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Abstract

MONA implements an efficient decision procedure for the logic
WS1S, and has already been applied in many non-trivial problems.
Among these, we follow on from previous work done by Smith and
Klarlund on the verification of a sliding-window protocol. One of the
goals of this paper is to extend the scope of MONA to the verification
of time-dependent protocols. We present Discrete Timed Automata
(DTA) as a suitable formalism to specify and verify such protocols,
and (discrete, infinite-state) real-time systems in general. DTA are as
much influenced by IO Automata (syntactically) as they are by Timed
Automata (semantically). However, DTA presents a number of distinc-
tive features. Among them, urgency conditions can be directly related
to actions, and they are constrained in such a way that time-actionlocks
are ruled out by construction. A composition strategy is given to com-
bine a set of synchronising automata, resulting in a product automaton
over which safety properties can be verified. Invariance proofs are then
performed inductively on the automaton structure, and mechanically
assisted by MONA. Therefore, this paper also aims to study benefits
and weaknesses of DTA as a real-time formalism, compared with ex-
istent frameworks such as Timed IO Automata, TLA+ and Clocked
Transition Systems. Our case study will be the specification and veri-
fication of a multimedia stream protocol. This is compared to previous
work where the formalisation of the protocol is realised in UPPAAL.

∗A first version of this paper appears in [19].
†The author is supported by the ORS Award Scheme, UK Universities
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1 Introduction

MONA [24] implements an efficient decision procedure for the logic WS1S
(Weak Second Order Theory of 1 Successor), a logic with an interpretation
tied to natural arithmetic (N) with an expressive power equal to that of reg-
ular languages. Smith and Klarlund [39] used IO Automata [29] to model a
sliding-window protocol, and then verified safety properties using MONA to
assist the traditional method of invariance proofs [32]. However, that work is
not concerned with time constraints, and it does not exploit synchronisation
primitives available in IO Automata. Following on from these ideas, one of
the goals of this paper is to extend the scope of MONA to the verification
of time-dependent protocols.

We present Discrete Timed Automata (DTA) as a real-time formalism
where a system is viewed as a collection of synchronising components, each
one modelled as a different automaton. An automaton is composed of a
set of variables (some of them can be shared with other automata in the
collection) whose valuations determine the automaton states; and a collec-
tion of actions defined as logical formulas over these variables. Another
formula represents the initial valuations for these variables. Following a
commonly used approach, these formulas represent the action precondition,
i.e. the set of valuations which enable that action, and the effect of the ac-
tion, i.e. the (single) valuation which results after the action is effectively
taken. Finally, the action may also include a third formula, called a dead-
line, which expresses urgency, i.e. a time when the action must be taken
[38, 13]. Concurrency is modelled by interleaving; at any point in execution
a given action is non-deterministically chosen from the set of actions enabled
at that point. Communication is achieved through one-way synchronisation;
actions are classified as internal, input or output actions, and communica-
tion takes place when two matching actions (input/output actions with the
same label) are executed at the same time. There is no value-passing in
communication, but this can be modelled with shared variables.

Time passage is modelled by a special action TICK, which modifies a
shared-variable T . The value of T represents the global system time1 and
can be consulted by other actions to define temporal constraints, i.e. pre-
conditions and deadlines. In particular, when the system reaches a state
where a deadline holds, the TICK action is disabled until another action is
taken which changes the deadline state. Therefore deadlines and precondi-

1To enforce this idea in our examples we have included TICK and T in a separate
automaton but this is not strictly necessary.



tions express different time constraints: in a state where a deadline holds an
action must be taken, otherwise the TICK action will remain “locked” (and
so time stops!); on the other hand in a state where a precondition holds the
action may be taken, but this is neither ensured nor required.

The temporal framework is discrete (T ∈ N) so MONA can be used as a
verification tool: preconditions, effects and deadlines, as well as the progress
of time will be expressed as WS1S formulas. The behavioural semantics of
DTA is given in terms of Labelled Transition Systems (see e.g. [34]). A sim-
ple composition operator results in a single DTA where safety properties can
be verified. Our semantics of composition are influenced by work on Timed
Automata with Deadlines [13]. In particular, deadlines are required to im-
ply the corresponding preconditions in the component automata; and the
composition operator is defined in such a way that it preserves this property
in the product automaton. Importantly this ensures, by construction, that
DTA are free from time-actionlocks, which are situations where not only is
the system deadlocked but also time cannot progress. Timelocks are very
counter-intuitive situations and may reflect serious modelling errors [13, 12].
First, to think of time being “stopped” is conceptually difficult per se. But
also, and perhaps even worse from a practical point of view, when an urgent
action in a given component is not enabled (a local deadlock) this may cause
the entire system to deadlock as time is also stopped (i.e. the TICK action
remains disabled) and therefore other actions may never satisfy their own
temporal constraints. Notice that if deadlines imply preconditions then ur-
gent actions will always be enabled, and thus time-actionlocks cannot arise
(although other kinds of timelocks, like zeno-timelocks, are still possible).
We refer the reader to [13] for a more detailed discussion of these concepts.

The method of invariance proofs [32] is a well known deductive approach
for verifying safety properties. Systems are specified as Fair Transition Sys-
tems (FTS), which happen to be very closely related to DTA: a collection of
transitions represented as logical formulas (expressed in a general first-order
language) over a given set of variables. The initial state (i.e. initial valua-
tion of system variables) is also expressed as a logical formula. FTS do not
provide any special construct to handle time, but DTA can be reduced to
them without losing meaning. An inference rule is provided to prove that
a given assertion is true at all computation states, i.e. a LTL formula �p
where p is an assertion over system variables. This rule suggests an inductive
verification method: we check that the property holds at the initial state
and that it is preserved by every transition in the system. While in general
the assertion p can be any LTL present or past formula (e.g. r ⇒ -�q),
state assertions, i.e. formulas with no LTL temporal operators, are expres-



sive enough to verify the examples in this paper. Consequently the simplest
version of the inference rule is used (variations of this rule are given in [32]
to handle different kinds of LTL past formulas, e.g. a waiting-for formula
such as r ⇒ s W q).

Then DTA, invariance proofs and MONA can be integrated to specify
(discrete) real-time systems and verify safety properties. System compo-
nents can be specified as a collection of communicating DTA; and composi-
tion is applied to obtain a product automaton. From this product automa-
ton we obtain an equivalent FTS; the variables and the initial condition are
already part of the DTA structure, and transitions are obtained by “flat-
tening” the automaton actions (preconditions, effects and deadlines) into
single WS1S formulas. Finally, safety properties can be verified as invari-
ance proofs over this FTS. MONA is used to assist these proofs by checking
that the premises of the invariance rule are satisfied.

We will illustrate the use of DTA, invariance proofs and MONA with
the specification and verification of a multimedia stream protocol. This
is a simple protocol with timing constraints on the transmission of data;
nevertheless it is useful to demonstrate the applicability of our method:
we have been able to verify quality of service properties such as latency and
throughput. This case-study was also specified and verified in UPPAAL [11].
However, verification of latency and throughput in [11] required important
modifications to the timed automata specification. We will show that in
DTA the original model is not disrupted save for some minor changes.

We believe that DTA/invariance proofs/MONA is an interesting alter-
native to other verification methods. A simple, yet powerful mathematical
notation enables systems to be both conveniently specified and formally ver-
ified. Urgency is handled in such a way that important kinds of modelling
errors, time-actionlocks, are simply ruled out by construction. The advan-
tage of this is even more noteworthy when one considers that timelocks are
very expensive to detect [42]. This, and the fact that urgency conditions
can be directly related to actions, cannot be found in real-time frameworks
such as Timed IO Automata [30], Clocked Transition Systems [23] or TLA+
[26]. Unlike model-checkers, DTA/invariance proofs can be used to specify
and verify infinite-state systems. Also, and unlike real-time model-checkers
(UPPAAL [28] / Kronos [14]), invariance proofs support the richness of gen-
eral LTL past formulas. On the other hand, perhaps the main disadvantage
of invariance proofs w.r.t. model checking is the need for user interaction.
However we think that the expressiveness of WS1S and the efficiency of
MONA [25] help to attenuate this problem. Indeed, there is evidence that
WS1S is expressive enough to encode relatively complex data types [39] and



even interval temporal logics such as Quantified Discrete Duration Calculus
[36] and Propositional ITL [20]. Also, and as a result of checking the va-
lidity of WS1S formulas, MONA provides counterexamples which help the
user to find the necessary auxiliary invariants to complete the invariance
proofs (this is explained in detail in section 2.1). A number of heuristics
and methods have also been developed to find and prove invariants, such as
backward and forward propagation of assertions [32], which are in principle
applicable to DTA. Therefore we claim that DTA/invariance proofs/MONA
is an approach which within the spectrum of available techniques sits be-
tween the extremes of real-time model checking, which is fully automatic at
the price of a restricted specification notation; and theorem proving, which
is usually able to handle very expressive logics at the expense of a much
higher degree of user-interaction and expertise.

Paper organization: Section 2 presents the necessary background: fair
transition systems, invariance proofs, WS1S, MONA and a description of the
multimedia stream protocol. Section 3 presents Discrete Timed Automata.
To illustrate the theory, a DTA formalisation of the multimedia stream is
obtained from the corresponding UPPAAL model shown in Section 2. Sec-
tion 4 elaborates on the verification of two correctness properties, medium
capacity and latency, over the multimedia stream. In section 5 the basic
DTA theory is enhanced with shared variables. As an example, the basic
protocol is also changed to consider a lossy transmission medium, which re-
quires DTA with shared variables to be modelled. A throughput property
is verified over this protocol. Section 6 compares DTA with other real-time
formalisms. Conclusions are given in Section 7. An appendix is also included
where proofs of theorems presented in the paper can be found.

2 Background

This section gives the necessary information on Fair Transition Systems,
invariance proofs, the logic WS1S and MONA. Also, the multimedia protocol
is explained and illustrated via an UPPAAL model.

2.1 Fair Transition Systems and Invariance Proofs

Fair Transition Systems (FTS) are a well-known computational model for
reactive systems [31]. An FTS S includes a finite set of typed variables V , an
initial condition Θ and a finite set of transitions T . V determines the state
space of the system, each state corresponding to a possible valuation for



variables in V . Θ and transitions in T are expressed as assertions in a first-
order language. Θ is an assertion which defines a set of possible initial states
(i.e. initial valuations for system variables). A transition τ is described by a
transition relation ρτ (V, V ′), where V ′ refers to the primed version of system
variables. Thus the assertion describes those states where the transition can
be taken and the resulting state after it is effectively taken. For example an
assertion ρτ : x > 0 ∧ x′ = x+1, characterises a transition τ which can only
be taken in those states where x > 0, and whose effect is to increment the
value of x by 1. A transition τ is enabled iff ∃V ′. ρτ (V, V ′). T is assumed
to include the idling transition ρidle : V = V ′, all other transitions in T are
referred to as diligent.

A computation is an infinite sequence of states s0, s1, . . . such that a) s0
satisfies Θ, b) for each i ≥ 0 there is some enabled transition τ ∈ T which
is taken at si and results in si+1, and c) the sequence contains either in-
finitely many diligent steps (i.e. the result of taking a diligent transition) or
a terminal state (i.e. a state where the only enabled transition is the idling
transition). Concurrency is modelled by interleaving: at any given point in
a computation a transition is executed, being non-deterministically chosen
from the set of enabled transition at that point. Fairness conditions are
enforced to exclude computations which do not correspond to executions of
real-life systems. To avoid computations where a given transition is forever
ignored, transitions can be marked as just or compassionate; a just tran-
sition cannot be continually enabled but taken only finitely many times, a
compassionate transition cannot be enabled infinitely often but taken only
finitely many times (compassionate transitions respond to stronger fairness
conditions than just transitions [31]). A reachable state is any state which
may occur in a computation.

A safety property is an assertion about the system which holds in all
reachable states. Formally, a safety property can be specified as an LTL
(Linear Temporal Logic) formula �ψ, where ψ is an LTL past formula. If
such a formula holds then ψ holds in every reachable state. We refer the
reader to [32] for details about syntax and semantics of LTL, and a classifi-
cation of LTL formulas. Invariants can be formally verified over FTS using
the rule presented below. In this paper ψ will just refer to a state assertion
(i.e. a formula without LTL temporal operators); which is usually called an
invariant. We have found that state assertions are expressive enough to
specify the properties that we wish to verify in our case-study. Neverthe-
less, other deductive rules have been devised to prove the invariance of more
general LTL past formulas [32] which can also be applied in DTA/MONA.



P1. ϕ→ ψ
P2. Θ → ϕ
P3. ∀ τ ∈ T . ρτ ∧ ϕ→ ϕ′

�ψ

The rule deduces the invariance of ψ in the system provided the existence
of a (usually stronger) invariant ϕ such that (P1) ϕ implies ψ, (P2) ϕ holds
at the initial state and (P3) ϕ is preserved by all transitions in T . If we take
ϕ ≡ ψ it may happen that even when ψ is an invariant, premises P2 and
P3 cannot be proved to be valid (i.e. they are unsatisfiable in some states).
This is true when ψ is not an inductive invariant [32], and those states where
the premises are unsatisfiable are actually unreachable states. It is in these
cases where user-interaction is needed; typically, the (inductive) invariant ϕ
will result from strengthening ψ with auxiliary invariants:

ϕ ≡ ψ ∧ ψ1 ∧ . . . ∧ ψn

where for all i, 1 ≤ i ≤ n, ψi is an auxiliary invariant which usually de-
scribes some relationship between the system variables, effectively ruling
out unreachable states.

