Pretty Printing with Lazy Dequeues

OLAF CHITIL
University of Kent, UK

There are several purely functional libraries for converting tree structured data into indented
text, but they all make use of some backtracking. Over twenty years ago Oppen published a more
efficient imperative implementation of a pretty printer. This paper shows that the same efficiency
is also obtainable without destructive updates by developing a similar but purely functional Haskell
implementation with the same complexity bounds. At its heart lie two lazy double ended queues.

Categories and Subject Descriptors: D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; E.1 [Data Structures]: Lists, Stacks, and Queues

General Terms: Algorithms, Languages

1. PRETTY PRINTING

Pretty printing is the task of converting tree structured data into text, such that
the indentation of lines reflects the tree structure. Furthermore, to minimise the
number of lines of the text, substructures are put on a single line as far as possible
within a given line-width limit. Here is the result of pretty printing an expression
within a width of 35 characters:

if True
then if True then True else True
else
if False
then False

else False

John Hughes [1995], Simon Peyton Jones [1997], Phil Wadler [2003], and Pablo
Azero and Doaitse Swierstra [1998] have all developed pretty printing libraries for
the functional language Haskell [Peyton Jones 2003]. Such a library implements
the functionality common to a large class of pretty printers. For example, Wadler’s
library provides the following functions:

text :: String -> Doc
line :: Doc

(<>) :: Doc -> Doc -> Doc
nest :: Int -> Doc —> Doc
group :: Doc —> Doc

pretty :: Int -> Doc -> String

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1-77.

The function text converts a string to an atomic document, the document line
denotes a (potential) line break, and <> concatenates two documents. The function
nest increases the indentation for all line breaks within its document argument.
The function group marks the document as a unit to be formatted either hori-
zontally, that is on a single line by converting each line break (and corresponding
indentation) into a single space, or vertically, with all line breaks unchanged. Fi-
nally, the function pretty yields a string with a pretty layout. The function aims
at minimising the number of lines by formatting groups horizontally while not ex-
ceeding the given line-width limit. The layout of a subdocument depends not only
on its form but also on its context, the remaining document. The library functions
enable easy compositional construction of a document

To pretty print a concrete data structure, we only have to define a function that
transforms the data structure into a document. With the following function we
obtain the pretty printed expression shown on the previous page:

data Exp = ETrue | EFalse | If Exp Exp Exp

toDoc :: Exp -> Doc

toDoc ETrue = text "True"

toDoc EFalse = text "False"

toDoc (If el e2 e3) =

group (nest 3 (

group (nest 3 (text "if" <> line <> toDoc el)) <> line <>
group (nest 3 (text "then" <> line <> toDoc e2)) <> line <>
group (nest 3 (text "else" <> line <> toDoc e3))))

All previous implementations of Haskell pretty printing libraries use backtracking
to determine the optimal layout. They limit backtracking to achieve reasonable
efficiency, but their time complexity is worse than linear in the size of the input.
However, more than 20 years ago Dereck Oppen [1980] published an imperative
implementation of a pretty printer with linear time complexity. At the heart of his
implementation lies an array that is updated in a complex pattern. Wadler tried
to translate this implementation into a functional language but did not succeed
[Wadler 2003]. Are destructive updates necessary to achieve efficiency? No, but
the proof is not straightforward. We develop here, step by step, guided by Oppen’s
implementation, a similar but purely functional implementation in Haskell.

We implement Wadler’s pretty printing interface. The interfaces of Hughes” and
Peyton Jones’ libraries are different, but changing the implementation to support
them seems possible. Because Azero’s and Swierstra’s library is more expressive
than the others, the implementation cannot support its interface.

2. THE PROBLEM

We follow Wadler in considering a document of type Doc as equivalent to a set
of strings with the same content but different layout. These are the strings that
we obtain for all the possible choices of formating the groups occurring in the
construction of the document. Every group can be formatted independently either
horizontally or vertically, except that all groups within a horizontal group have

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

to be horizontal as well. The function pretty chooses one member of the set of
strings.

To specify the output of pretty, we define a document as an algebraic data type
with a constructor for each function that yields a document:

data Doc = Text String | Line | Doc :<> Doc | Group Doc

text = Text
line = Line
(<>) (:<>)
group = Group

For simplicity we ignore the function nest for the moment. We will see in Sec-
tion 8 how it can easily be added to the final implementation.

We use a “document interpreter” inter to define the function pretty. While
recursively traversing the document in-order, the function inter keeps track of two
state variables: the boolean h states if the interpreter is within a horizontal group;
the integer r contains the size of the remaining space on the current line. Besides
the formatted output, the interpreter also has to return the remaining space on the
last line.

For formatting a group the interpreter takes Oppen’s approach: a group is for-
matted horizontally if and only if it fits on the remaining space of the line. In
Section 7 this choice is discussed in more detail. A function fits checks if the
remaining space is sufficient.’

pretty w d = fst (inter d False w)

where
inter :: Doc -> Bool -> Int -> (String,Int)
inter (Text s) hr = (s,r - length s)
inter Line hr=if h then (" ",r-1) else ("\n",w)
inter (d1 :<> d2) h r = (ol ++ 02,r2)
where

(ol1,r1) = inter d1 h r
(02,r2) inter d2 h ri
inter (Group d) h r = inter d (fits d r) r

A naive implementation of fits evaluates the width of the document d and
compares the result with the remaining space r.

fits :: Doc -> Int -> Bool
fits d r = widthDoc d <= r

widthDoc :: Doc -> Int

widthDoc (Text s) = length s

widthDoc Line =1

widthDoc (d1 :<> d2) widthDoc d1 + widthDoc 42
widthDoc (Group d) widthDoc d

1Because a group within a horizontal group is horizontal, we could replace the boolean expression
fits d r by h || fits d r in the last equation of inter. This optimisation, however, does not
improve the time complexity of this implementation nor any other one presented later.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The naive implementation has the disadvantage that the additional traversals of the
groups to determine their widths causes the function pretty to require exponential
time for formatting some documents with nested groups.

