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Abstract

This thesis examines the use of immunological metaphors in building serial,
parallel, and distributed learning algorithms. It offers a basic study in the
development of biologically-inspired algorithms which merge inspiration from
biology with known, standard computing technology to examine robust methods
of computing. This thesis begins by detailing key interactions found within the
immune system that provide inspiration for the development of a learning system.
It then exploits the use of more processing power for the development of faster
algorithms. This leads to the exploration of distributed computing resources for
the examination of more biologically plausible systems.

This thesis offers the following main contributions. The components of the
immune system that exhibit the capacity for learning are detailed. A framework
for discussing learning algorithms is proposed. Three properties of every learning
algorithm—memory, adaptation, and decision-making—are identified for this
framework, and traditional learning algorithms are placed in the context of
this framework. An investigation into the use of immunological components
for learning is provided. This leads to an understanding of these components
in terms of the learning framework. A simplification of the Artificial Immune
Recognition System (AIRS) immune-inspired learning algorithm is provided by
employing affinity-dependent somatic hypermutation. A parallel version of the
Clonal Selection Algorithm (CLONALG) immune learning algorithm is developed.
It is shown that basic parallel computing techniques can provide computational
benefits for this algorithm. Exploring this technology further, a parallel version
of AIRS is offered. It is shown that applying these same parallel computing
techniques to AIRS, while less scalable than when applied to CLONALG, still
provides computational gains. A distributed approach to AIRS is offered, and it
is argued that this approach provides a more biologically appealing model.

Biological immune systems exhibit complex cellular interactions. The
mechanisms of these interactions, while often poorly understood, hint at an
extremely powerful information processing/problem solving system. This thesis
demonstrates how the use of immunological principles coupled with standard
computing technology can lead to the development of robust, biologically-inspired
learning algorithms.
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Chapter 1

Introduction

1.1 Motivation and Background

1.1.1 Intelligent Machines

Let us start with the grandiose: Since the conceptualization of a computing

machine, we have been asking if we can get these machines to think—if they

are capable of displaying intelligence. Indeed, even, arguably, the founder of

computer science, Alan Turing, was intrigued by this concept—so much so, that

we have, as one of his many legacies, the Turing test which provides us a litmus

test to determine if our efforts to impersonate or duplicate human intelligence have

been successful through deceiving someone into thinking the machine is human.

While many of today’s researchers view the Turing test as nothing but a useless

distraction, it does indicate how our imaginations have been captured by this

dream of thinking machines.

1
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Wherein lies the impetus for this quest? One could argue that there are really

two thrusts to this idea. One, the more traditional and, perhaps more mundane,

is that computers are seen as problem solving tools—computational wizards, so to

speak. And, if we could harness the sheer computational power of the computer

and couple with it the ability to think—to conceptualize, reason, and generalize—

found in human intelligence then the realm of problems to be conquered by these

thinking machines, the aid that could be given to humans by this ability, is close

to limitless. The more philosophical reason is that, as in many human endeavors,

we are trying to more fully understand ourselves. This exploration of what is our

own intelligence has simply taken on as a new experimental test bed the digital

computer. That is, if we can succeed in embedding something close to human

intelligence into these bits of silicon and electricity, then we can actually discover

more about ourselves and about the ways our cognitive abilities work.1 For now

we will focus on the more mundane of these two answers—that is, we will focus

on the idea of building problem solving tools and aids to our own intelligence.

Yet, the larger answer should, perhaps, always be in the back of our minds as we

explore this tool building exercise.

1We do not mean by this only simulations which are attempts to be faithful replicas of the
biological processes involved in intelligence. While this computer modeling is definitely useful,
what we have in mind here as the more grandiose side of the question is that even through our
building intelligent machines for problem solving we have to contemplate and discover how it is
that our cognitive systems are able to tackle such problems, and through this exploration—even
when building problem solvers—we gain a deeper insight into our own intelligence.
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1.1.2 Machine Learning

The ability to improve with experience, to get better over time, to remember

past decisions and outcomes in order to make better choices in future, similar

situations, that is, the ability to learn can be seen as a fundamental characteristic

of human intelligence. This being said, it is little surprise that so much research in

the field of artificial intelligence (AI) could be labeled, in one way or another, as

research into machine learning. What, then, is machine learning? To quote Tom

Mitchell, “The field of machine learning is concerned with the question of how to

construct computer programs that automatically improve with experience” [86].

We will accept this definition as good as any other for now concerning this field.

However, while we may have a working definition of what machine learning is, we

do not, necessarily, have a reason as to why we would want such a thing. Why do

we care to develop programs that can “automatically improve with experience?”

The answer to this can be seen as the same as the answer to why we would want

to develop intelligent machines at all: aid in problem solving and exploration of

human intelligence.

Continuing with our more pragmatic slant, then, the development of computer

programs that improve with experience should be triggered by the ability this gives

us to solve problems of interest. So how do we characterize these problems? The

answer to this question is large and will be, by no means, treated comprehensively

here. However, to point towards an answer we can look at just a few anecdotes:
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• We have a large amount of data collected from sonar scans of the ocean floor.

Geological and oceanographic experts have classified some of this data into

categories of interest. However, given the volume of data, there is no way

possible for these experts to examine and classify all of the data. We would

like to develop a computer program that can automatically learn from the

classified data set the characteristics of the data that are of interest and

then classify the remaining set of acoustic images.

• We have a database of consumer transactions. We would like to discover

if there are any patterns of buying certain products together so that we

can better market products of interest to consumers. Again, given the

sheer volume of data, there is no practical way for a human (or group of

humans) to examine all of this data. Also, there potentially are buying

habits that humans would never have considered and thus never looked

for. We want to develop a computer program that can examine this data

and automatically learn/discover the patterns of purchasing habits that the

database contains. We can then use this information for more informed

product marketing/recommendations.

• We want to develop a robot that can empty the trash for us. It should

be able to wander around our house, empty full trash bins, and remain

unobtrusive. In addition, it should know when it is about to run out of

battery power and recharge itself. This would require a system that can

learn how to navigate, learn time management (so that it does not run out
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of power or allow a trash bin to overflow), and learn to remain unobtrusive.

We would expect it to get better at its job the longer it was in service.

These are just three simple examples of the types of problems that machine

learning techniques are devised to address. In the parlance of machine learning

we could characterize these three problems as supervised learning, unsupervised

learning, and reinforcement learning, respectively, although these labels have more

to do with the solution rather than a characteristic of the problem itself.

Having, however briefly, looked at the what (using Mitchell’s definition) and

the why (the solving of certain types of problems) of machine learning, we will now

turn to the how of machine learning. How do we actually develop these programs

that learn to “automatically improve with experience?” This will be the primary

focus of the rest of this thesis. However, the what and why will always be in mind

as we go through the construction of such systems. The means of constructing

and developing machine learning systems has been extremely diverse. These have

ranged from the manipulation of symbolic data in order to develop a concept

learning system to the heavy use of sub-symbolic representations of data in the

development of function approximation algorithms (e.g., back-propagation neural

networks). There are several good general surveys of the field of machine learning

and its techniques (foremost being [86]), and we will not attempt to duplicate that

effort here. Instead, we wish to focus on one particular emerging field of computing

science that can, perhaps, lend insight into the development of machine learning

systems.
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1.1.3 Biologically-Inspired Computing

When attempting to build more complex systems, systems that resemble the

intelligence or efficiency found in natural systems, it is not surprising that

computer scientists have often turned to biological systems for inspiration in

solving complex computational problems. The landscape of computation is

littered with biologically-inspired models. These range from simple neural

network models derived from observations of the brain[12, 58] to computational

explorations based on neo-Darwinian evolutionary theory[85]; from capturing

characteristics of swarming insects for computation[70] to extracting inspiration

from the behavior of ants[14], to name just a few. While the problems these

biologically-inspired systems tackle are as diverse as the natural systems that

inspired them, they all share common links. Namely, they all attempt to extract

mechanisms from nature that can lend themselves to the tackling of computational

problems or to the further understanding of the nature of computation itself.

While this often leads to a fairly näıve examination of the biology (as pointed out

in [108]), the success of such systems is no doubt in large part attributable to the

biological inspiration at the heart of their development.

In [108] the authors argue for the need for a well-formed conceptual framework

for the development of biologically-inspired computing systems. This thesis

provides an in-depth examination of the development of a bio-inspired system.

While this process may often fall into the trap of “reasoning by metaphors” that

the authors of [108] warn against, it does provide a solid illustration of the give



CHAPTER 1. INTRODUCTION 7

and take seen in the development of such systems. Throughout this development

process we will see an almost pendulum-like swinging back and forth as we first

look to the biology for inspiration and then incorporate established standard

computational technologies and then return to the biology only to incorporate

other standard computing techniques. This is one of the more intriguing aspects

of the empirical development of a biologically-inspired computing system: the

ways in which biology and standard computing can inform and transform the

developing computational system.

1.1.4 Immune-Inspired Computing

The immune system is a robust, complex collection of diverse, interacting

components that serve to protect the body. It consists of multiple-layers of

response and numerous reactions distributed throughout the body. Simplistically,

in vertebrates, the immune system is composed of two layers: the innate immune

system and the adaptive immune system. The innate system is a fairly static first

line of defense. It consists of cells that recognize incoming antigens and presents

pieces of these invaders to the adaptive system. The adaptive immune system is an

ever-evolving dynamic system that reacts and interacts with the environment in a

variety of ways. Much of the way the immune-system reacts and behaves is poorly

understood. However, what we do understand offers tantalizing possibilities from

a computational point of view.
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The biological immune system is diverse, inherently distributed, adaptive,

complex, capable of maintaining memory of previous encounters, robust, and

interactive, to name just a few of its more attractive computational properties.

In the last fifteen years there has been a great deal of interest in exploiting

the known properties of the immune system as metaphorical inspiration for

computational problem solving. Applications of these techniques have ranged

from computer security [62, 72] to robotics [78, 87] to data analysis and machine

learning [113, 32, 130]. It is this last area of immune-inspired computing—machine

learning—that is the focus of our work here.

1.1.5 Learning in Parallel and Distributed Environments

Beyond just the development of learning algorithms inspired from observations

of nature, a second major theme of this work is the ability to harness greater

computational power for these tasks. With the recent proliferation of clusters of

computers due to the decreasing costs of commodity computing components, it has

now become extremely feasible to dedicate multiple computers to a given problem

solving task. This leads to several possible consequences. The most obvious

one is the ability to speed up the overall processing time in order to arrive at

more timely solutions. This is extremely appealing from a machine learning/data

mining perspective. As we previously mentioned, one of the motivations for

developing machine learning algorithms is in their abilities to save time for humans

in complex tasks. By utilizing multiple computers or large parallel processors,
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machine learning algorithms, which can take advantage of this increased power,

will also increase their benefits to the user.

This use of multiple processes in our learning algorithm also provides the

ability for the development of more robust, or in depth, solutions. In other words,

we can take the known computational technology of a parallel system and look

for ways to incorporate this power in our developing biologically-inspired system.

With many bio-inspired algorithms taking on an evolutionary component, the

ability to evolve and explore separate niches and species of solutions on individual

processors and then bring these individual populations to bear on the problem as a

whole is potentially invaluable. The use of these distributed processing techniques

allows us to further enhance our immune model. The immune system is inherently

distributed and decentralized; therefore, it is important to the evolution of the field

of artificial immune systems that we explore the use of distributed and parallel

computing in order to more fully explore this biological potentials. While there

has been some work on machine learning and evolutionary algorithms using large

multi-computers or clusters of computers (see [17, 22] for some basic examples),

very little in the application of parallel and distributed computing techniques for

immune-inspired learning has been explored.

1.2 Goals and Contributions

The overarching hypothesis of this thesis is that the identification and exploitation

of immunological components coupled with standard computing techniques can
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lead to the development of serial, parallel, and distributed learning algorithms.

In order to investigate this hypothesis we begin by examining the fields of

immunology and machine learning. Through this we identify those characteristics

of the immune system that are most pertinent to improving with experience. We

then survey previous work in the field of immune-inspired learning algorithms.

This leads to the presentation of one specific immune learning algorithm, which

we examine in depth. This examination provides an illustrative example of

the development of a biologically-inspired system. We then look to incorporate

more standard computing technology by examining how parallel computing

techniques can be used in this area of immune-inspired learning. This leads to the

development of parallel versions of two artificial immune systems: one as a proof-

of-concept of the use of the technology and the second as a return to our initial

exemplar system. We end our examination with a look at a more distributed

approach to the problem and argue that this is the path forward toward a more

biologically plausible and interesting approach to immune-inspired computing.

Through these investigations, this thesis makes the following contributions.

1. The components of the immune system that exhibit the capacity for learning

are detailed (chapter 2).

2. A framework for discussing learning algorithms is proposed. Three

properties of every learning algorithm—memory, adaptation, and decision-

making—are identified for this framework, and traditional learning

algorithms are placed in the context of this framework (chapter 2).
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3. An investigation into the use of immunological components for learning is

provided. This leads to an understanding of these components in terms of

the learning framework (chapter 2).

4. A simplification of the AIRS immune-inspired learning algorithm is provided

by employing affinity-dependent somatic hypermutation (chapter 3).

5. A parallel version of the CLONALG immune learning algorithm is

developed. It is shown that basic parallel computing techniques can provide

computational benefits for this algorithm (chapter 5)

6. Exploring this technology further, a parallel version of AIRS is offered.

It is shown that applying these same parallel computing techniques to

AIRS, while less scalable than when applied to CLONALG, still provides

computational gains (chapter 6).

7. A distributed approach to AIRS is offered, and it is argued that this

approach provides a more biologically appealing model. The simple

distributed approach is proposed in terms of an initial step toward a more

complex, distributed system (chapter 7).

1.3 Thesis Structure

The remainder of this thesis is organized into the following seven chapters.

Chapter 2 surveys the three main fields pertinent to the first part of this study:

immunology, machine learning, and artificial immune systems. All three of these
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are too vast to be treated comprehensively. This survey chapter identifies those

components of the immune system that are most relevant for developing learning

algorithms. We then propose a framework for discussing learning algorithms and

place several well-known algorithms into this framework. We conclude the chapter

by surveying previous immune-inspired learning algorithms and discussing them

in terms of our framework.

Chapter 3 introduces the immune-inspired learning algorithm AIRS as our

exemplar system to be studied throughout the thesis. The chapter begins with

a brief overview of the algorithm and previous results obtained by using this

algorithm. We then offer a series of simplifications to the algorithm designed to

incorporate the more biologically sound mutation scheme of affinity-dependent

somatic hypermutation. We find that this change decreases the overall memory

model of the algorithm while maintaining classification accuracy. We conclude

the chapter by comparing the original and newly formulated AIRS algorithm.

Chapter 4 provides a brief overview of parallel processing techniques and

performance metrics. It briefly surveys parallel genetic algorithms and discusses

how these parallel processing ideas can be applied to immune learning algorithms.

Chapter 5 examines the application of parallel computing techniques to a

basic immune-inspired learning algorithm: CLONALG. We examine the behavior

of this new parallel version of the algorithm. We find that there are definite

computational gains to be made by parallelizing CLONALG.

Chapter 6 presents a parallel version of AIRS. We begin by following the same

strategies employed with parallelizing CLONALG. However, unlike CLONALG
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which has no real global interaction, AIRS does require global communication

in order to build its memory model. We investigate several ways to handle the

need for developing a single memory cell pool. This leads to the identification of

the memory cell pool as the primary bottleneck in the parallel process. Despite

unstable parallel performance, we do find benefits from our basic parallelization

of AIRS.

Chapter 7 returns to the biology of the immune system and offers an alternative

approach to using multiple processors for AIRS. Since the immune system is not

centralized but distributed, we would like to develop algorithms that also exhibit

this characteristic. This chapter provides a very simple distributed model for

AIRS. While the results using this approach are somewhat inconclusive, this study

raises interesting possibilities for the development of distributed immune learning

algorithms.

Chapter 8 provides concluding remarks for this study. It also points the way

forward to future extensions of this work.

1.4 Publications

The following four papers were written as part of the research for this thesis:

1. A. Watkins and J. Timmis, “Artificial immune recognition system (AIRS):

Revisions and refinements,” in Proceedings of the 1st International

Conference on Artificial Immune Systems (ICARIS2002), J. Timmis and
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P. J. Bentley, Eds. University of Kent at Canterbury: University of Kent at

Canterbury Printing Unit, September 2002, pp. 173-181.

2. A. Watkins, X. Bi, and A. Phadke, “Parallelizing an immune-inspired

algorithm for efficient pattern recognition,” in Intelligent Engineering

Systems through Artificial Neural Networks: Smart Engineering System

Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Complex

Systems and Artificial Life, C. Dagli, A. Buczak, J. Ghosh, M. Embrechts,

and O. Ersoy, Eds. New York: ASME Press, November 2003, vol. 13, pp.

225-230.

3. A. Watkins and J. Timmis, “Exploiting parallelism inherent in AIRS,

an artificial immune classifier,” in Proceedings of the 3rd International

Conference on Artificial Immune System (ICARIS2004), ser. Lecture Notes

in Computer Science, G. Nicosia, V. Cutello, P. Bentley, and J. Timmis,

Eds., no. 3239. Springer-Verlag, September 2004, pp. 427-438.

4. A. Watkins, J. Timmis, and L. Boggess, “Artificial immune recognition

system (AIRS): An immune-inspired supervised machine learning

algorithm,” Genetic Programming and Evolvable Machines, vol. 5, no. 3,

pp. 291-317, September 2004.



Chapter 2

Biological Immune Systems and

Learning

This chapter examines the background for building immune inspired learning

systems. We begin by examining key components in biological immune systems.

This survey is, naturally, biased towards those components that indicate learning;

however, it should give a basic comprehension of the biology necessary for

understanding the rest of this thesis. This is followed by the introduction of

a generic framework for learning systems as well as a discussion of some well-

known learning algorithms within this framework. This framework is introduced

as a means of quickly comparing or understanding the fundamental workings of

the learning algorithms we will examine. We conclude this chapter by surveying

immune-inspired learning algorithms. This section provides a context for the work

to come.

15
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2.1 Biological Immune Systems

Intuitively when we think of the immune system the idea of learning or any type of

cognition does not readily spring to mind. The immune system is seen as a great

protector—warding off those unseen microscopic organisms that can cause death

and destruction to the body, mechanically going about the business of defense

statically as it was designed to do. Where would be the learning in this? Yet, as

we consider it more fully, we realize that we have all had experiences with this

idea of the immune system learning and improving over time. The concepts of

inoculation or vaccination are immediate examples. How is it that by exposing

the immune system to a small dose of a disease it is later able to protect us

completely from exposure to that disease? How is it that the immune system

is capable of rapidly defeating previously seen and even not seen, but similar,

pathogens? When seen in this way we come to realize that at the very least there

must be some type of memory mechanism involved in the immune system, and

there are hints just from these practical every-day experiences that the immune

system must indeed be learning its primary job of protecting the body (if indeed

this truly is the primary job of the immune system). So what is it in the immune

system that enables it to learn from interactions with the environment and provide

appropriate responses when faced with the same or similar situations (pathogens)?

Theoretical and experimental immunology points to a wealth of possible answers.



CHAPTER 2. BIOLOGICAL IMMUNE SYSTEMS AND LEARNING 17

2.1.1 Immunological Components

The potential complexity of the immune system is staggering at times, and its

workings are still poorly understood to a large degree. Some things that do seem

to be understood is that the immune system can be viewed as a layered system.

The first line of defense, described as innate immunity, begins at the skin-level

and delves further to include several pattern recognition receptors that process

incoming pathogenic patterns for presentation to other layers of the immune

system. The pattern recognition capabilities of these innate cells are fairly fixed

throughout the lifetime of an organism [84]. So, while they play a key role in any

immune response and (perhaps) could be a useful source of inspiration for one

stage in a machine learning system, since there is really no adaptation nor change

going on at this stage with regards to the interaction with the environment—no

real learning that is—we will not spend any more time on this level.

Lymphocytes

Typically, where we think of most of the learning and adapting of the immune

system taking place is in the, aptly named, adaptive immune response. Again,

there is a wealth of complexities here, but what we will primarily focus on are the

lymphocyte cells–T-cells and B-cells. The two cells get their names from where

they mature (thymus and bone-marrow, respectively). What is important in the

context of our work about these cells is the ability of these two types of cells to

interact and change in response to incoming pathogens. (At this point we will
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just switch, out of simplicity, to calling them antigens, since it is the antigenic

patterns of a given pathogen that are really of interest to us at the T- and B-cell

level).

Since the immune cells must be able to know not to attack the body but to

attack antigens, there must be some mechanism for imparting this knowledge at

the cellular level. For the T-cells this is done through a maturation and negative-

selection process. Näıve T-cells in the thymus are repeatedly exposed to self-cells.

Those T-cells which react to the self-cells are killed off. However, after a certain

amount of this exposure, if the T-cell does not react to the self-cells, then it

is allowed into the body as a mature T-cell. One theory is that through this

process, termed negative-selection, we have an immune system with T-cells that,

when they do react, should only be reacting to harmful (or at least non-self)

antigens [97, 68, 119]. Similar to this idea, yet fundamentally different, is the

so-called Danger Theory idea of T-cell response [83]. This theory states that

the idea of “self” and “non-self” causing reactions in T-cells is ludicrous since

there are numerous “non-self” agents that are tolerated by the body (e.g., food

in the gut, a fetus in the womb, etc.). Rather, T-cells learn to respond to that

which is dangerous and not dangerous. This is partially accomplished through

the use of “danger signals” which trigger responses in the T-cells. Regardless of

which school of thought one subscribes to, however, T-cells are still involved with

pattern recognition.This is one line of pattern recognition and learning that takes

place in the immune system. Through this recognition process, T- Cells (or more

specifically, helper T-cells at this point), in turn, will present antigenic patterns
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to B-cells, which will also react in specific ways to the antigen and proliferate in

order to defend the body against the incoming invader [103, chap2, pp21-36].

We now examine the other major lymphocyte cells, B-cells. As previously

mentioned, B-cells develop in the bone-marrow and interact with T-cells in order

to produce immune responses. On the surface of each B-cell is a collection of

structurally/chemically identical antibodies. It is the antibodies that bind to

antigenic patterns and produce a reaction based on the degree of recognition in

response to a given antigen [96, 103, chap5, pp80-107]. The manner in which this

recognition is performed and the reaction of B-cells in response to this recognition

will form the nucleus for much of our discussion involving learning and the immune

system.

In the theories of the workings of the immune system, several different

proposals have been made as to how a given B-cell interacts with an antigen

and how this interaction affects the rest of the system. One such idea, named the

Clonal-Selection theory [16], proposes that as an antigen enters the immune system

certain B-cells are selected based on their reaction to this antigen to undergo

rapid cloning and expansion. As an antigen is presented to a B-cell, the B-cell’s

antibodies react in some degree to the antigen.1 This reaction is often termed

the affinity of that B-cell (or antibody) for the given antigen. Those B-cells with

a sufficient affinity (based on some internal reaction threshold) are allowed to

1We will see that we often talk about antibodies/B-cells in terms of straight pattern
recognition with concepts of distance or complementariness; however, in reality, B-cells recognize
structure as well. There has been little done to capture this idea of structural, 3-dimensional
recognition rather than using simple feature distance metrics.
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produce offspring in relation to their degree of affinity. This allows for the rapid

expansion of cells that can successfully attack the incoming antigen.

More specifically, when a B-cell recognizes an antigen it requires stimulation

from a T-helper cell to react. This co-stimulation then transforms the B-cell into

a plasma cell which produces a concentration of free-antibodies which work with

T-killer cells to neutralize the antigenic threat. Once the threat subsides, certain

B-cells which were highly stimulated by the antigen are selected to become long-

lived memory cells which allow for a more rapid secondary response if a similar

antigen is encountered in the future [68, 96, 119, 103, chap10, pp177-199]. This

idea of immunological memory will be discussed in section 2.1.2.

Shape-Spaces

At this point, before we continue with the dynamics of B-cell/antibody expansion

and maturation, we should mention the concept of an immune system repertoire

and coverage by the immune system [39, 100]. In simplistic fashion, the realm of

antigen and antibody reaction can be thought of as an abstract space or volume.

The attributes of an antigen or antibody, such as the presence or absence of certain

chemical chains, its DNA sequence, etc., can be said to define coordinates within

this space. So we can conceptualize antigens and antibodies/B-cells as occupying

a given point in this space. This space is often referred to as the shape-space of

the immune system. When discussing this shape-space and the realm of antibody

recognition of an antigen, we claim that there is a sphere of influence or recognition
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that emanates from each antibody/B-cell.2 An antigen that is located, based on its

shape-space coordinates, within the recognition sphere of a given antibody/B-cell

is said to be recognized, to some degree, by this antibody/B-cell. Conceptually,

then, there is a certain threshold for each antibody/B-cell that defines what its

sphere of recognition will be. Figure 2.1.1 gives a graphical representation of this

with three cells and their area of recognition depicted along with antigens that fall

within and without these cells’ areas of influence. This allows for an antibody/B-
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Figure 2.1.1: The shape-space concept. This image has been taken from [28].

cell to partially match an antigen and still effectively react to this threat. Also, it

allows us to discuss the idea of an immune repertoire covering this shape space.

That is, there is no need for a direct one-to-one antibody-to-antigen match in

2We are using the term “sphere” here rather loosely. As the authors of [57] point out, the
actual shape of this region of influence can have an impact on the behavior of the system.
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order for the immune system to appropriately respond to an antigen. In fact,

this idea is quite absurd. The number of possible antigens is outrageously large

whereas the human immune system has a finite number of immune cells at any

given time. Yet, this finite number of cells is still capable of effectively recognizing

and destroying dangerous antigens. We argue that the immune system must be

able to generalize to similar patterns and to embody this idea of shape-space

coverage and spheres (or volumes) of recognition in order for it to perform its

duties.