2.2 Weak Monadic Second-order Theory of One Successor
(WS1S) and MONA

This section, mainly taken from [24], will give the necessary background on
WS1S and MONA. WS1S [15, 16, 41] is a decidable logic with an interpreta-
tion tied to arithmetic. WS1S formulas are constructed over first-order and
second-order variables. Let φ denote a WS1S formula, p, q two first-order
variables and X a second-order variable. The syntax of WS1S formulas is
given by the following set of operators:

φ ::= p = q + 1 | p ∈ X | ¬φ | φ ∨ φ | ∃p. φ | ∃X. φ

WS1S is interpreted over N; first-order variables range over natural num-
bers, second-order variables range over finite sets of natural numbers and
operators =,+, ∈, ¬, ∨ and ∃ have the classic interpretation. Other opera-
tors can be derived from these, which are shown below2 (φ, ψ denote WS1S

2For convenience, the following sections will refer to this extended set simply as WS1S.



formulas, 0, n ∈ N, p, q, r, z0, . . . , zn denote first-order variables, and X,Y, Z
denote second-order variables):

φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ)
φ⇒ ψ ≡ ¬φ ∨ ψ
φ⇔ ψ ≡ (φ⇒ ψ) ∧ (ψ ⇒ φ)
∀p. φ ≡ ¬∃p. ¬φ
∀X. φ ≡ ¬∃X. ¬φ
p = 0 ≡ ¬∃q. p = q + 1
p = n ≡ ∃z0, . . . , zn. z0 = 0 ∧ zn = p ∧

∧
0≤i<n zi+1 = zi + 1

p = q ≡ ∃r. r = p+ 1 ∧ r = q + 1
p+ n ∈ X ≡ ∃z0, . . . , zn. z0 = p ∧ zn ∈ X ∧

∧
0≤i<n zi+1 = zi + 1

p ≤ q ≡ ∀X. q ∈ X ∧ (∀z. z + 1 ∈ X ⇒ z ∈ X) ⇒ p ∈ X
p < q ≡ p ≤ q ∧ ¬(p = q)
X ⊆ Y ≡ ∀p. p ∈ X ⇒ p ∈ Y
Z = X\Y ≡ ∀p. p ∈ Z ⇒ p ∈ X ∧ ¬(p ∈ Y )
X = Y + 1 ≡ ∀p. p ∈ Y ⇔ p+ 1 ∈ X

MONA [24] implements a decision procedure for WS1S based on a trans-
lation from WS1S formulas to DFA (Deterministic Finite Automaton) [15,
16]. The syntax of MONA’s input specification language is that of WS1S
augmented with syntactic sugar, that is, no expressive power is added. A
MONA specification consists of a declaration section and a formula section.
Boolean, first-order and second-order variables can be declared. Predicates
can also be declared, which instantiate a given formula with actual pa-
rameters. Formulas are built using the usual logic connectives, such as ∼
(negation), & (conjunction), | (disjunction) and => (implication). Expres-
sions on first order variables include relational operators (e.g. t1>=t2),
addition of constant values (t+n) and quantification (ex1 t:ϕ, all1 t:ϕ).
Expressions on second-order variables include min T, max T (minimum and
maximum element in a set), t in T (membership), T1 sub T2 (set inclu-
sion), quantification (ex2 T:ϕ, all2 T:ϕ) and other typical set operations
like intersection, difference and union. MONA translates a WS1S formula
to a minimum DFA that represents the set of satisfying interpretations.
Models (counterexamples) of the formula are then expressed by paths from
the initial state to an accepting (rejecting) state; MONA returns only the
shortest model (counterexample). For example, MONA returns X={0,1,2}
and Y={1,2,3} as a model for the following formula (X={} and Y={} are
respectively returned as a counterexample):



var2 X,Y;
X={0,1,3} & all1 k:k in X => k+1 in Y;

A conceptual translation from WS1S formulas to DFA [15, 16] can be
explained in terms of the following simplified WS1S syntax, which does
not include first-order variables. It can be shown that this language is
as expressive as the original set of operators (φ denotes a WS1S formula,
X,Y, Z denote second-order variables).

φ ::= ¬φ | φ ∧ φ | ∃X. φ | X ⊆ Y | X = Y \Z | X = Y + 1

A string interpretation can be given to finite sets of natural numbers;
to the finite set X corresponds any string s = s0s1 . . . sn ∈ {0, 1}∗ (where
si, 0 ≤ i ≤ n is called a letter) such that

∀i. 0 ≤ i ≤ n ∧ i ∈ X ⇔ si = 1

For example, the set X = {0, 1, 3} can be interpreted as the string 1101
(and also as any string s ∈ 11010∗). The semantics are then extended such
that a formula with k variables is interpreted over strings w ∈ ({0, 1}k)∗.
For example, X = {0, 1, 2} and Y = {1, 2, 3} are interpreted as the string:

X
Y

(
1
0

) (
1
1

) (
1
1

) (
0
1

)

0 1 2 3

It is assumed that every variable in the formula is assigned a unique
index 1, 2, . . . , k. Let Xi denote the variable with index i, 0 ≤ i ≤ k. The
projection of a string w onto Xi is called the Xi-track of w, and w[M/Xi]
denotes the shortest string that interprets all variables Xj where j �= i as w
does, but interprets Xi as the set M . A string determines an interpretation
w(Xi) of Xi defined as the finite set {j| the j-th bit in the Xi-track is 1}.
Satisfiability is then defined as follows:

w |= ¬φ iff w � φ
w |= φ ∧ ψ iff w |= φ and w |= ψ
w |= ∃Xi. φ iff exists a finite M ⊆ N s.t. w[M/Xi] |= φ
w |= Xi ⊆ Xj iff w(Xi) ⊆ w(Xj)
w |= Xi = Xj\Xk iff w(Xi) = w(Xj)\w(Xk)
w |= Xi = Xj + 1 iff w(Xi) = {j + 1 | j ∈ w(Xj)}



The language L(φ) is then defined as the set of satisfying strings L(φ) =
{w | w |= φ}. A minimum DFA Aφ s.t. L(Aφ) = L(φ) is constructed in-
ductively on the structure of φ: basic, “hand-crafted” automata correspond
to atomic formulas, and automata operations are applied to translate com-
posite formulas. Automata defining languages L(P ⊆ Q), L(P = Q\R)
and L(P = Q+ 1), where P , Q and R are unconstrained second-order vari-
ables, are shown in Fig. 1. In these automata, the initial state is also the
only accepting state (denoted by a double circle). Also, and just for nota-
tional convenience, some transitions are labelled with multiple letters and
the symbol x in a letter stands for a component which can be either 0 or 1.

0
0

1
0

P
Q

P
Q
R

0
0
0

1
1
0

0
x
1x

1
x
x

1
0
0

0
1
0

1
x
1

x
x
x

0
0

1
0

P
Q

0
1

1
x

0
x

x
xa) b) c)

,,

,,,

1
1

Figure 1: Automata for a) L(P ⊆ Q), b) L(P = Q\R) and c) L(P = Q+1)

Negation (¬φ) corresponds to language complementation (L(φ)) and
thus to automata complementation (�Aφ). This is a linear-time operation
which just flips accepting and rejecting states.

L(¬φ) = L(φ) = L(A¬φ) = L(�Aφ)

Conjunction (φ ∧ ψ) corresponds to language intersection (L(Aφ) ∩
L(Aψ)) and thus to automata product (Aφ×Aψ); where only the reachable
product states are calculated, i.e. pairs of the form (sφ, sψ) where sφ is a
state of Aφ and sψ is a state of Aψ. This operation may cause a quadratic
increase in the automaton size.

L(φ ∧ ψ) = L(Aφ) ∩ L(Aψ) = L(Aφ∧ψ) = L(Aφ ×Aψ)

Second-order existential quantification (∃Xi. φ) corresponds to an appli-
cation of a right-quotient operation to L(φ) followed by a projection oper-
ation for Xi over the resulting automaton. These language-operations are
defined as follows, where L/L′ denotes the right-quotient of a language L
with a language L′ and Ei(L) denotes the projection of L for Xi.



L/L′ = {w | ∃u ∈ L′. wu ∈ L}
Ei(L) = {w | ∃w′ ∈ L. w is identical to w′ except for the Xi-track}
Li = {w ∈ ({0, 1}k)∗ | the Xj-track of w is of the form 0∗ for j �= i}
L(∃Xi. φ) = Ei(L(φ)/Li)

Intuitively, A∃Xi. φ acts as Aφ except that it is allowed to “guess” the
bits of the Xi-track. This is obtained by a projection operation on Aφ which
results in a non-deterministic automaton which has to be determinised and
minimised. However, before projection is applied a right-quotient operation
transforms Aφ so as to accept just minimal-length strings, i.e. to remove
the (0k)∗-suffix (remember, e.g. that models for X = {0, 1, 3} are in 11010∗,
with the minimal-length model being 1101). Quantification may cause an
exponential increase in the automaton size, due to determinisation.

Meyer [33] showed that the time and space for translating WS1S for-
mulas to automata, in the worst case, is bounded from below by a stack
of exponentials whose height is proportional to the depth of quantifier al-
ternation (∀X. ∃Y. φ). In turn, the translation of alternating quantifiers
relates to automata determinisation and complementation, which can pro-
duce an exponential blow-up (∀X. ∃Y. φ ≡ ¬∃X. ¬∃Y. φ). For example,
given ||Aφ||, the size of the automaton corresponding to the WS1S formula
φ, the following holds;

if ||Aφ|| = n then ||A¬∃Y. φ|| ≤ 2n and ||A¬∃X. ¬∃Y. φ|| ≤ 22n

MONA implements the conceptual translation discussed above. A num-
ber of syntactic transformations are first applied to a formula in MONA’s
input specification language to reduce it to a simplified language (equiva-
lent to the WS1S simplified language presented before), where some practi-
cal issues such as the interpretation of first-order variables as second-order
variables, and the interpretation of boolean variables are considered. For
example, the formula φ ≡ p = 0 (where p denotes a first-order variable),
could be handled as φ′ ≡ P = {0} (where P denotes a second-order vari-
able), but then the formulas ¬φ and ¬φ′ will lead to different representations
(a property expressing that P is a singleton should be conjoined to ¬φ′).
MONA encodes first-order values not as singletons but as non-empty sets
(the first-order value corresponds to the smallest element in this set), which
is more efficient than the singleton-set approach. Details about these and
other issues in the actual translation process can be found in [24].

Despite the non-elementary complexity of the decision problem, MONA
has been applied in many non-trivial situations such as controller synthesis



[37], protocol verification [39] and theorem proving [35], [4] (more links can
be found in [24]). MONA’s successful applications can be explained by
optimisations performed during the translation process as well as by the
fact that the decision procedure is non-elementary in the worst-case, which
may not arise so frequently in practice. Optimisations include the use of
BDDs to efficiently implement automata (particularly, to provide an efficient
implementation of the automaton alphabet and transition function), formula
reductions and other techniques to simplify and reuse computations [25].

2.3 A Multimedia Stream Protocol

The most basic requirement for supporting multimedia is to be able to define
continuous flows of data, such structures are typically called media streams
[8]. A basic media stream is as depicted in Fig. 2. It has three top level
components: a Source, a Sink and a communication Medium (which we will
from now on simply refer to as the Medium). The scenario is that the Source
process generates a continuous sequence of packets3 which are relayed by the
Medium to a Sink process which displays the packets. Three basic inter-
process communication actions support the flow of data (see Fig. 2 again),
sourceout , sinkin and play , which respectively transfer packets from the
Source to the Medium, from the Medium to the Sink and display them at
the Sink.

Source
Process

Sink
Process play

sourceout sinkin

Medium

Figure 2: A Multimedia Stream (from [11])

The following informal description of the behaviour of the stream is
3These could be video frames, sound samples or any other item in a continuous media

transmission. In this way the scenario remains completely generic. However, instantiation
of data parameters will specialise the scenario.



adapted from the one appearing in [11].

• All communication between the Source and the Sink is asynchronous.

• The Medium is reliable.

• The Source transmits a packet every 50 ms (i.e. 20 packets per second).

• Packets arrive at the Sink between 80 ms and 90 ms after their trans-
mission. This is the latency of the Medium.

• Whenever the Sink receives a packet, it needs 5 ms to process it, after
which it is ready to receive the next packet.

The correctness of models implementing the stream is given by the following
properties:

1. Medium capacity. We have modelled the transmission medium with
two one-place buffers. We have to ensure that whenever the Source
wishes to send a packet, at least one of the buffers is empty.

2. Latency. The end-to-end delay between a sourceout action and its
corresponding sinkin action cannot be more than 95ms, which puts an
upper bound on the end-to-end transmission delay.

3. Throughput. Consider the same multimedia protocol with a lossy
medium instead, where the medium is guaranteed not to lose more
than 4 packets per second. Then, the Sink receives between 15 and 20
packets per second.

A UPPAAL model for the media stream. Consider the stream example
depicted in Fig. 2, and the corresponding UPPAAL model given in Fig. 3.
We have decided to include this model here because UPPAAL [28] lends a
graphical notation to the problem solution, and has influenced the semantics
we have chosen for DTA. Consequently, the forthcoming DTA model for the
stream will be more clear to the reader. A more detailed explanation of this
example can be found in [11].

The initial location in the Source, State0 is annotated as committed to
ensure that the first packet (sourceout!) is sent immediately. The guard
t1 == 50 enables the sending of sourceouts at exactly 50 ms after the
last one. The invariant at State1 ensures that the enabled transition really



happens at t1 == 50. When the transition is performed the clock t1 is reset
and the behaviour repeats itself.