There is another problem: Only after the full traversal of a group it is known
whether the group fits on the remaining line. Hence the interpreter produces most
of the output string for a group only after it has traversed the whole group, as the
following computation of the Haskell interpreter Hugs? demonstrates:

Main> pretty 4 (group (text "Hi" <> line <> text "you" <> undefined))
llHi
Program error: undefined

So the document for a whole group has to be kept in memory. A group is often
large; it may encompass the whole document. Furthermore, the document itself
can often be constructed lazily and hence should never exist as a whole in memory.
In interactive applications the time delay at the beginning of a group may be dis-
turbing. A pretty printer should only require a look-ahead of at most w characters,
were w is the line-width limit. Wadler [2003] calls an implementation with this
property bounded.

2.1 Bounded but not Linear

We can define fits so that it traverses the document d at most up to the remaining
width r. When that point is reached, it is clear that the document does not fit.

fits :: Doc -> Int -> Bool
fits d r = isJust (remaining d r)

where

remaining :: Doc -> Int -> Maybe Int

remaining (Text s) r = r ‘natMinus‘ length s
remaining Line r = r ‘natMinus‘ 1

remaining (dl1 :<> d2) r case remaining dl1 r of

g g
Just rl -> remaining d2 ri
Nothing -> Nothing

remaining (Group d) r = remaining d r

natMinus :: Int -> Int -> Maybe Int
natMinus nl n2 = if nl >=n2 then Just (n1-n2) else Nothing

This implementation with pruning is bounded:
Main> pretty 4 (group (text "Hi" <> line <> text "you" <> undefined))
"Hi\nyou
Program error: undefined

The pruning method is similar to Wadler’s method of pruning backtracking and
hence we obtain the same time complexity: In the worst case it is O(n - w), where

n is the size of the input and w the line-width limit. An example for the worst case
is the following right-nested document:

2http://www.haskell.org/hugs

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

group (text "*" <> line <> group (text "x" <> line <> group (...)))

Pruning substantially improves the time complexity, but we want to obtain O(n)
time complexity, independent of w. However, no further optimisation is in sight.
The optimisation leads into a cul-de-sac.

2.2 Linear but not Bounded

On the other hand, we can obtain a linear implementation from the naive definition
by tupling the document traversals and creating a circular program [Bird 1984]:
instead of a separate function that traverses a document to determine its width, the
interpreter inter can determine the width in addition to its other tasks. The new
version of inter returns the formatted document, the size of the space remaining
on the last line, and the width of the document:

pretty w d = (\(x,_,_)->x) (inter d False w)

where
inter :: Doc -> Bool -> Int -> (String,Int,Int)
inter (Text s) hr=(,r1,1)
where
1 = length s
inter Line hr= (o,r’,1)
where

(o,r’) = if h then (" ",r-1) else ("\n",w)
inter (d1 :<> d2) h r = (ol ++ 02,r2,wl + w2)

where

(ol,r1,wl) = inter d1 h r

(02,r2,w2) inter d2 h ri
inter (Group d) hr= (o,r’,w)

where

(o,r’,w) = inter d (w<=1) r

This implementation of inter takes advantage of lazy evaluation: in the last
equation the result width w is passed as part of the second argument. For this
circular definition to work, the function inter has to be able to yield the width of
a document without using the value of h. Therefore it would be wrong to “simplify”
the equation for Line to

inter Line h r = if h then (" ",r-1,1) else ("\n",w,1)

The implementation has linear time complexity®, because a computation spends
only constant time on each document constructor. However, the implementation is
not bounded.

2.3 Recapitulation
This section has set the scene. We specified the meaning of the pretty printing

functions and stated the two desired properties of boundedness and linear time

3 The use of (++) for formatting a document di :<> d2 actually leads to quadratic time com-
plexity. To achieve linear time we can represent a document as a function and then function
composition performs list concatenation [Hughes 1986]. We do not apply this optimisation here
to not to distract from the main issues.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

complexity. There are implementations that are bounded and others that are linear.
The challenge is to marry the two properties in a single implementation.

3. A LINEAR IMPLEMENTATION WITH STACKS

The tree structured recursion of inter and pruning at a certain width to achieve
boundedness do not fit together. Hence we follow Oppen and represent a document
not as a tree structure but as a token sequence.

data Tokens = Empty

| Text String Tokens
| Line Tokens

| Open Tokens

|

Close Tokens

A group is represented as an Open token, the sequence of the grouped document
and a final Close token. To construct the token sequence in linear time we represent
a document as a function and function composition performs concatenation [Hughes
1986].

newtype Doc = Doc (Tokens -> Tokens)

text s = Doc (Text s)

line = Doc (Line)

Doc 11 <> Doc 12 = Doc (11 . 12)
group (Doc 1) = Doc (Open . 1 . Close)

doc2Tokens :: Doc -> Tokens
doc2Tokens (Doc f) = f Empty

Similar to our previous implementations we define pretty through an interpreter
inter of the token sequence. Because this interpreter iterates along the token list
instead of recursively following the nesting structure of groups, it has to store
information about surrounding groups explicitly in stacks. We will see that these
explicit data structures are the key to obtaining the desired implementation.