Antibody-Antigen Reactions

With this discussion of shape-space and coverage in mind, we still must point

out that just because a given antigen falls within the sphere of recognition of

a given B-cell does not mean that it will have the same reaction as a second

antigen that also falls within this sphere. That is to say, there must also be

the concept of a degree of affinity to the antigen that, even within the sphere of

recognition, produces different strengths of reactions, such that an antigen that

falls closer to an antibody within the shape-space will elicit a stronger reaction

than one which, while still within this recognition ball, is further away from the

actual antibody center of this sphere. This leads naturally to the concepts of

affinity maturation and somatic hypermutation [71]. As previously mentioned,

B-cells are selected, based on their affinity to an antigen, to produce a number of

clones. The purpose of this process is two-fold. First these clones are produced in

order to attack or neutralize the invading antigen. Those cells that have a higher
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degree of affinity are allowed to produce more clones since these cells will be able

to more appropriately respond to the invading antigen. The second purpose of

clonal production is to develop immune cells that are more adept at recognizing

and reacting to the antigen. This is done through a process of affinity maturation

through mutation. Each offspring of a B-cell can potentially be a mutated variety

of its progenitor. Mutation rates within the immune system have been found to be

quite high for some cells and are definitely variable [118]. B-cell offspring undergo

mutation based in inverse proportion to their affinity values. That is, those cells

which have a higher affinity value (and thus are better at recognizing the given

antigen) mutate less than those cells with a lower affinity value. Through this

process, the affinity of subsequent generations of B-cells will be greater (will have

matured) in reaction to the antigen, and more diversity will also have been added

to the system through the wider exploration afforded by the high mutation rates

of the cells with lower affinity measures.

Up to this point, by the way we have described B-cell clonal expansion and

reaction to an antigen, it would appear that the immune system would grow wildly

out of control with large numbers of mutated clones. However, just as there are

high mutation rates and cloning rates present within B-cells, there is also a high

degree of cell death [68]. Given the nature of mutations, it is to be expected that

a large number of these cells would not be very useful in binding to the antigen

in question [4]. In fact, many of these mutations might be harmful to the self as

well. The immune system, however, is self-regulating. The number of immune

cells in the system at any given time, while always fluctuating, remains roughly
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constant. Those B-cells which have low affinities are frequently culled from the

system through the process, more than likely, of apoptosis (programmed cell-

death). The exact mechanisms for this cell death are not completely understood,

but it is known that there is a high turnover rate among the cells in the immune

system, and it is theorized that those cells that are chosen to suffer apoptosis are

the low-affinity cells [103, chap7, pp129-146].

2.1.2 Immune Memory and Learning

While this description explains at a high level how B-cells react at a single point in

time to an incoming antigen, none of this really explains how, when presented with

the same (or similar) antigen, the immune system responds much more efficiently

and rapidly. This was one of our intuitive arguments that the immune system must

possess some type of learning mechanism: through vaccination with a small dose

of a disease (pathogen), the immune system is capable of protecting us from that

disease. How, then, is this memory maintained? Why is the ability to efficiently

react to a pathogen not lost through cell death after the initial exposure to a given

antigen? The answers lie in (possibly) two directions. First, the more accepted

notion is that, after the initial exposure of the immune system to a given antigen,

a long-lived memory cell is maintained in the system. Upon subsequent exposure,

this memory cell is allowed to produce clones much more rapidly than typical B-

cells in reaction to the antigen or structurally similar antigens. In some ways, then,

one of the purposes (apart from actually neutralizing the threat presented by an
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antigen) of clonal selection, affinity maturation, and somatic hypermutation is the

development of a memory cell that will allow for rapid responses in the future.

So, immune memory is maintained through a collection of memory cells [107].

This pool of memory cells also evolves over time in reaction to the environment,

but this evolution, in many ways, is on a slower scale than for typical immune

cells. There seems to be less rapid cell death within the collection of memory cells.

Indeed, as most of us have experienced, for many diseases one simple inoculation

lasts our entire lifetimes [107].

The second possible location of immune memory is more controversial in

theoretical immunology circles. Without discounting this concept of memory cells

in the immune system, the second location of immune memory is within the

interactions of the immune cells themselves. Jerne has proposed that B-cells are

connected to each other through an idotypic network [69]. Each B-cell is connected

to a neighborhood of other B-cells. These connections provide both stimulation

for the cells within the neighborhood (thus keeping them alive) and suppression.

There is a fine degree of balancing among the cells, and those cells which do

not receive enough stimulation eventually die. When an antigen is presented to

the immune network, an increase of the stimulation/suppression signals among the

network of cells occurs with the neighborhood of cells that have a higher affinity to

the antigen receiving more stimulation and those with less affinity receiving more

suppression. This constant balancing of network connections through constant

stimulation and suppression is possibly one place that immune memory also

resides.
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2.1.3 Diversity and Distributedness

The interactions between T-cells and B-cells and between T-cells and other

immune cells are much more complex, in reality, than this simple overview. There

are numerous interactions taking place among various immunological components

such as cytokines, antigen presenting cells, as well as the T- and B-cells already

discussed. This diversity may play a key role in the learning and adaptability of

the immune system.

Additionally, the immune system is inherently distributed. Immune system

cells can be found in a wide variety of places throughout the body: from the

liver to the lymphnodes. This inherent distributedness suggests that there is no

real central control of the immune system [96]. Each component has developed

to function without direct supervision. Yet, this is not to imply that there

is not cooperation within the immune system. One of the hallmarks (from a

computational standpoint) of the immune system is the degree of cooperative

(rather than competitive) problem solving exhibited in the system. There are

interesting communication patterns demonstrated in cytokine networks as well as

within the interactions of T- and B-cells [103, chap10, pp177-199]. Many of these

capabilities are still being explored.

2.1.4 The Nature of Self

The discussion of T-cells and self recognition touched on in 2.1.1 was perhaps a

bit simplified. As pointed out, one view of the immune system is that it defines
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self from other. That is, the immune system is capable of defending us by clearly

defining what should belong in the body and what should not. That this comes

up at all, really, derives from the fact that the material the body is made up of

(proteins, amino acids, etc.) is the same material that invaders are made up of

as well. Given this, it seems logical that the immune system must have a way of

knowing that it should not attack the body itself but that it should attack those

invaders that do not belong in the body. Thus, the immune system must have

a way of defining what is self and what is non-self. Näıvely, this makes perfect

sense. However, this is one point of contention in the immunological world. Does

the immune system really have this capability, or more importantly, some innate

a priori knowledge of what is self and what is non-self? Recent theories from

Matzinger [83] would say something like “The immune system does not define self

and non-self, but it is capable of recognizing danger and non-danger.” If this is

more than just a relabeling of the terms (as Bersini warns us against [9]), then this

might actually be telling us something. Otherwise it is fairly useless. On the other

hand, we have Bersini, through the work of Varela, arguing that there is no such

a priori knowledge built into the immune system that allows for the defining of

self and non-self [9, 10, 11]. Rather, there is a concept of self-assertion—that the

immune system, over time, emerges this picture of self through the interactions

of the lymphocyte cells as well as the interaction of these cells with antigens.

Antigens are then killed off only because they do not fit into this self-asserted

scheme of the immune system. However, the immune system can develop zones

of tolerance, which would, in fact, allow an antigen to exist in the system without
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attacking it. It could then be argued that these zones of tolerance might fit nicely

into this view of Danger/Non-Danger dichotomy. That is, the reason a zone of

tolerance developed at all was that an antigen that appeared in that zone would

cause no danger to the system.

2.1.5 Summary on Biological Immune Systems

This section has introduced some of the basic components or agents that play

a role in immunological responses within biological immune systems. Obviously,

this survey has been high-level and fairly incomplete. However, what this sketch

does provide is a glimpse of a biological system which adapts and improves with

experience. That is, it learns. The next section revisits the topic of artificial

learning systems, and then the chapter concludes with a discussion of the use

of these immunological principles as metaphors for the development of immune-

inspired learning systems.

2.2 A Framework for Learning Algorithms

In section 1.1.2 we briefly touched on what is commonly meant by machine

learning. In this section elaborate upon this further. We begin by introducing a

very basic framework for examining learning algorithms. This allows us to provide

some cohesion in our discussion of various immune-inspired learning algorithms to

come. We then go on to discuss the classic major divisions of machine learning—

supervised, unsupervised, and reinforcement—and provide examples of the use of
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this framework for exemplars from these divisions. In this discussion, we also look

at some of the pragmatics these different approaches require.

2.2.1 The MAD Framework for Learning

There are numerous ways of characterizing learning systems from the mechanisms

they use to the philosophy they embody. In [86] the author chooses to focus

on the way in which each learning technique manipulates the hypothesis space.

This formalism allows for a fairly succinct means of comparison across various

algorithms. Here we introduce a slightly different way of discussing learning. This

is not introduced as a replacement for other methods of characterizing learning,

but rather as a (fairly simplistic) framework to aid in our current discussion.

Any learning system can be discussed in terms of three key components:

memory, adaptation, and decision-making. Memory involves how the system

keeps track of past events or experiences and is used for the decision-making

process on how to react to new experiences. The memory of a learning system

is basically the system’s abstracted view of the world—how it generalizes its

experience. Adaptation includes the mechanisms that are used to modify this

memory structure. It is where this world-view is adjusted when new experiences

or feedback are encountered. Decision-making focuses on interaction with the

environment. As the system undergoes an experiences, the system must decide

what to do with that experience. Is it similar to something it has seen before (as

recorded in the memory), if so, how does the memory system tell it to react? If
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it is not, then is this something that it should try to remember? The memory

system is adapted to encourage the learning of this new experience, and there can

also be an adaptation of the memory to forget those aspects that are no longer

relevant or to combine certain aspect of the memory to allow for abstraction or

generalization.

To be truly learning, the memory system must never be just a look-up table of

past experiences, but must exhibit the ability for abstraction or generalization so

that sufficiently similar experiences are handled in a similar manner. Of course,

the decision making should not be “should I remember this data item or this

experience,” but really should be “what action do I take now.” The action could

be to add something to the memory, perform some kind of action on the external

environment, send out some kind of signal, label something as a given class, or

anything else that might be appropriate for a given application or system or any

combination of these.

Many learning algorithms are, in fact, two-phase algorithms. The first

phase consists of training the system–that is the building of the memory system

and the resultant decision making facilities. During this phase, the system is

exposed to examples from the real world. Oftentimes, during training the system

is exposed repeatedly to the same examples until some stopping criterion is

reached (e.g., a fixed number of repetitions, the memory system has reached

a certain structure, etc.) The second traditional phase for learning systems is

the “test” or “production” phase. During this phase, the system could view

its memory system as static, its adaptation mechanism as dormant, and the
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system performs decision making based on incoming experiences and the memory

system. For continuous learning systems (including most reinforcement learning

systems), there is not really such a distinction between a “training” phase and a

“testing” or “production” phase. The system is always adapting and learning

as it interacts more with the environment. This seems to be closer to what

biological systems would do: There is some encoding or training that occurs either

through inheritance or initial embryogenesis, which would contain the rudiments

of a memory structure and the basic understanding of the adaptive mechanisms

necessary for learning, but most of the system learns as it goes with its interaction

with the real-world providing the object lessons.3 [104, 131]

Now that we have this memory, adaptation, decision-making framework

roughly outlined, we can apply it to some of the more well-known learning

algorithms. We start by looking at supervised learning, move onto unsupervised

learning or clustering, and then examine reinforcement learning. We later use this

framework to characterize immune-inspired learning algorithms, as well.

2.2.2 Supervised Learning

The field of machine learning can be divided into three broad categories:

supervised, unsupervised, and reinforcement learning. With supervised learning,

the ultimate goal is usually classification of a previously unseen data item based

on the characteristics of the problem learned during the training phase of the

3This, it seems, is very much related to a “self-assertive” idea that denies most, if not
all, a priori conditions to learning and instead insists that the immune system learns through
interaction both within itself and with the outside world.
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algorithm. During training, both a feature vector and the vector’s classification is

given. The algorithm uses both pieces of information to learn a view of the world

that will allow correct classification of future instances. At times the known class

of the training instance will be used to asses the quality of the algorithm’s response;

whereas, at other times this class information will be used for restructuring the

memory representation of the system. In all cases of supervised learning, it is the

combination of the feature vector and the class that help dictate the adaptation

of the memory system.

Below, we look at two well-know supervised learning algorithms: decision

trees and multi-layered perceptron (MLP) artificial neural networks using back

propagation. Decision tree learning offers a symbolic representation of the

decisions needed to classify any given instance in the problem space and uses

the concept of information gain to develop this representation. MLP artificial

neural networks are classic biologically-inspired learning systems that produce

non-linear, subsymbolic representations of the decision space.

Decision Trees

One common learning technique is decision tree learning [101, 86, chap3, pp52-

80]. This a means of approximating a target function which is represented as a

decision tree. Each internal node in the decision tree is an attribute from the

problem space, and each branch from a given internal node corresponds to a value

the attribute can assume. The leaf nodes of the tree represent the values of the

target attribute (the attribute that is being used for classification).
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As may be obvious from this description, decision tree learning typically

applies to problems whose feature vectors consist of discrete valued attributes.

For example, suppose we are trying to classify whether a given day would be a

good one to go to the cinema. Our feature vectors might consist of four attributes:

the cinema’s selection, the day’s weather, the amount of money on hand, and if

we have someone to accompany us to the cinema. These attributes can then take

on a set of values. For example, maybe the cinema’s selection attribute can take

on the values of new or old; the weather attribute can take on the values wet,

dry, or fair; the money attribute can take on the values film (enough for the film

only), snacks (enough for the film and some snacks) or insufficient (not enough

for even the film); and the companion attribute can take on the values yes or

no. Figure 2.2.1 gives a possible decision tree using these features.4 Then, the
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Figure 2.2.1: A decision tree for classifying days as good ones for going to the
cinema

4As evidenced from this figure, in this hypothetical scenario, it was discovered that the
“weather” variable was not needed to classify a day as a good one to go to the cinema.
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decision tree could be used to classify a given day based on whether we should go

to the cinema. For example, the feature vector <Selection=Old, Weather = Wet,

Money = Film, Companion = No> would follow the center path of the tree and

this instance would be classified as GoToCinema=no.

Decision tree learning, then, is the process of learning the correct structure

of this tree, i.e., which attributes get tested at which level or along which path

of the tree. This is typically achieved through finding the tree that correctly

classifies the largest number of examples from a training data set. Once this tree

is discovered, pruning, through various means, sometimes occurs to prevent the

tree from overfitting the training data and, thus, not being able to generalize to

previously unseen data items [38, 101]. Finally, the learned tree is used to classify

instances of the problem space according to the target attribute.

Using our MAD framework, we can characterize decision tree learning

algorithms as follows:

• Memory: The memory, or world view, of a decision tree is within the nodes

and structure of the tree itself;

• Adaptation: Adaptation occurs in two places in most decision tree learning

algorithms. In the initial building of the tree, the structure is constantly

being adapted as different internal nodes are tried and rejected; in the

pruning stage, this structure is again adapted based on various pruning

rules.
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• Decision-making: The decision-making step during training is a calculation

of, based on what is already present in the tree (the memory structure),

which attribute will provide the most information. This decision, in turn,

guides the adaptation of the tree to possibly include this attribute as

an internal node—or remove it at the pruning stage. During testing or

classification, the decision-making step is simply an output of the value of

the leaf node that is arrived at by following the path from the root to the

leaf for the given instance.

Multi-Layered Perceptron Artificial Neural Networks

As mentioned in section 1.1.3, Artificial Neural Networks (ANN) have proven a

successful and popular approach to machine learning tasks [12, 58, 86, chap4,

pp81-127]. Perhaps the best-known learning algorithm from the field of ANN is

the multi-layer perceptron network with the back-propagation algorithm used for

weight adjustment. Figure 2.2.2 provides a visualization of a multi-layer, feed-

forward network. In this figure F is a nonlinear activation function (oftentimes

the logistic sigmoid) used to determine the output (y) of a given hidden layer

node based on the input values, the weights of the connections between the input

values and the hidden node, and a bias:

yj = F (
n∑

i=1

wj,ixi + b1). (2.2.1)
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Figure 2.2.2: A feed-forward network: one hidden layer and one output

And S is often a linear function to determine the overall output of the system

based on the output of the hidden layer, the weights connecting the hidden layer

to the ouput, and another bias:

output =
number of hidden nodes∑

j=1

owjyj + b2. (2.2.2)

The back-propagation algorithm is basically a gradient descent in the error space

of the network’s output. It serves as a method for assigning error across the

weights of the network and guiding this parameter space toward the correct output

function.

Multi-layer perceptrons with back-propagation learning, then, is an attempt to

learn the best values of the weights in the network so that the output minimizes

some error function. Training consists of multiple passes through the training

data with the weights being adjusted based on the classification errors of this
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data. Training often stops after the error rate has been reduced to a certain level.

This prevents overtraining and allows for generalization, which in turn allows for

accurate classification of previously unseen data items.

Using our MAD framework, we can characterize this neural network algorithm

as follows:

• Memory: The memory structure of the neural network is contained within

the weights of the network;

• Adaptation: Adaptation occurs by adjusting of weights; the adaptive

pressure is motivated by the feedback from the environment through the

back-propagation algorithm;

• Decision-making: Classification of a given experience is based on the value

of the weights (dynamic memory) and the activation function of the nodes

in the network. During training, this classification is then used as feedback

into the system through the use of the back-propagation algorithm. The

memory structure is adapted based on the errors of this decision.

2.2.3 Unsupervised Learning

The second major category of learning algorithms is unsupervised learning.

These are often referred to as clustering algorithms because the primary goal

of the algorithm is to discover interesting “clusters” of information. Unlike with

supervised learning algorithms, unsupervised learners do not have access to the

“correct” classification of a given data item. All an unsupervised learner is given
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is the data itself. The task, then, becomes to learn or discover similarities within

the training data set and to use this information to generalize about the problem

space. During production or testing the algorithm makes a decision about how

similar the new data item is to the learned material and this is then given to the

user for interpretation.

As with our discussion of supervised learning, we walk through two examples of

unsupervised learners with our MAD framework: one from a more classic learning

stand point and one biologically inspired. For unsupervised learning, we explore

the k-Means statistical based learning algorithm and the biologically inspired self-

organizing maps.

k-Means

One classic unsupervised learning technique is k-Means [36, 99]. This algorithm is

designed to cluster the given data points into k subsets. It proceeds by choosing

k “centers” at random in the data and then assigning each point in the data set

to one of these centers. Then the center is adjusted to truly be the center of the

group of points that are assigned to it. This two stage process—assign a point to

a center, adjust the center to reflect the points assigned to it—continues until the

centers stop moving in two successive iterations. This algorithm is used for basic

data analysis in the hope of discovering previously unknown relationships in the

data. Upon termination, the data has been clustered into k groups, and members

of a common group can be examined for commonalities.
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k-Means learning is an attempt to find the optimal location for the centers

that capture the inherent groupings within the data set. It does this by making

a guess as to the best location and iteratively refining that guess.

Using our MAD framework, we can characterize the k-Means algorithm as

follows:

• Memory: The centers of the clusters represent the memory structure of this

algorithm;

• Adaptation: At each iteration, the position of the centers are adjusted based

on the data points assigned to them;

• Decision-Making: The decision for a center to move is based on its

surrounding data points (i.e., its experience); the decision for a data point

to be assigned to a given cluster is based on its proximity to the center

(memory point) of that cluster.

Self-Organizing Maps

One example of a biologically inspired unsupervised learning algorithm is

Kohonen’s Self-Organizing Maps (SOM) [75, 120]. SOM are inspired by the way

neurons tend to cluster in the brain, and thus, SOM can be considered another

type of Artificial Neural Network. As with our multi-layer perceptron, in SOM we

have a collection of inputs that are connected to nodes in the network. However,

this time there is no hidden layer but simply a single output layer. Typically

this output layer is arranged as a 1 or 2 dimensional array with the assumption
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that all the nodes are connected to each other. The goal in SOM learning is to

modify the topology of the output nodes to represent the input space such that

input values that are “close” together elicit responses from output nodes that

are “close” together. This is achieved by iterating through the input space and

updating the weights connecting the output layers based on a “neighborhood”

effect. That is, those output nodes closest to the input item will be most strongly

affected.

SOM learning is an attempt to find the weights, and thus topology, of the

output layer that best reflects patterns inherent in the input space. Using our

MAD framework, we can characterize the Kohonen’s SOM algorithm as follows:

• Memory: The weights connecting the output layer’s neurons which indicate

their relative “position” to the other nodes in this layer;

• Adaptation: The adjustment of these weights as new input items are

encountered;

• Decision-Making: During training, based on the input item and the current

position of the nodes in the output layer, a decision is made on how to adjust

the closest output nodes. During clustering, the regions of the output layer

which respond to given inputs provide a means of analyzing the data.

2.2.4 Reinforcement Learning

The third major branch of machine learning is reinforcement learning.

Reinforcement learning focuses on goal-driven learning in which the actions that
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the learner takes has an impact on the external environment. However, this

impact is possibly only dimly perceived. Unlike supervised learning which presents

training examples and solutions as connected pairs, in reinforcement learning

systems the learner is given a reward for certain actions. The goal of the learner

is to maximize its reward. One of the fundamental issues in this reinforcement

learning environment is determining which sequence of actions resulted in the

greatest reward. That is, since the reward may be provided only after several

actions made by the learner, the learner is taxed with the task of appropriately

assigning credit to the given states it passed through when attaining the given

reward.

One algorithm fundamental to reinforcement learning has been the Q learning

algorithm [86, 109]. In this algorithm the goal is to learn the function Q which

is the evaluation function for the learner based upon the current perceived state,

previous actions, and the given reward. That is, learning Q is equivalent to

learning the optimal policy the learner should follow. Using our MAD framework,

we can characterize Q learning as follows:

• Memory: The state (or perceived state) of the learner.

• Action: A transition to a new state based upon the chosen action.

• Decision-Making: Updating of the value of a given state based upon the

reward achieved when choosing the given action.
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2.2.5 Some Final Remarks about the MAD Framework

We can continue this characterization of numerous machine learning systems.

Table 2.2.1 places Support Vector Machines [88, 121], K-Nearest Neighbor [86,

chap8, pp230-248], and Genetic Algorithms [85] within this framework.5

Table 2.2.1: MAD Learning Framework and Various Machine Learning Techniques

Technique Memory Adaptation Decision Making

SVM Collection of vectors Adjustment of kernel Classification based on
widths (margins) vector decision

boundaries
KNN Training set No real adaptation occurs Classification based

on majority vote
GAs Population Mutation and crossover Surviving individual is

of individuals among fittest individuals solution to problem

The application of this framework to other learning techniques could be

continued ad nauseam. However, it does provide a common terminology for

discussing learning algorithms. As we see in the following section, this allows

us to make various immune-inspired algorithms more accessible in terms of this

wider context. While we provide this simplified framework for just this purpose,

we still want to acknowledge the legitimacy of other ways of examining learning

algorithms. In fact, some of these ways may be more fruitful especially when the

learning system is analyzed in terms of how it approaches the hypothesis space or

5Treating GAs as a learning system might be stretching the classic definition of learning a
bit too far, unless you consider the Baldwin effect[6, 59] as learning. However, it does still fit
nicely within this framework.
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what learning biases are being used [46, 86]. Yet, this MAD framework gives us

a good starting point for our discussion of immune learning.

One concept we have hinted at in this section is that biology has provided rich

inspiration for the development of learning algorithms. In the next section we

bring together the two main threads of this chapter: immunology and machine

learning. We offer an overview of the development of some of the immune-inspired

learning algorithms. We provide pointers to the biology that inspired this as well

as the learning principles that are utilized.

2.3 Immune-Based Learning Systems

Now that we have seen some of the biology of the immune system, we turn

our attention to artificial immune systems. Obviously, the biological discussion

has been slanted in such a way to highlight some of the aspects that allow

for the development of learning algorithms. We have seen that the immune

system does have mechanisms that facilitate learning in some fashion. Through

exposure to antigens, the immune system is capable of remembering the exposures,

generalizing beyond one specific antigen, and reacting in a more appropriate

manner when presented with the same or similar antigens. That is—hearkening

back to our original definition of machine learning—it automatically improves with

experience. Since this is evident in the biological system, how can we use some of

what we see there to provide us a map or inspiration into building computational

systems that learn?
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Likewise, we have taken a brief look at some established learning paradigms.

In this examination, we have introduced a framework for discussing learning

algorithms. As we now turn our attention to immune-inspired learning, we appeal

to this framework to provide a context to learning algorithms in general.

In this section we provide a fairly in-depth survey of immune-inspired learning

algorithms. This survey starts by examining some of the theoretical ideas or

schools of thought that have played key roles in the development of immune

learning algorithms. We then move to several specific immune-inspired learning

algorithms starting with population based algorithms and moving to network

based models.

2.3.1 Immune Learning Theory

In this subsection we examine some of the key theoretical (for lack of a more

succinct term) or philosophical discussions that have led to the ideas of many

immune learning algorithms. While many of the works discussed here do not

outline specific learning systems, they have often led to the design of such systems

by other researchers.

In the late 1980s and early 1990s, JD Farmer and his colleagues started

examining the potential learning capabilities of the immune system. In [39]

the authors examine the similarities between the dynamics of Holland’s classifier

systems and the immune network model. And given these similarities, they go on

to argue that “there may be certain universal approaches to the design of efficient
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learning systems.” This idea is made explicit in [40] when Farmer strives to provide

a common methodology for discussing a wide variety of connectionist approaches,

including immune networks. From the development of learning systems point of

view, these early articles on the learning potential of the immune system have

proven highly inspirational. Cornerstone concepts to the development of later-

day immune-inspired learning algorithms, such as immunological forgetting, the

parallel nature of the immune system’s behavior, and the similarities between

these simulated immune networks and artificial neural networks, can all be found

in these early works by Farmer and his collaborators.