We will show that the medium can be modelled by two independent one-
place-buffers, Place1 and Place2. Each buffer is modelled as an automaton
with two locations. At the initial location the buffer can receive a sourceout
from the Source, and a timer is started to model the delay imposed by the
medium. The sinkin action following the sourceout is delayed by at least
80 ms and at most 90 ms. The Sink automaton is initially waiting for a
packet from the medium (signaled by sinkin?). When it arrives the clock t2
is reset, acting as a timer to model the 5 ms delay caused by the playing of
the packet. Then control returns to the initial location.
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Figure 3: UPPAAL specification of the media stream (from [11])

3 Discrete Timed Automata

We present Discrete Timed Automata (DTA) as a formalism with a gen-
eral IO Automata-like structure. DTA are composed of a set of variables,
whose valuations determine the automaton states, and a collection of (in-
put, output or internal) actions defined through preconditions and effects.
Interaction with the environment is achieved by output actions (sent to the



environment) and input actions (received from the environment). Synchro-
nisation is then achieved through matching pairs of input/output actions.
However, DTA are influenced by UPPAAL (and consequently by Timed
Automata [2]) as much as by IO Automata:

1. Systems are modelled as a collection of synchronising automata. Dis-
crete time is represented by a variable T in N, which can be consulted
by any automata in the collection to define its own temporal con-
straints (e.g. preconditions and deadlines). One automaton in the
collection will include a special action, TICK, which increments T in
order to model the passage of time. We will refer to TICK as the time
action, and all other actions as discrete actions.

2. Unlike in IO Automata, input actions in DTA may have preconditions;
in the context of time-dependent protocols, usually a process is only
able to respond to the environment if certain time constraints hold.

3. Unlike in IO Automata, output actions with the same label are per-
mitted in possibly many DTA components. In this way, for example,
we can naturally model a server process receiving (an input action)
the same service request (an output action) from many clients.

4. Composition in DTA follows the one-way synchronisation strategy
used in UPPAAL. When an output action in one component matches
input actions in many other components, only one pair input/ouput
is actually performed, i.e. components can only evolve autonomously
(through internal actions) or in pairs (through a pair of synchronising
actions). Also, synchronising actions are treated as internal to the re-
sulting product automaton, and unmatched input/ouput actions are
removed from it. In this sense, composition in DTA is similar to what
we obtain in CCS if we apply its parallel composition operator and
then we restrict the result w.r.t. all half actions [34]. This in con-
trast with the multi-way synchronisation model used in IO Automata,
where an output action simultaneously synchronise with all matching
input actions in the other components.

5. The effect of an action in DTA is modelled as a MONA formula on
primed variables, which hold the values in the next computation state.
All variables not occurring in the effect formula are considered un-
changed.



6. Actions in DTA include a deadline formula: time is prevented from
passing in those states where the deadline holds. In other words,
deadlines can be seen as preconditions on the TICK action. Therefore
the action in question becomes urgent: it must be performed for the
system to progress. Our decision to relate deadlines with actions,
rather than invariants with states is consistent with [38, 9, 13] and we
believe leads to a more flexible treatment of urgency. For example,
that some action must be urgent as soon as it is enabled is a situation
which is more easily modelled with deadlines than with invariants.
More evidence of the convenience of using deadlines to specify urgency
conditions is given in [9].

The structure of a DTA can be observed in figure 4. The signature of a
given automaton X, SIG(X), is defined as its set of actions. This set is par-
titioned into output OUT(X), input IN(X) and internal actions INT(X).
VAR(X) denotes the set of variables declared in X (Var: is a MONA vari-
able declaration section). All variables, except for T , are considered local
to the automaton. init(X) is a MONA formula describing initial valuations
for VAR(X) (Init:). Actions in X (Actions:) can be defined as tuples
(a, p, d, e) where a is the action’s label and p, d, e are MONA formulas re-
spectively denoting the action’s precondition (prec:), deadline (deadline:)
and effect (eff:). ACT(X) denotes the set of actions in X, and LAB(X)
denotes the set of action labels of X. aX will refer to any internal action in
X with label a, and we also use a?X , a!Y to denote synchronising actions in
X and Y (X �= Y ), i.e. a?X ∈ IN(X), a!Y ∈ OUT(Y ). Given an action a,
its precondition, deadline and effect formulas will be respectively denoted as
a.p, a.d, and a.e. These formulas will refer to variables in VAR(X) ∪ {T}.
The effect formula will also refer to primed variables. The syntax of variable
declarations and formulas can be found in [24]. Notice that many actions
in the same partition (internal, input or output) may share the same label;
in this way we naturally model actions which have different effects depend-
ing on the computation state. The behaviour of a DTA will be defined as
part of a collection (maybe just a singleton) of communicating automata,
C = {A1, . . . , An}. We impose a number of well-formedness conditions upon
C:

1. One (and only one) automaton in the collection, AT ∈ C, is required to
declare the shared first-order variable T , with init(AT ) ≡ T=0; and to
include an internal action TICK with effect: T ′ = T+1. This represents
the passage of discrete-time.



2. There are no common variables among the automata, except for T ,
i.e.

⋂n
1 VAR(Ai) = {T} (this requirement will be removed when we

consider an extension of DTA with shared variables in section 5).

3. Internal actions in one automaton do not appear as (internal, out-
put or input) actions in any other automaton, i.e. ∀Ai, Aj ∈ C, i �=
j. INT(Ai) ∩ SIG(Aj) = ∅.

4. In order to prevent time-actionlocks [38, 13], we require deadlines to
imply preconditions: ∀X ∈ C : aX .d ⇒ aX .p. A time-actionlock
occurs when a deadline holds in the current execution state but no
action is enabled; thus any form of progress, even the passage of time, is
stopped. But if deadlines imply preconditions, we ensure that actions
are made urgent only when they are enabled.

The semantics of DTA are defined in terms of a labelled transition system
[[ C ]]ts = (V, S, s0, L,→), where:

• V =
⋃n

1 VAR(Ai) denotes a finite set of typed variables. Since DTA
variables are interpreted as WS1S variables, we only consider boolean
values, natural numbers and finite sets of natural numbers. other
relatively complex data types, such as finite arrays on finite domains
can also be represented in MONA [39].

• S denotes the state-space defined by all type-consistent valuations for
V ; a state s ∈ S represents a single type-consistent valuation for V . We
will use s |= φ to denote satisfaction under WS1S semantics, where
s ∈ S and φ may be an initial, precondition or deadline formula.
An action a is said to be enabled on every state which satisfies its
preconditions, i.e. s |= a.p. The interpretation of an effect formula a.e
is defined on a pair of states (s, u) in order to formalise the following
assumptions: a) unprimed variables denote valuations in the current
state (s), b) primed variables denote valuations in the after state (s′),
and c) any variable in the automaton, whose primed version does not
appear in the effect formula, preserves its value in the after state.
Let V ′ be the set of the primed versions of variables in V , and S′

its corresponding state-space. Let s, s′ ∈ S, and prime(s′) denote the
state resulting from s′ by renaming every variable to its primed version.
Let v1, . . . , vn be those variables in X whose primed versions do not
appear in a.e. Then (s, s′) |= a.e will be used to denote s∪prime(s′) |=
a.e & v′1=v1 & . . . & v′n=vn, where s ∪ prime(s′) ∈ S ∪ S′. In order to



avoid pathological cases, we will require effect formulas to be of the
following form (as in [31]), where Ei, 1 ≤ i ≤ n is a MONA expression
over unprimed variables:

v′1=E1 & v′2=E2 & . . . & v′n=En

• s0 ∈ S denotes the initial state, i.e. s0 |= init(A1) & . . . & init(An).

• L =
⋃n

1 LAB(Ai) denotes a finite set of action labels.

• → ⊆ S × L × S is a transition relation defining the set of reachable
states. We will use s a→ u to denote (s, a, u) ∈→, and s

a→ to denote
∃ s′. s a→ s′. We will say that s′ ∈ S is reachable if it is either s0 or
there exists a reachable state s and a ∈ L s.t. s a→ s′. The transition
relation is defined by a set of inference rules. Rules (1) and (2) define a
preliminary relation� where transitions are labelled with pairs 〈a, d〉,
where a ∈ L and d is a deadline formula. The purpose of these rules is
just to define the semantics of synchronisation. The combined labels
in � (i.e. including both action labels and deadlines) were introduced
for technical convenience. Rules (3) and (4) enforce urgency on � to
yield the relation →, which can be thought of as pruning the (�)-
graph by allowing TICK transitions only when no deadline holds in the
current state. However, deadlines in�may refer to urgency conditions
assigned to those complete actions which result from synchronisation,
and so it is convenient to carry these deadlines in the transitions of
�. Rules are presented below.

(1)
s |= aX .p, (s, s′) |= aX .e

s
〈a,aX .d〉� s′

(2)
s |= a?X .p, s |= a!Y .p, (s, s′) |= a?X .e, (s, s′) |= a!Y .e

s
〈a,a?X .d | a!Y .d〉� s′

(3)
s

〈a,d〉� s′, a �= TICK

s
a→ s′

(4)
s

〈TICK,false〉� s′, ∀ d, a �= TICK . s
〈a,d〉� ⇒ s |= ∼ d

s
TICK→ s′



A computation is any sequence of reachable states s0, s1, . . . If the
sequence is finite, then its final state sn is s.t. � a ∈ L. sn

a→. Then,
computations are represented in the (→)-graph by (in general, infinite)
paths starting at the root (s0). Notice in particular how rule (4)
only enforces urgency on those actions which can actually happen,
i.e. time will not be prevented from passing in those states where a
deadline holds but the corresponding action is not enabled (which
would lead to a timelock!)4. This may suggest that the requirement
that deadlines imply preconditions is not really necessary, as time-
actionlock free systems are effectively obtained by these LTS semantic
rules. Nonetheless, we will see that the requirement must still stand
to correctly map DTA models to FTS, which in turn is necessary to
perform invariance proofs (Section 4).

Semantics are completed with the introduction of a fair scheduler, which
can be thought of as constructing computations from the LTS (→) in which
no transition is enabled infinitely many times but only chosen finitely many
times. In other words, all actions in a DTA are considered compassionate
in the sense given in Section 2.1 for FTS.

3.1 The media stream formalised in DTA

Given the specification of the media stream in UPPAAL, we obtain a col-
lection of DTA with the same behaviour. Every timed automaton will be
modelled as a distinct DTA. The passage of (global) time is modelled by
adding an automaton Clock which only includes the action TICK. UPPAAL
locations, clocks and other variables are modelled as local DTA variables,
and transitions as DTA actions. Variables representing local clocks are ac-
tually keeping the last sampled value of T , and so we will refer to them
as capture variables. T is sampled whenever a local clock is to be reset, so
an UPPAAL clock reset action such as c := 0 and a guard condition such
as c > n are respectively translated to c’=T and T>c+n, in the eff and
prec sections. Here, c denotes a local clock, n ∈ N, and c its corresponding
capture variable. For a transition from location li to lj , the prec and eff
sections in the corresponding DTA action will also include the expressions
state=li and state’=lj , respectively. Here state is the DTA variable mod-
elling the current UPPAAL automaton location. An invariant such as c ≤ n
in location l is translated to a deadline formula state=l & T>=c+n, which
will be attached to every action modelling the outgoing transitions from l.

4A similar rule was proposed for Timed Automata with Deadlines in [13]



Note that the invariant can be interpreted as “the automaton can remain
in l as long as c ≤ n”, and the deadline effectively represents this as “time
cannot pass when the automaton is in l and c ≥ n” (which is expressed with
capture variables as T>=c+n).

Fig. 4 shows the media stream formalised as a collection of DTA. The
absence of a prec or deadline section is a shorthand for prec = true and
deadline = false, respectively. The automaton Place2 is omitted: it is
symmetric to Place1. The MONA where clause restricts valuations to a
given set. Notice for example the second SOURCEOUT! action in Source. This
models the loop sourceout! in State1 (Fig. 3). For the loop transition to
occur, Source must be in State1 and t1==50. These conditions are modelled
in the DTA by SourceState=1 & T=t1+50 (50 ms have passed since the last
time t1 captured the global time). As an effect of this transition, the local
clock is reset (t1:=0), which is modelled as a new capture of the current
global time, i.e. t1’=T (this asserts the value of t1 in the next state).
SourceState is not mentioned, so it is assumed to be unchanged. The
deadline for this action can easily be derived from the invariant in State1,
and clearly implies the precondition.

Note that the committed location State0 (Fig. 3) has been modelled
by attaching a deadline SourceState=0 in action SOURCEOUT!. Because
in this particular example no other transition in the system is enabled at
that moment, this suffices to achieve the desired effect: the transition is
immediately taken. But actually, we are only disallowing the passage of
time. In general, if other transitions were enabled at that moment they
could still be taken before SOURCEOUT!. In UPPAAL, committed locations
enforce priorities among actions; we are currently investigating extensions
to DTA to handle this and other features.