We use the following abstract data type of sequences with stack operations:

newtype Seq a = S [a]

empty = S []

isEmpty (S gs) = null gs

cons x (S xs) = S (x:xs8)

head (S xs) = List.head xs
tail (S xs) S (List.tail xs)

Using an abstract data type avoids premature commitment to the concrete rep-
resentation. If we used lists directly we would also be tempted to use pattern
matching in place of the functions isEmpty, head and tail, which would make
later changes of representation even harder. Okasaki [2000] gives a compelling ex-
ample that demonstrates how easily premature commitment to a representation
can make functional programmers blind to a natural implementation solution.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

pretty :: Int -> Doc -> String
pretty w doc = fst (inter (doc2Tokens doc) O w empty)

where
inter :: Tokens -> Int -> Int -> Seq Int -> (String,Seq Bool)
inter Empty _ - - = ("",empty)
inter (Text s ts) p r es = (s ++ o,hs)
where
(o,hs) = inter ts (p+l) (r-1) es
1 = length s
inter (Line ts) p r es = (if h then ’ ’:0 else ’\n’:0,hs)
where

(o,hs) = inter ts (p+1) (if h then r-1 else w) es
h = not (isEmpty hs) && head hs

inter (Open ts) p r es = (o,tail hs)
where
(o,hs) = inter ts p r (cons (p+r) es)

inter (Close ts) p r es = (o,cons (p <= head es) hs)
where
(o,hs) = inter ts p r (tail es)

Fig. 1. Implementation using Stacks

For our first implementation of the token interpreter we do not yet care about
boundedness. So the interpreter decides if a group is formatted horizontally or
vertically only after it has been traversed, that is, the decision is made at the Close
token of the group. An implementation that makes the decision by determining
the width of a group proves to be rather complicated. Instead it is easier to follow
Oppen again and introduce an absolute measure of a token’s position. The absolute
position p gives the column in which a token would start, if the whole document
that is passed to pretty was formatted in a single line. The interpreter keeps
track of the absolute position of the current token and the remaining space, as
used already in the last section. At an Open token the interpreter adds absolute
position and remaining space to determine the mazimal end position of the group.
If the maximal end position is larger or equal than the absolute position of the
Close token of the group, then the group fits on the line and hence is formatted
horizontally. Otherwise it is formatted vertically.

To get the maximal end position of a group from its Open token past possibly
many inner groups to its Close token, the interpreter passes a stack of maximal
end positions along the token sequence. Inversely, the interpreter has to get the
information whether a group is horizontal from its Close token back to all its
Line tokens, because these need to be formatted accordingly. For this purpose the
interpreter passes a stack of boolean values, called the horizontal stack, back along
the token sequence.

Figure 1 shows the implementation. As the type of inter indicates, it passes
the arguments p (absolute position), r (remaining space) and es (stack of maximal
end positions) along the token sequence, whereas it returns o (output) and hs
(horizontal stack) in the opposite direction. At an Open token an element is pushed
on the stack of maximal end positions and the top element from the horizontal stack
is popped. At a Close token the top element of the stack of maximal end positions
is popped and the decision on formatting is pushed on the horizontal stack. Each

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

element of a stack corresponds to a surrounding group.

The subsequent table shows the values of the main interpreter variables for an
example token list. We assume that the strings of the Text tokens have length
1. The line-width limit is 3. Sequences are enclosed in () and boolean values are
abbreviated as T and F.

Open Text Line Open Text Line Text Close Close

p 0—-—0—-1—-»2— 2 —- 3 — 4 — 5 — —

o D

5
r 3-3 -2 -3 -3 - 2 - 1 - 0 —- 0 —
es () > (3) = (3) = (3) = (5,3) = (5,3) = (5,3) = (5,3) = (3) —
hs <><—<F><—<F><—<F><—<T7F><—<T,F><—<T,F><—<T,F> — <F> —

The arrows indicate the direction in which values are passed along the token
sequence. The table does not show the complex data dependencies between values.
Similar to the last interpreter in the previous section this one is circular: in the
interpreter equation for the token Line, information from the returned horizontal
stack is passed as part of the third argument, the remaining space. For this to work
the decision if a group is horizontal may not depend on the remaining space at its
inner tokens. Indeed, the decision only depends on the remaining space at its Open
token.

Laziness leads to a kind of co-routine computation. The computation of each
passed value, that is, absolute position, remaining space, maximal end position
stack, horizontal stack and output, can be identified with a process. At one point
in time each process may be at a different position in the token sequence. The
computation of the horizontal stack is furthest along the sequence, “looking” for
Close tokens. The computation of the output is the most backward process, directly
or indirectly using the results of all other processes.

For interpreting a token the implementation only requires time linear in the size
of a token (the size of Text s is the length of s). Hence with n as the size of the
input, the implementation has O(n) time complexity.

o~ o~
==

4. EARLIER DECISIONS THROUGH DEQUEUES

The linear implementation with stacks is not bounded, because the interpreter
decides whether a group is formatted horizontally only at the Close token of the
group. However, in the example table of the previous section the interpreter could
have noticed already at the second Line token that the outer group does not fit,
because the absolute position 4 after the token is larger than the maximal end
position of the group, the 3 stored at the rear of the sequence es before the token.
The interpreter could have removed the maximal end position from the rear of the
sequence and could have added a False to the rear of the corresponding horizontal
sequence hs.

The following table shows the variable values for a modified implementation.
Underlined values differ from those of the previous table.

Open Text Line Open Text Line Text Close Close

p 0—-0—-1—-2—» 2 —- 3 —- 4 —>5 — 5 — 5
r 3—-3 -2 -3 - 3 - 2 —-1-0 —0-—20
es () = (@3)—=(3) =03 —=(3) = G3) =6 =6 =0 — 0
hs () « (F) « (F) « (F) < (T.F) < (T.F) = (T) = (T) < () <« ()

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The modified interpreter removes elements from the rear of es and adds elements
to the rear of hs as well as still adding and removing elements from the front.
So the sequences es and hs are no longer used as stacks but as double ended
queues (dequeues). For the moment we extend our sequence type accordingly in an
inefficient but straightforward way:

=8 (xs++[x])
List.last xs
S (List.init xs)

snoc x (S xs)
last (S xs) =
init (S xs) =

The general idea of earlier formatting decisions is as follows: every time the
interpreter increases the absolute position, it checks if the maximal end position
for the outermost surrounding group is smaller than the absolute position. If it is
smaller, than that group has to be formatted vertically. So the interpreter removes
the maximal end position from the rear of es and adds the boolean False to the
rear of hs. The maximal end position is removed from the rear of es for two
reasons. First, the new maximal end position at the rear of the sequence has to
be compared with the current absolute position: the interpreter should be able
to decide for several nested groups that they are vertical. Second, removal of the
maximal end position ensures that the sequence is empty when the Close token of
the group is reached and thus the interpreter notices at the Close token that the
decision on the formatting of the group has been taken already.