Varela, Bersini, and their colleagues have likewise often offered tantalizing

pictures of the immune system as a learning adaptive system. In [122], the authors

argue a self-assertive view of the immune system. They claim that shape-space

exists in a void, but the interactions of immune cells and the formation of the

immune network leads to the identity or personality of the immune system in this

shape-space. This leads to an argument that the immune system is a cognitive

system, and so a brief comparison between the immune system and the neural

system is offered, with a strong case being made that the immune system has

greater variance and dynamics. Varela, and through him Bersini, views antigenic

interaction as a by-product of the immune system asserting its identity rather than

its primary cognitive task. However, this may contrast some with the biological

evidence. For example, the authors of [64] suggest that in the embryonic immune

system, there seems to be evidence that the immune system does not fully develop
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until antigenic presentation. Yet, the fact that the immune system exists outside

of this presentation maybe enough to confirm Varela’s point.

Bersini and Varela continued this self-assertive point of view throughout

several subsequent papers. In [11], the authors discuss the similarities between

immune network learning and reinforcement learning and emphasize the fact that

the environment is not an instructor but a trigger for certain types of behavior. In

[8], the authors argue that the novelty for engineering as inspired by the immune

system, or at least strong inspiration in the sense of ANNs and GAs, will only

come by looking not to the defensive by-products of the immune system (self/non-

self) but to the self-assertion qualities. They differentiate immune systems and

evolutionary/ecosystems by the fact that the immune systems’ performances

can be evaluated in a global fashion, i.e., immune networks have a collective

function (thus, implying a sense of cooperation), and this is not seen in the

evolutionary/ecosystems.

Rather than a GA approach as seen in classifier systems, there is an argument

that if the collective performance of the system is what is of interest then the

weakest and not the strongest member’s abilities are more important. There

is a need to maintain diversity and robustness and compensate for these weak

members. They argue for the need of structural plasticity as well as parametric

plasticity. (For reference sake, let us talk about an ANN. In an ANN, parametric

plasticity would refer to the increasing or decreasing of the various weights in

the system. Structural plasticity would involve adding or deleting neurons during
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operation.) This paper examines the use of this concept of double plasticity and

endogenous change in three application areas:

1. Artificial Neural Networks: demonstrated that not just the weights but the

network structure can be “learned” or evolved.

2. Autonomous Agent Learning by Reinforcement: elaborated upon in [11]

3. Control of Chaos: discusses the idea of zones of effective control within a

chaotic system (or around fixed point within a chaotic system).

Much of this is continued in [9], where Bersini argues that the immune system’s

key dynamic is along a self-assertion line rather than the traditional self/non-

self dichotomy. He proposes that the adaptability of the system is to “satisfy

endogenous constraints instead of responding to exogenous impacts” and that

this will provide more benefits from the perspective of adaptive (learning) systems.

There is a warning against the possible banal interpretation of danger theory as

merely using a different naming scheme for the same concepts (e.g., using danger to

mean non-self); however, he asserts there could be mileage in this theory if the view

is that immune reaction is context-sensitive. That is, the immune system does

not respond the same way every time to an antigen (which becomes a meaningless

name), but rather the immune system’s reaction is dependent upon the context

in which a given interaction occurs. And this context is internally defined based

on the immune system “knowing only itself.”

While all of this exploration of the self-assertive nature of the immune system

has provided for interesting discussion within the AIS community, very little has
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been done to include this in a practical, engineering system. However, many of

these concepts have proven critical for the exploration and application of immune

system dynamics to learning systems.

A final “school of thought” should be mentioned in this subsection. It is

impossible to deny the influence the work of Stephanie Forrest and her group at the

University of New Mexico has had on the field of Artificial Immune Systems. While

they have not often directly examined the role of learning in the immune system,

much of their work has application to this field. Perhaps the most accessible

summary of their work can be found in [42]. In this wide-ranging review, the

authors argue that the immune system can be viewed as an information processing

system. The paper discusses the roles negative selection, self/non-self, danger

theory, gene libraries, and a host of other concepts have on the development of

computational systems based on these immunological observations. It concludes

with a discussion of the application of many of these ideas to network security.

2.3.2 Population Based AIS Algorithms

In this subsection we examine several population-based immune-inspired learning

algorithms. By population-based we mean those algorithms based on the evolution

of individual immune-like cells. This is in contrast with the explicit connections

that are employed in the network-based models discussed in subsection 2.3.3.
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Negative Selection

Perhaps the most influential idea to emerge from the field of artificial immune

systems has been negative selection. In the biological immune system, negative

selection refers to the maturation process of T-cells. T-cells develop in the thymus

by being exposed to cells from the “self” (i.e., the body itself). Those T-cells which

react to the “self” are not allowed to mature; whereas, those that do not react to

the “self” after enough time are released into the body as mature T-cells. This

idea has been exploited in the computational world most often in terms of security

and anomaly detection.

The basic reasoning follows that if one can define what is meant by the “self”

of a computer system, piece of software, network, etc. then one can generate

a set of detectors that can recognize “non-self” or anomalies. This concept has

been explored by Forrest and colleagues in a series of experiments from software

change detection [33] to network security [61]. The heart of this work has been

on the concept of being able to define the “self” of a system and then to examine

the environment for anomalies [23, 26, 45, 43, 44, 63, 62]. Typically negative

selection proceeds by developing a set of detectors which do not match the “self”

of whatever system is being monitored. Then, if one of these detectors matches—

or, has a high affinity for—something, an anomaly has occurred.

While this concept has been greatly exploited in the AIS field, it has often

been abused, as well. As Kim points out in her thesis, “...the job of a negative

selection stage should be restricted to tackle a more modest task that is closer
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to the role of negative selection of human immune system. That is simply

filtering the harmful antibodies rather than generating competent ones...”[72].

Too often, however, within the AIS field we see negative selection being used to

overcome a deficiency in data. That is, the negative selection algorithm is used to

generate counter examples to whatever is being learned to avoid having to collect

large amounts of “anomalous” data. When this application of negative selection

occurs, the algorithm is basically reduced to a 2-class classification algorithm—

classifying between “self” and “non-self”. For examples of this misuse of the

negative selection algorithm, see [48, 94, 112], to name a few. By “misuse”

we mean in the same sense as Kim pointed out in her thesis. Many times the

negative selection algorithm is used for data generation when its function in

nature is limited more toward data filtering. This abuse at times leads to complex

algorithms that attempt to apply negative selection to inappropriate situations.

One interesting example from this type of approach, however, can be found in [24].

While it is still, ostensibly, dealing with anomaly detection, this algorithm tries to

integrate two different types of T-cells as well as B-cells. The authors claim better

performance than simple negative selection algorithms. Although the negative

selection algorithm is still part of this work, it is interesting from the perspective

of adding a multi-cellular approach which has had limited exploration within the

AIS field. However, like most negative selection based learning algorithms, it is

limited in its need for a clearly defined concept of “self” before starting. As with

many anomaly detection algorithms in AIS, this seems to be nothing but a 2-class
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classification algorithm. The real novelty to this work is the use of multiple types

of immune cells within one algorithm.

To apply our learning framework to the negative selection algorithm, then:

• Memory: A collection of detector cells are employed to represent the “non-

self” space;

• Adaptation: The collection of immature detectors is exposed to the “self”

space for a certain amount of time. Those immature detectors which do not

react to the “self” cells are allowed to become mature detectors;

• Decision-making: The primary decision is made based on the mature

detectors’ reactions to incoming antigens. If the mature detectors react

strongly enough, then the antigen is labeled “non-self” and a possible

secondary reaction occurs. During the maturation phase, the decision is

based on the immature detectors’ reactions to the “self” space. Those

immature detectors which react strongly enough to the “self” are removed

from the system rather than being allowed to mature.

Gene Libraries

Another early population-based exploration was the study of the role of gene

libraries on the development of effective antibodies. A gene library is a collection

of antibody “building blocks” or patterns from which individual antibodies can

be built. That is, a gene library consists of a group of pattern (or gene) fragments

which can be combined to form all of the antibodies in a system. Since antibodies
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are one of the primary pattern recognition cells within the immune system,

the way in which they develop can provide insight for solving other pattern

recognition tasks. Hightower examined this issue in a series of papers. In [60]

Hightower introduced the concept of immune libraries and distinguished between

the phenotype of the immune system (the actual antibodies) and the genotype

(the make-up of the gene libraries). This paper demonstrated an interesting result

suggesting that subjecting just the phenotype to fitness evaluation, and thus

selective pressure, can indeed cause an improvement in the genotype. That is,

the gene libraries (or the potential antibody repertoire) of the evolved individuals

were moved toward ideal antigen coverage only through subjecting the actual

antibodies (or the expressed antibody repertoire) to the genetic pressure inherent

in a GA. Hightower followed this up in [59] to incorporate learning by allowing

an “antibody” to make a certain number of guesses at the correct solution, thus

performing a local search and simulating somatic hypermutation. It was shown

that this learning, while not written directly back to the genes, still improved

the fitness of successive generations through the Baldwin effect: that is, the

individuals that learned the best survived to pass on their original genes to

successive generations with the idea that these genes contained good templates, so

to say, for improved performance. It also indicated that with a finite learning task,

there can be such a thing as too much learning which reduces the evolutionary

pressure by hiding the genetic defects of poorer individuals who were given enough

time to “master” or learn the task more perfectly. To place this work in context

of our framework introduced in 2.2.1:
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• Memory: The memory of this system is the antibodies which are developed

from the combination of patterns present in the gene library;

• Adaptation: Adaptation occurs through somatic hypermutation and

survival of the fittest antibody. This, in turn, rewards those individuals

whose gene libraries contained patterns appropriate for developing this best

individual;

• Decision-making: The decision is based on a fitness or affinity measure used

to choose which antibodies are allowed to mutate and thus “learn” the task

at hand.

The exploration of the use of gene libraries was continued from this work by

Hightower, most notably in the work of Oprea [98]. While the focus in this

more recent work is no longer on learning, the ideas play a role in other learning

algorithms, for example in Kim’s DynamicCS algorithm discussed later in this

section [72].

Clonal Selection

Along with negative selection, discussed earlier, the immunological concept of

clonal selection has been one of the most popularly exploited ideas for the building

of artificial immune systems. Biologically, the concept is fairly simple: the

antibody (or cell) which exhibits the greatest affinity for an antigen is selected

for propagation (cloning) and mutation [16]. Clonal selection is, in fact, very

similar to the evolutionary idea of survival of the fittest that have inspired
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many evolutionary approaches to computing (e.g., genetic algorithms, genetic

programming, etc.).

The idea of clonal selection has been most succinctly captured in de Castro’s

CLONALG algorithm [32]. We will discuss this algorithm in much more detail

in chapter 5. However, to give a high-level overview of the algorithm here,

CLONALG’s primary purpose is to develop a set of memory cells which represent

the data to be learned. This is achieved through a series of presentations of the

training data to the algorithm. The artificial cells of the system are allowed to

react to this data with those with the highest affinity being allowed to clone and

mutate. Mutation is done (as seen in our previous discussion of gene libraries)

in an affinity proportional matter. That is, those cells with greater affinity for

the antigen mutate less than those with lesser affinity. Both a learning (pattern

recognition) and optimization version of this algorithm was developed. We can

cast CLONALG in terms of our framework as follows:

• Memory: A group of evolved memory cells which represent patterns to be

recognized;

• Adaptation: Each antigen is presented to every antibody. The best (highest

affinity) antibodies get a chance to clone, undergo somatic hypermutation,

and potentially replace an existing memory cell;

• Decision-making: During training, the basic decision-making process is

based on the current memory cells’ and antibodies’ reactions to the antigenic

pattern (i.e., clonal selection). After training the decision of how to
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identify/recognize an incoming pattern is based on the affinity of the memory

cells (in particular the one memory cell with the highest affinity) to the given

test pattern.

While there are still a number of issues with this algorithm and its usefulness

for general pattern recognition tasks, it often provides a good base-line immune

algorithm to build other algorithms upon.

A good example of an AIS that employs all of the factors discussed in this

section (i.e., negative selection, gene libraries, and clonal selection) is the work

of Jungwon Kim [72]. Kim documented the evolution of a clonal selection

based algorithm and examined the impact of adding various immunological

components had on the overall algorithm. Her primary interest was ultimately

intrusion detection; however, she cast most of her work in terms of a two-

class classification problem in order to capture this (now) classic concept of

“normal” and “anomalous” or “self” and “non-self.” She began by evaluating

her algorithm, StatiCS, as a two-class classification problem. Obviously, this was

just to get a handle on the behavior of the algorithm and not to propose a new

classification/supervised learning algorithm, per se. Still, we come back to the

idea of treating this arbitrary division of self/non-self as a classification issue.

This requires, as all negative selection based algorithms do, a clear definition of

self, and thus supervision (in a broad sense of the word).

In DynamicCS the overall cell population size was fixed. This algorithm

incorporates the idea of cell evolution from immature to mature to memory cells
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based on time. It is still focusing on self/non-self and introduces the concept of

costimulation from Hofmeyer [62]. Kim claims that “as long as immature detectors

have an opportunity to experience various antigen distributions for a sufficient

period, which is defined by the tolerisation period, the FP [false positives] can be

dramatically reduced to an almost perfect near-zero rate.” However, this may not

be completely accurate. The fact that both the true positive and false positive

rates decrease does not seem to be that much of an accomplishment. Basically,

the system just does not learn to make a positive decision at all and instead will

simply guess the negative class more often. This is the classic problem of all

negative-selection based schemes: one has to be able to define what self means a

priori. This does not seem to be the way the real immune system works. There is

nothing in the system that says “I am self,” but rather this knowledge is gained

over time. Maybe we can have some embryonic notion of self which grows and

evolves—essentially what Kim wants here in DynamicCS, but we cannot treat the

system as having a complete knowledge of self, no matter how much we limit the

impact of negative selection on the overall workings of the algorithm.

In extended DynamicCS the idea of dying memory cells is incorporated into

the overall scheme. This becomes basically a form of supervised learning, with

a bit of “cheating” involved, since the death of a memory cell is triggered by its

detection of “self” which is confirmed by a human operator. Since, what Kim

is really concerned with is a security system rather than a learning system, this

might be acceptable, but from a machine learning standpoint, it loses much of its

automation and ability to really learn on its own.
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What is interesting about all of this work by Kim is the integration of some

basic AIS techniques that have been used individually, but have not, necessarily,

been coupled together. Namely, she integrates negative selection (and overcomes a

few of the problems with this by realizing the appropriate place for this algorithm),

clonal selection, and gene libraries.

2.3.3 Network Based Algorithms

Distinct from the AIS based solely on populations of independent cells has been

those based on the Immune Network theory of Jerne [69]. This network concept

proposes that there are interactions among B-cells within the body such that a

B-cell is affected not only by an invading antigen but also by other B-cells nearby.

This interaction provides both stimulation and suppression of an individual cell’s

response in any given situation, and, thus, a network of interactions is formed.

Early work in adopting this network metaphor to Artificial Immune Systems

include works by Hunt [66] and Aisu [3]. Hunt’s algorithm applies the network

idea to the field of case based reasoning. It utilizes clonal selection and mutation,

and it relies on the immune network dynamics for forgetting of useless cases.

There is an emphasis placed on the self-organizing nature of the immune network

as useful for growing appropriate memory structure in a Case-Based Reasoning

(CBR) system which allows classification to occur. However, it does requires some

manual manipulation at the classification stage. Aisu’s work attempts to combine

the network model with anomaly (self/non-self) detection. It still requires a basic
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idea of self to be defined a priori. However, the authors claim that anomaly

detection is just one example application and that their methodology would be

more applicable to other learning domains.

This work was joined by that of Nikolaev [105] a few years later. In this,

the authors present an application of network ideas to the k-state DFA problem.

The paper emphasizes the importance of the self-organizing nature of the network

for learning; Claims are made that unlike GAs, the immune learning algorithm

presented would have a greater capacity for escaping from local optima. An

analogy between the behavior of cells in the immune network and the behavior

of particles thrown at a hill is made, and the authors use this analogy to define

kinetic and potential energy models for the dynamics of the immune cells. This

comparison to these physics based models has not been fully explored in later

AIS literature. Also of note in this paper is the idea that the learning algorithm

goes through cycles of three search phases “from oscillatory through asymptotic

to chaotic alternate continuously, and the system self-regulates.” This should be

observable in most network-based algorithms and again has not been addressed

in current network-based investigations.

By far the most prolific investigator of the immune network theory for learning

has been Jon Timmis. In [116], Timmis introduces an immune network algorithm

for unsupervised learning. This algorithm not only utilizes immune network

dynamics, but also incorporates clonal selection and mutation. In terms of our

framework, this initial algorithm could be characterized as using:
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• Memory: The immune network which is dynamically adjusted through a

decreasing network affinity threshold maintains the memory of the system;

• Adaptation: Adaptation occurs through clonal selection coupled with

mutation; removing the weakest 5% of cells (where weakest is defined

through the network interactions);

• Decision: Network reaction to antigenic presentation causes restructuring of

memory structure (possibly), but just the reaction itself indicates a decision

made by the system with regards to the incoming data item (experience).

This is an unsupervised learning technique and so requires manual inspection of

results to ascertain quality. The network structure and its reaction to a “test” data

item indicates its similarity to certain regions of the memory system (network). In

some ways, then, it is a content-addressable memory system: different reactions

by the network to test data items indicate a kind of classification of that data

item or a different region of memory being accessed.

This work was followed by [117] which introduces the concept of shape-space

and greater immunological memory abstraction to the previous work. Adaptation

is now encouraged through competition for resources which places even more

pressure on the cells of the network to evolve toward good representations of

the data set; however, stimulation (and, consequently resource allocation) is still

based on intra-network interactions along with responses to antigens. The memory

system is seeded with the “antigen” set.
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• Memory: Again, the immune network (pre-seeded with a portion of the

antigen set) maintains the memory of the system;

• Adaptation: Adaptation occurs through clonal selection with mutation,

stimulation through network interactions and antigenic presentation, and

competition for resources with those cells that have no resources being culled

from the memory system;

• Decision: Same as in previous work; however, with the concept of shape-

spaces introduced we now have a greater ability to generalize from previous

experiences than before with the highly populated networks.

This was then followed by [73] which began as a reimplementation of the algorithm

in [117]. However, a propensity for immunological forgetting or of movement

toward the strongest, or most represented, pattern in the data set rather than

the ability to maintain a continuous model of the data was discovered. Also,

this implementation exhibited extreme sensitivity to the size of the initial seeded

network. While there is an argument that this drift in the memory toward the

strongest data pattern is beneficial, there does seem to be a decrease in the

actual learning capability of the algorithm. Basically, the memory representation

is no longer indicative of the entire world-view but only that which was most

represented. However, this may be desirable.
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Inspired by this work, Knight introduced a three-layered learning system with

a free-antibody layer, a B-cell layer, and a memory cell layer [74].6 In Knight’s

algorithm, there is no longer a need for the seeding of the system; the system can

evolve its own representation of the data. However, the initial training instances

will be co-opted as cells in the system if need be. The heart of the representation

is really the B-cell layer, which produces free-antibodies as well as memory cells.

Ultimately, the data analysis is done using the resultant memory-cell layer, which,

despite Knight’s statements, actually does play some role in the learning.

• Memory: 3-layers maintain the system’s representation of the world: free-

antibodies, B-cells, and memory cells; ultimately, from a user’s perspective,

it is the memory cells which allow for data understanding/clustering, but

this layer only develops through the interaction of the other layers in the

system;

• Adaptation: There are several mechanisms of adaptation in use in this

system. Basically, there is a chain reaction in which the response in the

free-antibody layer causes a response in the B-cell layer (which feeds back

to the free-antibody layer). The B-cell response, in turn, causes a response

(or promotion to) the memory cell layer. There is also still the concept

of binding via affinity, clonal selection, and somatic mutation. Affinity

based binding occurs in the free-antibody layer (this can still be viewed as

basically clonal selection). In the B-cell layer, clonal selection occurs through

6This work seems similar to DynamicCS [72] with a näıve layer, a mature layer, and a memory
cell layer.
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binding, and then stimulation is based on the free-antibodies gathered by

this B-cell over time. (It is not completely clear how exactly the B-cell

gets these free-antibodies.) This B-cell then undergoes directed mutation

before being promoted (potentially) to the memory cell layer.7 A potential

memory cell is only incorporated into the memory cell pool if it is “far”

enough (in the shape-space) away from existing memory cells. Finally, cell

death (population control) is based on the interactions of the cells within the

system. If a cell has not undergone any interaction throughout an iteration

of antigenic presentation, then it is culled from the system. Also, free-

antibodies that attach to an antigen are removed from the free-antibody

pool.

• Decision: Since the final representation of the data is really only important

at the memory cell layer for this application, it is here where the ultimate

decision is made. There is a decision on how to link the cells in the memory

cell layer based on their distance from one another, which represents clusters

within the original training set.

As a cluster-finding tool, this system seems to be valuable, but there is not really a

sense of a reaction to a previously unseen data item (i.e., no real sense of presenting

a “test” set to the system once it has been trained). This work is also valuable

7It appears that the order of presentation in the B-cell pool will be highly significant. Since
antigenic presentation at the B-cell layer stops once the first B-cell is found below the affinity
threshold, there is no guarantee that this is the “best” or “closest” B-cell to the given antigen
within the B-cell layer at that time. It is unclear if antigenic presentation is random within the
B-cell layer, or if the order is predetermined.
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in that it explores the creation of a stable immune memory structure that can be

exploited in other immune-inspired algorithms.

Following on from his collaboration with Timmis in [117], Mark Neal has

explored the use of immune networks for continuous learning and stability.

Beginning in [91] and culminating in [92], Neal has produced a network-based

continuous learning algorithm. This work is a development out of the algorithms

presented in [113, 117]; however, much of the “instability” discovered in [73] has

been removed. Neal has managed to achieve continuous learning without over-

fitting the data. This is done, primarily, by removing any central control (such

as resource allocation) in the previous algorithms as well as by removing the

stochastic nature of these previous algorithms. With this, Neal was able to use

the immune network theory to provide a “meta-stable” memory system.

Following within this vein of revisiting the network algorithms proposed in

[113], Nasraoui and colleagues have examined the applicability of fuzzy computing

techniques for immune networks as well as simplifications that allow for greater

scalability [90, 89]. In these works, the authors lodge a complaint against current

network-based unsupervised learning schemes as being unscalable due to the

representation and growth of the networks. They have developed a method

to reduce the memory and computational needs of network-based systems by

combining other clustering techniques (namely k-means) with the AIS methods.

Developed at roughly the same time as the work in [117], de Castro introduced

a different network inspired learning tool named aiNet [31] While it offers a
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somewhat confusing network model, it does incorporate the memory cell concept

similar to [32]. Within our framework we have:

• Memory: Memory is maintained within the network connections or memory

cells; however, it appears that the memory is found more in the memory

cells than within the connections themselves. According to the authors’

discussion of the memory structure: “In the aiNet case, the nodes work

as internal images of ensembles of patterns (thus representing the acquired

knowledge), and the connection strengths describe the similarities among

these ensembles. On the other hand, in the neural network case, the nodes

are processing elements while the connection strengths may represent the

knowledge.”

• Adaptation: It is here that the network idea is more fully realized with

suppression (and thus death) of individual cells being dependent (to some

degree) on the similarity between a given cell and its surrounding cells.

There is also the concepts of clonal selection and affinity maturation involved

here with the fairly typical affinity proportional mutation.

• Decision: During training, the basic decision-making process is based on

the current memory cells’ reactions to the antigenic pattern (i.e., clonal

selection); however, after training, there appears little automated decision

making; rather analysis of the overall memory structure is done, perhaps by

experts, to use that structure as useful analysis of the data-set in question.
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The developed network is often combined with known statistical tools to aid

in interpretation, and it showed some success on a handful (three) benchmark,

unsupervised learning problems.

2.3.4 Summary of Immune-Based Learning Systems

This section examined many of the key ideas that have been employed for building

immune-inspired learning systems. We began our discussion with a look at some of

the more philosophical views of the role learning and cognition plays in biological

immune systems. We then took a more practical look at population-based and

network-based learning algorithms. We saw that there have been numerous

immunological components used in the population-based algorithms including

negative selection, gene libraries, and clonal selection. Many of these ideas are also

carried over to the network-based algorithms which have the added component

of simulating interactions among the artificial immune cells in order to create a

network of reactions.

2.4 Summary

We began this chapter by taking a high-level overview of biological immune

systems. We used this survey to motivate the idea that the biological system

does indeed exhibit the capability for learning. This capability provides hints

for building learning systems based on the mechanisms seen in the biological

system. We then looked in more depth at what is meant by learning and learning
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systems. We proposed that all learning systems can be discussed in terms of three

components: memory, adaptation, and decision-making. This proposal allowed

us to discuss various learning systems with a set of common terminology. This

was followed by a discussion of immune-inspired learning systems. Several of the

key artificial immune algorithms were discussed and placed within context of our

learning framework.

In the next chapter we provide a detailed examination of one specific

immune-inspired learning algorithm: the Artificial Immune Recognition System.

This algorithm provides a clear example of the exploitation of immunological

metaphors for supervised learning. We discuss how the incorporation of

additional immunological components into this initial algorithm provides an

overall simplification of the algorithm while retaining its classification properties.



Chapter 3

Artificial Immune Recognition

System

This chapter looks in-depth at one immune-inspired algorithm that we have

developed for supervised learning, named the Artificial Immune Recognition

System (AIRS).1 AIRS (Artificial Immune Recognition System) is a novel immune

inspired supervised learning algorithm [124]. As with many biologically-inspired

algorithms, the inspiration for AIRS initially developed at the crossroads of

standard computing and biology by identifying a computational problem that had

yet to be addressed by immune-inspired algorithms. This chapter is offered as an

in-depth introduction to one immune-inspired algorithm. It also illustrates the

way further study of the original biological system can provide beneficial insights

into the continual development of efficient bio-inspired systems.