3.2 Parallel composition of communicating DTA

Composition must preserve the semantics given by the transition rules (1 to
4) and the well-formedness conditions (for example, if there were common
variables in the collection, we may apply renaming). Given a collection of
automata C as defined before, we define the product automaton

∏n
1 Ai as

follows:

VAR(
∏n

1 Ai) =
⋃n

1 VAR(Ai)

init(
∏n

1 Ai) = init(A1) & . . . & init(An)



Collection: {Clock,Source,Place1,Place2,Sink}

DTA: Clock
Var: var1 T
Init: T=0
Actions: TICK

eff: T ′ = T+1

DTA: Source
Var: var1 SourceState where SourceState in {0,1}, t1
Init: SourceState=0 & t1=T
Actions: SOURCEOUT!

prec: SourceState=0
deadline: SourceState=0
eff: SourceState’=1

SOURCEOUT!
prec: SourceState=1 & T=t1+50
deadline: SourceState=1 & T=t1+50
eff: t1’=T

DTA: Place1
Var: var1 Place1State where Place1State in {1,2}, t4
Init: Place1State=1 & t4=T
Actions: SOURCEOUT?

prec: Place1State=1
eff: Place1State’=2 & t4’=T

SINKIN!
prec: Place1State=2 & T>t4+80
deadline: Place1State=2 & T>=t4+90
eff: Place1State’=1

DTA: Sink
Var: var1 SinkState where SinkState in {1,2}, t2
Init: SinkState=1 & t2=T
Actions: SINKIN?

prec: SinkState=1
eff: SinkState’=2 & t2’=T

PLAY
prec: SinkState=2 & T=t2+5
deadline: SinkState=2 & T=t2+5
eff: SinkState’=1

Figure 4: Media stream as a collection of DTA



INT(
∏n

1 Ai) =
⋃n

1 INT(Ai) ∪
{(a, p′, d′, e′) | X,Y ∈ C ∧ a!X ∈ OUT(X) ∧ a?Y ∈ IN(Y ) ∧

p′ = a!X .p & a?Y .p ∧
d′ = (a!X .d | a?Y .d) & p′ ∧
e′ = a!X .e & a?Y .e }

IN(
∏n

1 Ai) = ∅ = OUT(
∏n

1 Ai)

This construction, as is the case with composition in UPPAAL, converts
synchronising actions into internal actions, and no unmatched input/ouput
action in the collection is preserved. Deadlines for complete actions, i.e.
actions which result from successful synchronisation, are strict: the com-
plete action must be performed whenever either the input or output action
must be performed. This is characterized as a disjunction of the component
deadlines. Finally, the conjunction with p′ ensures that the deadline implies
the precondition (see [13] for a discussion of this and other composition
strategies). Figure 5 shows the product automaton for the media stream.

The behaviour of a collection of communicating DTA, C = {A1, . . . , An},
is preserved by the composition operator introduced above. Formally, we
proved that the transition systems [[ C ]]ts and [[{

∏n
1 Ai} ]]ts are strongly

bisimilar (see e.g. [34]). Notice that we use {
∏n

1 Ai} to indicate the col-
lection which contain the product automaton, since by definition semantics
are related to collections of DTA and not to single automata. We recall the
necessary definitions below.

Definition 1 Given T1 = (V1, S1, L1, s
1
0,→1), T2 = (V2, S2, L2, s

2
0,→2) two

LTS, a strong bisimulation is a binary relation ≈ ⊆ S1 × S2 s.t. for all
(s1, s2) ∈≈ the following conditions hold:

1. ∀ a1 ∈ L1. ∃ s′1 ∈ S1. s1
a1→1 s′1 ⇒ ∃ a2 ∈ L2, s

′
2 ∈ S2. s2

a2→2

s′2 ∧ (s′1, s′2) ∈≈

2. ∀ a2 ∈ L2. ∃ s′2 ∈ S2. s2
a2→2 s′2 ⇒ ∃ a1 ∈ L1, s

′
1 ∈ S1. s1

a1→1

s′1 ∧ (s′1, s′2) ∈≈

Definition 2 Given T1 = (V1, S1, L1, s
1
0,→1), T2 = (V2, S2, L2, s

2
0,→2) two

LTS, they are strongly bisimilar if there exists a strong bisimulation ≈ ⊆
S1 × S2 s.t. (s10, s

2
0) ∈≈.

Theorem 1 below formalises the equivalence between a collection of au-
tomata and the corresponding product automaton (proof can be found in
the appendix).



Collection: {[Clock||Source||Place1||Place2||Sink]}

DTA: [Clock||Source||Place1||Place2||Sink]
Var: var1 T, t1, t2, t3, t4,

SourceState where SourceState in {0,1},
Place1State where Place1State in {1,2},
Place2State where Place2State in {1,2},
SinkState where SinkState in {1,2}

Init: T=0 & t1=T & t2=T & t3=T & t4=T &
SourceState=0 & Place1State=1 & Place2State=1 & SinkState=1

Actions: TICK
eff: T ′ = T+1

SOURCEOUT
prec: SourceState=0 & Place1State=1
deadline: SourceState=0 & Place1State=1
eff: SourceState’=1 & t4’=T & Place1State’=2

SOURCEOUT
prec: SourceState=0 & Place2State=1
deadline: SourceState=0 & Place2State=1
eff: SourceState’=1 & t3’=T & Place2State’=2

SOURCEOUT
prec: SourceState=1 & T=t1+50 & Place1State=1
deadline: SourceState=1 & T=t1+50 & Place1State=1
eff: t1’=T & t4’=T & Place1State’=2

SOURCEOUT
prec: SourceState=1 & T=t1+50 & Place2State=1
deadline: SourceState=1 & T=t1+50 & Place2State=1
eff: t1’=T & t3’=T & Place2State’=2

SINKIN
prec: Place1State=2 & T>t4+80 & SinkState=1
deadline: Place1State=2 & T>=t4+90 & SinkState=1
eff: Place1State’=1 & SinkState’=2 & t2’=T

SINKIN
prec: Place2State=2 & T>t3+80 & SinkState=1
deadline: Place2State=2 & T>=t3+90 & SinkState=1
eff: Place2State’=1 & SinkState’=2 & t2’=T

PLAY
prec: SinkState=2 & T=t2+5
deadline: SinkState=2 & T=t2+5
eff: SinkState’=1

Figure 5: DTA for the media stream after composition



Theorem 1 [[ C ]]ts and [[{
∏n

1 Ai} ]]ts are strongly bisimilar.

3.3 Urgency constrains the passage of time

We now present an operation to move urgency conditions to the precondition
of the TICK action. Eventually every action will be translated to a single
MONA formula representing a transition relation of an equivalent FTS.
However, invariance proofs require system transitions to be expressed solely
in terms of their preconditions and effects, and so we need a way to map a
model with deadlines to one without them. Semantically, deadlines denote
sets of states where time is not allowed to pass. Therefore we can view
deadlines as preconditions for the TICK action, restricted to the conjunction
of all deadlines (negated) appearing in any action of

∏n
1 Ai. Formally, the

operation results in a new automaton
∏′ such that:

VAR(
∏′) = VAR(

∏n
1 Ai)

init(
∏′) = init(

∏n
1 Ai)

INT(
∏′) = {(a, aΠ.p, false, aΠ.e) | aΠ ∈ INT(

∏n
1 Ai) ∧ a �= TICK}

∪ {(TICK,∼ d1 & ∼ d2 & . . . & ∼ dm, false, TICKΠ.e)} where
{d1, d2, . . . , dm} = {d | (a, p, d, e) ∈ SIG(

∏n
1 Ai), a �= TICK}

OUT(
∏′) = ∅ = OUT(

∏n
1 Ai)

IN(
∏′) = ∅ = IN(

∏n
1 Ai)

Fig. 6 shows the resulting automaton
∏′, where deadlines of the original

product automaton (Fig 5) are now represented in the precondition of the
TICK action.

Theorem 2 below establishes that the deadline-removal operation does
not affect the semantics of the product automaton (proof can be found in
the appendix).

Theorem 2 [[{
∏n

1 Ai} ]]ts and [[{
∏′} ]]ts are strongly bisimilar.

4 Verifying safety properties over DTA

Invariance proofs can be applied over DTA models to verify invariants, which
are ultimately expressed as MONA formulas. We first obtain, from a collec-
tion of communicating DTA, the resulting deadline-free product automaton.



Collection: {[Clock||Source||Place1||Place2||Sink]}

DTA: [Clock||Source||Place1||Place2||Sink]
Var: var1 T, t1, t2, t3, t4,

SourceState where SourceState in {0,1},
Place1State where Place1State in {1,2},
Place2State where Place2State in {1,2},
SinkState where SinkState in {1,2}

Init: T=0 & t1=T & t2=T & t3=T & t4=T &
SourceState=0 & Place1State=1 & Place2State=1 & SinkState=1

Actions: TICK
prec: ∼(SourceState=0 & Place1State=1) &

∼(SourceState=0 & Place2State=1) &
∼(SourceState=1 & T=t1+50 & Place1State=1) &
∼(SourceState=1 & T=t1+50 & Place2State=1) &
∼(Place1State=2 & T>=t4+90 & SinkState=1) &
∼(Place1State=2 & T>=t3+90 & SinkState=1) &
∼(SinkState=2 & T=t2+5)

eff: T ′ = T+1
SOURCEOUT

prec: SourceState=0 & Place1State=1
eff: SourceState’=1 & t4’=T & Place1State’=2

SOURCEOUT
prec: SourceState=0 & Place2State=1
eff: SourceState’=1 & t3’=T & Place2State’=2

SOURCEOUT
prec: SourceState=1 & T=t1+50 & Place1State=1
eff: t1’=T & t4’=T & Place1State’=2

SOURCEOUT
prec: SourceState=1 & T=t1+50 & Place2State=1
eff: t1’=T & t3’=T & Place2State’=2

SINKIN
prec: Place1State=2 & T>t4+80 & SinkState=1
eff: Place1State’=1 & SinkState’=2 & t2’=T

SINKIN
prec: Place2State=2 & T>t3+80 & SinkState=1
eff: Place2State’=1 & SinkState’=2 & t2’=T

PLAY
prec: SinkState=2 & T=t2+5
eff: SinkState’=1

Figure 6: Multimedia stream, deadline-free product automaton



Then, a simple syntactic translation can be applied to this single DTA in or-
der to obtain an equivalent FTS, over which invariance proofs can be finally
realised. In order to map the fair semantics imposed to labelled transition
systems (see the discussion of a fair scheduler in Section 3), all actions in the
product automaton correspond to compassionate transitions in the equiva-
lent FTS. Given

∏
a deadline-free product automaton, the equivalent FTS

(V,Θ, T ) is formally defined as follows (the idling transition is assumed to
be included in T ):

V = VAR(
∏

)
Θ = init(

∏
)

T = {τ | ∃(a, p, false, e) ∈ SIG(
∏

). ρτ = p & e}

Notice that time-actionlocks in a DTA model corresponds to computa-
tions of the equivalent FTS with a terminal state, i.e. a state where only the
idling transition is enabled. Then, as DTA are free from time-actionlocks
by construction, so the corresponding FTS computations do not contain
terminal states.

MONA is used to mechanise the proof of the invariance rule’s premises,
for both the invariant and the FTS are ultimately expressed as WS1S for-
mulas. Taking the multimedia stream as an example, the remainder of this
section will elaborate on the verification of some correctness properties. We
have to mention that the multimedia stream was actually verified with the
constants reduced proportionally to their gcd (greatest common divisor),
i.e. the values 10, 16, 18 and 1 were used instead of 50, 80, 90, and 5 (see
Fig. 6). This was done to fasten the verification in MONA, where large
constants have a negative impact in the decision procedure’s performance.
Fig. 7 and 8 show, respectively, the product automaton after gcd-reduction
and its equivalent FTS (where indices i in ρia have been used to distinguish
transition relations for actions with the same label).

4.1 Verifying medium capacity

The medium is currently modelled with two automata, Place1 and Place2
(Fig. 4). We want to verify that synchronisation between the Sender and
any of these automata is always possible; in other words, that every time the
Sender offers a SOURCEOUT! either Place1 or Place2 offers a SOURCEOUT?.
This is actually verifying the medium-capacity requirement stated in Sec-
tion 2.3. Verification is then reduced to proving that the following formula
is an invariant:



Collection: {[Clock||Source||Place1||Place2||Sink]}

DTA: [Clock||Source||Place1||Place2||Sink]
Var: var1 T, t1, t2, t3, t4,

SourceState where SourceState in {0,1},
Place1State where Place1State in {1,2},
Place2State where Place2State in {1,2},
SinkState where SinkState in {1,2}

Init: T=0 & t1=T & t2=T & t3=T & t4=T &
SourceState=0 & Place1State=1 & Place2State=1 & SinkState=1

Actions: TICK
prec: ∼(SourceState=0 & Place1State=1) &

∼(SourceState=0 & Place2State=1) &
∼(SourceState=1 & T=t1+10 & Place1State=1) &
∼(SourceState=1 & T=t1+10 & Place2State=1) &
∼(Place1State=2 & T>=t4+18 & SinkState=1) &
∼(Place2State=2 & T>=t3+18 & SinkState=1) &
∼(SinkState=2 & T=t2+1)

eff: T ′ = T+1
SOURCEOUT

prec: SourceState=0 & Place1State=1
eff: SourceState’=1 & t4’=T & Place1State’=2

SOURCEOUT
prec: SourceState=0 & Place2State=1
eff: SourceState’=1 & t3’=T & Place2State’=2

SOURCEOUT
prec: SourceState=1 & T=t1+10 & Place1State=1
eff: t1’=T & t4’=T & Place1State’=2

SOURCEOUT
prec: SourceState=1 & T=t1+10 & Place2State=1
eff: t1’=T & t3’=T & Place2State’=2

SINKIN
prec: Place1State=2 & T>t4+16 & SinkState=1
eff: Place1State’=1 & SinkState’=2 & t2’=T