As in the previous implementation, every element of a sequence es or hs contains
information about a surrounding group. The front element corresponds to the
directly surrounding group, the next element to the next surrounding group, etc.
Only, now there may no longer be an element for every surrounding group. If there
is no maximal end position for a group in es, then the maximal end position is
smaller than the absolute position of the current token. If there is no “horizontal”
boolean for a group in hs, then that group is formatted vertically.

Figure 2 shows the new implementation with es and hs as dequeues. The function
prune implements the new early check. The definition is recursive, because at a
given absolute position several surrounding groups may be found to require vertical
formatting. The definition of inter differs from the previous one in that the cases
for Text and Line tokens call the function prune, because these are the tokens that
cause an increase of the absolute position. Because of earlier decisions, the maximal
end positions sequence can already be empty at a Close token. In that case both
sequences are unchanged. Otherwise a boolean is put in front of the horizontal
sequence as before.*

This implementation is not linear, because of the inefficient new dequeue func-
tions. The recursive definition of the function prune does not endanger linear
runtime, because there is at most one recursive call of prune per Open token in the
token list.

4We could replace the test p <= head es by True. The correctness of this minor optimisation
relies, however, on es being ordered, with the largest element at the rear. When in Section 8 the
function nest is added to the implementation, this ordering property will no longer hold.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10

pretty :: Int -> Doc -> String
pretty w doc = fst (inter (doc2Tokens doc) O w empty)

where
inter :: Tokens -> Int -> Int -> Seq Int -> (String,Seq Bool)
inter Empty _ - - = ("",empty)
inter (Text s ts) p r es = (s ++ o,hs)
where

(es’,hs) = prune p’ es hs’
(o,hs’) = inter ts p’ (r-1) es’
1 = length s
p’ = pt+l
inter (Line ts) p r es = (if h then ’ ’:0 else ’\n’:o0,hs)
where
(es’,hs) = prune p’ es hs’
(o,hs’) = inter ts p’ (if h then r-1 else w) es’
h = not (isEmpty hs’) && head hs’

p’ = ptl
inter (Open ts) p r es = (o,tail hs’)
where
(o,hs’) = inter ts p r (cons (p+r) es)
inter (Close ts) p r es = (o,hs)
where

(es’,hs) = if isEmpty es then (es,hs’)
else (tail es,cons (p <= head es) hs’)
(o,hs’) = inter ts p r es’

prune :: Int -> Seq Int -> Seq Bool -> (Seq Int,Seq Bool)
prune p es hs’ = if isEmpty es || p <= last es then (es,hs’)
else (es’,snoc False hs)
where
(es’,hs) = prune p (init es) hs’

Fig. 2. Implementation using Dequeues

From a given Open token the new interpreter requires only a look-ahead of at
most the width limit® along the token sequence to decide if the group is formatted
horizontally or vertically. However, despite the earlier decisions the implementation
is still unbounded.

5. LIMITING LOOK-AHEAD THROUGH LAZY DEQUEUES

Why is the implementation with earlier decisions still unbounded? It is the fault
of the functions applied to the horizontal sequence hs. On the one hand, when the
need for vertical formatting is detected early, a False value is added to the rear of
hs. On the other hand, at every Line token of the group, the front value of hs is
used to decide the formatting. So the False “travels” from the rear to the front of
the sequence. Evaluation of the front element of hs forces nearly full evaluation of
hs.

5The look-ahead is also determined by the length of Text strings. Calling prune after every
character of a Text string would remove this dependency, but increase the runtime considerably.
In practice, Text strings should be shorter than the width limit; otherwise no “pretty” formatting
is possible anyway.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

11

pretty :: Int -> Doc -> String
pretty w doc = fst (inter (doc2Tokens doc) O w empty)

where
inter :: Tokens -> Int -> Int -> Seq Int -> (String,Seq Bool)
inter Empty _ - - = ("",empty)
inter (Text s ts) p r es = (s ++ o,hs)
where

(es’,hs) = prune p’ es hs’
(o,hs’) = inter ts p’ (r-1) es’
1 = length s
p’ = pt+l
inter (Line ts) p r es = (if h then ’ ’:0 else ’\n’:o0,hs)
where
(es’,hs) = prune p’ es hs’
(o,hs’) = inter ts p’ (if h then r-1 else w) es’
h = not (isEmpty es’) && head hs’
p’ = ptl
inter (Open ts) p r es = (o,hs)
where
(es’,hs) = consTail (p+r) es hs’
(o,hs’) = inter ts p r es’
inter (Close ts) p r es = (o,hs)
where
(es’,hs) = if isEmpty es then (es,hs’) else tailCons es (p <= head es) hs’
(o,hs’) = inter ts p r es’

prune :: Int -> Seq Int -> Seq Bool -> (Seq Int,Seq Bool)

prune p esl hs3 = if isEmpty esl || p <= last esl then (esl,hs3) else (es3,hsl)
where
(es2,hs1) = initSnoc esl False hs2
(es3,hs2) = prune p es2 hs3

Fig. 3. Implementation using Combined Dequeue Functions

The following equations demonstrate the problem:

head (tail (snoc False (undefined))) = undefined
head (tail (snoc False (S [undefined]))) = False
head (tail (snoc False (S [True]))) = False

To determine the front element, the values of other sequence elements (e.g. True)
are not needed, but the structure of the sequence, in particular its length, is.