1This chapter is a slightly modified version of [130].

67
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Initially, motivation for the development of AIRS came from our identification

of the fact that there was a significant lack of research that explored the use

of the immune system metaphor for supervised learning; indeed, the only work

identified was that of [19]. However, as pointed out in section 2.3, within the

AIS community there had been a number of investigations on exploiting immune

mechanisms for unsupervised learning (that is, where the class of data is unknown

a priori) [116, 117, 30]. As previously mentioned, work in [29] examined the role

of the clonal selection process within the immune system [16] and went on to

develop an unsupervised learning algorithm known as CLONALG. This work was

extended by employing the metaphor of the immune network theory [69] and then

applied to data clustering. This led to the development of the aiNet algorithm

[30]. Experimentation with the aiNet algorithm revealed that evolved artificial

immune networks, when combined with traditional statistical analysis tools, were

very effective at extracting interesting and useful clusters from data sets. aiNet

was further extended to multimodal optimization tasks [27]. Recall that other

work in [116] also utilized the immune network theory metaphor for unsupervised

learning, and then augmented the work with the development of a resource limited

artificial immune network [117], which reported good benchmark results for cluster

extraction and exploration with artificial immune networks. The work in [117] was

of particular relevance to [124] and the developments presented in this chapter.

Specifically, the ideas of artificial recognition balls and resource limitation from

[117] and long-lived memory cells from [30] were most influential. However,

while these population control mechanisms and data representation concepts were
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borrowed from this work on immune networks, it should be stressed that AIRS is

in no way an immune network model of computation.

This chapter begins in section 3.1 by examining some of the immune metaphors

which have been employed within AIRS—most of which will echo what was

discussed in chapter 2. Then follows a presentation of the initial algorithm as

formulated in [124, 128]. This is followed by a discussion of the results obtained

with this initial algorithm and some observations for simplifying the algorithm.

As a contribution original to this thesis, we then present refinements to AIRS

that aid in this simplicity which is followed by results indicating the benefits of

these refinements. We conclude this chapter with a comparative look at the initial

version of AIRS and our refinements.

3.1 AIRS: Immune Principles Employed

A little time should be taken to draw attention to the most relevant aspects

of immunology that have been utilized as inspiration for this work. Here we

highlight the more salient points of the immune system mentioned in section 2.1.

Throughout a person’s lifetime, the body is exposed to a huge variety of pathogenic

(potentially harmful) material. The immune system contains lymphocyte cells

known as B- and T-cells, each of which has a unique type of molecular receptor

(location in a shape space). Receptors in this shape space allow for the binding

of the pathogenic material (antigens), with higher affinity (complementarity)

between the receptor and antigen indicating a stronger bind. Work in [28] adopted
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the term shape-space to describe the shape of the data being used, and defined

a number of affinity measures, such as Euclidean distance, which can be used to

determine the interaction between elements in the AIS. Within AIRS (and most

AIS techniques) the idea of antigen/antibody binding is employed and is known

as antigenic presentation. When dealing with learning algorithms, this is used to

implement the idea of matching between training data (antigens) and potential

solutions (B-cells). Work in [117] employed the idea of an artificial recognition

ball (ARB), which was inspired by work in [39] describing antigenic interaction

within an immune network. Simply put, an ARB can be thought to represent a

number of identical B-cells and is a mechanism employed to reduce duplication

and dictate survival within the population. Once the affinity between a B-cell

and an antigen has been determined, the B-cell involved transforms into a plasma

cell and experiences clonal expansion. During the process of clonal expansion,

the B-cell undergoes rapid proliferation (cloning) in proportion to how well it

matches the antigen. This response is antigen specific. These clones then go

through affinity maturation, where some undertake somatic hypermutation and

eventually will go through a selection process through which a given cell may

become a memory cell. These memory cells are retained to allow for a faster

response to the same, or similar, antigen should the host become re-infected This

faster response rate is known as the secondary immune response. Within AIRS,

the idea of clonal expansion and affinity maturation are employed to encourage

the generation of potential memory cells. These memory cells are later used for

classification. Drawing on work from [117], AIRS utilized the idea of a stimulation
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level for an ARB, which, again, was derived from the equations for an immune

network described in [39]. Although AIRS was inspired by this work on immune

networks, the development of the classifier led to the abandoning of the network

principles in favor of a simple population-based model. In AIRS, ARBs experience

a form of clonal expansion after being presented with training data (analogous to

antigens); details of this process are provided in section 3.2. However, AIRS did

not take into account the principle of affinity proportional mutation. When new

ARBs were created, they were subjected to a process of random mutation with

a certain probability and were then incorporated into the memory set of cells

should their affinity have met certain criteria. Within the AIRS system, ARBs

competed for survival based on the idea of a resource limited system [117]. A

predefined number of resources existed, for which ARBs competed based on their

stimulation level: the higher the stimulation value of an ARB the more resources

it could claim. ARBs that could not successfully compete for resources were

removed from the system. The term metadynamics of the immune system refers

to the constant changing of the B-cell population through cell proliferation and

death. This was present in AIRS with the continual production and removal of

ARBs from the population.

3.2 The AIRS Algorithm

The previous section outlined the metaphors that were employed in the

development of AIRS. This section now presents the actual algorithm and
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discusses the results obtained from experimentation. A more detailed description

of the algorithm can be found in [124], much of which is reproduced in Appendix

A. Within AIRS, each element (ARB) corresponds to a vector of n dimensions

and a class to which the data belongs. Additionally, each ARB has an associated

stimulation level as defined in equation 3.2.1, where x is feature vector of the ARB,

Sx is the stimulation of ARB x, y is the training antigen, and affinity(x, y), in the

current implementation, is a function that calculates the Euclidean distance:2

Sx =





1− affinity(x, y) : if class of x ≡ class of y

affinity(x, y) : otherwise

(3.2.1)

Notionally, AIRS has four stages to learning: initialization, memory cell

identification, resource competition, and finally refinement of established memory

cells. AIRS is a one-shot learning algorithm; therefore, the process described

below is run for each antigenic pattern, one at a time. Each of these processes

will be outlined with the algorithm summarized below. Initialization of the

system includes data pre-processing (normalization) and seeding of the system

with randomly chosen data vectors from the training set. Assuming a normalized

input training data set (antigens), data from that set are randomly selected to

form the initial ARB population P and memory cells M . Prior to this selection,

an affinity threshold is calculated; this threshold for the current implementation is

the average Euclidean distance between each item in the training data set. This

2Euclidean distance was chosen as a simple starting point for these investigations. In theory,
the AIRS algorithm should exhibit similar learning characteristics regardless of the affinity
metric used. Experiments on the impact of this metric are currently under investigation [56].
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is then used to control the quality of the memory cells maintained as classifier

cells in the system. AIRS maintains a population of memory cells M for each

class of antigen, which, upon termination of the algorithm, should provide a

generalized representation for each class of antigenic pattern. The first stage

of the algorithm is to determine the affinity of memory cells to each antigen of

that class. Then the highest affinity cells are selected for cloning to produce a

set of ARBs (which will ultimately be used to create an established memory set).

The number of clones that are produced is in proportion to the antigenic affinity,

i.e., how well they match; the ARBs also undergo a random mutation to introduce

diversification. The next stage is to identify the strongest ARBs based on affinity

to the training instance; these will be used to create the established memory

set used for classification. This is achieved via a resource allocation mechanism,

taken from [117], where ARBs are allocated a number of resources based on their

normalized stimulation levels. At this point, it is worth noting that the stimulation

level of an ARB is calculated not only from the antigenic match, but also the class

of the ARB. This, in effect, provides reinforcement for ARBs that are of the same

class as the antigenic pattern being learned and that match the antigenic pattern

well, in addition to providing reinforcement for those that do not fall into that

class and do not match the pattern well. Once the stimulation of an ARB has

been calculated, the ARB is allowed to produce clones (which undergo mutation).

The termination condition is then tested to discover if the ARBs are stimulated

enough for training to cease on this antigenic pattern. This is defined by taking

the average stimulation for the ARBs of each class, and if each of these averages



CHAPTER 3. ARTIFICIAL IMMUNE RECOGNITION SYSTEM 74

falls above a pre-defined threshold, training ceases for that pattern. This ARB

production is repeated until the stopping criteria are met. Once the criteria have

been met, then the candidate memory cell can be selected. A candidate memory

cell is selected from the set of ARBs based on its stimulation level and class, with

the most stimulated ARB of the same class as the antigen being selected as the

candidate. If this candidate cell has a higher stimulation than any memory cell for

that class in the established memory set M, then it is added to M. Additionally,

if the affinity of this candidate memory cell with the previous best memory cell

is below the affinity threshold, then this established memory cell is removed from

the population and replaced by the newly evolved memory cell, thus achieving

population control. This process is then repeated for all antigenic patterns. Once

learning has completed, the set of established memory cells M can be used for

classification. The algorithm is presented below, in terms of immune processes

employed.

1. Initialization: Create a set of cells called the memory pool (M) and the

ARB pool (P) from randomly selected training data.

2. Antigenic Presentation: for each antigenic pattern do:

(a) Clonal Expansion: For each element of M determine their affinity to

the antigenic pattern, which resides in the same class. Select highest

affinity memory cell (mc) and clone mc in proportion to its antigenic

affinity to add to the set of ARBs (P)
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(b) Affinity Maturation: Mutate each ARB descendant of this highest

affinity mc. Place each mutated ARB into P.

(c) Metadynamics of ARBs: Process each ARB through the resource

allocation mechanism. This will result in some ARB death, and

ultimately controls the population. Calculate the average stimulation

for each ARB, and check for termination condition.

(d) Clonal Expansion and Affinity Maturation: Clone and mutate a

randomly selected subset of the ARBs left in P based in proportion

to their stimulation level.

(e) Cycle: While the average stimulation value of each ARB class group is

less than a given stimulation threshold repeat from step 2.c.

(f) Metadynamics of Memory Cells: Select the highest affinity ARB of the

same class as the antigen from the last antigenic interaction. If the

affinity of this ARB with the antigenic pattern is better than that of

the previously identified best memory cell mc then add the candidate

(mc-candidate) to memory set M. Additionally, if the affinity of mc

and mc-candidate is below the affinity threshold, then remove mc from

M.

3. Cycle. Repeat step 2 until all antigenic patterns have been presented.

4. Classify. Once these 3 steps have been undertaken, the memory set M can

be used to classify data items. Classification is performed in a k-Nearest
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Neighbor fashion with a vote being made among the k closest memory cells

to the given data item being classified.

This algorithm is presented more formally in Appendix A. Section 3.4 will

employ the formalisms presented there when discussing the changes to this initial

algorithm. To use our framework presented in section 2.2, we can characterize

AIRS as follows

• Memory: The memory of the AIRS algorithm is in the pool of memory cells

developed through exposure to the training data (experiences);

• Adaptation: The adaptation occurs primarily in the ARB pool. With each

new experience, AIRS evolves a candidate memory cell in reaction to this

experience. If this memory cell is of sufficient quality, then the memory

structure is adapted to include it.

• Decision-making: The initial decision is which memory cell is most like the

incoming training antigen. This cell is used as a progenitor for a pool of

evolving cells. During classification, the primary classification decision is

based on the k most similar memory cells to the data item being classified.

3.3 AIRS: Initial Results and Discussion

AIRS was tested on a number of benchmark data sets in order to assess the

classification performance. This subsection will briefly highlight those results and

discuss potential improvements for the algorithm; however, more details can be
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found in [126]. Once a set of memory cells has been developed, the resultant cells

can be used for classification. This is done through a k-nearest neighbor approach.

Experiments were undertaken using a simple linearly separable data set, where

classification accuracy of 98% was achieved using a k-value of 3. This seemed to

bode well, and further experiments were undertaken using the Fisher Iris data set,

Pima Diabetes data, Ionosphere data, and the Sonar data set, all obtained from

the repository at the University of California at Irvine [13]. Table 3.3.1 shows

the performance of AIRS on these data sets when compared with other popular

classifiers [34] and [35], and a discussion of these comparative results can be found

in [126].3

These results were obtained from averaging multiple runs of AIRS, typically

consisting of three or more runs and five-way, or greater, cross validation. More

specifically, for the Iris data set a five-fold cross validation scheme was employed

with each result representing an average of three runs across these five divisions.

To remain comparable to other experiments reported in the literature, the division

between training and test sets of the Ionosphere data set as detailed in [13] was

maintained. However, the results reported here still represent an average of three

runs. For the Diabetes data set a ten-fold cross validation scheme was used, again

with each of the 10 testing sets being disjoint from the others, and results were

averaged over three runs across these data sets. Finally, the Sonar data set utilized

the thirteen-way cross validation suggested in the literature [13] and was averaged

3For the Diabetes data set, 11 others reported with lower scores, including Bayes, Kohonen,
kNN, ID3...
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Table 3.3.1: Comparison of AIRS and Other Classifiers’ Classification Results on
Benchmark Data

Iris Ionosphere Diabetes Sonar
1 Grobian 100% 3-NN + 98.7% Logdisc 77.7% TAP 92.3%

MFT
(rough) simplex Bayes

2 SSV 98.0% 3-NN 96.7% IncNet 77.6% Näıve 90.4%
MFT
Bayes

3 C-MLP 98.0% IB3 96.7% DIPOL92 77.6% SVM 90.4%
2LN

4 PVM 98.0% MLP + 96.0% Lin. Dis. 77.5- Best 2L 90.4%
2 rules BP Ana. 77.2% MLP

+BP,
12 hid.

5 PVM 97.3% AIRS 94.9% SMART 76.8% MLP 84.7%
+BP,

1 rule 12 hid.
6 AIRS 96.7% C4.5 94.9% GTO DT 76.8% MLP 84.5%

+BP,
(5xCV) 24 hid.

7 FuNe-I 96.7% RIAC 94.6% ASI 76.6% 1-NN, 84.2%
Man.

8 NEFCLASS 96.7% SVM 93.2% Fischer 76.5% AIRS 84.0%
dis. ana.

9 CART 96.0% Non-lin. 92.0% MLP 76.4% MLP, 83.5%
+BP,

percept. +BP 6 hid.
10 FUNN 95.7% FSM + 92.8% LVQ 75.8% FSM - 83.6%

rotation method?
11 1-NN 92.1% LFC 75.8% 1-NN 82.2%

Euc.
12 DB-CART 91.3% RBF 75.7% DB- 81.8%

CART,
10xCV

13 Lin. 90.7% NB 75.5- CART, 67.9%
percept. 73.8% 10xCV

14 OC1 DT 89.5% kNN, 75.5%
k=22,
Manh

15 CART 88.9% MML 75.5%
... ...
22 AIRS 74.1%
23 C4.5 73.0%
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over ten runs to allow for more direct comparisons with other experiments reported

in the literature. During the experimentation, it was noted by the authors that

varying system parameters, such as number of seed cells, varied performance on

certain data sets; however, varying system resources (i.e., the numbers of resources

an ARB could compete for) seemed to have little effect. A comparison was made

between the performance of AIRS and other benchmark techniques, where AIRS

seemed not to outperform specialist techniques, but did outperform more general

purpose algorithms, such as C4.5. To save duplication, the reader is referred to

[124] for a detailed account of classification accuracy comparisons.

Even though initial results from AIRS are promising, it can be said there are a

number of potential areas for simplification and improvement. There is clearly a

need to understand exactly why and how AIRS behaves the way it does. This can

be achieved through a rigorous analysis of the algorithm, and through empirical

examination of the behavior of the ARB pool and memory set over time.

Much of the focus in the investigation of the AIRS algorithm has been primarily

on the classification performance. [51] performs some of this empirical exploration

by applying AIRS to a variety of classification problems in which the number of

class ranged from 3 to 12 and the number of features ranged from 4 to 279. In

the course of this work, AIRS was found to have the best performance of any

single classifier known to the authors on the publicly available credit.crx problem.

Further empirical exploration of the AIRS algorithm is detailed in the description

of two other suites of experiments: [50] discusses the effects of replacing the

algorithm for evolving a candidate memory cell from the ARB pool and concludes
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that most of the effectiveness of the classifier lies in the replacement strategies

for the memory cell pool itself. [82] performs limited exploration of modifications

to the resource allocation mechanism as well as a more thorough examination of

the tie-breaking mechanism in the k-nn algorithm. In the course of this latter

experimentation, it was found that AIRS outperforms the best reported accuracy

for the E.coli data set found in the UCI repository [13].

The majority of AIS techniques use the metaphor of somatic hypermutation

or affinity proportional mutation. The initial version of AIRS did not employ

this metaphor but instead used a näıve random generation of mutations. The

remainder of this chapter details investigations into the behavior of the algorithm

and presents a modified version of AIRS, which is more efficient in terms of ARB

production and employs affinity proportional mutation, and assess what, if any,

difference these changes have made to the overall algorithm.

3.4 A More Efficient AIRS

The preceding sections of this chapter, with the exception of discussing AIRS in

terms of our MAD learning framework, represented the state of AIRS as presented

in [124]. For this thesis we follow the insights for extending this early work in

order to produce a more efficient version of the algorithm. This section details

observations that have been made through a thorough investigation into AIRS

and how issues raised through these observations have been overcome.
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3.4.1 Observations

The ARB Pool

A crude visualization was used to gain a better understanding of the development

of the ARB pool.4 In AIRS there are two independent pools of cells, the memory

cell pool and the ARB pool. The original formulation of AIRS uses the ARB

pool to evolve a candidate memory cell of the same class as the training antigen,

which can potentially enter the memory cell pool. During this evolution, ARBs of

a different class than the training antigen were also maintained in the ARB pool.

The stimulation of an ARB was based both on affinity to the antigen and on

class, where highly stimulated ARBs were those of the same class as the antigen

which were “close” to the antigen, or were of a different class and “far” from

the antigen. However, the visualization, which consisted of an animated GIF

file which was the concatenation of a series of plots of the ARB pool at each

iteration in the pool’s evolution on simple 2-dimensional simulated data, revealed

that, during the process of evolving a candidate memory cell, evolving ARBs that

are of a different class than the training antigen was wasted effort. The point

of the interaction of the ARB pool with the antigenic material is really only in

evolving a good potential memory cell, and this potential memory cell must be of

the same class as the training antigen. The visualization demonstrates that there

is a process of convergence by ARBs of the same class to the training antigen.

Naturally, based on the reward scheme, ARBs of a different class are moving

4http://www.cs.kent.ac.uk/people/rpg/abw5/ARB hundred.html
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further away from the training antigen. However, this process essentially must

start over for the introduction of each new antigen, and, therefore, previously

existing ARBs are fairly irrelevant. Since there are two separate cell pools, with

the true memory of the system only being maintained in the Memory Cell pool,

maintaining any type of memory in the ARB pool made no effective contribution.

Eliminating the maintenance of multiple classes in the ARB pool while generating

a candidate memory cell simplifies the algorithm, reduces the memory required

during execution, and improves the overall runtime.

Mutation of Cells

Motivated by observing the success of other AIS work, as well as by some of the

tendencies discussed in [124] and [127], attention was paid to the way in which

mutation occurred within AIRS. In these two works, the authors notice that some

of the evolved memory cells do not seem as high in quality as others. Additionally,

it was observed that there seemed to be some redundancy in the memory cells

that were produced. In [29] and other AIS work, mutation within an antibody or

B-cell is based on its affinity, so that high affinity cells undergo mutation with a

more restricted range than lower affinity cells. These other AIS works have used

this method of somatic hypermutation to a good degree of success. It was thought

that embedding some of this approach in AIRS might result in higher quality, less

redundant, memory cells. This approach was therefore adopted within AIRS.
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3.4.2 AIRS2: The Revisions

This subsection outlines the changes that have been made to the AIRS algorithm

as part of this PhD thesis. We then follow with empirical results from the new

formulation and a discussion of the implications of these results.

Memory Cell Evolution

In the original version of AIRS both ARBs “near” the antigen and of the same

class as the antigen were rewarded and ARBS “far” from the antigen and of

a different class than the antigen were rewarded. Also, ARBs were allowed to

mutate their class values (mutate in this case means switching classes). In the

newly revised version of AIRS, only ARBs of the same class are maintained in the

ARB pool and mutation of the class value is no longer permitted. Figure 3.4.1

presents the changes to the algorithm presented in Figure A.2.3. The removal of

resource allocation based on class is highlighted in bold.

Recall that the stimulation threshold was originally used as a stopping criterion

for training the ARB pool on an antigen. In order to stop training on an antigen

the average normalized stimulation level had to exceed the stimulation threshold

for each class group of ARBs. That is, in a 2-class problem, for example, the

average normalized stimulation level of all class 0 ARBs had to be above the

stimulation threshold, and the average normalized stimulation level of all class 1

ARBs had to be above the stimulation threshold. It was possible, and frequently

the case in fact, that the average normalized stimulation level for the ARBs of the
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minStim ← MAX
maxStim ← MIN
foreach(ab ∈ AB)
do

stim ← stimulation(ag, ab)
if (stim < minStim)

minStim ← stim
if (stim > maxStim)

maxStim ← stim
ab.stim ← stim

done
foreach(ab ∈ AB)
do

ab.stim ← ab.stim−minStim
maxStim−minStim

ab.resources ← ab.stim ∗ clonal rate
; no longer have multiple classes in the ARB pool
done

resAlloc ← ∑|ABag.c|
j=1 abj.resources, abj ∈ ABag.c

NumResAllowed ← TotalNumResources
; again no longer need to concern ourselves with
; multiple classes in the ARB pool
while(resAlloc > NumResAllowed)
do

NumResRemove ← resAlloc−NumResAllowed
abremove ← argminab∈ABag.c(ab.stim)
if(abremove.resources ≤ NumResRemove)

ABag.c ← ABag.c − abremove

resAlloc ← resAlloc− abremove.resources
else

abremove.resources ← abremove.resources−NumResRemove
resAlloc ← resAlloc−NumResRemove

done

Figure 3.4.1: Stimulation, Resource Allocation, and ARB Removal: Revised
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same class as the training antigen reached the stimulation threshold before the

average normalized stimulation level of ARBs in different classes from the antigen.

What this did, in effect, was allow for the evolution of even higher stimulated

ARBs of the same class while they were waiting for the other classes to reach

the stimulation threshold. By taking out these extra cycles of evolution which

were due to ARBs of different classes, it is possible that the ARBs will not have

converged “as much” as in the previous formulation. This can be overcome by

raising the stimulation threshold and thus requiring a greater level of convergence.

Somatic Hypermutation

To explore the role of mutation on the quality of the memory cells evolved,

the mutation routine was modified so that the amount of mutation allowed to

a given gene in a given cell is dictated by the cell’s stimulation value. Specifically,

the higher the normalized stimulation value, the smaller the range of mutation

allowed. Essentially, the range of mutation for a given gene = 1.0 - the normalized

stimulation value of the cell. Mutation is then controlled over this range with

the original gene value being placed at the center of the range. This, in a sense,

allows for tight exploration of the space around high quality cells, but allows lower

quality cells more freedom to explore widely. In this way, both local refinement

and diversification through exploration are achieved. This change is illustrated in

figure 3.4.2, which is presented in a similar manner to figure A.2.2. The changes

made are highlighted in bold.
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mutate(x, b)
{

range ← 1− x.stim
foreach(x.fi in x.f)
do

change ← drandom()
change to ← drandom()

bottom ← x.fi
normalization value

− range
2

if (bottom < 0)
bottom ← 0

change to ← (change to ∗ range) + bottom
if(change to > 1)

change to ← 1
if(change < mutation rate)

x.fi ← change to ∗ normalization value
b ← true

; no longer need to mutate class
done
return x

}

Figure 3.4.2: Mutation Routine: Revised

3.4.3 AIRS2: The Algorithm

The changes made to the AIRS algorithm are small, but end up having an

interesting impact on both the simplicity of implementation and on the quality

of results. Section 3.5 offers more discussion by way of comparison. For now, we

discuss the changes to the original AIRS presented in section 3.2. These can be

identified as follows:

• Only the Memory Cell pool is seeded during initialization rather than

both the MC pool (M) and the ARB pool (P). Since we are no longer

concerned about maintaining memory or class diversity within P it is no
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longer necessary to initialize P from the training data or from examples of

multiple classes.

• During the clonal expansion from the matching memory cell used to populate

P, the newly created ARBs are no longer allowed to mutate class. Again,

maintaining class diversity in P is not necessary.

• Resources are only allocated to ARBs of the same class as the antigen and

are allocated in proportion to the ARB’s stimulation level in reaction to the

antigen.

• During affinity maturation (mutation), a cell’s stimulation level is taken into

account. Each individual gene is only allowed to change over a limited range.

This range is centered at the gene’s pre-mutation value and has a width the

size of the difference of 1.0 and the cell’s stimulation value. In this way

the mutated offspring of highly stimulated cells (those whose stimulation

value is closer to 1.0) are only allowed to explore a very tight neighborhood

around the original cell, while less stimulated cells are allowed a wider range

of exploration. (It should be noted that during initialization all gene values

are normalized so that the Euclidean distance between any two cells is always

within 1.0. During this normalization, the values to transform a given gene

to within the range of 0 and 1 are discovered, as well. This allows for this

new mutation routine to take place in a normalized space where each gene

is in the range of 0 and 1.)
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• The training stopping criterion no longer takes into account the stimulation

value of ARBs in all classes, but now only accounts for the stimulation value

of the ARBs of the same class as the antigen.

3.4.4 Results and Discussion

To allow for comparison between the two versions of the algorithm, the same

experiments that were performed on the original AIRS were performed on the

new formulation of AIRS (AIRS2). Section 3.5 provides a more thorough

comparative discussion, but for now, results of AIRS2 on the four previously

discussed benchmark sets are presented in table 3.4.1.