SINKIN
prec: Place2State=2 & T>t3+16 & SinkState=1
eff: Place2State’=1 & SinkState’=2 & t2’=T

PLAY
prec: SinkState=2 & T=t2+1
eff: SinkState’=1

Figure 7: Multimedia stream, deadline-free product automaton, gcd-reduced



V = { var1 T, t1, t2, t3, t4,
SourceState where SourceState in {0,1},
Place1State where Place1State in {1,2},
Place2State where Place2State in {1,2},
SinkState where SinkState in {1,2}

}
Θ = T=0 & t1=T & t2=T & t3=T & t4=T &

SourceState=0 & Place1State=1 & Place2State=1 & SinkState=1
T = { ρTICK = ∼(SourceState=0 & Place1State=1) &

∼(SourceState=0 & Place2State=1) &
∼(SourceState=1 & T=t1+10 & Place1State=1) &
∼(SourceState=1 & T=t1+10 & Place2State=1) &
∼(Place1State=2 & T>=t4+18 & SinkState=1) &
∼(Place2State=2 & T>=t3+18 & SinkState=1) &
∼(SinkState=2 & T=t2+1) &
T ′ = T+1

ρ1
SOURCEOUT = SourceState=0 & Place1State=1 &

SourceState’=1 & t4’=T & Place1State’=2
ρ2
SOURCEOUT = SourceState=0 & Place2State=1 &

SourceState’=1 & t3’=T & Place2State’=2
ρ3
SOURCEOUT = SourceState=1 & T=t1+10 & Place1State=1 &

t1’=T & t4’=T & Place1State’=2
ρ4
SOURCEOUT = SourceState=1 & T=t1+10 & Place2State=1 &

t1’=T & t3’=T & Place2State’=2
ρ1
SINKIN = Place1State=2 & T>t4+16 & SinkState=1 &

Place1State’=1 & SinkState’=2 & t2’=T
ρ2
SINKIN = Place2State=2 & T>t3+16 & SinkState=1 &

Place2State’=1 & SinkState’=2 & t2’=T
ρPLAY = SinkState=2 & T=t2+1 &

SinkState’=1
}

Figure 8: Multimedia stream, FTS



ψbuffer ≡ (T=0 | T=t1+10) => (Place1State=1 | Place2State=1)

This is formally proved by applying the invariance rule over the correspond-
ing FTS (Fig. 8). Fig. 9 shows the MONA specification which is used to
verify that the TICK action preserves the invariant. Validity is expected if
this transition preserves the invariant, otherwise the counterexample given
by MONA over the formula’s variables has to be analysed. If this coun-
terexample represents a reachable state then the formula is not an invari-
ant, otherwise assertions will have to be provided to strengthen the original
invariant and rule out this unreachable state. This process is to be repeated
until either the formula is valid or an unreachable state is found.

% declaration of free variables

var1 T,T’,t1,t3,t4,t2,
SourceState where SourceState in {0,1},
Place1State where Place1State in {1,2},
Place2State where Place2State in {1,2},
SinkState where SinkState in {1,2};

% ρTICK ∧ ψbuffer ⇒ ψ′
buffer as a MONA formula

∼(SourceState=0 & Place1State=1) &
∼(SourceState=1 & T=t1+10 & Place1State=2) &
∼(SourceState=0 & Place2State=1) &
∼(SourceState=1 & T=t1+10 & Place1State=1) &
∼(Place1State=2 & T>=t4+18 & SinkState=1) &
∼(Place2State=2 & T>=t3+18 & SinkState=1) &
∼(SinkState=2 & T=t2+1) &
T’ = T+1 &
((T=0 | T=t1+10) => (Place1State=1 | Place2State=1))
=>
((T’=0 | T’=t1+10) => (Place1State=1 | Place2State=1));

Figure 9: MONA specification to verify validity of ρTICK ∧ ψbuffer ⇒ ψ′
buffer

The following assertions were found necessary to strengthen the invari-
ant ψbuffer. Effectively, they represent an inductive invariant, and reflect
reachable states in terms of “consistent” valuations. For example, t1>=t3 &
t1>=t4 results from synchronisation between Sender and Place1/Place2;
t3/t4 are only updated when synchronisation occurs, and only with the
current value of t1. It is also important to mention that these assertions
were also verified as invariants.



(T=0 | T=t1+10) => (Place1State=1 | Place2State=1) &
(Place1State=2 & Place2State=2 => (t3>=t4+10 | t4>=t3+10)) &
t1>=t3 & t1>=t4 &
(SourceState=0 => T=0 & Place1State=1 & Place2State=1)
(T>t4+18 => Place1State=1) & (T>t3+18 => Place2State=1) &
T>=t1 & T>=t2 & T>=t3 & T>=t4 &
mult10(t1) & mult10(t3) & mult10(t4) &
t2=T & T>0 => (Place1State=1 & T<=t4+18 & T>t4+16

| Place2State=1 & T<=t3+18 & T>t3+16) &
SinkState=2=>T<=t2+1 &
T<=t1+10

4.2 Verifying latency

We define the medium latency as the time elapsed between the time when a
packet is sent and the time when this packet is eventually played by the Sink;
this time must be at most 95 ms. Notice in Fig. 4 that variable t1 in Source
captures the time when each packet is sent (see the effect of SOURCEOUT),
and t2+5 in Sink captures the time when a packet is played (see the pre-
condition of PLAY). However the straightforward formula t2+5<=t1+95 does
not correctly represent the medium latency; by the time the Sink receives
a packet, t1 has already captured the time when the next packet was sent.
Therefore we need to relate the sending and playing times for each packet.
However, since we want to verify that the latency is at most 95 ms., and
we know that a new packet is sent every 50 ms., then we just need to
capture the sending times of the last two packets. Fig. 10 shows how the
original Source automaton is slightly modified to introduce the variables
t1 0 and t1 1, which capture the sending times of the last two packets. No
other component automaton requires any modification, and changes in the
product automaton follow from the composition rules. After sending the
first packet (SourceState=0) it enters into a 2-state loop (SourceState=1,
SourceState=2), capturing the time when each packet is sent (t1 0, t1 1).
A similar strategy was used in [11] which related sequence numbers to pack-
ets. However, the whole UPPAAL model for the stream had to be changed
(extended with new variables, actions and automata) in order to specify
the latency property as a reachability formula which UPPAAL could verify.
Latency can then be expressed as:

�(SinkState=2 & T=t2+5 => T<=t1 0+95 & T<=t1 1+95)

This property is bounding the time between the sending of the last two
packets and any PLAY action. Because one of these packets is always the one



that is being played, this safety property correctly expresses the desired 95
ms. end-to-end latency. Verification in MONA required the formulation of
the following assertions (this is shown with respect to a gcd-reduced DTA):

1) (SinkState=2 & T=t2+1 => T<=t1 0+19 & T<=t1 1+19) &
2) (SourceState=0 => t1 0=0 & t1 1=0) &
3) (SourceState=1 => t1 0=0 & t1 1=0 | t1 0 = t1 1+10 & t1 0>=20) &
4) (SourceState=2 => t1 1 = t1 0+10) &
5) (Place1State=2 & Place2State=2 => t3 >= t4+10 | t4 >= t3+10) &
6) (t1 0=t3 | t1 0=t4) & (t1 1=t3 | t1 1=t4) &

(t3=t1 0 | t3= t1 1) & (t4=t1 0 | t4= t1 1) &
7) (SourceState=0 =>

T=0 & Place1State=1 & Place2State=1 & SinkState=1) &
8) (T>t4+18 => Place1State=1) & (T>t3+18 => Place2State=1) &
9) T>=t1 0 & T>=t1 1 & T>=t2 & T>=t3 & T>=t4 &
10) (t2=T & T>0 =>

Place1State=1 & T<=t4+18 & T>t4+16
| Place2State=1 & T<=t3+18 & T>t3+16) &

11) (SinkState=2=>T<=t2+1) &
12) (SourceState=1 => T<=t1 0+10) &
13) (SourceState=2 => T<=t1 1+10) &
14) (Place1State=1 => t4=0 | T>t4+16) &

(Place2State=1 => t3=0 | T>t3+16)

Here, formula (1) models latency; (2)-(4) describe the “alternating” depen-
dency between t1 0 and t1 1; (5)-(6) is the result of synchronisation be-
tween Source and Place1/Place2; (7) stands for values in the initial state;
(8) and (14) results from action SINKIN! in Place1/Place2; (9) establishes
the relationship between the current time and the local capture variables
(in other words, the global clock is always greater or equal than any local
clock); (10) results from synchronisation between Place1/Place2 and Sink;
and (11)-(13) result from deadlines in actions PLAY in Sink and SOURCEOUT!
in Source.

5 Verifying throughput

This quality of service property is defined as the number of packets which are
received by the Sink in every second. We want to verify that the protocol
always delivers at least 15 and at most 20 packets per second, considering a
medium which can lose up to 4 packets per second. We will see that a lossy
medium can be naturally modelled if shared variables are part of the DTA
theory.



DTA: Source
Var: var1 SourceState where SourceState in {0,1,2},

t1 0, t1 1
Init: SourceState=0 & t1 0=T & t1 1=T
Actions: SOURCEOUT!

prec: SourceState=0
deadline: SourceState=0
eff: SourceState’=1

SOURCEOUT!
prec: SourceState=1 & T=t1 0+50
deadline: SourceState=1 & T=t1 0+50
eff: SourceState’=2 & t1 1’=T

SOURCEOUT!
prec: SourceState=2 & T=t1 1+50
deadline: SourceState’=2 & T=t1 1+50
eff: SourceState’=1 & t1 0’=T

Figure 10: Source automaton modified to verify latency

5.1 DTA with shared variables

We relate a collection of DTA, C, with a set of shared variables SHARED(C)
which can be read and modified by any automata in the collection. These
variables can be of any type expressible in MONA, and a formula init(C)
provides their initial valuation. Restrictions will be imposed, though, to the
way in which synchronising actions are allowed to modify shared variables.
This is motivated by the following example, showing two synchronising (in-
put/output) actions which modify the value of a given shared variable X.
Notice that clauses Var and Init can now be related also to the collection
as a whole, in order to declare and initialise shared variables (no automaton
in the collection can locally declare or initialise these variables).

Collection: {In,Out}
Var: var1 X
Init: X=0

DTA: Out DTA: In
Actions: A! Actions: A?

eff: X ′=1 eff: X ′=2

As a result of synchronisation, what is then the value for X? While this
is certainly an ill-formulated behaviour, it can be shown that the semantic



rules we have originally presented (Section 3) handle these expressions by
nullifying the effect of the matching actions; for any state where both actions
are enabled, there is no next state which can satisfy both action effects and
thus there is no resulting transition in the corresponding LTS. Notice that
this corresponds to the result of our composition operator, which yields a
single internal action A with effect X ′=1 & X ′=2. But timelocks can indeed
arise as a consequence of a combination of deadlines with these ill-formulated
expressions, as the following example shows:

Collection: {In,Out}
Var: var1 X
Init: X=0

DTA: Out DTA: In
Actions: A! Actions: A?

prec: X=0 prec: X=0
deadline:X=0 deadline: X=0
eff: X ′=1 eff: X ′=2

In this case, and because the effect of the resulting synchronised action is
nullified, time is continuously prevented from passing as X is never updated
and the deadline expression is never falsified. Then, well-formed collections
of DTA can now share variables with the following restrictions:

• Shared variables are not declared as local variables in any automaton
of the collection. Formally,

SHARED(C) ∩
⋃n

1 VAR(Ai) = ∅

• Shared variables cannot be simultaneously modified by any pair of
synchronising actions. Notice that this rule is not really limiting the
expressiveness of the notation since allowing synchronising actions to
modify a shared variable would result in an ill-defined activity. Let
PrimedVar(F ) denote the set of all primed variables occurring in for-
mula F . Formally, the rule in question can be specified as follows:

∀ X,Y ∈ C, a?X ∈ IN(X), a!Y ∈ OUT(Y).
PrimedVar(a?X .e) ∩ PrimedVar(a!Y .e) = ∅

Semantics are now given by an LTS [[ C ]]ts = (V, S, s0, L,→) where all ele-
ments are defined as in Section 3 except for the following:

• V = SHARED(C) ∪
⋃n

1 VAR(Ai).



• s0 is s.t. s0 |= init(C) & init(A1) & . . . & init(An).

Similarly, the product DTA
∏n

1 is defined as in Section 3 save for the fol-
lowing elements:

• VAR(
∏n

1 ) = SHARED(C) ∪
⋃n

1 VAR(Ai).

• init(
∏n

1 ) = init(C) & init(A1) & . . . & init(An).

Notice that the translation from a product DTA to its correspondent FTS
requires no modification, since the product DTA does not contain shared
variables. Now we can use our extended theory to model a lossy medium.
Figure 11 shows the collection of DTA modelling the media stream with a
lossy medium. A new variable L is introduced to keep track of the number
of packets lost by the medium. The loss of a packet itself will be mod-
elled as an internal action LOSS in both Place1 and Place2, which can
be non-deterministically chosen instead of a SINKIN! action (which denotes
successful transmission). In other words, it is possible for a buffer to be
emptied without a packet being received by the Sink. A constraint L<4
must be placed as a precondition for the LOSS action. Notice that L must be
shared between Place1 and Place2, because a loss in any buffer moves the
system towards the global bound of 4 packets per second. An urgent, inter-
nal action SECOND is added to Clock to keep track of elapsed seconds, and
thus to reset the value of L at the beginning of the current second. A new
variable S is added to Clock to capture the value of T at the beginning of
the current second. Then, the precondition S+1000=T states that a second
has elapsed; L must be set to 0 and S to the current time (T ). Fig. 12 shows
the composed DTA with lossy medium, with the deadlines attached to the
original actions. The final DTA model, with deadlines as preconditions in
TICK, is shown in Fig. 13.