The solution of the problem lies in the close relationship between the maximal end
position sequence and the horizontal sequence. In the implementation of Figure 2
the two sequences are modified in perfect synchrony. At every program point where
a function yielding a new sequence is applied to one sequence, the inverse function
is applied to the other sequence. Hence we can combine the operations on two
sequences. Let

consTail :: a -> Seq a -> Seq b -> (Seq a,Seq b)

add an element to the front of the first sequence and take the tail of the second
one;

tailCons :: Seq a -> b -> Seq b -> (Seq a,Seq b)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12

take the tail of the first sequence and add an element to the front of the second
sequence;

initSnoc :: Seq a -> b -> Seq b -> (Seq a,Seq b)

take the initial part of the first sequence and add an element to the rear of the
second sequence. The implementation in Figure 3 differs from that of Figure 2 only
insofar that it uses the new combined functions on sequences and uses isEmpty
es’ instead of isEmpty hs’.

The sequence es is passed forwards along the token sequence and the sequence
hs is passed backwards along the token sequence. Both sequences are empty at
the beginning and at the end of the token sequence. Together with the perfect
synchrony of modifying the two sequences follows that for any token of the token
sequence both es and hs have the same length. Hence the interpreter can use the
internal structure of es, which may be fully evaluated, to apply a function to hs
without evaluating any part of hs.

We define an auxiliary function:

copyListStructure :: [a] -> [b] -> [b]

copyListStructure [] _ = []

copyListStructure (_:xs) zs = y: copyListStructure xs ys
where
(y:ys) = zs

This function takes two lists that should be of the same length. The function makes
a copy of the second list, using the structure of the first list. Thus the list structure
of the result can be fully evaluated, without evaluating the second list at all. For
example:

copyListStructure [1,2,3] undefined = [undefined,undefined,undefined]

Using copyListStructure we define new lazy combined dequeue functions. Each
combined function copies the structure of the first sequence (es) to the second
sequence (hs) and only then applies the actual function to the copy.

withFirstStructure :: Seq a -> (Seq b -> Seq b) -> Seq b
-> (Seq a,Seq b)
withFirstStructure sql@(S xs1) f (S xs2) =
(sql,f (S (copyListStructure xsl xs2)))

consTail x sql sq2 = withFirstStructure (cons x sql) tail sq2
tailCons sql x sq2 = withFirstStructure (tail sql) (cons x) sq2
initSnoc sql x sq2 = withFirstStructure (init sql) (snoc x) sq2

With these lazy dequeue functions the implementation of Figure 3 is bounded.

6. EFFICIENT LAZY DEQUEUES

In making the pretty printer bounded we have lost again the time efficiency of the
first token list implementation. The functions snoc and last, and in particular
copyListStructure take time linear in the length of the sequence argument. To

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

data

empty ::

Seq a = S !Int [al

Seq a

empty = S 0 [1 0 []

isEmpty ::
isEmpty (S lenf

head ::

head

last
last

cons
cons

tail ::

tail
tail

snoc ::

snoc
init
init
init

reverse

Seq a -> Bool
_ lenr _
Seq a -> a

(S lenf f lenr r) =

:: Seq a -> a
(S lenf f lenr r) =

:: a -> Seq a -> Se
x (S lenf f lenr r)

Seq a -> Seq a
(6 _ [_) = empt
(S lenf f lenr r) =

a -> Seq a -> Se
x (S lenf f lenr r)

:: Seq a -> Seq a
(S _ _ _ [1) = empt
(8 lenf f lenr r) =

:: Seq a -> Seq

reverse (S lenf f lenr r

-- Keep lists in balance

check ::

Int -> [a] > I

check lenf f lenr r = if

where

len = lenf + lenr
lenf’ = len ‘div‘ 2
lenr’ = len - lenf’
(f’,rf’) = splitAt lenf’ f

r’

regain for pretty a runtime that is only linear in the size of the input, we need

= r ++ List.reverse

Fig. 4

'Int [al

) = (lenf + lenr == 0)

List.head (if lenf==0 then r else f)

List.head (if lenr==0 then f else r)

qa
= check (lenf+1) (x:f) lenr r

y
reverse (check lenr r (lenf-1) (List.tail f))

qa
= reverse (check (lenr+1) (x:r) lenf f)

y
check lenf f (lenr-1) (List.tail r)

a
) = S lenr r lenf f

: rebalance if front list too long
nt -> [a] -> Seq a

lenf <= 3 * lenr + 1

then S lenf f lenr r

else S lenf’ f’ lenr’ r’

rf’

The Banker’s Implementation of Lazy Dequeues

dequeue functions that take only constant amortised time.
Figure 6 gives the banker’s dequeue implementation of the sequence data type.

A banker’s dequeue is represented by two lists and their respective lengths. The

13

first list holds the front elements and the other list holds the rear elements of the
sequence in reverse order. An invariant requires that the lengths of the lists are not
too far apart. A function check moves some elements from one list to the other,
when addition or removal of an element threatens to invalidate the invariant. This

rebalancing takes time linear in the length of the sequence, but rebalancing happens

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14

so seldomly that the amortised time of every function is constant. Okasaki gives
more detailed explanations in his book [Okasaki 1998]6.

So we use the banker’s dequeue for implementing the abstract sequence data type.
However, we come across the same problem that we observed in the last section for
the naive sequence implementation: the standard functions on banker’s dequeues
are too strict in the horizontal sequence hs. We cannot directly apply our previous
solution: if the functions consTail, tailCons and initSnoc always copied the
structure of the first to the second banker’s dequeue, then we would not achieve
our desired time complexity. However, the banker’s dequeue implementation of
tail demands only the first constructor of the first list representing the dequeue,
the implementations of cons and snoc do not demand any part of the two lists,
except when the two lists have to be rebalanced. Therefore the idea is that the
linear time function copyListStructure is used only for rebalancing. Rebalancing
takes linear time anyway.

The lazy Banker’s dequeue implementation is given in Appendix C. This imple-
mentation cannot reuse the functions that operate on a single dequeue as the naive
sequence implementation in Section 5 does: First, copyListStructure has to be
used by the internal rebalancing function check. Second, the function check has to
operate on both dequeues simultaneously. Whenever it rebalances the end position
sequence, it also rebalances the horizontal sequence in exactly the opposite way
using the structure of the end position sequence. Without this combined rebalanc-
ing corresponding dequeues es and hs would not have the same internal structure!
There is more than one way to represent a sequence as a Banker’s dequeue.”