Table 3.4.1: AIRS2 Classification Results on Benchmark Data
Iris Ionosphere Diabetes Sonar

96.0%(1.9) 95.6%(1.7) 74.2%(4.4) 84.9%(9.1)

These results were obtained by following the same methodology as the original

results reported in section 3.3, which is elaborated upon in [124] and [126]. Again,

we note that these results are competitive with other classification techniques

discussed in the literature, such as C4.5, CART, and Multi-Layer Perceptrons (as

presented in table 3.3.1).

3.5 Comparative Analysis

This section briefly touches on some comparisons between the original version

of AIRS presented in discussed in section 3.2 (AIRS1) and the revisions to this
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algorithm presented in section 3.4. The focus of this discussion is on two of the

more important features of the AIRS algorithms: classification accuracy and data

reduction.

3.5.1 Classification Accuracy

The success of AIRS1 as a classifier (cf, [126]) makes it important to assess any

potential changes to the algorithm in light of test set classification accuracy. To

aid in this task, Table 3.5.1 presents the best average test set accuracies, along

with the standard deviations (given in parentheses), achieved by both versions

of AIRS on the four benchmark data sets. All experiments were repeated in the

same way, using the same parameters as the original work.

Table 3.5.1: Comparative Average Test Set Accuracies
AIRS1: Accuracy AIRS2: Accuracy

Iris 96.7 (3.1) 96.0 (1.9)
Ionosphere 94.9 (0.8) 95.6 (1.7)
Diabetes 74.1 (4.4) 74.2 (4.4)
Sonar 84.0 (9.6) 84.9 (9.1)

It can be noted that the revisions to AIRS presented in section 3.4 do not

require a sacrifice in the classification performance of the system. In fact, for

three of the four data sets we see what appears to be a slight improvement in

the accuracy. However, upon closer examination, we find that the differences in

accuracy for these data sets are not statistically significant at the 99% (α = 0.01)

significance level based on a two-tailed t-test. Section B.1 gives a discussion on

how this test is performed and how to interpret its results. Table 3.5.2 gives the
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p-value results of this t-test comparing the mean accuracies for AIRS1 and AIRS2

on these four data sets which indicate the probability that the means are the same.

Table 3.5.2: t-test Results for Comparing AIRS1 and AIRS2 Accuracies
n1(AIRS1) n2(AIRS2) p-value

Iris 15 15 0.46
Ionosphere 3 3 0.55
Diabetes 30 30 0.93
Sonar 130 130 0.44

In general, since p ≥ α, on these four data sets, we find that AIRS2 does not

appear to introduce any adverse modifications to the behavior (or at least to the

classification accuracy) of the classifier.

3.5.2 Data Reduction

From the previous subsection it can be seen that the changes introduced to

AIRS offer no real difference in classification accuracy, so the question arises:

why bother? Why introduce these changes to a perfectly reasonably performing

classification algorithm? The answer lies in the data reduction capabilities of

AIRS. In our study of the initial version of the algorithm, we found that aside

from competitive accuracies another intriguing feature of the AIRS classification

system is its ability to reduce the number of data points needed to characterize a

given class of data from the original training data to the evolved set of memory

cells [124, 127]. Given the volumes of data associated with many real-world data

sets of interest, any technique that can reduce this volume while retaining the
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salient features of the data set is useful. Additionally, it is this collection of

memory cells that are the primary classifying agents in the evolved system. Since

classification is currently performed in a k-nearest neighbor approach, for which

classification time is dependent upon the number of data points, any reduction

in the overall number of evolved memory cells is useful. Table 3.5.3 presents the

average size of the evolved set of memory cells and the amount of data reduction

this represents in terms of population size and percentage reduction, along with

standard deviations, for each version of the algorithm on the four benchmark data

sets. The original training set size is also presented for comparison. There are two

points of interest: 1) Both versions of the algorithm exhibit data reduction, and

2) AIRS2 tends to exhibit greater data reduction than AIRS1. Naturally, this

data reduction is domain dependent, and there is no guarantee that this trend

would continue to all data sets. However, this observation about data reduction

is significant for our current discussion. As mentioned in subsection 3.4.3, one

of the goals of the revision of the AIRS algorithm is to see if employing somatic

hypermutation through a method more in keeping with other research in the

AIS field would increase the efficiency of the algorithm. The current measure of

efficiency under concern is the amount of data needed to represent the original

training set to achieve accurate classifications. We can see from Table 3.5.3 that,

for the majority of the data sets, AIRS2 is able to achieve accuracy comparable

with AIRS, with greater efficiency. This observation is made by comparing the

size of the training data set with the number of developed memory cells in the

final classifier. Table 3.5.4 shows that the differences in average memory cell size
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Table 3.5.3: Comparison of the Average Size of the Evolved Memory Cell Pool
Training Set Size AIRS1: Memory Cells AIRS2: Memory Cells

Iris 120 42.1/65% (3.0) 30.9/74% (4.1)
Ionosphere 200 140.7/30% (8.1) 96.3/52% (5.5)
Diabetes 691 470.4/32% (9.1) 273.4/60% (20.0)
Sonar 192 144.6/25% (3.7) 177.7/7% (4.5)

is significant at the 99% significance level (α = 0.01) for all four data sets using

a t-test as described in section B.1. For half of the data sets, Ionosphere and

Diabetes, the degree of data reduction is greatly increased (from 30% to 52% for

Ionosphere data and from 32% to 60% for the Diabetes data set). Interestingly,

for the most difficult classification task, the Sonar data set, the degree of data

reduction is not increased, but rather decreased. So while it may be reasonable to

claim that in general it appears that the revisions to AIRS provide greater data

reduction, and hence greater efficiency, without sacrificing accuracy, this cannot be

blindly accepted as a characteristic of AIRS2. As with all learning algorithms, the

domain to be learned has a greater influence on the performance of the algorithm

than any other factor.

Table 3.5.4: t-test Results for Comparing AIRS1 and AIRS2 Memory Pool Sizes
n1(AIRS1) n2(AIRS2) p-value

Iris 15 15 p < 0.01
Ionosphere 3 3 p < 0.01
Diabetes 30 30 p < 0.01
Sonar 130 130 p < 0.01
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3.5.3 Asymptotic Analysis

We end this section with a discussion of the asymptotic behavior of AIRS. We

start by analyzing the behavior of the initial version of AIRS and conclude how

the changes presented in section 3.4 (AIRS2) impact the requirements of the

algorithm.

For this analysis, we employ the following notation, let:

• N be the number of training items;

• L be the number of features in each training item;

• Mi be the number of memory cells present for training antigen i;

• Aj be the number of ARBs present during generation j;

• Gi be the number of Generations of ARBs that must be produced to reach

the stimulation threshold when training on antigen i;

• R be the number of resources allowed in the system;

• C be the clonal rate;

• and let T be the number of data items to be classified.

The initialization stage requires the calculation of the Affinity Threshold (AT ).

As indicated in equation, A.2.1 this is achieved through pairwise calculation of

the affinity between each training data item.5 This will require N∗(N−1)
2

steps

5Some experiments have been performed with choosing only a random subset of the training
set for use in calculating the AT . These experiments seem to indicate that limiting the
calculation of the AT to only a fraction of the training set has no adverse effect on the
performance of the algorithm.
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to calculate or O(N2). Assuming that the affinity between any two items can

be calculated in linear time in terms of the number of features L, O(L), then

calculation of the AT is O(LN2).

For the training stage, the worst case complexity will occur when all memory

cells and training antigens are of the same class. This requires a search through

the entire memory cell pool for each antigen in order to find mcmatch. While,

admittedly, this may make no sense from a classification standpoint, it will allow

us to establish a worst case behavior. So, for each of the N training antigens, we

perform the following steps:

1. The location of mcmatch requires calculating the affinity between the antigen

and each of the memory cells. This step is, then, O(LMi).

2. The production of mutated offspring by mcmatch is in proportion to the

number of features L, since each feature in each clone is given an opportunity

to mutate. In actuality, the constants of the clonal rate and hypermutation

rate dictate how many mutated offspring mcmatch are allowed to produce.

However, these user-defined constants are quite often less than the number

of features in the data vectors. Therefore, asymptotically, this step costs

O(L).

3. Gi times do:

(a) Calculate stimulation value for each ARB in reaction to the antigen:

O(LAj).
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(b) Allocate resources to each ARB: O(Aj).

(c) Sort ARBs by stimulation value: O(Ajlog2Aj).

(d) Find and remove dead ARBs: O(Aj).

(e) Calculate the average stimulation value of the still living ARBs. Since

the maximum number of ARBs still alive at this point is dictated by

the number of resources, R: O(R).

(f) Produce mutated offspring of the ARBs: O(LR).

4. The choosing of the most stimulated ARB to be mccandidate requires constant

time since the ARBs have already been sorted based on stimulation value.

This step, then, is O(1).

5. Finally, determining if mccandidate should be added to the memory cell pool

and if it should replace mcmatch requires calculating the affinity between the

antigen and mccandidate and between mcmatch and mccandidate. Therefore, this

step takes O(L).

Given this, the asymptotic on the training routine would be:

Tr(N) = O(
N∑

i=1

(LMi + L + (

Gi∑
j=1

(LAj + Ajlog2Aj + LR)))) (3.5.1)

There are three terms in this analysis of the training routine that need further

clarification: Mi, Aj, and Gi. If we are following our worst case assumptions,

then we can assume that the the memory cell pool was initially seeded with all N

training data items. This would make Mi = N in the worst case.
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With the exception of the first iteration, the number of ARBs in the ARB

pool at each iteration, Aj, is dependent on the number of resources available in

the system, R. The number of resource each ARB is allocated is based in the

ARBs stimulation level and a user-defined parameter: clonal rate, C. If an ARB

is maximally stimulated (stimulation level of 1), then it is allocated C resources. If

it is minimally stimulated (stimulation level of 0), then it receives 0 resources and

is removed from the system. For our bounding cases, however, let us first consider

a set of ARBs that are all maximally stimulated. In this case, the number of

ARBs in the ARB pool before cloning would be R
C
. This is the minimum number

of ARBs in the pool at any time. Next, let us consider a set of ARBs that are each

allocated only one resource. In this case, the number of ARBs in the ARB pool

would be R. The number of ARBs before cloning, then, is bounded as follows:

R

C
≤ Number of ARBs ≤ R (3.5.2)

These ARBs are then allowed to clone. The number of clones an ARB is allowed

to produce is based on its stimulation level. Each ARB can create up to C

mutated offspring. (In reality, only a random subset of the ARBs are allowed the

opportunity to produce offspring, but for now we will assume that all ARBs still

alive are given this chance.) Returning to our bounding cases, recall that we have

R
C

ARBs before cloning if all of these ARBs were maximally stimulated. If they

were all maximally stimulated and they all produced C mutated clones, then we
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would have Aj = R∗C
C

+ R
C

or Aj = R + R
C
.6 That is, we have the original R

C
ARB

parents that survived and the new R mutated clones that they created. In our

other case, when every ARB was only allocated one resource based on their low

stimulation levels, we can assume that each ARB is allowed to create at most one

clone. In this case, Aj = 2∗R. However, since not every ARB is allowed to create

mutated clones and even those ARBs that are allowed to produce clones may not

produce their full allotment, these will only produce loose bounds. In fact, for our

lower bound, we assume that none of these highly stimulated ARB produce any

clones. Still, Aj can be bounded as follows:

R

C
< Aj < 2 ∗R (3.5.3)

Therefore, asymptotically Aj = O(R).

This leaves Gi, the number of generations (or iterations) of ARBs that need

be produced before the stopping criterion is met, as the final term in equation

3.5.1 that needs further clarification. The stopping criterion is detailed through

equation A.2.4 in section A.2.3. Unfortunately, there is no straight-forward way

to specify for any problem how long it will take for this stopping criterion to be

met. It is dependent on several factors:

6In actuality, this scenario could never occur since if all of the ARBs were maximally
stimulated our stopping criterion would be met and there would not be another pass through
the ARB pool with this particular antigen.
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• The mutation rate dictates how much each offspring varies from its parent

cell. In AIRS1, each cell was allowed to mutate freely whereas in AIRS2

this mutation range was fixed based on the parent cell’s stimulation value.

• The clonal rate C dictates how many mutated offspring each cell is given

the opportunity to produce.

• Obviously, the stimulation level of a given cell is the most important factor

for which cell gets selected to create offspring. This is the heart of the

clonal selection and the only reason that the ARB pool will drift toward the

stopping criterion at all. The most stimulated ARB is given the opportunity

to create the largest number of mutated offspring.

• The number of resources, R, dictates how many ARBs survive from

generation to generation. There should exist a trade-off between the value of

R and the quality of solution evolved by AIRS. If R is too low, the stopping

criterion may be swiftly met, but mccandidate might be of such poor quality

that it would never be added into the memory cell pool. If R is too high,

then the ARB pool may continue to be too diverse to reach the stopping

criterion.

From this discussion, it is clear that the number of resources plays a large role in

the overall run-time performance of the algorithm. Interestingly, experiments have

shown that the accuracy of AIRS is not incredibly sensitive to small perturbations

of this value.
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So, we can now simplify our training time analysis:

Tr(N) = O(
N∑

i=1

(LMi + L + (

Gi∑
j=1

(LAj + Ajlog2Aj + LR))))

Tr(N) = O(LN2 +
N∑

i=1

(Gi(LR + Rlog2R))) (3.5.4)

It should be noted, however, that in practice Mi would almost never actually be

N . This is due to the fact that for AIRS to be effective it would not be seeded

with all N training times.7 Also, AIRS is not typically run on a problem that

contains only one class which would be the requirement for Mi = N . Nevertheless,

equation 3.5.4 does give a definite upper bound on the runtime behavior of the

training routine.

Finally, in the worst case, the memory cell pool contains on the order of N

memory cells at the end of training. Since classification is performed using a k-NN

approach with the same affinity calculation used throughout, the classification of

T data items would require O(LTN).

As mentioned in section 3.4, the reformulation of AIRS was chiefly motivated

by some basic observations about the workings of the system. One observation

was that the original version of AIRS maintained representation of too many

cells for its required task. This led to the elimination of maintaining multiple

classes of cells in the ARB pool or of retaining cells in the ARB pool at all. This

has the simplifying effect of reducing the memory necessary to run the system

7AIRS is simply k-NN in this case.
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successfully. A second observation concerning the quality of the evolved memory

cells led to the investigation of the mutation mechanisms employed in the original

algorithm. By adopting an approach to mutation proven to be successful in other

AIS, it has been possible to increase the quality of the evolved memory cells that

is evidenced by the increased data reduction without a decrease in classification

accuracy. Both of these overarching changes (ARB pool representation and the

mutation mechanisms used) have exhibited a simplifying effect on the classification

system as a whole. While our analysis in this section has focused on the runtime

complexity rather than the memory requirements of AIRS these, two factors go

hand-in-hand. The reduction in memory requirements is seen primarily in the

reduced number of memory cells that must be searched to find MCmatch. That is,

the term Mi in equation 3.5.1 is decreased. Additionally, the difference in quality

of the cells evolved through this process should also have an impact on the number

of generations required before reaching convergence. That is, the Gi term in our

analysis equations. In general, the changes made in the development of AIRS2

leads to an overall simplification of the algorithm.

3.6 Summary

This chapter has detailed an immune-inspired learning algorithm called AIRS.

From a learning standpoint, AIRS is one of the first supervised learning algorithms

based on immunological ideas. In this chapter we explained the immunological

metaphors underpinning the AIRS algorithm. We examined the performance of
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AIRS on some standard machine learning data sets, which revealed the relative

success of this approach. Through basic algorithm modeling and a return to

the biological inspiration of the system, two primary areas of simplification for

this algorithm were identified, and these basic changes were made. Statistical

evidence suggests that these changes did not affect the classification accuracy of

the algorithm and did improve the data reduction capabilities (and thus efficiency)

of the algorithm. We concluded with an asymptotic analysis of the run-time

behavior of the algorithm.

Since its inception, the AIRS algorithm has gained a certain amount of

use in the AIS community. Marwah has investigated some of the fundamental

assumptions embedded in the classification routine of the algorithm [82].

Goodman examined the classification ability on multi-class problems [51] and

searched for the source of classification power in AIRS [50, 49]. Greensmith

explored the use of AIRS for semantic web classification [54]. Finally, Hamaker

has introduced the use of different affinity functions and datatypes into AIRS [56].

Having illustrated how a return to the biology can improve this immune-

inspired system, we move back to standard computing techniques for our next

enhancement. We now examine how the use of parallel computing techniques

can be incorporated in immune-inspired learning algorithms for decreased

runtimes. As with the initial formulation of AIRS, this step is motivated

foremost by the lack of any real investigation into the use of more processing

power with immune-inspired algorithms. We begin this portion of our study

by first providing an overview of parallel computing and parallel performance
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metrics. We then examine parallel genetic algorithms for common methods

of parallelizing population based algorithms. To establish the efficacy of our

proposed parallelization methods, we employ these techniques on a very basic

immune-inspired algorithm, the clonal selection algorithm CLONALG. This then

leads to our examination of a parallel version of the AIRS learning algorithms.



Chapter 4

Parallelizing AIS Learning

Algorithms

Among the oft-cited reasons for exploring verterbrate immune systems as a source

of inspiration for computational problem solving include the observations that

the immune system is inherently parallel and distributed with many diverse

components working simultaneously and in cooperation to provide all of the

services that the immune system provides [28, 25]. Within the AIS community,

there has been some exploration of the distributed nature of the immune system

as evidenced in algorithms for network intrusion detection (e.g., [61, 72]) as well

as some ideas for distributed robot control (e.g., [78, 77]), to name a number

of examples. However, very little has been done in the realm of parallel AIS—

that is, applying methods to parallelize existing AIS algorithms in the hopes

of efficiency (or other) gains. This focus on computational efficiency in system

parallelization is slightly different than the goals found of distributed computing.
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In distributed computing, the impetus tends to be an exploration of the use of

computational resources for increased diversity of reaction or on problem solving

in a highly decentralized manner where each computational resource requires

independent decision making facilities with little to no input from a centralized

mechanism. In a parallel system, however, problem solving is much more tightly

coupled and the use of additional computational resources tends to be motivated

by decreasing overall system runtime or increasing efficient system utilization The

exploitation of parallelism inherent in many algorithms has provided definite gains

in efficiency and lent insight into the limitations of the algorithms [18, 22, 47, 20].

While just parallelizing AIS algorithms is, admittedly, venturing fairly far afield

from the initial inspiration found in the immune system, the computational gains

through this exercise could well be worth the (possible) side-track. Additionally,

this exploration may provide some insight into other relevant areas of AIS, such

as the development of new models or as ways to incorporate diversity or even

understanding the need for such into our current models.

This chapter begins by introducing basic methods and metrics of

parallelization. This provides a high-level overview of the terminology and

concepts frequently encountered when discussing parallel algorithms. We follow

this with a discussion of parallel Genetic Algorithms. Since GAs are population-

based evolutionary algorithms, there may be some similarities between the

methods for parallelizing these algorithms and our population-based immune

algorithms. We conclude this chapter with an outline of how to apply these

ideas to immune learning algorithms.
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4.1 Introduction to Parallelism and Parallel

Performance Metrics

Our fundamental goal when employing parallelism and parallelizing a given

algorithm is a speed-up in overall time. That is, we are most concerned

with the computational performance of the parallel algorithm. This is in

contrast to the goals of distributed computing which tend to focus more on

the use and provision of distributed resources rather than performance. While

there is a definite relationship between these two methods of utilizing multiple

computational resources (as opposed to a single, serial resource), the goals of the

two approaches are slightly different. For the next few chapters we focus primarily

on parallel computing. We do not mean to imply that we are oblivious to the

other qualitative changes that may occur when we parallelize our given immune

algorithms; however, our chief initial concern will be the speed we gain through

our parallelism. We return to the concerns unique to distributed computing in

chapter 7.

While we do not detail here the architectural concerns of parallel computers,

we do want to point out that our studies have focused solely on the use of a

multiple-instruction multiple-data (MIMD) architecture, to use Flynn’s classic

taxonomy [37, 41].1 In even more practical terms, we have utilized a cluster of

1It should be noted that the immune system has the potential to teach us a lot about
possible parallel architectures. Exploration of the distributed control mechanisms observed in
biological immune systems to gain such insights is needed. However, we currently set aside these
architectural issues while briefly discussing them in chapter 7
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interconnected serial computers to execute our parallel codes using a message

passing paradigm. What this implies for our further analysis is that we must

account for communication time among the processes when we discuss our

performance metrics.

Regardless of architectural concerns, there are several fundamental

performance metrics that we can discuss in terms of parallel codes.2 Since, as

we mentioned previously, what we are ultimately concerned with is the speed we

gain through parallelism, the most basic measure of this is speedup (i.e., the ratio

of the serial execution time (t1)to the parallel execution time(tp)):

S =
t1
tp

(4.1.1)

Our goal in parallelizing an algorithm could be seen as maximizing this ratio. If

our serial algorithm can do w work in w seconds (i.e., t1 = w) and if we assume

that we can arbitrarily assign the instructions in our serial algorithm to each of

the p processors and that we can do this evenly across our processors, then we

end up with an upper bound on speedup Su:

Su =
w
w
p

= p (4.1.2)

This “linear” speedup gives us an ideal on our goal of trying to maximize S.

While this gives us a theoretical ideal when only accounting for processor time

2The discussion of these basic metrics has been paraphrased, in large part, from [81].
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and w, it is possible to observe “superlinear” speedup results in experimental

studies. One possible source of this superlinear speedup derives from equation

4.1.2 ignoring architectural concerns such as the structure of the memory system

and time required to access data in this system. In a multiprocessor environment,

and particularly in a cluster of computational resources, each processor has its

own memory system and local cache. Superlinear speedup can result from the

parallel version of the code needing less time to access memory locations than

the serial version (e.g., more of the data needed is in cache rather than on disk).

While this access time is implicit in w in equation 4.1.2 for the serial version of

the algorithm, it is not fully captured in the parallel version if access to the same

data is not constant when compared to the serial version.

While speedup provides us a simple metric of overall performance, we are

often concerned, as well, with how well we utilize our parallel resources. Or, we

are concerned with what losses in efficiency our parallelization of our code has

introduced. A basic way to measure this is through parallel efficiency (Ep):

Ep =
S

Su

=
t1

p ∗ tp
(4.1.3)

The ideal value for Ep, then, would be 1 which is achieved when the number of

processes is equal to 1, p = 1. However, if p = 1, then we will not have achieved any

speedup in computational time. Frequently, in the design of parallel algorithms

there is a trade-off between performance (as measured in S) and resource usage

(as measure in Ep).
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Apart from the performance gains speedup indicates and the utilization

measures that parallel efficiency provides, we would also like a way of determining

how scalable a given parallel system is. By scalable we mean that the efficiency of

the system can be fixed to some constant for increasing the number of processors

if we also increase the amount of work to be done [76]. This becomes a necessary

discussion since, according to Amdahl’s law, if we have a fixed problem size then

the speedup of the algorithm will not continue to increase with an increase in the

number of processors [5]. Determining the scalability of a system can allow us

to predict how many processors we can use before we begin to see performance

degradation as well as the size of the problem that our system can handle. Kumar

and colleagues have defined the isoefficiency function as a means of measuring this

concept of scalability [52, 53]. The basic idea behind this tool is to determine the

impact of the parallel overhead on the overall performance of the system and

to determine at what rate the size of the problem must grow in order to take

advantage of an increase in processor power. Central to this concept is a slightly

different examination of speedup and efficiency. Rather than being solely defined

as in equation 4.1.1, Kumar et al. first observed that the parallel time, tp can be

defined as [52]:

tp =
t1 + to

p
(4.1.4)
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where to is the parallel overhead time (i.e., time for communication among the

processors, communication setup, etc.). Speedup can then be defined as:

S =
pt1

t1 + to
(4.1.5)

and efficiency as:

E =
t1

t1 + to
=

1

1 + to
t1

(4.1.6)

The benefit of this slight reformulation is that it then allows us to discuss the

performance of a parallel system in terms of its parallel overhead, to, which in

turn allows us to determine bounds on this overhead that we can use to examine

the limits of scalability within a system.

As we examine the specific implementations of parallel immune learning

algorithms we return to these metrics and concepts. In particular, we measure

the speedup and efficiency of our various newly formulated algorithms and try to

determine what they tell us about the overall scalability of these systems.

4.2 Parallel Genetic Algorithms

Since we can argue that AIS can (in some respects) fit into the category of

evolutionary algorithms, one of the natural starting places for the investigation

of parallel AIS is the ways other evolutionary approaches have been parallelized.

There have been numerous studies of parallel genetic algorithms, but the best
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place to start is in two works by Erik Cantú-Paz [17, 18]. In these works the

author examines the various forms of parallel GAs in great detail and offers the

following classification of parallel GAs:

• Global or Master-Slave—This form of parallel GA exhibits the same

characteristic as a serial GA. What is typically parallelized is the calculation

of fitness values. A master process farms out given chromosomes to different

processes where the fitness is calculated and then returned to the master

process. The master process continues to perform the other genetic operators

such as selection, crossover, and mutation;

• Coarse-grained—This form of parallelism employs the use of a few, relatively

large demes (or isolated population groups) and migration. Each deme is

allowed to evolve separately and then at certain points migration of select

individuals occur from one deme to another;

• Fine-grained—This is similar to coarse-grained, except the population size

in each deme is much smaller and the migration occurs more frequently;

• Hybrid—This employs various combinations of the three typically in a

hierarchical manner with a coarse-grained approach at the top of the

hierarchy.