5.2 Expressing throughput as a system invariant

Here we will show how the throughput property can be formally specified
and verified in MONA. In a system with a reliable medium (i.e. one which
does not lose packets) the throughput depends on the packet receiving time,
which in turn is determined by both the packet sending rate and the medium
transmission delay. In our example, the packet sending rate is fixed to
one packet sent every 50 ms., while the medium transmission delay ranges
between 80 ms. and 90 ms. Then the maximum and minimum packet



Collection: {Clock,Source,Place1,Place2,Sink}
Var: var1 L
Init: L=0

DTA: Place1
Actions: LOSS

prec: Place1State=2 & L<4
deadline: Place1State=2 & L<4 & T>=t4+90
eff: Place1State’=1 & L’=L+1

DTA: Clock
Var: var1 S
Init: S=0
Actions: SECOND

prec: S+1000=T
deadline: S+1000=T
eff: S’=T & L’=0

Figure 11: Changes in the media stream to verify throughput

receiving times for the i-th packet (RT imax , RT imin , i ∈ N, i > 0) are given
by the following formula:

RT imax = 90 + 50(i− 1) (1)
RT imin = 80 + 50(i− 1) (2)

The throughput in a given second can be calculated as the difference be-
tween the number of packets received in the current second and the packets
received in the previous second. Then the maximum and minimum through-
put at the s-th. second (THRsmax , THRsmin , s ∈ N, s > 0) are respectively
determined by the minimum and maximum packet receiving times, as the
following formulas show:

THRsmax ={
max (({i | 1000 > RT imin}) = 19 if s = 1
max ({i | 1000s > RT imin}) − max ({i | 1000(s− 1) > RT imin}) if s > 1

THRsmin ={
max ({i | 1000 ≥ RT imax}) = 19 if s = 1
max ({i | 1000s ≥ RT imax}) − max ({i | 1000(s− 1) ≥ RT imax}) if s > 1



Collection: {[Clock||Source||Place1||Place2||Sink]}

DTA: [Clock||Source||Place1||Place2||Sink]
Var: var1 T, t1, t2, t3, t4, S, L,

SourceState where SourceState in {0,1},
Place1State where Place1State in {1,2},
Place2State where Place2State in {1,2},
SinkState where SinkState in {1,2}

Init: T=0 & t1=0 & t2=0 & t3=0 & t4=0 & s=0 & L=0 &
SourceState=0 & Place1State=1 & Place2State=1 & SinkState=1

Actions: TICK
eff: T ′ = T+1

SECOND
prec: S+1000=T
deadline: S+1000=T
eff: S’=T & L’=0

SOURCEOUT
prec: SourceState=0 & Place1State=1
deadline: SourceState=0 & Place1State=1
eff: SourceState’=1 & t4’=T & Place1State’=2

SOURCEOUT
prec: SourceState=0 & Place2State=1
deadline: SourceState=0 & Place2State=1
eff: SourceState’=1 & t3’=T & Place2State’=2

SOURCEOUT
prec: SourceState=1 & T=t1+50 & Place1State=1
deadline: SourceState=1 & T=t1+50 & Place1State=1
eff: t1’=T & t4’=T & Place1State’=2

SOURCEOUT
prec: SourceState=1 & T=t1+50 & Place2State=1
deadline: SourceState=1 & T=t1+50 & Place2State=1
eff: t1’=T & t3’=T & Place2State’=2

SINKIN
prec: Place1State=2 & T>t4+80 & SinkState=1
deadline: Place1State=2 & T>=t4+90 & SinkState=1
eff: Place1State’=1 & SinkState’=2 & t2’=T

SINKIN
prec: Place2State=2 & T>t3+80 & SinkState=1
deadline: Place2State=2 & T>=t3+90 & SinkState=1
eff: Place2State’=1 & SinkState’=2 & t2’=T

LOSS
prec: Place1State=2 & L<4
deadline: Place1State=2 & L<4 & T>=t4+90
eff: Place1State’=1 & L’=L+1

LOSS
prec: Place2State=2 & L<4
deadline: Place2State=2 & L<4 & T>=t3+90
eff: Place2State’=1 & L’=L+1

PLAY
prec: SinkState=2 & T=t2+5
deadline: SinkState=2 & T=t2+5
eff: SinkState’=1

Figure 12: Composed DTA for throughput with deadlines in actions



Collection: {[Clock||Source||Place1||Place2||Sink]}

DTA: [Clock||Source||Place1||Place2||Sink]
Var: var1 T, t1, t2, t3, t4, S, L,

SourceState where SourceState in {0,1},
Place1State where Place1State in {1,2},
Place2State where Place2State in {1,2},
SinkState where SinkState in {1,2}

Init: T=0 & t1=0 & t2=0 & t3=0 & t4=0 & S=0 & L=0 &
SourceState=0 & Place1State=1 & Place2State=1 & SinkState=1

Actions: TICK
prec: ∼(S+1000=T) &

∼(SourceState=0 & Place1State=1) &
∼(SourceState=0 & Place2State=1) &
∼(SourceState=1 & T=t1+50 & Place1State=1) &
∼(SourceState=1 & T=t1+50 & Place2State=1) &
∼(Place1State=2 & T>=t4+90 & SinkState=1) &
∼(Place2State=2 & T>=t3+90 & SinkState=1) &
∼(Place1State=2 & L<4 & T>=t4+90) &
∼(Place2State=2 & L<4 & T>=t3+90) &
∼(SinkState=2 & T=t2+5)

eff: T ′ = T+1
SECOND

prec: S+1000=T
eff: S’=T & L’=0

SOURCEOUT
prec: SourceState=0 & Place1State=1
eff: SourceState’=1 & t4’=T & Place1State’=2

SOURCEOUT
prec: SourceState=0 & Place2State=1
eff: SourceState’=1 & t3’=T & Place2State’=2

SOURCEOUT
prec: SourceState=1 & T=t1+50 & Place1State=1
eff: t1’=T & t4’=T & Place1State’=2

SOURCEOUT
prec: SourceState=1 & T=t1+50 & Place2State=1
eff: t1’=T & t3’=T & Place2State’=2

SINKIN
prec: Place1State=2 & T>t4+80 & SinkState=1
eff: Place1State’=1 & SinkState’=2 & t2’=T

SINKIN
prec: Place2State=2 & T>t3+80 & SinkState=1
eff: Place2State’=1 & SinkState’=2 & t2’=T

LOSS
prec: Place1State=2 & L<4
eff: Place1State’=1 & L’=L+1

LOSS
prec: Place2State=2 & L<4
eff: Place2State’=1 & L’=L+1

PLAY
prec: SinkState=2 & T=t2+5
eff: SinkState’=1

Figure 13: Composed DTA for throughput with deadlines as preconditions
in TICK



Induction on s will easily prove that the maximum throughput is
THRmax = 20 packets per second; respectively, the minimum throughput is
THRmin = 19 packets per second. Now, if we consider our example with a
lossy medium which can lose up to 4 packets per second, it is not difficult to
see that the maximum and minimum throughput (THLmax , THLmin) will
be:

THLmax = THRmax = 20
THLmin = THRmin − 4 = 15

Notice that the analysis presented above naturally follows from equa-
tions 1 and 2. We can formally verify these equations as system invariants,
although a syntactic transformation is first required to enable these formu-
las to be expressed in MONA. Because the product of a constant and a
variable is not expressible in MONA (i.e. one cannot write a term such as
50(i − 1)); and also because the constants involved are too large to be effi-
ciently handled by the tool, the formula verified was actually obtained from
the original equations by reducing all delays in the original DTA model by
their greatest common divisor (gcd(5, 50, 80, 90) = 5) and introducing a new
variable X in Sink, which is incremented by 10 every time that a packet is
received. Fig. 14 shows this modified DTA model (compare with Fig. 12).
Also, notice that the number of losses do not affect the packet receiving
time; whether a packet is lost or not affects neither the packet sending rate
nor the medium transmission delay (this can be verified easily with MONA,
but is already evident in DTA actions). In our DTA model L counts the
number of losses, X stands for 10 times the number of packets received so
far and t2 is the receiving time of the last received packet. As we have
explained before, we can verify equations 1 and 2 considering L=0; in this
scenario X/10 corresponds to the i-th packet sent and t2 corresponds to the
receiving time of the i-th packet. Equations 3, 4 and 5 (given below) show
the syntactic transformations needed to verify the packet receiving time in
MONA. Equation 3 represents the packet receiving time considering neither
gcd-reduction nor variable X, then equation 4 introduces X and equation 5
applies gcd-reduction. It is not hard to see that if equation 5 is an invariant
of the simplified DTA model then equations 1 and 2 hold in the general DTA
model.

i > 0 ∧ L = 0 ⇒ 80 + 50(i− 1) < t2 ≤ 90 + 50(i− 1) (3)
X > 0 ∧ L = 0 ⇒ 80 + 50(X/10 − 1) < t2 ≤ 90 + 50(X/10 − 1) (4)

X>0 & L=0 => X+6 < t2 & t2 <= X+8 (5)



Auxiliary invariants to prove equation 5 are shown below:

L=0 =>
mult10(X) & mult10(t1) & mult10(t3) & mult10(t4) &
(T>t4+18 => Place1State=1) & (T>t3+18 => Place2State=1) &
(t2>t4+18 => Place1State=1) & (t2>t3+18 => Place2State=1) &
T<=t1+10 & T>=t1 & T>=t2 & T>=t3 & T>=t4 &
t2 <= t1+10 &
(Place1State=2 => T<=t4+18) & (Place2State=2 => T<=t3+18) &
(Place1State=2 => t2<=t4+18) & (Place2State=2 => t2<=t3+18) &
(SourceState=0 => X=0) &
(X>0 & (Place1State=2 | Place2State=2) => X<t1) &
X<=t1 &
(Place1State=2 & Place2State=2 => t3 >= t4+10 | t4 >= t3+10 ) &
t1>=t3 & t1>=t4 &
(t1>0 => (t1=t3 & t1>t4 | t1=t4 & t1>t3)) &
(SourceState=0 => X=0 & T=0 & Place1State=1 & Place2State=1) &
(t2=T & T>0 => Place1State=1 & T<=t4+18 & T>t4+16 |

Place2State=1 & T<=t3+18 & T>t3+16) &
(SinkState=2 => T<=t2+1) &
(X>0 & t1>=10 & T>t1+8 => t1=X) &
(X>0 & t1>=10 & T>t4+16 & Place1State=1 => X=t4+10) &
(X>0 & t1>=10 & T>t3+16 & Place2State=1 => X=t3+10) &
(t4>t3 => t4=t3+10) & (t3>t4 => t3=t4+10) &
t1<=X+10 & t1<=t3+10 & t1<=t4+10 &
(t4>t3 & Place2State=1 => Place1State=2) &
(t3>t4 & Place1State=1 => Place2State=2) &
((T>t4+16 & Place1State=1 | T>t3+16 & Place2State=1) => X=t1) &
(Place1State=2 & Place2State=2 => t1=X+10)

6 Related work

Lynch and Vaandrager [30] proposed Timed IO Automata, a continuous-
time extension to IO Automata which augments the automaton signature
with a special time-passage action υ(Δt) (where Δt is a time span), the
state with a special variable now (which is meant to keep the current time),
and a set of axioms which impose a temporal interpretation for actions. For
example, axioms express that time-passage actions always cause the time to
increase, and that all other actions occur instantaneously. Gawlick et. al.’s
Timed Live IO Automata [18] are pairs (A,L) where A is a Timed IO Au-
tomata and L a liveness condition. Further work by Sogaard-Andersen et.