The implementation of the function pretty of Figure 3 together with the se-
quence implementation of Appendix C give a bounded, linear time pretty printer.

7. OVERFULL LINES

We took Oppen’s approach for formatting a group: a group is formatted horizon-
tally if and only if it fits in the remaining space of the line. Unfortunately this
approach may yield layouts with lines wider than the width limit, even when a
fitting layout exists. A group that still fits on a line may be followed by further
text without a separating 1ine. Because there is no line, the text has to be added
to the current line, even if it does not fit. Breaking the group might have avoided
the problem.

The problem is solved by normalising the token list with respect to the following
(confluent) rewriting rules before applying pretty:

Close (Text s ts) = Text s (Close ts)
Open (Text s ts) = Text s (Open ts)
Open (Close ts) = ts

6The Haskell implementation in the book contains several mistakes. Also the implementation of
Figure 6 uses reverse, taking advantage of symmetry, to simplify the implementation of check.
"For example, for most dequeues d the dequeue tail (cons 42 d) has a different representation
from d. It is essential for the constant amortised runtime of all functions that there is more than
one way to represent a sequence.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

15

The normalised token list has the property that between a Close token and the
next Text token there is always a Line token.® In other words, the end of every
group can be chosen to be the end of the line. Hence the aforementioned problem
can no longer occur. With normalisation the pretty printer always produces a
fitting layout if it exists, the pretty printer is optimal in Wadler’s sense.

Rewriting only moves Text tokens in and out of groups. Therefore the set of
lines “belonging” to each group, which are either all formatted as new lines or all
as spaces, is unchanged. So normalisation leaves the set of strings denoted by a
document unchanged. Only the representation of the document is changed, so that
Oppen’s formating criterium (possibly) selects a different set element as output.

In Appendix B normalisation is implemented by a linear traversal of the token
list, which collects Open and Close tokens until the next Line token is reached.

8. INDENTATION

To complete the library we still have to implement the function nest. There are
different interpretations of the expression nest n. In Wadler’s library it increases
the current left margin by n columns whereas in Oppen’s pretty printer (and other
libraries) it sets the left margin to the current column position plus n. In Appen-
dices A and B both variants are implemented. There are two new tokens:

data Tokens = .
| OpenNest (Int -> Int -> Int) Tokens | CloseNest Tokens

The function of the first token takes the current margin and column to determine
a new margin and the second token resets the margin to its previous value. An
extended version of inter keeps a list of left margins and interprets the new tokens.

Alternatively, we could implement Wadler’s variant as he does by a transforma-
tion which moves the indentation information into each Line token.

9. COMPARISON WITH WADLER'S IMPLEMENTATION

We followed Wadler in considering a document as equivalent to a set of strings.
Like Hughes Wadler defines an ordering relation on lines: if two lines fit within
the maximal width the longer one is better, otherwise the shorter one is better.
The ordering on single lines is extended lexically to strings. Wadler’s pretty printer
outputs the string that is best with respect to the ordering.

Here we followed Oppen in formatting a group horizontal if and only if it fits
on the current line. Because this specification refers directly to the construction of
the document from combinators, it cannot be expressed in terms of the semantics
of a document, the set of strings. However, we observed in Section 7 that token
normalisation ensures that every group is followed by a potential end of line. Hence
for a normalised token sequence Oppen’s formatting criterium of filling a line with
groups as far as possible without violating the width limit yields the output that
is best with respect to Wadler’s order. So the lazy dequeue pretty printer and
Wadler’s pretty printer yield the same output for any fully defined document. They

8Oppen [1980] states in his Section 2 that he assumes this property to hold for all input token
sequences and hints at the end of Section 5 that other token sequences can be changed.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16

are, however, not semantically equivalent. Although Wadler’s implementation is
bounded, it is still more strict, that is, it often requires more look-ahead.”
For example, with Wadler’s library the Haskell interpreter Hugs computes

Main> pretty 8 (group (text "Hi" <> line) <>
group (text "you" <> line) <> undefined)

Program error: undefined
whereas with the lazy dequeue library it computes

Main> pretty 8 (group (text "Hi" <> line) <>

group (text "you" <> line) <> undefined)
"Hi you
Program error: undefined

10. IN PRACTICE

Appendices A, B and C give the full implementation of the lazy dequeue pretty
printing library including token normalisation and two sorts of indentation.

Table I compares this library with the bounded but not linear implementation
of Section 2.1, Wadler’s library [Wadler 2003] and the one by Simon Peyton Jones
based on John Hughes’ [Peyton Jones 1997]. Note that the bounded implementation
provides only basic pretty printing. In particular, it does not avoid overfull lines as
discussed in Section 7 like all other libraries do. The table gives for different line-
widths the time in seconds that is needed to format a sequence of 500 right-nested
documents. The nested document (cf. Section 2.1) is generated by

doc n = if n==0 then text "" else group (text "*"<>1line<>doc (n-1))
The test program for HPJ is

main = print . length .
renderStyle (style{lineLength=width,ribbonsPerLine=1.0})
vcat . take 500 . repeat $ doc 200

and for the other libraries it is the equivalent

main = print . length . pretty width .
foldrl (\x y -> x<>1line<>y) . take 500 . repeat $ doc 200

All programs were compiled with GHC'Y version 6.2 with -02 and run on a
900 MHz sparcv9 under Solaris.

The example clearly demonstrates that the runtimes of all implementations ex-
cept our own depends on the line-width.

In practice the runtimes for line-widths of around 80 characters are of most inter-
est. Because there is no “typical” document and the interface of HPJ is different,
systematic comparisons are hard. In our experience the libraries provide similar

9Early on Wadler’s implementation applies a flattening operation to the content of a group and
the document following it. Thus information about the structure of the remaining document is
lost. In contrast, the lazy dequeue implementation uses this information.