The most widely explored option has been the coarse-grained approach [110, 111,

79]. The key factors in this approach are the migration policies—this includes

the migration interval (how frequent migration occurs), the migration rate (the
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number of individuals that migrate), and the manner in which individuals are

chosen to migrate—and the topology of the processes (which processes are allowed

to communicate with which others or the patterns of migration across the various

processes). For many of the coarse-grained approaches these factors are static

decisions made prior to running; however, in [95] we see the use of more adaptive

policies based on various criteria. In general, however, migration is utilized to

keep each isolated population from converging too quickly to a local optimum and

in order to increase the diversity in each population.

In addition to outlining some of the parallelization strategies of GAs, Cantú-

Paz also provides us with methods for analyzing the parallel behavior of these

different techniques [18]. These methods do not go much beyond the application

of the basic metrics presented in section 4.1, but they do provide a nice underlying

model for analyzing the behavior of parallel population based algorithms. As

we mention in section 4.3, however, the analysis of parallel GAs are made

somewhat more tractable by the procedures common across all genetic algorithms

(i.e., crossover, mutation, fitness evaluation, selection of fittest individuals for

reproduction, etc.) than the large variety of procedures used in AIS. Additionally,

much of the theory of GAs has been predicated on the use of binary chromosomes

(or feature vectors) for the problem space representation. This assumption of

binary representation has quite often not held true in the field of AIS. Nevertheless,

[18] provides a useful study of parallel GAs that can provide insight in our

parallelization of AIS algorithms.
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4.3 Parallel Immune Learning

Turning our attention, now, to parallel AIS in general, we would like to establish

a framework for discussing methods of parallelizing AIS. One of the difficulties

in discussing AIS in general is that, other than modeling, or using, some aspect

gleaned from the immune system, there are few, if any, commonalities across all

AIS. GAs have the benefit of, regardless of application area, having some fairly

clearly defined stages: fitness calculation, chromosome selection, mutation, and

crossover. With these common stages for almost all GAs, it becomes easy to

abstract which stages are exploitable for parallelization. With AIS, however, there

are numerous algorithms that attempt to utilize different immune mechanisms to

approach a given problem. So, it is necessary to limit the scope of this discussion

to only certain immune algorithms that utilize certain principles from the immune

system.

Naturally, as throughout this thesis, we only concern ourselves with immune-

inspired learning algorithms. However, as evidenced in section 2.3, just the

restriction of learning algorithms is probably not sufficient given the wealth of

metaphors employed. We can start with the clonal selection models (to borrow a

term from [28]), which do seem to have some stages in common. These stages

could include antigenic presentation, affinity evaluation, clonal selection, and

affinity maturation (to name a few), each of which might be broken down into

further stages, yet. One area that needs to be addressed is which of these stages

would most readily lend themselves to parallelization. For GAs, we saw that
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for the global variety of parallelization it was the calculation of fitness that was

parallelized. However, for the other schemes, entire GAs occupied each processor

with some degree of interaction across the processes typically at the crossover or

selection stages. This latter strategy could be adopted to several AIS. We could

easily allow some of the dynamics of a given AIS to take place as isolated processes

with a degree of communication among the evolving systems such as some type

of cellular exchange.

To begin with, we limit our field of study even further to population-

based, clonal selection AIS models. By restricting ourselves to population-based

algorithms (as opposed to network-based ones), we have models that more closely

resemble GAs and have less, in theory, inherent interaction than the network

models. Unlike with GAs, current AIS tend to use fairly cheap “fitness” or affinity

functions. This implies that the master-slave model mentioned in the previous

section (section 4.2), in which it is the fitness evaluation that is parallelized, would

not necessarily give us much benefit. However, the coarse-grained model seems

an ideal place to begin. If we identify portions of an AIS algorithm that require

little or no global interaction, we can isolate those parts to a given processor.

The various populations can develop through the immune mechanisms at each

processing node, and then a global solution can potentially be reconstructed if

such is needed.

Aside from exploiting some of the parallelism inherent in our immune-based

algorithms and thus giving us, hopefully, computational gains, this method also

has the benefit of appearing somewhat more biologically plausible. The immune
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system, as previously mentioned, is a distributed system with much occurring in

isolated locations rather than a central immune response location. This “coarse-

grained” approach allows us to partially explore this idea. Still, while this may

be a useful side-effect of our adopting the coarse-grained approach, what we

are primarily interested in initially is computational gains to be made through

parallelization.

One of the issues, however, with this approach is that most immune-inspired

learning algorithms have some eventual global component that is used to assess

test data or previously unseen data. If we distribute a portion of the algorithm

to isolated processes, we eventually have to tackle the issue of recapturing this

global portion used for testing. For this reason, when we examine our parallelized

immune algorithms we want to assess the impact this parallelization has on the

quality of the learned solution as well. That is, we need to determine if the learned

memory and decision-making structure can function as well as the serial versions.

Additionally, if we find it functions better than in the serial versions, then this

becomes important to us, as well.

4.4 Summary

This chapter has provided a transition from our discussion of immune learning

in general and our in-depth look at one particular serial learning algorithm

to the idea of parallel immune learning. That is, we have moved from our

biological inspiration to the computational inspiration in the development of our
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learning systems. We began by introducing some of the terminology relevant to

discussing parallel algorithms and in particular parallel performance. This section

emphasized the fact that what we are most concerned with in our parallelization

is performance gain. We then moved on to discuss parallel GAs, and offered a

summary of the taxonomy of such algorithms presented in [18]. This led to our

discussion of potential means of parallelizing immune-inspired learning algorithms.

We quickly encountered the problem that there is no general AIS to discuss (unlike

the existence of a generic GA). Therefore, we resolved to only focus on population-

based immune-learning algorithms.

In the following two chapters examine the effects of applying a “coarse-grained”

model of parallelizing two immune-inspired learning algorithms. We begin with a

simple immune-inspired algorithm (CLONALG) to demonstrate the applicability

of parallel-computing techniques to these types of learning systems. We then

return to our primary exemplar system, AIRS, and examine the modifications

needed to exploit greater processing power in this bio-inspired algorithm. Our

initial assessment is in terms of speedup and efficiency and is examined empirically

through the use of bench-mark datasets. Then, for each of our parallel algorithms,

we provide experiments that allow us to assess the scalability of the systems. We

conclude our studies of using multiple processors for immune-learning algorithms

by offering a very basic distributed approach. Unlike our parallel models whose

chief concern is parallel performance, the distributed model points towards areas

for the incorporation of a more biologically plausible use of different processing

sites.



Chapter 5

The Clonal Selection Algorithm,

CLONALG

This chapter explores the application of parallel processing techniques to an

immune-inspired algorithm.1 We offer this chapter mostly as a “proof-of-concept”

type of approach to the use of parallel computing in our learning algorithms. To

this end, this chapter examines a second, simpler, immune-inspired algorithm in

some detail, which offers us an ideal test bed for our initial explorations of immune

learning in parallel. In [32], the authors introduce an artificial immune system

algorithm inspired primarily by the clonal selection theory first popularized by

Burnet [16]. This algorithm, CLONALG, utilizes the immunological concepts of

memory cells, free antibodies, clonal selection, and affinity maturation to provide

solutions for pattern recognition and function optimization tasks. While we

1A much shorter version of this discussion was published as [125].

116



CHAPTER 5. THE CLONAL SELECTION ALGORITHM, CLONALG 117

provide an overview of CLONALG, for a complete specification of this algorithm,

please see [32].

Much like AIRS (chapter 3), CLONALG’s primary goal is in the development

of memory cells which provide some representation of the data set. Similar

to many evolutionary algorithms, CLONALG proceeds through a number of

generations in the development of this representation. Additionally, there are

several user-tunable parameters which affect the rate of convergence in this

evolutionary process. While we are interested in CLONALG for its application

of immune-system principles to machine learning, what really intrigues us is the

almost embarrassingly parallel nature of the algorithm. Since the algorithm is one

of the more simplistic immune-inspired models, this is an excellent starting place

for our exploration of parallel immune-inspired learning algorithms.

We begin this chapter with an overview of the serial version of the CLONALG

algorithm as presented in [32] along with an analysis of the runtime characteristics

of the algorithm. We conclude section 5.1 with a discussion of the changes that

need to be made for parallelizing the algorithm. In order to assess the benefits of

our parallel version of the algorithm, we repeat the experiments in [32] using our

new algorithm. These results are discussed and presented in section 5.2. We follow

these verification experiments with a series of simulations in which we vary the

number of features and the number of instances to be learned. These experiments,

presented in section 5.3, help us assess the scalability of the parallel version of the

algorithm. We conclude this chapter with a reflection on the lessons learned from

this initial parallel immune learning algorithm.
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5.1 Description of CLONALG and its

Parallelization

We begin this section with an overview of the serial version of CLONALG. This

is followed by an analysis of the algorithm and a scheme for parallelizing this

immune-inspired algorithm.

5.1.1 Serial CLONALG

CLONALG, as presented in [32], has two incarnations: one for pattern recognition

tasks and one for multi-modal function optimization. Since the developers of

this algorithm have subsequently focused primarily on the function optimization

version, we have decided to explore the pattern recognition version more

thoroughly. This version of the algorithm proceeds in a similar fashion to many

evolutionary algorithms; however, the inspiration for the algorithm is clearly from

the realm of immune systems. The input (or antigens) to the algorithm consists of

a collection of S patterns to be recognized. The algorithm begins by generating a

random population (P) of N cells (or antibodies), where |P| = |S|. For the current

application, these cells simply consist of a binary feature string that represents a

given binary pattern. A pattern from S is presented to each cell in P, and the

affinity of each cell to the pattern is calculated. Affinity is based on hamming

distance as detailed in equation 5.1.1, where l is the length of the binary string

feature vector and x.i and y.i refer to the ith feature of this vector in each of the



CHAPTER 5. THE CLONAL SELECTION ALGORITHM, CLONALG 119

two cells being compared:

affinity(x, y) =
l∑

i=1





1 : if x.i 6= y.i

0 : otherwise

(5.1.1)

Based on this equation, we see that affinity is measured simply as the number of

different bits in the antibody when compared to the input pattern, or antigen.

Therefore, a lower affinity number implies a closer match to the input pattern.

Once the affinity is calculated for each antibody in P as compared to a

given input pattern, the best n1 antibodies are selected to undergo somatic

hypermutation as a mechanism for providing affinity maturation. By “best”

antibodies, we mean those which are closest in matching to the input pattern

(i.e., those with the lowest affinity measure based on equation 5.1.1). The authors

of [32] do not specify exactly what mechanism should be used for the mutation

routine. However, they do specify that the mutation should be dependent on the

affinity value of the antibody in two ways: 1) the number of mutated offspring

a given cell is allowed to produce is dependent on the affinity of the cell with

the input pattern; the more closely a cell matches the input pattern the more

offspring it is allowed to produce and 2) the closer the match of the antibody to

the given pattern the less mutation of the features should occur. So, we have a

balance of exploration and exploitation that we see so often in machine learning

algorithms. CLONALG encourages the exploitation of the good solutions it has
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found by allowing high affinity cells to produce more offspring. It encourages

exploration by increasing the mutation rate for low-affinity cells.

After the mutated offspring cells are generated, the input pattern is then

presented to each of the newly created offspring, and their affinity levels are

calculated. The single best antibody is then compared to the memory cell for the

given input pattern. If this antibody’s affinity is better than that of the memory

cell, the newly generated antibody replaces the established memory cell. Finally,

n2 random antibodies are created and replace existing cells in the population P of

antibodies. This process continues until all the input patterns have been presented

to the population.

One cycle through the input patterns is considered one generation. The

algorithm can continue for a fixed number of generations or until a certain

convergence criterion is reached. For the current experiments, the algorithm is

only halted when absolute convergence occurs. By absolute convergence, we mean

that the memory cell set which has evolved exactly matches the input pattern set.

While in real-world learning situations this convergence criterion would not be

as useful as some fuzzier threshold which would allow for greater generalization

by the system, for our current experiments that examine the behavior of the

algorithm as various parameters are adjusted we felt this was a sufficient stopping

criterion.

The algorithm is presented below, in terms of the immune processes employed.
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1. Initialization: Create a random population of N antibodies P and memory

cells M.

2. Antigenic Presentation: for each antigenic pattern in S do:

(a) Clonal Expansion: Determine the affinity of each antibody in P to the

given antigenic pattern. Select the best n1 antibodies to produce clones

in proportion to its affinity.

(b) Affinity Maturation: Mutate each clone based on its affinity.

(c) Clonal Selection: Choose the best clone as a candidate memory cell.

Replace the memory cell in M if the clone has a better affinity.

(d) Metadynamics: Replace n2 antibodies in P with randomly generated

cells. The antibodies chosen to be replaced are those with the worst

match (i.e., highest value according to equation 5.1.1) in population P.

3. Cycle: Repeat step 2 for a fixed number of generations or until the memory

cells in M have converged to within some threshold of the input patterns in

S

Figure 5.1.1 provides the pseudocode for the version of CLONALG studied.

For clarity, we repeat the application of our MAD framework to CLONALG

from section 2.3.2:

• Memory: The memory system consists of a group of evolved memory cells

which represent patterns to be recognized;
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generate a random population of N strings called P

foreach(generation)
do

foreach(s ∈ S)
; S is the set of patterns to be recognized

do
foreach(p ∈ P)
do

calculate affinity(p,s)
done
P1 ← P

; P1 is used for sortingP

sort P1 based on affinity
C ← “best”n1cells inP1
clone and mutate(C)

; the best n1 are allowed to produce mutated clones

foreach(c ∈ C)
do

calculate affinity(c,s)
done
sort C based on affinity
if best match in C is better match for this s than Ps

Ps ← Cbest

; Ps is cell in P responsible for recognizing
; this particular input pattern s

generate a random population of n2 strings called R
; We assume than n2 ≤ N − |S| as the first |S| strings in P
; correspond to M and will not be replaced here

replace “last” n2 strings in P with strings in R
done

done

foreach(s ∈ S)
do

Ms ← Ps

; output set M consists of “first” |S| strings in P

done

Figure 5.1.1: CLONALG Pseudocode
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• Adaptation: Each antigen is presented to every antibody. The best (highest

affinity) antibodies get a chance to clone, undergo somatic hypermutation,

and potentially replace an existing memory cell;

• Decision-making: During training, the basic decision-making process is

based on the current memory cells’ and antibodies’ reactions to the antigenic

pattern (i.e., clonal selection). After training the decision of how to

identify/recognize an incoming pattern is based on the affinity of the memory

cells (in particular the one memory cell with the highest affinity) to the given

test pattern.

5.1.2 Analysis of Serial CLONALG

In [32], the authors offer an analysis of CLONALG for pattern recognition. In

this subsection, we duplicate some of their efforts and provide more detail. For

our analysis of this algorithm, we use the following notation, let:

• M be the number of patterns to learn or training antigens and also the

number of memory cells to evolve;

• L be the number of features in each cell;

• N be the number of antibodies in P;

• n1 be the number of antibodies chosen for cloning;

• n2 be the number of antibodies to replace after each antigenic exposure;
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• Nc be the number of clones produced;

• β be a clonal scalar factor; and

• G be the number of generations the algorithm is run.

For step 1 of the algorithm, we can assume that at worst case the generation

of a random population of cells requires deciding a random value for each of the

L features in the population. Therefore, to generate a random population of N

antibodies will take O(LN).

In step 2, we find the majority of the work of the algorithm. For each of the

M antigens, we perform the following steps:

1. Calculating the affinity between the antigen and each of the N antibodies.

Assuming that affinity calculation requires evaluating each feature, then this

step is O(LN).

2. Sorting the antibodies based on affinity takes O(N log2N)

3. Creating and mutating clones based on the n1 best antibodies requires

further explanation. To calculate the number of clones a given antibody

is allowed to produce, we follow the methodology outlined in [32] and allow

a given antibody to create a number of clones in proportion to its affinity.

The antibody with the best affinity was allowed to produce β ∗N clones, the

second best was allowed to produce β∗N
2

clones, the third best was allowed

to produce β∗N
3

, and so on. That is, we assume that the antibodies were

sorted in order from best to worst 1 . . . N , and the total number of clones is
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as in [32]:

Nc =
n1∑
i=1

round

(
β ∗N

i

)
(5.1.2)

The β in equation 5.1.2 is a clonal scalar factor which for all of our

experiments we have set to 1 (following the example of [32]), and the

round (.) function rounds the operand to the nearest integer. Temporarily

ignoring this rounding factor, the largest number of clones will be produced

if n1 = N , giving us:

Nc ≤ β ∗N ∗
N∑

i=1

(
1

i

)
(5.1.3)

The summation in equation 5.1.3 is the calculation of the Nth harmonic

number HN which can be approximated asymptotically as O(lnN). If the

constant β is always less than N , then we can give an asymptotic upper

bound on Nc: Nc = O(N lnN). Again, if mutation requires manipulating

each feature, then mutating these clones will give us O(LN lnN) for this

step.

4. Finding the best mutated offspring requires calculating the affinity for each

clone: again, O(LN lnN).

5. Finally, replacing the worst n2 cells in P with randomly created cells requires

O(Ln2). Again, by worst we mean those cells which least matched the

given input pattern (i.e., those with the highest value according the equation
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5.1.1). In the algorithm, there is a restriction that n2 cannot be larger than

N −M ; therefore N is an upper bound on the value of n2, and this step can

be bounded by O(LN)

Each of these steps is performed M times giving us an upper bound on this part

of this main loop of the algorithm of

O(MLN log2N) (5.1.4)

While this gives us a definite upper bound, as we will see later in this chapter, it

may be more useful to think of this bound in terms of our three parameters: N ,

n1, n2. This then gives us a running time per generation of:

T (M) = O(M(LN + N log2N + LN ln(n1) + Ln2))

= O(M(L(N + N ln(n1) + n2) + N log2N) (5.1.5)

Equations 5.1.4 and 5.1.5 give us bounds on the per generation cost. This

leaves for us to estimate G, the number of generations. As we saw in section

3.5.3, there is no straight-forward way to estimate the number of generations

needed to reach convergence. While we can borrow results from the GA literature

to help determine the number of antibodies needed to reach a quality solution, this

does not provide the tools to predict the number of generations needed [80, 65, 18,

chap2, pp13-31]. Also, considering the more cooperative nature of CLONALG and

the high, variable mutation rate employed, it is unclear how applicable theoretical
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findings from the GA community will be for this AIS. In [32], the authors simply

run the algorithm for a fixed number of generations. While this is a long-standing

method within the evolutionary algorithm community, it does not necessarily

guarantee convergence, which is what CLONALG for pattern recognition tasks is

designed to achieve. Regardless of the number of generations, however, the overall

runtime for the serial version of CLONALG will be:

T (M) = O(GM(L(N + N ln(n1) + n2) + N log2N) (5.1.6)

= O(GMLN log2N) (5.1.7)

5.1.3 Parallel CLONALG

Since, essentially, there are no connections among the cells in the CLONALG

algorithm (as there would be in a network model of the immune system), there

is no real need for all of this process to occur on a single processor. The goal of

the algorithm is simply to discover a set of memory cells that can recognize the

input pattern. However, the way the algorithm is formulated, the development

of a single memory cell can occur independently of the development of the other

cells. To clarify this, let us reexamine the pseudocode of CLONALG presented

in figure 5.1.1. As this algorithm is formulated the first |S| cells in P correspond

to the memory cell set M . Each element in M is responsible for recognizing only

one particular input pattern from S. During each generation, each pattern in S is

presented to the cells in P one by one. During each pattern presentation, the cells
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in P are exposed to the particular pattern from S and then are allowed to clone

and mutate based on this exposure. The clones are then exposed to the given input

pattern. At this point, only the cell in P responsible for recognizing this particular

input pattern is changed if the best clone has a better affinity for the input than

the current cell in P . All other elements of M remain as they were before the

presentation of this input pattern. Additionally, only the “last” (if we think if P

as an array of cells) |P |− |S| cells in P are eligible for random replacement at the

end of each generation. This maintains the individual recognition properties of

the cells in M . This is one reason we chose the CLONALG algorithm as a starting

place for our investigations into parallelizing immune-inspired algorithms. For the

parallelization of CLONALG, the input set is simply divided by the number of

processes involved in the parallel job. Each process then evolves that number of

memory cells, which are specific only to the subset of the input given to that

process. Once this finishes, a root process gathers all of these memory cells

together in order to present the final evolved pattern recognizing cells to the

user.

From an analysis point of view, the parallelization would modify equations

5.1.6 and 5.1.7 to:

Tp(M) = To + O(
M

np
G(L(N + N ln(n1) + n2) + N log2N) (5.1.8)

= To + O(
M

np
GLN log2N) (5.1.9)
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where To is the overhead associated with parallelization (e.g., communication time,

network setup, etc.) and np is the number of processors used. In reality, the run-

time might not be so neat as implied by these equations, however. The reduction

in the size of M at a given processor should have an impact on the number

of generations needed for convergence. Additionally, it is unclear what, if any,

qualitative contribution the reaction of the antibody pool to the entire antigenic

set has on the the overall solution quality or the time to convergence. Regardless,

based on equation 5.1.9, we still expect to see significant speedup through the use

of multiple processors.

5.2 Verification Experiments

In this section we present a series of experiments based on the ones presented in

[32]. We explore this initially to confirm that no qualitative difference is introduced

by our parallelization scheme. We also want to determine how each of the user-

tunable parameters for the algorithm affect the overall runtime behavior in our

parallel version.

5.2.1 Experimental Design

For the experiments described below, the binary character recognition data set

discussed in [32] were used. This data set consists of 8 binary patterns representing

a 10x12 graphical representation of the Arabic digits 0-4, 6, 7, and 9. The length
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of each pattern to be recognized, therefore, is 120. Figure 5.2.1 shows this original

data set, and figure 5.2.2 show the memory cells generated using 8 processors.

Figure 5.2.1: Original Input Data Set

Figure 5.2.2: Memory Cells Generated

We investigate the effect three user-tunable–N , n1, and n2–parameters have

on the behavior of the algorithm. We examine the overall runtime of the

algorithm as well as the number of generations the algorithm takes to converge

(where convergence is as described in 5.1). As mentioned in the previous

section, CLONALG is almost embarrassingly parallel. In order to parallelize the

algorithm, a root processor reads the input data in from a file, and then this

input data was scattered across the processors, each of which then proceeded to

use this divided data set as its input. These experiments were run on a cluster of

dual-processor 2.4 Ghz Xeons using Gigabit Ethernet as the network fabric and

the Message Passing Interface (MPI) [55] as the communication middleware with
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one CLONALG process per processor. Once all of the processors completed, the

resulting memory cells were gathered back to the root processor, and the overall

runtime and the number of generations to convergence (max across the processors)

were recorded. Results presented are the average and standard deviations from

thirty runs.

5.2.2 Results

Figures 5.2.3 and 5.2.4 show the effects of varying the parameter N on the behavior

of the algorithm both in terms of time to convergence and number of generations

to convergence. This data is shown for runs across 1, 2, 4, and 8 processors. The

timing graph is presented as log-log plot with 3σ error bars, while the generations

graph is presented as a linear scale graph. Tables C.0.1 and C.0.2 present tables

of these results with standard deviations in parentheses.
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Figure 5.2.3: Effect of varying N parameter on Run Time
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Figure 5.2.4: Effect of varying N parameter on Generations to Convergence

One thing these figures show is that the N parameter tends to have a fairly

significant effect on the time and number of generations to convergence. What is

interesting is that there seems to be a definite trade-off between time and number

of generations. That is, the amount of overall runtime time increases as the

value of N increases; however, the number of generations it took to reach this

convergence seems to decrease as N increases. For example, in looking at tables

C.0.1 and C.0.2, when the number of processors equals to four, we see the runtime

increase with each doubling of N from 3.68 seconds when N = 10, 3.79 seconds for

N = 20, 5.75 seconds for N = 40, 9.17 seconds for N = 80, and 16.2 seconds when

N = 160. And the number of generations to convergence decreases from 87 when

N = 10, 43 generations for N = 20, 30 generations for N = 40, 23 generations for

N = 80, and 19 generations for N = 160. This increase in runtime roughly follows

an N log2N pattern as predicted in equation 5.1.7, and this trend along with the
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decreases in the number of generations to convergence is seen for the experiments

when the number of processors was one, two, and eight, as well. Also of note is that

while increasing the number of processors definitely decreases the overall running

time of the algorithm, it has no real effect on the number of generations needed to

converge on a solution. For example when N = 160 the runtime for one processor

was 57.58 seconds, for two processors it was 31.08 seconds, for four processors

it was 16.2 seconds, and for eight processors it was 7.64 seconds. However, for

N = 160 the number of generations for convergence was 18 for one processor, 19

for two processors, 19 for four processors, and 18 for eight processors. This is

not unexpected since the value of N is the same at each processor no matter how

many processors are being used. We would not expect any real difference here.

Practically speaking, the decrease in run-time is more important to us than the

actual number of generations the algorithm took to reach this convergence. There

is something to be said for larger values of our parameters and the number of cycles

required to reach convergence. This indicates that convergence is encouraged

through the diversity of cells being processed which is increased as the value of N

is increased. Nevertheless, what we are most interested with these experiments is

that we did not change the fundamental behavior of the algorithm (as is evidenced

from the same convergence behavior for the same parameter values), but that we

do decrease our overall runtime.

Figures 5.2.5 and 5.2.6 show the effects of varying the parameter n1 on the

behavior of the algorithm both in terms of time to convergence and number of

generations to convergence. This data is shown for runs across 1, 2, 4, and 8
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processors. Again, the timing graph is presented as log-log plot with 3σ error

bars, while the generations graph is presented as a linear scale graph. Tables C.0.3

and C.0.4 present tables of these results with standard deviations in parentheses.