Collection: {[Clock||Source||Place1||Place2||Sink]}

DTA: [Clock||Source||Place1||Place2||Sink]
Var: var1 T, t1, t2, t3, t4, s, X, L

SourceState where SourceState in {0,1}
Place1State where Place1State in {1,2}
Place2State where Place2State in {1,2}
SinkState where SinkState in {1,2}

Init: T=0 & t1=0 & t2=0 & t3=0 & t4=0 & s=0 & X=0 & L=0 &
SourceState=0 & Place1State=1 & Place2State=1 & SinkState=1

Actions: TICK
eff: T ′ = T+1

SECOND
prec: s+200=T
deadline: s+200=T
eff: s’=T & L’=0

SOURCEOUT
prec: SourceState=0 & Place1State=1
deadline: SourceState=1 & Place1State=1
eff: SourceState’=1 & t4’=T & Place1State’=2

SOURCEOUT
prec: SourceState=0 & Place2State=1
deadline: SourceState=1 & Place2State=1
eff: SourceState’=1 & t3’=T & Place2State’=2

SOURCEOUT
prec: SourceState=1 & T=t1+10 & Place1State=1
deadline: SourceState=1 & T=t1+10 & Place1State=1
eff: t1’=T & t4’=T & Place1State’=2

SOURCEOUT
prec: SourceState=1 & T=t1+10 & Place2State=1
deadline: SourceState=1 & T=t1+10 & Place2State=1
eff: t1’=T & t3’=T & Place2State’=2

SINKIN
prec: Place1State=2 & T>t4+16 & SinkState=1
deadline: Place1State=2 & T>=t4+18 & SinkState=1
eff: Place1State’=1 & SinkState’=2 & t2’=T & X’=X+10

SINKIN
prec: Place2State=2 & T>t4+16 & SinkState=1
deadline: Place2State=2 & T>=t3+18 & SinkState=1
eff: Place2State’=1 & SinkState’=2 & t2’=T & X’=X+10

LOSS
prec: Place1State=2 & L<4
deadline: Place1State=2 & L<4 & T>=t4+18
eff: Place1State’=1 & L’=L+1

LOSS
prec: Place2State=2 & L<4
deadline: Place2State=2 & L<4 & T>=t3+18
eff: Place2State’=1 & L’=L+1

PLAY
prec: SinkState=2 & T=t2+1
deadline: SinkState=2 & T=t2+1
eff: SinkState’=1

Figure 14: Composed DTA for throughput with deadlines in actions, after
gcd-reduction and new variable X



al. [40] uses a subset of LTL to express these liveness conditions. A number
of case studies, such as the “Generalised Railroad Crossing” problem [22]
and communication protocols [27, 40] have been formalized in Timed (Live)
IO Automata. Correctness is proved for one system w.r.t. to a more abstract
system using simulation techniques (forward simulations, backward simula-
tions and refinement mappings). These techniques have been adapted from
the ones applied in the corresponding untimed models (Safe/Live IO Au-
tomata). One disadvantage of simulation-based proofs is that they require
both the system and the property to be represented operationally, i.e. they
are intended to show that all behaviour of the system automaton, SIOA, are
also behaviours of a “good” automaton representing the correctness prop-
erty, PIOA. Then, certain properties (which can be naturally modelled in
logic using negation) are difficult to verify. Theorem provers [3, 21] usually
provide the tool support.

Lamport’s Temporal Logic of Actions, TLA+, is another well known for-
malism to reason about real-time systems [1, 26]. In TLA+ actions are
described by predicates over variables and their primed versions (precondi-
tions and effects), and time is modelled through a now variable as in Timed
IO Automata. Lower and upper time-bounds can be imposed on actions
through timer variables and timer predicates, but this approach is not as
transparent and easy to use as in other formalisms. Also, TLA+ does not
include facilities to specify system components, i.e. there is no notion of
parallel processes or communication. Verification is supported by theorem
proving [17], and model checking [44] for those TLA+ specifications which
are finite-state. A comparison between TLA+ and Timed IO Automata is
discussed in [18].

Kesten, Manna, and Pnueli’s Clocked Transition Systems (CTS) [23] are
a timed extension to FTS. Clock variables in R, including a master clock T ,
and a special transition tick are used to represent the passage of (continuous)
time. A special progress condition constrains the passage of time; this is an
assertion which represents a set of states where time cannot progress beyond
a certain point. This progress condition is used to express urgency, and thus
it allows lower and upper time-bounds to be associated to transitions. How-
ever, this assertion conjoins all different urgency conditions into a single for-
mula. Also, synchronisation primitives are not provided. Clocked Transition
Modules are an extension of CTS to consider synchronising transitions [5]; as
in IO Automata a distinction is made between controlled transitions, which
are controlled by the module, and external transitions, which are controlled
by the environment (e.g. other modules). External transitions are required
to be always enabled. One-way synchronisation is achieved through match-



ing transition labels; however two controlled transitions are not allowed to
synchronise. A hiding operator is also considered to distinguish transitions
which will never synchronise with other modules. A higher-level specifi-
cation language, SPLT , adds syntactic-sugar to CTS/CTM which includes
synchronisation and other imperative-like constructs such as assignments,
conditionals and loops. Verification of LTL safety properties (such as �p
and p ⇒ qWr) and response properties (p ⇒ �q) is possible by reusing
much of the verification theory (and tools) available for FTS. For example,
the latest version of STeP supports the specification and deductive verifica-
tion of parameterised and modular SPLT programs [5]. STeP also combines
decision procedures for theories including integers and reals with proposi-
tional and first-order reasoning to simplify (or even automatically prove)
verification conditions [6]; a theorem prover is available for those conditions
which cannot be proven automatically. Automatic generation of invariants
is also provided, based on the static analysis of transition systems (e.g. using
methods such as forward propagation) [7]. Model checking is also available
for finite-state systems. One limitation of the verification methods is that
systems are required to be zeno-timelock free; this imposes a non-trivial
check on the system before safety and response properties can be verified
(non-zenoness cannot be expressed in LTL). If a system contains a zeno-
timelock then verification may be meaningless. Firstly, since zeno-timelocks
denote infinite computations in a finite period of time the system modelled
is not implementable and thus verification efforts are questionable. Sec-
ondly, safety properties can be trivially satisfied once the system enters a
zeno-timelock state (see [5] for examples). Finally, deductive rules to prove
safety are shown to be complete only for non-zeno CTS’s [23].

We can see that the theory defining the syntax and semantics of DTA has
much in common with other real-time formalisms, however many of these
common concepts are handled in DTA in a different way, and there are also
some other features which are particular to DTA and cannot be found in
other theories. One observation is in order before we discuss advantages
and disadvantages of DTA w.r.t. the formalisms presented before, and this
is that the comparison must necessarily be restricted to the specification
(and verification) of real-time systems which can be analysed in a discrete-
time framework. It must be noted that extending the DTA theory to handle
continuous time is not difficult, however one would lose tool support as WS1S
(MONA) is interpreted over N, and part of the motivation of this research
was to investigate the feasibility of using MONA to assist the verification of
real-time systems (as Smith and Klarlund did for untimed systems in [39]).



Urgency Unlike Timed IO Automata and CTS, where urgency is spec-
ified as constraints on the time action, DTA can describe urgent actions
directly via deadlines (to a certain extent, TLA+ can do the same but fol-
lowing a more complicated approach). In this sense urgency in DTA is
considerably easier to specify and understand; DTA shows an elegant sepa-
ration between specification, as deadlines are attached to actions, and veri-
fication, as enabling constraints are added to the time action just to obtain
an equivalent FTS.

Timelocks DTA is the only formalism which enforces, by construction,
specifications which are free from time-actionlocks. The benefits of such
an approach are evident when one considers how computationally expensive
the detection of time-actionlocks are, since they are related to reachability
properties. This verification would be even more difficult considering that
we are dealing with infinite-state systems. From a more theoretical perspec-
tive, DTA can be thought of as a formalism in which urgency conditions are
resolved only after synchronisation occurs. This is in contrast to Timed IO
Automata and CTS, where urgency is imposed even if synchronisation is not
possible. Notice, however, that zeno-timelocks are still possible in DTA. For
example, the following system allows the action A to occur infinitely often
without time passing at all:

Automaton: Clock Automaton: Zeno
Var: var1 T Var: var1 x,y
Init: T=0 Init: x=0 & y=0
Actions: TICK Actions: A

prec: x=0
deadline: x=0 & T=0

eff: T ′=T+1 eff: y’=y+1 & x’=x

Time action Another aspect which is interesting to discuss is how DTA
handles the progress of time. If one looks at Timed IO Automata, TLA+
and CTS, the corresponding temporal actions increment the current global
time with an arbitrary time-span (i.e. the progress of time can be seen as
non-deterministic). In contrast, the TICK action in DTA increments the
current time by a minimal (discrete) span: 1 time-unit. This simplifies
considerably the specification of TICK for it avoids the use of quantifiers
which are necessary to a) specify arbitrary time-spans and b) to ensure that
this time-span does not invalidate urgency conditions, which has also the
disadvantage of propagating deadline expressions to the specification of the
TICK action.



Time constraints Unlike in CTS, where any number of variables can be
distinguished as clocks (running at the same rate as the system global clock),
DTA cannot specify other clocks except for the master clock (T ) and uses
the concept of capture variables to define the necessary time constraints.
This has some advantages, and disadvantages:

• The theory is simplified; the TICK action only updates a single clock,
T . In models with multiple clocks running at the same rate, the time
action has to update all clocks uniformly.

• It is easier to add new components to an existing DTA specification;
the TICK action remains unchanged. In models with multiple clocks,
if new components introduce clocks then the time action has to be
modified to update them together with the master clock.

• In DTA, constant lower and upper time-bounds for actions can be ex-
pressed using capture variables, so a wide range of useful clock expres-
sions can be written without extending the basic theory with multiple
clocks. For example, let c be a (discrete-time) clock, c ∈ [l, u], l, u ∈ N
a clock expression denoting lower and upper time-bounds for a given
action, and c := 0 a reset expression. Equivalently, c can be rep-
resented in DTA by a first-order variable c, lower and upper time-
bounds are given by T>=c+l & T<=c+u, and the reset expression by
c’=T . However, DTA expressions are conceptually more complex than
expressions involving multiple clocks, and clock expressions such as
c ∈ [l, u] where l, u /∈ N (e.g. variables) cannot be represented in DTA.
The reason for this is that assertions in DTA actions are written in
WS1S/MONA, so expressions such as T<=c+u, where u /∈ N, cannot
be written. However, notice that if the DTA theory is extended to
include multiple clocks then something like c ∈ [l, u], where l, u are
variables in N, can be expressed as the WS1S/MONA assertion c>=l
& c<=u, where c is a clock variable in the extended DTA theory and
l, u are general first-order variables.

Real-time model checking Formalisms considered so far (including
DTA) are able to model infinite-state systems; this means, generally, that
more expressive systems and properties can be specified at the price of semi-
automatic tool support. It is interesting, then, to highlight the benefits of
DTA w.r.t. UPPAAL, which stands as one of the most widely used and de-
veloped real-time model checkers for Timed Automata. Unlike UPPAAL,
DTA can model infinite-state systems, enforce time-actionlock freedom, and



verify LTL past formulas. The use of MONA as the underlying verification
engine allows for the use of finite sets of natural numbers, and quantification
over natural numbers and finite sets of natural numbers, both in DTA mod-
els and in the properties to verify. In contrast, sets and quantification are
not supported in UPPAAL. The product DTA can have, at most, as many
actions as the sum of all actions in the component automata; since com-
position in DTA combines actions and not states, we can reasonably argue
that DTA is immune to the state-explosion problem suffered by real-time
model checkers. In addition, deadlines are attached to actions, in contrast
to UPPAAL’s invariants which are attached to Timed Automata locations.
As discussed in section 3, we are of the opinion that deadlines lead to a
more flexible treatment of urgency. Unlike in DTA, where the global clock
and capture variables are type-compatible (N), UPPAAL specifications can-
not reset a clock with the value of another clock, nor assign the value of a
clock to a variable. On the other hand, UPPAAL handles integer variables,
multiple clocks, arrays of integer and clocks, and the verification of some
branching-time eventualities and existential properties, e.g. ∃�p cannot be
expressed as an LTL formula (linear-time and branching-time logics have
been compared extensively in the literature, see e.g. [43]). Also, UPPAAL
models may specify committed locations, describing a stronger form of ur-
gency than that provided by DTA (this form of urgency is not yet part of
the current DTA theory, but we do not foresee any problem in including it).

7 Conclusions and Future Work

We have presented Discrete Timed Automata as a formalism to describe a
class of time-dependent systems. DTA can be directly translated to MONA,
which provides mechanical verification for safety properties. From Manna
and Pnueli’s seminal work (see e.g. [31] and [32]) it is well known that
safety properties can be deductively verified using invariance proofs. An
inference rule deduces the truth of a property at all computation states,
if it holds at the initial state and is preserved by every transition. DTA
and safety properties are translated to a set of MONA formulas, and so
MONA is used to validate the inductive steps required by the invariance rule.
User interaction is still required to strengthen non-inductive properties, but
the task is reduced to analysing MONA counterexamples. Also, invariance
proofs and DTA are not restricted to finite-state systems, and proofs benefit
from the optimisations included in the MONA tool.

Our case study has been the verification of a multimedia stream protocol



according to the following correctness properties: a) that an implementa-
tion of the transmission medium with two one-place buffers is enough to
manage the packet load, b) a given end-to-end latency (transmission delay
between sender and receiver) and c) a given throughput (minimum number
of packets received per second with a maximum, fixed number of losses). The
verification of the throughput property served as a motivation to extend the
basic DTA theory with shared variables, which was necessary to model a
lossy transmission medium. Although the stream example is not very large,
and we have assumed a discrete-time framework, it nicely illustrates the
technique we have developed. We believe this will scale up to larger case
studies. For example, the verification of throughput and jitter in the lip-
synchronisation protocol [10] is an interesting next step. Further research is
still needed to facilitate verification, such as the applicability of methods to
automatically generate invariants. We are also concerned with the preven-
tion/detection of timelocks in the model, particularly zeno-timelocks, and
with the verification of liveness properties.
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A Proofs

The following two lemmas will be used in the proof of Theorem 1. Informally,
we prove that for any state in which no enabled action in the collection of
DTA is urgent, then no enabled action in the product DTA is urgent neither,
and viceversa. Throughout this section, we will use Π to denote

∏n
1 Ai and

Π′ to denote
∏′.