10The Glasgow Haskell compiler. http://www.haskell.org/ghc

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

17

Line-width 20 40 60 80 100 120 140
HPJ 29 50 69 84 9.8 104 11.0
Wadler 1.1 19 25 32 38 4.1 4.4
Bounded 08 13 16 20 24 2.7 3.1
Dequeue 1.5 15 1.7 16 1.7 1.7 1.7

Table I. Runtimes in seconds for pretty printing a document with different line-width limits

runtimes, but for any two libraries there is a document where one library is up
to 3-4 times faster than the other. Whereas the runtimes of HPJ vary most with
changes of the document structure, those of Dequeue are the most stable.

11. FINAL REMARKS

We have developed a purely functional bounded pretty printer with the same time
complexity as Oppen’s imperative implementation. This proves that Oppen’s al-
gorithm can also be implemented purely functionally. We have seen that for a
bounded pretty printer a dequeue is the natural choice for passing the maximal end
position of a group forward along the token sequence to the point where it can be
decided if the group is formatted horizontally or vertically. The key problem lies
in passing the result of the decision backwards along the token sequence without
jeopardising boundedness or the desired time complexity. For this purpose Oppen
uses a mutable array; we use a second, synchronous, lazy dequeue.

Oppen’s implementation consists of two parts which work together in a co-routine
like fashion. So an explicitly concurrent version of the pretty printer seems natural.
However, it would require additional explicit synchronisation to ensure that no
process looked too far ahead, using unnecessary space for communication buffers.
In the lazy dequeue implementation demand-driven evaluation ensures that the
“process” computing the horizontal sequence never “goes” further ahead than the
“output process” requires for formatting the next token.

The lazy dequeue implementation demonstrates two further points in algorithm
design: First, defining a function recursively along the structure of the main data
type (here a tree-structured document) may not lead to the best solution. We
sometimes have to leave the limits of an implicit recursive control structure by
making it explicit as data structure. A data structure can be replaced by a more
flexible one (here a stack by a dequeue).!’ Second, there are useful lazy variants of
non-inductively defined abstract data structures such as dequeues.

A version of the pretty printing library with an extended interface is part of the
distribution of the Haskell compiler nhc98'2 and has been used in various programs.

The lazy dequeue pretty printer is more complex than the non-linear implementa-
tion by Wadler and those given in Section 2. Numerous alternative implementations
have been explored by me and other people. The failure to find a more simple lin-
ear and bounded implementation still does not settle the question whether such an
implementation exists.

11A related well-known example is breadth-first traversal of a tree: Depth-first traversal can be
implemented easily by direct recursion. However, instead of recursion we can also use a stack.
Replacing the stack by a queue we obtain breadth-first traversal of a tree [Okasaki 2000].
2http:/ /www.haskell.org/nhc98

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18

We developed the lazy dequeue pretty printer in a number of steps. Nonetheless
we did not derive implementations from another by equational reasoning as Hughes
and Wadler did. In fact, bounded and unbounded implementations have different
strictness properties and hence are not semantically equivalent. We stepped several
times from unbounded to bounded implementations and back. How can we prove
the correctness of the development, so that it gives further insight into the problem
and its solution?

Acknowledgements

I thank the referees and Colin Runciman for many suggestions for improving this
paper. The work reported in this paper was partially supported by the Engineering
and Physical Sciences Research Council of the United Kingdom under grant number
GR/M81953.

REFERENCES

AzERO, P. AND SWIERSTRA, D. 1998. Optimal pretty-printing combinators.
http://www.cs.uu.nl/groups/ST/Center/SoftwareDistributions.

BIrD, R. S. 1984. Using circular programs to eliminate multiple traversals of data. Acta Infor-
matica 21, 239-250.

HUGHES, J. 1986. A novel representation of lists and its application to the function “reverse”.
Information Processing Letters 22, 3, 141—144.

HucHES, J. 1995. The design of a pretty-printing library. In Advanced Functional Programming,
J. Jeuring and E. Meijer, Eds. LNCS 925. Springer Verlag.

OKASAKI, C. 1998. Purely Functional Data Structures. Cambridge University Press.

OxAsAKI, C. 2000. Breadth-first numbering: lessons from a small exercise in algorithm design. In
International Conference on Functional Programming. 131-136.

OppEN, D. C. 1980. Prettyprinting. ACM Transactions on Programming Languages and Sys-
tems 2, 4, 465-483.

PEYTON JONES, S. L. 1997. A pretty printer library in Haskell. Part of the GHC distribution at
http://www.haskell.org/ghc.

PEYTON JONES, S. L., Ed. 2003. Haskell 98 Language and Libraries, The Revised Report. Cam-
bridge University Press.

WADLER, P. 2003. A prettier printer. In The Fun of Programming. Palgrave Macmillan, Chap-
ter 11, 223-244.

A. THE LAZY DEQUEUE PRETTY PRINTING LIBRARY

module Pretty (Doc,pretty,text,line, (<>),group
,nestMargin,nestCol)
where

import Prelude hiding (head,last,init,tail)
import qualified List (head,tail)

import Sequence

import Doc

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

19

pretty :: Int -> Doc -> String
pretty w doc = fst (inter (doc2Tokens doc) O w [0] empty)
where
inter :: Tokens -> Int -> Int -> [Int] -> Seq Int
-> (String,Seq Bool)

inter Empty - - - - = ("",empty)
inter (Text s ts) prms es = (s ++ o,hs)
where

(es’,hs) = prune p’ es hs’
(o,hs’) = inter ts p’ (r-1l) ms es’

1 = length s
p’ = p+l
inter (Line ts) p rmses =
(if h then > ’ : o else ’\n’ : repm ’ ’ o,hs)
where