1

10

100

1 10 100

Value of n1

R
un

 T
im

e 
(s

) np=1

2

4

8

Figure 5.2.5: Effect of varying n1 parameter on Run Time

Again we see that an increase in the parameter’s value leads to an increase in the

running time of the algorithm, and again, we see that the number of processors

employed decreases the running time. This is as predicted by equation 5.1.6 which

indicates a growth in the runtime with a growth in the value of n1. However, it

appears that the n1 parameter has little distinguishable effect on the number

of generations needed for convergence. As in the previous experiments, we see

that our parallel version has little impact on the convergence behavior of the

algorithm which indicates a qualitative stability while providing a decrease in

overall runtime.
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Figure 5.2.6: Effect of varying n1 parameter on Generations to Convergence

Figures 5.2.7 and 5.2.8 show the effects of varying the parameter n2 on the

behavior of the algorithm both in terms of time to convergence and number of

generations to convergence. This data is shown for runs across 1, 2, 4, and 8

processors. The timing graph is presented as linear-log plot with 3σ error bars,

while the generations graph is presented as a linear scale graph. Tables C.0.5 and

C.0.6 present tables of these results with standard deviations in parentheses.

The n2 parameter seems to have little overall effect on the behavior of

the algorithm, whether in runtime or number of generations to convergence.

Revisiting our analysis, we see in equation 5.1.6 that the n2 value has an extremely

limited additive value to the run time behavior, and since n2 must always be on

the order of N , it is unsurprising that there is little effect with this parameter. In

general, these results indicate that for pattern recognition tasks the CLONALG

algorithm seems insensitive to the n2 parameter.
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Figure 5.2.7: Effect of varying n2 parameter on Run Time

As mentioned in section 4.1, there are two fundamental metrics that we

can use for assessing the gains of a parallel algorithm versus the serial version:

speedup and parallel efficiency. Recall that speedup is defined as a ratio of

the serial time over the parallel run time and can be thought of primarily as

a performance metric. Ideally, speedup exhibits linear behavior such that with

an increase in the number of processors one sees a proportional decrease in the

run time. Efficiency, on the other hand, determines resource utilization with an

ideal efficiency of 1 and is measured as defined in equation 4.1.3. Section B.2

discusses how these metrics were calculated for these experiments. Figure 5.2.9

shows the speedup obtained when varying the N parameter on these character

recognition experiments presented in this section, and figure 5.2.10 shows the

parallel efficiency for these same experiments. Tables C.0.7 and C.0.8 give the
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Figure 5.2.8: Effect of varying n2 parameter on Generations to Convergence

data tables for these figures. Figures C.0.1,C.0.2, C.0.3, and C.0.4 in appendix C

provide these results for the n1 and n2 parameter variation.

In examining the efficiency curves we see that our 3σ error bars overlap on

several data points. However, all of these efficiencies have a statistically significant

difference (n1 = n2 = 900, p < 0.01; same value for N , different value for np).

The efficiency results indicate that the parallel CLONALG is most efficient for

this character recognition task when the value of N is 40 regardless of how many

processors are used. Still, we find that when np = 2 and the value of N is 40 the

system is able to most efficiently use these two processors.

With our speedup results, we see that with an increase in processors we get

an increase in speedup as we would hope to see. In fact, we actually achieve

better than ideal speedup or superlinear speedup on occasion. Looking at our

efficiency curves we see this is also reflected in the greater than 1.0 efficiency values.
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Figure 5.2.9: Speedup of CLONALG when varying the N parameter (x-axis offset
applied for visual clarity)
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Figure 5.2.10: Parallel Efficiency of CLONALG when varying the N parameter
(x-axis offset applied for visual clarity)
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While this is extremely encouraging from a computational gain point of view, we

should discuss why we may be seeing this “greater” than ideal performance. One

reason is in the way the metrics are assessed. To be completely correct, speedup

and efficiency should be measured against the most efficient serial version of an

algorithm rather than just against the running of the parallel algorithm when

np = 1. However, for these experiments, no fundamental change was made to

the serial version, and running the parallel version with np = 1 is equivalent

to running the serial version. The architecture of the system used for running

these experiments may also have an influence as well. As mentioned earlier, these

experiments were run on a cluster of dual-processor machines. For those processes

run on the same machines (one on each of the two processors), it is likely that

the MPI implementation took advantage of this and used the SMP capacities on

these machines. This would lead to slightly more efficient communication from the

process sharing a machine with the root process. Finally, there is really very little

communication that occurs in the parallel version of this algorithm: the scattering

of the training data to the various processors and a gathering of the developed

memory cells at the end of training. This limited amount of communication means

that the parallel overhead is minimal when compared to the rest of the algorithm.
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5.2.3 Summary and Discussion of Verification

Experiments

This section has presented results from our initial experiments with a parallelized

immune-inspired learning algorithm. With any parallelization, it is important

to asses what impact there is on the quality of the solution. This section used

the data sets originally presented in [32] for this verification stage. As evidenced

initially by figure 5.2.2, we found that our parallel version was giving us the same

output as the serial version. Additionally, we found that varying the user-tunable

parameters had similar effects on both the serial and parallel versions.

Satisfied with the qualitative consistency of the parallel version of CLONALG,

we now turn our attention to the questions of performance. As previously stated,

our primary goal in this study is to determine if parallelizing immune-inspired

learning algorithms can provide computational gains. The results presented here

indicate that there are definite gains to be had by parallelizing CLONALG. Both

the speedup and efficiency results indicate near-ideal benefits from the use of

multiple processors. Our next step is to examine the scalability of this parallel

algorithm. For this, we will introduce simulated data sets that allow us to control

the number of features and number of items used as input for parallel CLONALG.
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5.3 Parallel CLONALG Scalability

To more fully asses the impact of our parallelization scheme on the behavior of

CLONALG, we devised a series of “simulated” experiments on artificial data sets.

These data sets are designed to provide full control on the number of feature (L)

and the number of items (M) in each set. By varying these two characteristics

about the data, we can begin to assess the scalability of this parallel system.

Recall from section 4.1 that by scalability we mean the ability to maintain a given

parallel efficiency while increasing the size of the input along with the number of

processors used. We investigated the scalability of CLONALG in terms of both

the number of input vectors and the number of input features.

5.3.1 Experimental Design

As we saw in section 5.2, the values of the user-tunable parameters have a definite

impact on the overall performance of the algorithm. To limit this impact for our

scalability tests, the value of N and n1 are kept constant at 160 for N (this is

larger than any of the input sets tested) and 32 for n1. Since n2 seemed to have

little impact on the behavior of the algorithm, we set it to 0. When assessing

the scalability with respect to the number of input items, we generated data sets

where the number of features was 64. When assessing the scalability with respect

to the number of features, we generated datasets with the number of input items

constant at 32. The following subsection presents the results from the scalability

experiments. All results presented are an average of thirty runs.
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5.3.2 Results

Figure 5.3.1 shows the effect of varying the number of input vectors on the run

time of parallel CLONALG. This graph is presented as a log-log plot with 3σ error

bars. Table C.0.13 presents these timing results in tabular form.2 As predicted
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Figure 5.3.1: Parallel CLONALG: Effect of Varying the Number of Input Vectors
on Run Time

by equation 5.1.7, an increase in the number of input items has a corresponding

increase in the runtime. This is seen across the board for all number of processors

used. However, we find that as more processors are used the overall run times

decrease.

2Note that we only used up to M processors for any given set of experiments. This accounts
for the “missing” values when np = 16 and M = 8 in these tables in this section.
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Figure 5.3.2 presents parallel efficiency results as a log-linear plot with 3σ error

bars, and tables C.0.14 and C.0.15 present the speedup and efficiency results when

varying the number of input vectors presented to parallel CLONALG. For these
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Figure 5.3.2: Parallel CLONALG: Parallel Efficiency when Varying the Number
of Input Vectors(x-axis offset applied for visual clarity)

efficiency results, we find that for some values there is not a statsitically significant

difference in the efficiencies (n1 = n2 = 900, p ≥ 0.01; same value for M , different

value for np). For example, when M = 64 the parallel efficiency is 0.98 when

using 2, 4, and 8 processors. Given that parallel efficiency is a measure of how

well the system is using the overall processing power available, there is no reason,

necessarily, to expect there to be a difference for how well the parallel algorithm

uses the processing resources.
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Table C.0.14 also indicates the phenomenal performance gains to be had by

increasing the number of processors used. The only limitation is that we cannot

use more processors than we have input items (as seen when using 8 input items).

Nevertheless, these results indicate that parallel CLONALG is definitely scalable

in terms of number of input items.

Figure 5.3.3 shows the effect of varying the number of features on the run time

of parallel CLONALG. This graph is presented as a log-log plot with 3σ error

bars. Table C.0.16 presents these timing results in tabular form.
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Figure 5.3.3: Parallel CLONALG: Effect of Varying the Length of the Input Vector
on Run Time

Again, as predicted by equation 5.1.7, an increase in the number of features

in each input vector results in an increase in runtime. Still, we once again find

computational gains through the use of multiple processors. One item to note

when examining figure 5.3.3 is that we find that for small number of features
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(L ≤ 8) the rate of growth is more linear than the logarithmic growth predicted

in our analysis.

Figure 5.3.4 presents parallel efficiency results as a log-linear plot with 3σ

error bars, and tables C.0.17 and C.0.18 present the speedup and efficiency results

when varying the number of features in each input vector on parallel CLONALG.

Examining figure 5.3.4 we again find that, at times, there is little difference among
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Figure 5.3.4: Parallel CLONALG: Parallel Efficiency when Varying the Length of
the Input Vector (x-axis offset applied for visual clarity)

the parallel efficiencies across our sixteen processors. Interestingly, for all results

there is a peak in accuracy when the number of features is 32. This may indicate

an interesting behavioral characteristic of CLOANALG that it is most efficient

with this number of features.
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5.3.3 Summary and Discussion of Scalability Experiments

The basic scalability experiments presented in this section showed that the parallel

version of CLONALG discussed here is definitely scalable in terms of both number

of input items and the length of the input vector. We are able to maintain

efficiency as we increase the number of processors while also increasing the input

size. Again we see near ideal performance gains from utilizing more processors.

The investigations, to date, do not suggest a limit in these performance gains;

however, a system which is massively parallel with hundreds of processors may

reveal a point where the communication times outstrip the parallel gains.

5.4 Summary and Concluding Remarks

This chapter has shown that even simple parallelization techniques can have a role

in immune-inspired algorithms. Since often the goal of machine learning systems is

to efficiently assist humans in the finding of interesting patterns in large amounts

of data, any techniques that can speed up this process should have value. From our

experiments with CLONALG, we were able to achieve a great deal of reduction

in processing time through some basic parallelization. This is encouraging. Now

that we have established that this application of standard computing technology

will work for an immune-inspired algorithm, the next step in these parallelization

experiments is the development of a parallel version of the AIRS algorithm.



Chapter 6

Parallel AIRS

Having examined in chapter 5 a technique for parallelizing an AIS algorithm,

we now return to the AIRS algorithm introduced in chapter 3 as our primary

example for the development of an immune-inspired learning algorithm.1 Again,

we are exploring the introduction of standard computational concepts in the

overall development of our biologically-inspired algorithm. As with our discussion

of CLONALG, we begin this chapter by examining those areas of the AIRS

algorithm that can be readily parallelized. We discuss the key issues with our

parallelization of AIRS that were not present in CLONALG. Then, we move on to

perform verification experiments with parallel AIRS. Since AIRS is a classification

algorithm, it is important that any changes we make to it do not adversely affect

the classification accuracy. These experiments reveal other concerns that must be

taken into consideration with parallel AIRS. We then examine the scalability of

parallel AIRS through simulated study similar to section 5.3. As in the previous

1This chapter is an extended version of [129].
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chapter with CLONALG, we explore the scalability of AIRS with respect to the

number of features and the number of input vectors.

6.1 Parallelizing AIRS

We begin this section with a quick review of the serial version of AIRS. This is

followed by several schemes for parallelizing this algorithm.

6.1.1 Overview of the AIRS Algorithm

As we saw in chapter 3, AIRS resembles CLONALG in the sense that both

algorithms are concerned with developing a set of memory cells that give a

representation of the learned environment. AIRS also employs affinity maturation

and somatic hypermutation schemes that are similar to what is found in

CLONALG. From AINE, AIRS has borrowed population control mechanisms and

the concept of an abstract B-cell which represents a concentration of identical B-

cells (referred to as Artificial Recognition Balls in previous papers). AIRS has also

adopted from AINE the use of an affinity threshold for some learning mechanisms.

While we do not detail the entire algorithm here again,2 we do want to highlight

the key parts of AIRS that allows for an understanding of the parallelization.

Like CLONALG, AIRS is concerned with the discovery or development of a set of

memory cells that can encapsulate the training data. Basically, this is done in a

two-stage process of first evolving a candidate memory cell and then determining

2See chapter 3 and appendix A for the pseudocode of AIRS.
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if this candidate cell should be added to the overall pool of memory cells. This

process can be outlined as follows:

1. Compare a training instance with all memory cells of the same class and

find the memory cell with the best affinity for the training instance. We

refer to this memory cell as mcmatch.

2. Clone and mutate mcmatch in proportion to its affinity to create a pool of

abstract B-cells.

3. Calculate the affinity of each B-cell with the training instance.

4. Allocate resources to each B-cell based on its affinity.

5. Remove the weakest B-cells until the number of resources returns to a pre-set

limit.

6. If the average affinity of the surviving B-cells is above a certain level,

continue to step 7. Else, clone and mutate these surviving B-cells based

on their affinity and return to step 3.

7. Choose the best B-cell as a candidate memory cell (mccand).

8. If the affinity of mccand for the training instance is better than the affinity

of mcmatch, then add mccand to the memory cell pool. If, in addition to this,

the affinity between mccand and mcmatch is within a certain threshold, then

remove mcmatch from the memory cell pool.

9. Repeat from step 1 until all training instances have been presented.
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Once this training routine is complete, AIRS classifies instances using k-nearest

neighbor with the developed set of memory cells.

6.1.2 Parallelizing AIRS

Having reviewed the serial version of AIRS, we turn our attention to our initial

strategies for parallelizing this algorithm. Our primary motivation for these

experiments is computational efficiency. We would like to employ mechanisms

of harnessing the power of multiple processors applied to the same learning task

rather than relying solely on a single processor. This ability will, in theory, allow

us to apply AIRS to problem sets of a larger scale without sacrificing some of the

appealing features of the algorithm.

Our initial approach to parallelizing this process is the same as the approach

to parallelizing CLONALG presented in chapter 5: we partition the training data

into np (number of processes) pieces and allow each of the processors to train

on the separate portions of the training data. Figure 6.1.1 depicts this process.

Unfortunately, unlike CLONALG which simply evolves one memory cell for each

training data item, AIRS actually employs some degree of interaction between

the candidate cells and the previously established memory cells. Partitioning

the training data and allowing multiple copies of AIRS to run on these fractions

of the data in essence creates np separate memory cell pools. It introduces a

(possibly) significant difference in behavior from the serial version. So, when

studying this parallelism, we must examine not only the computational efficiency
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Figure 6.1.1: Overview of Parallel AIRS

we gain through this use of multiple processors, but we must also learn how

evolving these memory cell pools in isolation of one another affects the overall

performance of the algorithm.

Algorithmically, based on what is described in section 6.1.1, the parallel version

behaves in the following manner:

1. Read in the training data at the root processor.

2. Scatter the training data to the NP processors.

3. Execute, on each processor, steps 1 through 9 from the serial version of the

algorithm on the portion of the training data obtained.

4. Gather the developed memory cells from each processor back to the root

processor.
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5. Merge the gathered memory cells into a single memory cell pool for

classification at the root processor. That is, the same processor used in

step 1.

This parallel procedure forces us to explore a few design decisions. The primary

difference between the parallel and serial version of AIRS are in steps 2 and 5.

The scattering step (step 2) can be performed as we did with our parallelization

of CLONALG. That is, we can randomly divide the training set evenly over the

np processes and then allow each process to proceed as the serial version of the

training algorithm. Since this method of parallelism creates np separate memory

cell pools and since our classification is performed using a single memory cell

pool, we must devise a method for merging the separate memory cell pools into

one pool. As we persent in our verification experiments, there are several methods

for handling this. It is with this method of scattering that we end up with the

most issues concerning the merging step (step 5).

An alternative approach to the parallelization would be to split the data set

in terms of class rather than random even partitions. With this method we could

then remove the interaction that occurs and just dedicate a given process to

evolving the memory cells for a particular class. This has the nice appeal of not

requiring any method for compensating for the lack of global interaction that we

see in our random distribution of training data. However, this limits the amount

of processing power we can utilize to the number of classes in the data set. While

for data sets with a large number of classes this limitation is insignificant, many
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data sets require only differentiating between two classes. This implies that we

could only utilize two processors. We examine this case for potential speedup as

well, but recognize the inherent limitations. Still, this amount of speedup, while

keeping the behavior of the algorithm the same as the serial version, may be well

worth it.

In general, none of our parallel models change the fundamental behavior of the

learning algorithm in terms of our MAD framework. At each individual processing

site, the same model applies as follows:

• Memory: The memory of the AIRS algorithm is in the pool of memory cells

developed through exposure to the training data (experiences);

• Adaptation: The adaptation occurs primarily in the ARB pool. With each

new experience, AIRS evolves a candidate memory cell in reaction to this

experience. If this memory cell is of sufficient quality, then the memory

structure is adapted to include it.

• Decision-making: The initial decision is which one memory cell is most like

the incoming training antigen. This cell is as a progenitor for a pool of

evolving cells. During classification, the primary classification decision is

based on the k most similar memory cells to the data item being classified.

Yet, while this model remains the same at each processing site, the merging

techniques introduce a new, meta-learning component to the entire process.

The memory of the algorithm remains the same; however, the development of

this memory is altered based on how the memory cells are reassembled at the
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root process. Each merging technique (with the exception of the class-based

distribution) exhibits a slightly different model of memory development.

6.2 Verification Experiments

In this section we explore our methods of parallelization empirically by comparing

the results obtained to the original serial versions. For these verification

experiments, as with the experiments presented in section 5.2, we want to assess

the impact our parallelization has on the behavior of the algorithm. Since AIRS

is a classification algorithm, we are initially most concerned with maintaining

classification accuracy. As we are exploring the scattering of the training data

evenly over the np processors, we explore the development of different merging

strategies. We then repeat these experiments but scatter the training data

based on class. This method of scattering does not offer any changes in the

behavioral characteristics of the algorithm and so does not require a special

merging procedure.

6.2.1 Experimental Design

There are two merging strategies we explore here: concatenation and affinity-based

merging. For the concatenation strategy, we simply allow each process to develop

its set of memory cells, and then when these memory cells are gathered back to

the root process, they are all added to the final memory cell pool. While this is an

extremely näıve approach, we find that from a standpoint of computational gain
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and classification accuracy, it works well. The second major merging strategy we

examine is the affinity-based merging. For this strategy, we attempt to be more

intelligent with our merging so that we do not have a large growth of memory cells

in the final classifier, since, as we saw in chapter 3, one of the features of AIRS

was its data reduction capabilities which was exhibited in the number of memory

cells needed in the final classifier to represent the problem space. To this end, we

utilize an affinity-based heuristic similar to what is used in the serial version of

the algorithm for merging the memory cells.

For our class-based strategy, all data assigned to a given process is of the same

class. When fewer processors are used than there are classes, then some processors

are assigned more than one class. However, all of the training data of each class is

kept intact. That is, it is never the case where the same class of data is scattered

to multiple processors. This maintains the same behavioral characteristics of the

serial version.

On a technical note, for the experiments presented in this section, we used the

Iris, Pima Diabetes, and Sonar data sets that were used in previous studies of AIRS

(chapter 3 and [130]). For all of these we took an average over 30 cross-validated

runs and tested the parallel version on an increasing number of processors. In

keeping with previous experiments on these data sets, we used a 5-fold cross-

validation for the Iris data set, a 10-fold cross-validation for the Pima Diabetes

data set, and a 13-fold cross validation for the Sonar data set. A cluster of dual-

processor 2.4Ghz Xeons were used. The Message Passing Interface (MPI)[55, 106]
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Figure 6.2.1: Parallel AIRS: Concatenation: Accuracies (x-axis offset applied for
visual clarity)

was used as the communication library and communication took place over a

Gigabit Ethernet network.

6.2.2 Results

Concatenation

Initially, we simply gathered each of the np memory cell pools at the root processor

and concatenated these into a single large memory cell pool. As tables D.0.1,

D.0.2, and D.0.3 and figures 6.2.1, 6.2.2, and 6.2.3 demonstrate, we were still able

to achieve overall speedup in the process.3 There are a couple of observations to

be made from this initial set of experiments. Foremost, for our current purposes,

3Values in parentheses are standard deviations.
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Figure 6.2.2: Parallel AIRS: Concatenation: Memory Cells
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there is no loss in classification accuracy through our parallelization; therefore, the

most important behavioral characteristic of AIRS—its classification capabilities—

remains unchanged or improved. Looking at the accurarcy results, we find that for

the iris and for the sonar data sets there is no statistically significant difference

in the accuracies when compared to the serial accuracy (iris: n1 = n2 = 150

p ≥ 0.01; sonar: n1 = n2 = 390 p ≥ 0.01).4 We do find a statistically significant

difference when comparing the pima diabetes accuracies obtained with 4, 8, and

16 processors to the serial version (n1 = n2 = 300 p < 0.01); however, the

change is an increase rather than a decrease in accuracy. Additionally, there is

a statistically significant decrease in the overall runtime of the algorithm for two

of the three datasets. For the Diabetes data set the overall runtime decreases

from 3.43 seconds when one processor is used to 1.96 seconds when using sixteen

processors. With the Sonar data set, we find an even greater (proportionally)

decrease in runtime from 54.74 seconds when using one processor to 6.99 seconds

when using sixteen processors. The Iris data set, however, is somewhat anomalous

to this general trend of decreased runtime. The results indicate that for this

data set essentially no runtime gain is to be had through this parallelization.

While there is a statistically significant (p < 0.01) difference when comparing the

runtime for one processor to the times obtained for more than one processor, when

comparing the runtimes obtained with more than one processor with each other

we find no statistically signifcant difference in their values. More than likely this

4Running the concatenation version of merging on one processor is equivalent in formulation
to the original AIRS2 algorithm.
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is due to the relative small size of the data set (only 120 training and 30 test

samples per execution) and the limited number of features in the data set (only

four features per vector). Essentially, the overhead of parallelization counteracts

any gain that could be achieved on such a limited data set. Figures 6.2.4 and 6.2.5

and table D.0.4 provide speedup and efficiency graphs for these experiments.
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Figure 6.2.4: Speedup when Using Concatenation Merging Style (x-axis offset
applied for visual clarity)

These curves are not as promising as the one seen in the previous chapter.

However, these are much more typical of parallel algorithms: as we increase

the number of processors we see a decrease in the efficient utilization of these

processors. With the Diabetes and Sonar data sets we do continue to see a

statistically significant rise in speedup with increased computational power, but

not even this typical trend is exhibited with the Iris data set. With the Iris
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Figure 6.2.5: Parallel Efficiency when Using Concatenation Merging Style (x-axis
offset applied for visual clarity)

data set, there is a statistically signifcant increase in speedup between one and

two processors, and between four and eight processors; however, there is not

a significant differences in the speedup values for two and four processors nor

when comparing speedup for eight and sixteen processors. There is a statistically

signficant decrease in the parallel efficiency values for all of these expereiments.

For AIRS, we might initially assume that the more feature vectors in the training

set, the greater the parallel efficiency. However, this is not the case. The Pima

Diabetes data set has 691 training items in it; whereas, the Sonar data set has only

192 data items in the training set. Yet, examining the parallel efficiency results

for these two data sets reveals that the Sonar data set has much more to gain

from parallelization than does the Pima Diabetes data. The explanation for this
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seeming discrepancy is in the number of features in each feature vector. The Pima

Diabetes data has only eight features per feature vector, whereas the Sonar data

has 60 (Iris has 4 features, incidentally). That our overall runtime (and its parallel

efficiency) is predicated on the number of features in the data set should not be

completely surprising. As with parallel GAs [18], the parallel version of AIRS is

essentially dividing up the work of fitness (or affinity) evaluations. Additionally,

we saw similar trends in section 5.3. For the current version of AIRS, affinity is

determined based on Euclidean distance which is a metric whose evaluation grows

linearly with the number of features. Thus, more gain is seen from data sets with

both a large number of features and a large number of training instances when

applying the parallel version of AIRS.

Affinity-Based Merging: Initial Approach

The results in the previous section exhibited another side-effect of note: with

parallelization comes an increase in memory cells. As seen in tables D.0.1, D.0.2,

and D.0.3, for the Iris data set this is an increase from 63.09 average number of

memory cells for the serial version of the algorithm to 104.53 on average when

using sixteen processors; for the Diabetes data set the increase is from 279.82 to

445.64; and for the Sonar data set the increase is from 173.1 to 189.9 when using

sixteen processors. All of these increases are statistically significant at the 99%

significance level when compared to the one process results. One of the hallmarks

of AIRS has been its data reduction capabilities. As presented in [130], AIRS has

been shown to reduce the amount of data needed to classify a given data set up
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to 75%. This data reduction is measured in the number of memory cells present

in the final classifier. To get an empirical sense of how the size of the memory

cell set effects the classification time, we ran a set of experiments in which we

compared AIRS to k-nearest neighbor (k-nn). Recall, that basic k-nn simply

takes all of the training instances as examples and then classifies the test set

through a majority voting scheme. AIRS first grows a set of memory cells which

are then used to classify the test set. The results from these basic experiments

on the Pima Diabetes data set are given in table 6.2.1 and provide a comparison

between the number of training (Tr) and test cases used, the number of memory

cells developed by AIRS (MC), and the difference in testing (Ttest) and overall

(T) runtime for k-nn and AIRS.