Lemma 1 Let [[ C ]]ts = (V, S, s0, L1,→1) and [[{
∏n

1 Ai} ]]ts = (V, S, s0, L2,→2

). Then, for all s ∈ S the following holds:

(∀ d, a �= TICK . s
〈a,d〉�1 ⇒ s |= ∼ d) ⇔ (∀ d, a �= TICK . s

〈a,d〉�2 ⇒ s |= ∼ d)

Proof:
(⇒)

1. ∀ d, a �= TICK . s
〈a,d〉�1 ⇒ s |= ∼ d [assumption]

2. ∃ aΠ ∈ INT(Π). s
〈a,aΠ.d〉�2 [assumption]

3. s |= aΠ.p [2, def. �, ∀aΠ. aΠ ∈ INT(Π)]
4. ∃ X ∈ C, aΠ ∈ INT(X) [assumption]

4.1. s
〈a,aΠ.d〉�1 [3, 4, def. �]

4.2. s |= ∼ aΠ.d [1, 4.1]
5. ∃ X,Y ∈ C, a?X ∈ IN(X), a!Y ∈ OUT(Y ) s.t. [assumption]

aΠ.p = a?X .p & a!Y .p
aΠ.d = a?X .d | a!Y .d & aΠ.p

5.1. s |= a?X .p, s |= a!Y .p [3, 5]

5.2. s
〈a,a?X .d | a!Y .d〉�1 [5.1, def. �]

5.3. s |= ∼ (a?X .d | a!Y .d) [1, 5.2]
5.4. s |= ∼ aΠ.d [5, 5.3]

6. ∀ d, a �= TICK . s
〈a,d〉�2 ⇒ s |= ∼ d [4, 4.2, 5, 5.4]

(⇐)



1. ∀ d, a �= TICK . s
〈a,d〉�2 ⇒ s |= ∼ d [assumption]

2. ∃ X ∈ C, aX ∈ INT(X). s
〈a,aX .d〉�1 [assumption]

2.1. s |= aX .p [2, def. �]
2.2. aX ∈ INT(Π) [2, def. Π]

2.3. s
〈a,aX .d〉�2 [2.1, 2.2, def. �]

2.4. s |= ∼ aX .d [1, 2.3]

3. ∃ X,Y ∈ C, a?X ∈ IN(X), a!Y ∈ OUT(Y ). s
〈a,a?X .d | a!Y .d〉�1 [assumption]

3.1. s |= a?X .p, s |= a!Y .p [3, def. �]
3.2. ∃aΠ ∈ INT(Π) s.t. [3, def. Π]

aΠ.p = a?X .p & a!Y .p
aΠ.d = a?X .d | a!Y .d & aΠ.p

3.3. s |= aΠ.p [3.1, 3.2, def. �]

3.4. s
〈a,aΠ.d〉�2 [3.2, 3.3, def. �]

3.5. s |= ∼ aΠ.d [1, 3.4]
3.6. s |= ∼ (a?X .d | a!Y .d & aΠ.p) [3.4, 3.5]
3.7. s |= ∼ (a?X .d | a!Y .d) [3.3, 3.6]

4. ∀ d, a �= TICK . s
〈a,d〉�1 ⇒ s |= ∼ d [2, 2.4, 3, 3.7]

�

Theorem 1: Let [[ C ]]ts = (V1, S1, s
1
0, L1,→1) and [[{

∏n
1 Ai} ]]ts =

(V2, S2, s
2
0, L2,→2), then the following holds:

1. The relation ≈= {(s1, s2) | s1 ∈ S1 ∧ s2 ∈ S2 ∧ s1 = s2} is a
bisimulation.

2. (s10, s
2
0) ∈≈.

Proof:
It is easy to show that (s10, s

2
0) ∈≈. First, notice that from the definition of

[[ C ]]ts and [[{
∏n

1 Ai} ]]ts, V1 = V2 and therefore S1 = S2. Then, both s10 ∈ S1

and s20 ∈ S2 are defined as states which satisfies the initial conditions of all
automata in the collection. Then, s10 = s20 and thus (s10, s

2
0) ∈≈. Now we

just need to prove that ≈= {(s1, s2) | s1 ∈ S1 ∧ s2 ∈ S2 ∧ s1 = s2} is a
bisimulation. The definition of bisimulation is recalled below.

Bisimulation. Given T1 = (V1, S1, s
1
0, L1,→1), T2 = (V2, S2, s

2
0, L2,→2) two

LTS, a bisimulation is a binary relation ≈ ⊆ S1 × S2 s.t. for all (s1, s2) ∈≈
the following conditions hold:



1. ∀ a1 ∈ L1. ∃ s′1 ∈ S1. s1
a1→1 s′1 ⇒ ∃ a2 ∈ L2, s

′
2 ∈ S2. s2

a2→2

s′2 ∧ (s′1, s′2) ∈≈

2. ∀ a2 ∈ L2. ∃ s′2 ∈ S2. s2
a2→2 s′2 ⇒ ∃ a1 ∈ L1, s

′
1 ∈ S1. s1

a1→1

s′1 ∧ (s′1, s′2) ∈≈

Since S1 = S2, the relation ≈ can be expressed as ≈= {(s, s) | s ∈ S1}.
Then, in order to prove that ≈ is a bisimulation we just need to prove that
for all (s, s) ∈≈ the following conditions hold:

1. ∀ a1 ∈ L1. ∃ s′ ∈ S1. s
a1→1 s

′ ⇒ ∃ a2 ∈ L2. s
a2→2 s

′

2. ∀ a2 ∈ L2. ∃ s′ ∈ S1. s
a2→2 s

′ ⇒ ∃ a1 ∈ L1. s
a1→1 s

′

The proof for the first condition considers 3 cases, each case being a parti-
tion of labels in L1. A label in L1 denotes, in the collection of DTA, either
a) an internal action other than TICK, b) two synchronising actions or c) the
TICK action. These cases are developed below.

Case 1: a ∈ L1 denotes an internal action other than TICK, in some X ∈ C.

1. (s, s) ∈≈, a ∈ L1, ∃ s′ ∈ S1. s
a→1 s

′ [assumption]
2. ∃ X ∈ C. aX ∈ INT(X) ∧ a �= TICK [assumption]
3. aX ∈ INT(Π) [1, 2, def. Π]

4. s
〈a,aX .d〉�1 s′ [1, def. →]

5. s |= aX .p, (s, s′) |= aX .e [2, 4, def. �]

6. s
〈a,aX .d〉�2 s′ [3, 5, def. �]

7. s
a→2 s

′ [3, 6, def. →]
8. ∃ a2 ∈ L2. s

a2→2 s
′ [7, a2 = a]

Case 2: a ∈ L1 denotes two synchronising actions in some X,Y ∈ C.



1. (s, s) ∈≈, a ∈ L1, ∃ s′ ∈ S1. s
a→1 s

′ [assumption]
2. ∃ X,Y ∈ C. a?X ∈ IN(X) ∧ a!Y ∈ OUT(Y ) [assumption]
3. ∃ aΠ ∈ INT(Π) where [1, 2, def. Π]

aΠ.p = a?X .p & a!Y .p
aΠ.d = a?X .d | a!Y .d & aΠ.p
aΠ.e = a?X .e & a!Y .e

4. s
〈a,a?X .d | a!Y .d〉�1 s′ [1, 2, def. →]

5. s |= a?X .p, s |= a!Y .p, (s, s′) |= a?X .e, (s, s′) |= a!Y .e [2, 4, def. �]
6. s |= aΠ.p, (s, s′) |= aΠ.e [5]

7. s
〈a,aΠ.d〉�2 s′ [3, 6, def. �]

8. s
a→2 s

′ [3, 7, def. →]
9. ∃ a2 ∈ L2. s

a2→2 s
′ [8, a2 = a]



Case 3: a ∈ L1 denotes the TICK action in some X ∈ C.

1. (s, s) ∈≈, TICK ∈ L1, ∃ s′ ∈ S1. s
TICK→1 s

′ [assumption]
2. ∃ X ∈ C. TICKX ∈ INT(X) [1, def. C]
3. TICKX ∈ INT(Π) [1, 2, def. Π]

4. s
〈TICK,false〉�1 s′ [1, def. →]

5. ∀ d, a �= TICK . s
〈a,d〉�1 ⇒ s |= ∼ d [1, def. →]

6. s |= TICKX .p, (s, s′) |= TICKX .e [2, 4, def. �]

7. s
〈TICK,false〉�2 s′ [3, 6, def. �]

8. ∀ d, a �= TICK . s
〈a,d〉�2 ⇒ s |= ∼ d [5, lemma 1, def. Π]

9. s
TICK→2 s

′ [7, 8, def. →]
10. ∃ a2 ∈ L2. s

a2→2 s
′ [9, a2 = TICK]

The proof for the second condition considers 3 cases, each case being a par-
tition of labels in L2. A label in L2 denotes, in the product DTA, either
a) an internal action other than TICK which is originated from an internal
action in the collection, b) an internal action which is originated in two syn-
chronising actions in the collection or c) the TICK action. These cases are
developed below.

Case 1: a ∈ L2 denotes an internal action in Π other than the TICK action,
which is originated in some X ∈ C.

1. (s, s) ∈≈, a ∈ L2, ∃ s′ ∈ S1. s
a→2 s

′ [assumption]
2. aΠ ∈ INT(Π) ∧ a �= TICK [assumption]
3. ∃ X ∈ C. aΠ ∈ INT(X) [assumption]

4. s
〈a,aΠ.d〉�2 s′ [1, def. →]

5. s |= aΠ.p, (s, s′) |= aΠ.e [2, 4, def. �]

6. s
〈a,aΠ.d〉�1 s′ [3, 5, def. �]

7. s
a→1 s

′ [3, 6, def. →]
8. ∃ a1 ∈ L1. s

a1→1 s
′ [7, a1 = a]



Case 2: a ∈ L2 denotes an internal action in Π which is originated in two
synchronising actions in some X,Y ∈ C.

1. (s, s) ∈≈, a ∈ L2, ∃ s′ ∈ S1. s
a→2 s

′ [assumption]
2. aΠ ∈ INT(Π) ∧ a �= TICK [assumption]
3. ∃ X,Y ∈ C. aX ∈ IN(X) ∧ aY ∈ OUT(Y ) s.t. [assumption]

aΠ.p = a?X .p & a!Y .p
aΠ.d = a?X .d | a!Y .d & aΠ.p
aΠ.e = a?X .e & a!Y .e

4. s
〈a,aΠ.d〉�2 s′ [1, def. →]

5. s |= aΠ.p, (s, s′) |= aΠ.e [4, def. �]
6. s |= a?X .p, s |= a!Y .p, (s, s′) |= a?X .e, (s, s′) |= a!Y .e [3, 5, def. �]

7. s
〈a,a?X .d | a!Y .d〉�1 s′ [3, 6, def. �]

8. s
a→1 s

′ [3, 7, def. →]
9. ∃ a1 ∈ L1. s

a1→1 s
′ [8, a1 = a]

Case 3: a ∈ L2 denotes the TICK action in Π.

1. (s, s) ∈≈, TICK ∈ L2, ∃ s′ ∈ S2. s
TICK→2 s

′ [assumption]

2. s
〈TICK,false〉�2 s′ [1, def. →]

3. ∀ d, a �= TICK . s
〈a,d〉�2 ⇒ s |= ∼ d [1, def. →]

4. ∃ X ∈ C. TICKX ∈ INT(X) [1, def. C]

5. s
〈TICK,false〉�1 s′ [2, 4, def. �]

6. ∀ d, a �= TICK . s
〈a,d〉�1 ⇒ s |= ∼ d [3, lemma 1]

7. s
TICK→1 s

′ [5, 6, def. →]
8. ∃ a1 ∈ L1. s

a1→1 s
′ [7, a1 = TICK]

�



Theorem 2: [[{
∏n

1 Ai} ]]ts and [[{
∏′} ]]ts are strongly bisimilar.

Proof:
The proof is trivial for all actions other than the TICK action, since their
occurrences are not constrained by urgency and, save for deadlines, the
structure of these actions in

∏n
1 Ai and

∏′ is the same. Moreover, both∏n
1 Ai and

∏′ have the same number of actions. Therefore, the proof effort
is focused on the TICK action, as its preconditions in

∏n
1 Ai differ from

those in
∏′. By definition, [[{

∏n
1 Ai} ]]ts = (V, S, s0, L,→1) and [[{

∏′} ]]ts =
(V, S, s0, L,→2), and thus ≈= {(s, s) | s ∈ S}. We then prove that for all
(s, s) ∈≈ the following conditions hold:

1. s TICK→1 s
′ ⇒ s

TICK→2 s
′

2. s TICK→2 s
′ ⇒ s

TICK→1 s
′

(⇒)

1. s
TICK→1 s

′ [assumption]

2. s
〈TICK,false〉�1 s′ [1, def. →]

3. ∀ d, a �= TICK . s
〈a,d〉�1 ⇒ s |= ∼ d [1, def. �]

4. ∀ aΠ �= TICK. s |=∼ aΠ.d [3, (s |= a.d) ⇒ (s
〈a,d〉� )]

5. s |= TICKΠ′ .p, s |= TICKΠ′ .e [4, def. TICKΠ′ ]

6. s
〈TICK,false〉�2 s′ [5, def. �]

7. ∀ aΠ′ . s |=∼ aΠ′ .d [def. Π′]

8. ∀ d, a �= TICK . s
〈a,d〉�2 ⇒ s |= ∼ d [7]

9. s
TICK→2 s

′ [6, 8, def. →]



(⇐)

1. s
TICK→2 s

′ [assumption]
2. s

TICK�2 s
′ [1, def. →]

3. s |= TICKΠ′ .p, (s, s′) |= TICKΠ′ .e [2, def. �]

4. s
〈TICK,false〉�1 s′ [TICKΠ.p = true, def. �]

5. ∀ aΠ. s |= ∼ aΠ.d [3, def. Π′]

6. ∀ d, a �= TICK . s
〈a,d〉�1 ⇒ s |= ∼ d [5]

7. s
TICK→1 s

′ [4, 6, def. →]
�


