of channels and exists in most situations of 

two-qubit open systems. We interpret the characters of the capacity and demonstrate memory 

effect can always improve the capacity. We also find coefficient a  of the initial state and the 

memory degree are two key factors which may useful in experiments to control the capacity.         
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