(es’,hs) = prune p’ es hs’
(o,hs’) = inter ts p’ (if h then r-1 else w-m) ms es’
h = not (isEmpty es’) && head hs’

p’ = ptl
m = List.head ms

inter (Open ts) p r ms es = (o,hs)
where

(es’,hs) = consTail (p+r) es hs’

(o,hs’) = inter ts p r ms es’
inter (Close ts) p r ms es = (o,hs)

where

(es’,hs) =

if isEmpty es then (es,hs’) else tailCons es (p <= head es) hs’

(o,hs’) = inter ts p r ms es’
inter (OpenNest f ts) p r ms es =

inter ts p r ((f (List.head ms) (w-r)) : ms) es
inter (CloseNest ts) p r ms es =

inter ts p r (List.tail ms) es

prune :: Int -> Seq Int -> Seq Bool -> (Seq Int,Seq Bool)
prune p esl hs3 =
if isEmpty esl || p <= last esl then (es1,hs3) else (es3,hsl)
where
(es2,hsl) initSnoc esl False hs2
(es3,hs2) = prune p es2 hs3

-- variant of ‘replicate’: rep n x rs = replicate n x ++ rs
rep :: Int -> a -> [a] -> [a]
repn x rs = if n <= 0 then rs else x : rep (n-1) x rs

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20

B. IMPLEMENTATION OF THE DOCUMENT TYPE

module Doc (text,line, (<>),group,nestMargin,nestCol,doc2Tokens,Doc
,Tokens(Text,Line,Open,Close,OpenNest,CloseNest,Empty))
where

text :: String -> Doc
text s = Doc (Text s)

line :: Doc
line = Doc (Line)

(<>) :: Doc -> Doc —> Doc
Doc 11 <> Doc 12 = Doc (11 . 12)

group :: Doc —> Doc
group (Doc 1) = Doc (Open . 1 . Close)

-- increment current left margin
nestMargin :: Int -> Doc —-> Doc
nestMargin i (Doc 1) =
Doc (OpenNest (flip (comnst (+i))) . 1 . CloseNest)

-- set left margin to current column plus given increment
nestCol :: Int -> Doc -> Doc
nestCol i (Doc 1) = Doc (OpenNest (const (+i)) . 1 . CloseNest)

doc2Tokens :: Doc -> Tokens
doc2Tokens (Doc f) = normalise (f Empty)

Doc (Tokens —> Tokens)

newtype Doc

data Tokens = Empty | Text String Tokens | Line Tokens
| Open Tokens | Close Tokens

| OpenNest (Int -> Int -> Int) Tokens

|

CloseNest Tokens

normalise :: Tokens -> Tokens

normalise = go id
where
go :: (Tokens -> Tokens) -> Tokens -> Tokens
go co Empty = co Empty -- no opening brackets

go co (Open ts) = go (co . open) ts

go co (Close ts) = go (co . Close) ts

go co (Line ts) = co . Line . go id $ ts

go co (Text s ts) = Text s (go co ts)

go co (OpenNest f ts) = OpenNest f (go co ts)
go co (CloseNest ts) = CloseNest (go co ts)

open (Close ts) = ts
open ts = Open ts

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

21
C. IMPLEMENTATION OF EFFICIENT LAZY DEQUEUES

module Sequence(Seq,empty,isEmpty,consTail,tailCons,initSnoc
,last,head) where

import Prelude hiding (head,last,init,tail,reverse)
import qualified List (head,tail,reverse)

copyListStructure :: [a] -> [b] -> [b]

copyListStructure [] _ = []

copyListStructure (_:xs) zs = y: copyListStructure xs ys
where
(y:ys) = zs

data Seq a = S !Int [a] !Int [al

empty :: Seq a
empty = S 0 [] 0 []

isEmpty :: Seq a -> Bool
isEmpty (S lenf _ lenr _) = (lenf + lenr == 0)

List.head (if lenf==0 then r else f)
List.head (if lenr==0 then f else r)

head (S lenf f lenr r)
last (S lenf f lenr r)

consTail :: a -> Seq a -> Seq b -> (Seq a,Seq b)
consTail x (S lenf f lenr r) sq =
(sq’,8 lenf (List.tail f’) lenr r’)
where
(sq’,f’,r’) = check (lenf+l) (x:f) lenr r sq
-- precondition: sq and sq’ have same structure

tailCons :: Seq a -> b -> Seq b -> (Seq a,Seq b)
tailCons (S _ [1 _) x _ = (empty,S O [1 1 [x])
tailCons (S lenf f lenr r) x sq =
(reverse sq’,S lenf (x:f’) lenr r’)
where
(sq’,r’,f’) = check lenr r (lenf-1) (List.tail f) (reverse sq)
-— precondition: sq and sq’ have same structure

initSnoc :: Seq a -> b -> Seq b -> (Seq a,Seq b)
initSnoc (S _ _ _ [1) x _ = (empty,S 1 [x] O [1)
initSnoc (S lenf f lenr r) x sq =

(sq’,8 lenf f’ lenr (x:r’))

where

(sq’,f’,r’) = check lenf f (lenr-1) (List.tail r) sq

-- precondition: sq and sq’ have same structure

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22

reverse :: Seq a —-> Seq a
reverse (S lenf f lenr r) = S lenr r lenf f

-- Keep lists in balance: rebalance if front list too long
check :: Int -> [a] -> Int -> [a] -> Seq b -> (Seq a, [b], [b])
check lenf f lenr r sq = if lenf <= 3 * lenr + 1
then (S lenf f lenr r,f2,r2)
else (S lenf’ f’ lenr’ r’,f2’,r2’°)
where
S _ f2 _ r2 = sq
len = lenf + lenr
lenf’ = len ‘div‘ 2

lenr’ = len - lenf’
(f’,rf’) = splitAt lenf’ f
r’ = r ++ List.reverse rf’

1f2 = copyListStructure f’ £f2
1r2 = copyListStructure r’ r2
(r2’,rf2’) = splitAt lenr 1r2
£f2’ = 1f2 ++ List.reverse rf2’

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