Table 6.2.1: Comparison of Runtimes for KNN and AIRS

Tr Test MC Ttest(KNN) Ttest(AIRS) T(KNN) T(AIRS)

692 77 277.850 0.149 0.072 1.290 3.521
615 153 254.040 0.276 0.115 1.181 3.048
512 256 217.433 0.373 0.154 1.012 2.468

Not surprisingly, when AIRS has greatly reduced the data set, there is a speed-

up in time to classify the test set.5 And, while not presented here, the accuracy

of AIRS and k-nn have, for the data sets examined to date, always been roughly

equivalent or AIRS has performed better (see, for example, table 3.3.1).

5In all fairness, it should be mentioned that the time to train in k-nn is virtually nothing,
whereas the time to train in AIRS can be significant (when compared to 0). However, once the
classifier is trained, it is the classification time that becomes most important as this is the task
for which the classifier has been trained.
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Since the classification speed of AIRS is based on the number of memory cells

in the final pool, it is important to understand what impact parallelizing AIRS

would have on the size of this set. In the serial version of AIRS, the minimum

number of memory cells allowed is the number of classes that exist in the data

set (one memory cell per class), and the maximum number is the number of data

items in the training set, n, (one memory cell per training vector). For the parallel

version, assuming that each process has examples of each class, the minimum at

each process is the number of classes (nc); whereas, the maximum would be n/np.

So, in the concatenation version of merging, the minimum number of memory cells

in the final classifier increases from nc to nc ∗ np. While one might suppose that

the number of memory cells obtained through either the serial or parallel versions

should be the same, it should be remembered that step 1 and (by implication)

step 8 of the serial version depend on interaction with the entire memory cell pool.

This interaction is not available in the current parallel version.

Our second approach to the merging stage is an attempt to minimize the

number of memory cells that resulted from the pure concatenation approach. This

method uses an affinity-based technique similar to step 8 in the serial version to

reduce the size of the final memory cell pool. After gathering all the memory cells

to the root process, they were then separated by class. Within each class grouping,

a pairwise calculation of affinity between the memory cells was performed. If the

affinity between two memory cells was less than the affinity threshold multiplied

by the affinity threshold scalar, then only one of the memory cells was maintained
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in the final pool. That is, if this relation:

affinity(mci,mcj) < AT ∗ ATS (6.2.1)

(where mci and mcj are two memory cells of the same class, the affinity threshold

(AT ) had been calculated across all of the training antigens as shown in equation

6.2.2, and the affinity threshold scalar (ATS) is set by the user) holds true, then

mcj is removed from the memory cell pool.

AT =

∑n
i=1

∑n
j=i+1 affinity(agi, agj)

n(n−1)
2

(6.2.2)

This merging technique was an initial attempt to compensate for the lack of

global interaction the parallelizing process introduced. Tables D.0.5, D.0.6, and

D.0.7 and figures 6.2.6, 6.2.7, and 6.2.8 give results when using this affinity-based

merging. Keeping in mind that we are exploring these well-known data sets

for verification, it is reassuring to initially note that this affinity-based merging

technique has no adverse affect on the classification accuracy. While there is

a statistically significant difference at the 99% significance level between the

accuracies of the baseline version of AIRS (i.e., the concatenation merging style

with one processor) and the accuracies on the Iris data set when using the affinity-

based merging with two, four, and sixteen processors and on the Diabetes data

set when using sixteen processors, these differences are relatively minor in terms
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Figure 6.2.6: Parallel AIRS: Affinity-Based Merging: Accuracies (x-axis offset
applied for visual clarity)
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Figure 6.2.7: Parallel AIRS: Affinity-Based Merging: Memory Cells
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Figure 6.2.8: Parallel AIRS: Affinity-Based Merging: Run Times

of classification performance. Also, examining figures 6.2.9 and 6.2.10 and table

D.0.8, we see similar parallel performance trends to the concatenation results.

In general, there is very little difference in the behavior of the algorithm on

these data sets when using the affinity-based merging scheme when compared to

the concatenation scheme. The two versions behave virtually the same. This

includes the number of memory cells developed. Unfortunately, it appears that

this attempt to maintain a constant memory cell size does not succeed. Since we

are adding more overhead through this affinity based scheme, we would expect

to see a slight drop-off in overall performance. Nevertheless, we still see gains

through the use of multiple processors as evidenced, for example, by a decrease in

runtime for the Diabetes dataset from 3.6 to 2.35 seconds when using one versus

sixteen processors and for the Sonar dataset from 54.8 to 7.2 seconds.
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Figure 6.2.9: Speedup when Using Basic Affinity-Based Merging Style (x-axis
offset applied for visual clarity)

Affinity-Based Merging: Revisited

As we just saw, the basic affinity-based merging technique employed did not

significantly affect the increase in memory cells present in the final classifier.

Clearly, the serial version of AIRS does not need as many memory cells to classify

as accurately, so we would like to find a way to capture this further reduction

in data while still employing our parallel techniques. Examining the increase in

memory cells, there appears to be a roughly logarithmic increase with respect

to an increase in the number of processors used. One method of remedying this

increase in memory cells would be to alter the memory cell replacement criterion

used in the affinity-based merging scheme by a logarithmic factor of the number

of processors. That is, the criterion for removing a given memory cell is no longer
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Figure 6.2.10: Parallel Efficiency when Using Basic Affinity-Based Merging Style
(x-axis offset applied for visual clarity)

as specified in equation 6.2.1, but now the following relation must hold true for

the removal of a memory cell:

affinity(mci,mcj) < AT ∗ ATS + factor (6.2.3)

and factor is defined as:

factor = AT ∗ ATS ∗ dampener ∗ log(np) (6.2.4)

With the “dampener” referred to in equation 6.2.4 being a number between 0

and 1, this change to the merging scheme relaxes the criterion for memory cell

removal in the affinity-based merging scheme by a small fraction in logarithmic
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Figure 6.2.11: Parallel AIRS: Processor Dependent, Affinity-Based Merging:
Accuracies (x-axis offset applied for visual clarity)

proportion of the number of processors used.6 Tables D.0.9, D.0.10, and D.0.11

and figures 6.2.11, 6.2.12, and 6.2.13 below present results when employing this

logarithmic factor to the criterion used in the affinity-based merging scheme.7

The results from this new merging scheme are somewhat inconclusive. Again,

we see no real impact on the classification accuracy. Our goal was to maintain

the number of memory cells in the parallel classifier at a similar level to the

serial version. However, this does not seem to be completely achieved. While the

experiments on the Iris data set (table D.0.9) and the Pima Diabetes set (table

D.0.10) do exhibit a reduction in the number of memory cells in the final classifier,

it is unclear if this reduction would have continued unbounded if we had tested

6Obviously, the initial affinity-based merging scheme presented is just a variation on this new
formulation with a “dampener” value of 0.

7An arbitrary value of 0.2 was used for the “dampener” value for these experiments.
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Figure 6.2.12: Parallel AIRS: Processor Dependent, Affinity-Based Merging:
Memory Cells (x-axis offset applied for visual clarity)
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Figure 6.2.13: Parallel AIRS: Processor Dependent, Affinity-Based Merging: Run
Times (x-axis offset applied for visual clarity)
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on more and more processors. Eventually, with a significant decrease in memory

cells, classification accuracy would decrease as well. On the other hand, with

the Sonar data set experiments (table D.0.11), our new scheme appears to have

achieved the basic goal of keeping the memory cells constant as we increase the

number of processors. There is still a slight rise seen; however, it is not as extreme

as in the previous experiments.

What all of this indicates may be simply that we have introduced another

parameter (the “dampener” in equation 6.2.4) and that we need to determine

the appropriate setting for this parameter for each classification task at hand.

To assess the impact of this new parameter, then, we explored a range of values

on these three benchmark data sets. Tables D.0.12 and D.0.13and figures 6.2.14

and 6.2.15 provide the test set accuracy and number of memory cells developed

when varying this new parameter on the Iris data set, and table D.0.14 and figure

6.2.16 give the run times for this variation. Tables D.0.15, D.0.16, and D.0.17 and

figures 6.2.17, 6.2.18, and 6.2.19 provide these results for the Pima Diabetes data

set, and tables D.0.18, D.0.19, and D.0.20 and figures 6.2.20, 6.2.21, and 6.2.22

are these same results for the Sonar data set. Not surprisingly we see that

an increase in the dampener value reduces the overall memory cell pool size. The

Iris results (Table D.0.13) indicate that with a dampener value of 0.1 we seem

to have achieved stability in the memory cell pool. We cannot definitively draw

this conclusion as there is a slight increase in the number of memory cells with an

increase in the number of processors particularly when comparing the runs with

eight and sixteen processors to the run with one processor. The results for the
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Figure 6.2.14: Iris Results: Varying the “Dampener”: Accuracy (x-axis offset
applied for visual clarity)
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Figure 6.2.15: Iris Results: Varying the “Dampener”: Memory Cells (x-axis offset
applied for visual clarity)
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Figure 6.2.16: Iris Results: Varying the “Dampener”: Run Time (x-axis offset
applied for visual clarity)
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Figure 6.2.17: Pima Diabetes Results: Varying the “Dampener”: Accuracy (x-
axis offset applied for visual clarity)



CHAPTER 6. PARALLEL AIRS 174

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1 1.2

"Dampener"

M
em

or
y 

C
el

ls np=1

2

4

8

16

Figure 6.2.18: Pima Diabetes Results: Varying the “Dampener”: Memory Cells
(x-axis offset applied for visual clarity)
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Figure 6.2.19: Pima Diabetes Results: Varying the “Dampener”: Run Time (x-
axis offset applied for visual clarity)
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Figure 6.2.20: Sonar Results: Varying the “Dampener”: Accuracy (x-axis offset
applied for visual clarity)
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Figure 6.2.21: Sonar Results: Varying the “Dampener”: Memory Cells (x-axis
offset applied for visual clarity)
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Figure 6.2.22: Sonar Results: Varying the “Dampener”: Run Time (x-axis offset
applied for visual clarity)

Pima Diabetes data sets (Table D.0.16) indicate that we have too large a value

for this parameter. This can be deduced by the constant decrease, rather than

a stability, in the memory cell pool size as we increase the number of processors.

Looking at the number of memory cells for the Sonar data set (Table D.0.19)

when the dampener parameter is set to 0.2, we find that we have achieved a

somewhat more stable pool size, although an appropriate setting for this data

set is probably somewhere between 0.2 and 0.4. Additionally, this stability is

accompanied with no statistically significant impact on the predictive accuracy.

Examining the columns in the timing results for these experiments (Tables D.0.14,

D.0.17, and D.0.20) reveals that this decrease in overall memory cell pool size does

not imply a significant decrease in overall runtime for the algorithm. Yet, the
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reduction in the number of memory cells can have an impact on the classification

accuracy as most prominently seen in the Diabetes experiments (Table D.0.15)

when the “dampener” value is 0.8 or higher. Therefore, when using this version

of merging, care must be taken in setting this dampener parameter. It could

be argued that this method of merging does not provide a significant enough

benefit (from a computational or memory efficiency point of view) to offset the

potential for a decrease in classification ability. One positive from these results,

however, can be seen in examining the timing results across the rows. For the

Pima Diabetes and Sonar data sets we still see that increasing the number of

processors does provide a reduction in the overall runtime of the algorithm. Once

again, the use of these parallel techniques on the Iris data set seems to have no

real computational gain.

Figures 6.2.23 and 6.2.24 and table D.0.21 present the parallel performance

metrics for this processor dependent, affinity-based merging when using a

dampening value of 0.2. We see similar trends in these figures as for the

previous two merging schemes, with the Sonar data set seeming to have the most

to gain from the parallelization of the algorithm as its speedup value increases

from 1.68 when using two processors to 7.75 when using sixteen processors. These

graphs again illustrate how the Iris data set receives no real benefit from these

parallelization schemes as the speedup values remain low across the increasing

number of processors.
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Figure 6.2.23: Speedup when Using Processor Dependent, Affinity-Based Merging
Style (x-axis offset applied for visual clarity)

Class Parallelization

This final basic parallel strategy is based on the scatter stage rather than the

gather and memory cell merging. For this method, the training data is scattered

to processes based on class and each process is responsible for evolving memory

cells specific to that class only. As previously mentioned, this limits the number

of processes that are usable to the number of classes in the data set. Tables

6.2.2 present the runtime results when using this method of parallelization on the

Iris (3-class data set), Pima Diabetes (2-class data set), and Sonar (2-class data

set) data sets. Since the division of the training set occurs along class lines, no

fundamental change in the classification or memory cell development compared

to the serial version is expected. For all three data sets we find an increase in the
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Figure 6.2.24: Parallel Efficiency when Using Processor Dependent, Affinity-Based
Merging Style (x-axis offset applied for visual clarity)

Table 6.2.2: Run Times for Class Parallelization
np Iris Run Time(s) Pima Run Time (s) Sonar Run Time (s)

1 0.34(0.05) 3.43(0.12) 54.74(3.03)
2 0.28(0.15) 3.03(0.06) 30.63(7.41)
3 0.23(0.06)

number of processors produces a decrease in the overall run time, with the Sonar

data set realizing the greatest benefit.

6.2.3 Summary and Discussion of Verification

Experiments

This section has presented four different parallelization schemes for AIRS. The

variation among the first three centers around the schemes for integrating the
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memory cells developed at different processors into one memory cell pool useful

for classification. With the first two merging schemes we saw little affect on

the overall classification accuracy; however, there was a definite impact on the

number of memory cells in the final classifier. Only the processor dependent,

affinity-based merging scheme really addressed this issue. However, care must be

taken when using this scheme to choose an appropriate value for the “dampener”

parameter. The fourth scheme examined a different type of parallelization. Rather

than trying to solve the memory cell integration problem posed by the random

scattering of the data to individual processes, this final methods scattered the

data along class lines. While this removes the serial dependencies of the other

methods, it introduces inherent limitations. In the following section we examine

this scheme for data sets that have more classes than the 2- and 3-class data sets

explored in these verification experiments.

From a computational gains point of view, there seems to be no general

conclusions we can make about the benefits of using parallel AIRS versus serial

AIRS. For the Sonar data set, we see clear runtime gains through the use of

multiple processors. For the other two data sets, we do find some gains, but these

are much more modest. In our scalability experiments presented in section 6.3 we

find that, in fact, our current models of parallelizing AIRS offer us very little in

terms of stability of computational gains. In the next section, we see that AIRS

does not appear to be scalable in terms of the number of training vectors nor in

terms of the number of features in each vector. Nevertheless, despite this parallel

system’s instability, there are definite computational gains to be had. This was
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evidenced with both the Sonar and Diabetes data sets in this section and is echoed

in our scalability tests presented in the following section.

6.3 Parallel AIRS Scalability

To more fully assess the impact of our parallelization scheme on AIRS, we devised

a series of “simulated” experiments on artificial data sets. These experiments are

designed to echo the scalability investigations performed on our parallel version

of CLONALG (section 5.3).

6.3.1 Experimental Design

To generate our datasets for the experiments varying the number and length of the

input vectors, we utilized Powell Bendict’s DGP-2 data generation program for

inductive learning tasks [7]. This program is designed to produce synthetic data for

testing learning algorithms. It allows the user to specify the number of features in

each data instance, the amount of data, and the number of “peaks” (or centroids)

to be used for the positive data examples. The program then generates synthetic

data with both positive and negative examples based on these user parameters.

Figure D.0.1 gives the parameter settings we used for these experiments. The

only variation was, naturally, the number of features or the number of vectors

produced. For the experiments varying the number of training vectors, we kept

the number of features constant at 64. For the experiments varying the number of

features, we maintained the number of training vectors at 256. We did an average
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of 30 runs of 5-fold cross validation; so n1 = n2 = 150. The number of test data

items was relative to the number of training vectors such that T = N
4
, where T

is the number of test data items and N is the number of training data items. All

experiments utilized the processor dependent, affinity-based merging scheme with

a dampener value of 0.1.

For the class division experiments, we used the data sets examined in [51].

These data sets consisted of feature vectors with two features and were created

by dividing image files into class regions. Data sets with 3, 5, 8, and 12 classes

were used.

6.3.2 Results

Varying the Number of Training Items

Table D.0.22 and figure 6.3.1 give the run times and table D.0.25 and figures

6.3.2 and 6.3.3 provides the speedup and parallel efficiency measures on the

simulated data for parallel AIRS when varying the number of training instances.

Examining these results we see as discussed in section 3.5.3 that an increase

in the number of training vectors leads to an increase in the overall runtime.

Additionally, just investigating table D.0.22, we do find a decrease in overall

runtime with the increase in processing power. These computational gains are

dependent on the number of training vectors being used. For example, when only

32 training instances are available, there is virtually no benefit from the use of

multiple processes. However, as the number of training instances increase, the
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Figure 6.3.1: Parallel AIRS: Run Times when Varying the Number of Training
Vectors (x-axis offset applied for visual clarity)
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Figure 6.3.2: Parallel AIRS: Speedup when Varying the Number of Training
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Figure 6.3.3: Parallel AIRS: Parallel Efficiency when Varying the Number of
Training Vectors (x-axis offset applied for visual clarity)

benefits from parallelization also increase. This is the tale echoed in table D.0.25.

While this table does indicate that this parallel version of AIRS is not scalable

with respect to the number of training vectors, table D.0.22 still demonstrates

clear gains when using the parallel version of AIRS. That is, even though we

are not able to maintain a given level of efficiency with an increase in input size

being accompanied by an increase in the number of processors, this potentially

only impacts the predictability of this parallel system’s performance and does not

discount the potential time savings to be had.

While not the focus of these current experiments, tables D.0.23 and D.0.24

and figures 6.3.4 and 6.3.5 present the changes in the accuracy and number of

memory cells developed when varying the number of input vectors.



CHAPTER 6. PARALLEL AIRS 185

-20

0

20

40

60

80

100

120

140

10 100 1000

Training Vectors

T
es

t S
et

 A
cc

ur
ac

y np=1

2

4

8

16

Figure 6.3.4: Parallel AIRS: Accuracy when Varying the Number of Training
Vectors (x-axis offset applied for visual clarity)
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Figure 6.3.5: Parallel AIRS: Memory Cells when Varying the Number of Training
Vectors (x-axis offset applied for visual clarity)



CHAPTER 6. PARALLEL AIRS 186

Not surprisingly, more memory cells are developed with more training items.

However, there appears to be no real trend with regards to the accuracy rates and

more training examples.

Varying the Number of Features

Table D.0.26 and figure 6.3.6 give the run times and table D.0.27 and figures 6.3.7

and 6.3.8 provide the speedup and parallel efficiency measures on the simulated

data for parallel AIRS when varying the length of the input vector. Again, we
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Figure 6.3.6: Parallel AIRS: Run Times when Varying the Length of the Input
Vectors (x-axis offset applied for visual clarity)

see an increase in processing time with an increase in the number of features.

While we do find a decrease in overall runtime with an increase in the number

of processors, examining table D.0.27 reveals that this version of parallel AIRS

does not appear to be scalable with respect to the number of features, either.
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Figure 6.3.7: Parallel AIRS: Speedup when Varying the Length of the Input Vector
(x-axis offset applied for visual clarity)
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Figure 6.3.8: Parallel AIRS: Parallel Efficiency when Varying the Length of the
Input Vector (x-axis offset applied for visual clarity)



CHAPTER 6. PARALLEL AIRS 188

0

20

40

60

80

100

120

1 10 100 1000

Vector Length

T
es

t S
et

 A
cc

ur
ac

y np=1

2

4

8

16

Figure 6.3.9: Parallel AIRS: Accuracy when Varying the Length of the Input
Vectors (x-axis offset applied for visual clarity)

Nevertheless, as seen when varying the number of input vectors, there are still

gains to be had through the use of this parallel version of AIRS. Interestingly, the

number of features has a fairly large impact on AIRS’s performance as a classifier

as shown in tables D.0.28 and D.0.29 and figures 6.3.9 and 6.3.10 Table D.0.28

shows that as the number of features increases the accuracy of AIRS decreases;

however, there is a less obvious trend with respect to the number of memory cells

developed (see figure 6.3.10).

Varying the Number of Classes

For this final scalability test, we examined the use of the class-division style of

parallelization on data sets with multiple-classes. Table 6.3.1 gives the results on

the data sets in [51] which have varying number of classes.
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Figure 6.3.10: Parallel AIRS: Memory Cells when Varying the Length of the Input
Vectors (x-axis offset applied for visual clarity)

These results indicate that some computational gains can be had for problems

with multiple-numbers of classes using our class-division style of parallelization.

Of course, these data sets were only two-featured data sets; still, this benefit should

only increase with an increase in the feature space. One slightly misleading feature

of table 6.3.1, however, is that the data set had an even distribution of the data

across all of the classes. In most real-world applications this is seldom the case.

Interestingly, we do not find the most efficient use of our processing power when

setting the number of processors used equal to the number of classes as we might

first suspect. Yet, we do find the most overall decrease in runtime by using the

maximum number of processors possible



CHAPTER 6. PARALLEL AIRS 190

Table 6.3.1: Parallel AIRS: Class Parallelization
np time (s) S Ep

3-classes 1 2.96(0.24) 1.00(0.00) 1.00(0.00)
2 2.41(0.04) 1.23(0.10) 0.61(0.05)
3 1.78(0.04) 1.66(0.14) 0.55(0.05)

5-classes 1 2.91(0.04) 1.00(0.00) 1.00(0.00)
2 2.19(0.05) 1.33(0.03) 0.67(0.02)
4 1.83(0.03) 1.59(0.04) 0.40(0.01)
5 1.51(0.04) 1.92(0.05) 0.38(0.01)

8-classes 1 2.91(0.03) 1.00(0.00) 1.00(0.00)
2 2.26(0.03) 1.29(0.02) 0.64(0.01)
4 1.66(0.05) 1.76(0.05) 0.44(0.01)
8 1.50(0.05) 1.94(0.06) 0.24(0.01)

12-classes 1 2.92(0.05) 1.00(0.00) 1.00(0.00)
2 2.11(0.04) 1.38(0.03) 0.69(0.02)
4 1.62(0.04) 1.81(0.05) 0.45(0.01)
8 1.46(0.11) 2.00(0.10) 0.25(0.01)
12 1.27(0.06) 2.29(0.10) 0.19(0.01)

6.3.3 Summary and Discussion of Scalability Experiments

In this section we examined parallel AIRS in terms of its scalability with respect

to the number of input vectors, the number of features, and the number of classes.

While the results, in general, were not very encouraging with respect to the ability

of AIRS to scale to large-scale data sets, there were runtime benefits despite

this potential instability. We find decreases in overall runtime by increasing the

number of processors. Yet, the efficient use of the parallel resources does not keep

pace with the increased overhead from using these resources. This is particularly

true of the parallel schemes that require a complex memory cell merging procedure.

For the tests examining data sets with multiple classes, we find that the class-

division form of parallelization offers more efficient use of the processing power.
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The tests sets used here, however, were artificial and designed to distribute the

classes evenly across the data set. While it is encouraging that this form of

parallelization provides stable gains, most real-world data is not as “neat” as

these test sets. In general, as we saw with our verification experiments, our

current models of parallelizing AIRS appear too limited to fully take advantage

of the additional computation resources. Still, there are gains to be had, and the

accuracy has been maintained while achieving this speedup.

6.4 Summary

Our goal with this chapter was to explore ways of exploiting parallelism in

an artificial immune system for decreased overall runtime. Using a very

basic mechanism for this parallelism, we have seen that there are modest

benefits (computationally, at least) from this exploration. One side-effect of our

parallelization of AIRS was that its final predictive model increased in size. We

explored mechanisms for reducing this size to something more comparable with

the serial version.

The need to gather the memory cells into a central location proved to be a

bottleneck for our algorithm. The various mechanisms we examined for merging

the memory cells developed at distributed sites to our root process did not

provide completely satisfying results, but they did offer an initial blueprint for

experimenting with this standard computing technology. This raises the question

of the necessity of gathering the memory cells at all. The biological immune system
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is inherently distributed, and yet, it is still capable of successfully identifying

antigens and reacting with them in an appropriate manner. In the next chapter,

we explore a basic way of exploring this distributed nature by adapting AIRS to be

a more distributed algorithm. This proves to provide greater computational gains

than our current parallel algorithm. Additionally, it raises a host of new questions

concerning the possibilities of this technique for use as a learning algorithm.



Chapter 7

Distributed AIRS

As we saw in the last chapter our initial approaches to utilizing multiple processors

on the AIRS learning algorithm provided mixed results. While the methods

explored allowed us to maintain classification accuracy and provided modest

computational gains, the parallel efficiency of those modifications were less than

desirable. Additionally, three of the methods had to address the question of

memory cell merging once the individual processes had finished training. Keeping

with our theme of the developmental process of a biologically-inspired algorithm,

in this chapter we return to the next source of inspiration from biology: the

decentralized nature of the immune system. While we still are exploiting standard

computational techniques, we introduce a distributed processing version of AIRS

that allows us to explore this biological concept in more detail.

In our previous parallelization schemes we were extremely focused on the

gathering and merging of the memory cells at the root process. We felt this

memory cell merging was necessary in order to preserve the final predictive model

193
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that was so attractive in the serial version of AIRS. However, if we remove this

self-imposed goal of maintaining a single pool of memory cells, we can explore

more interesting options.

This chapter examines a different slant on parallelizing the AIRS algorithm.

Rather than viewing the goal of our parallelization as developing a memory

representation identical to the serial version, we now choose to exploit the behavior

of the entire parallel system. If we treat the entire parallel system as a learning

model, rather than just a memory cell generation factory, we can offer much

more solid computational gains. This approach also has the attractive feature of

pointing us to a more distributed AIS algorithm. Since biological immune systems

do not have one central antigen identification location, we would like to explore

algorithms that also are divorced of this idea. This decentralized view would also

allow us to explore more fully the ability of the system to develop a localized

response. This would be achieved through localized learning, as well. So beyond

just a global evaluation, the local evaluation can provide interesting information

about the nature of the learning system, also.

We begin this chapter by providing an overview of this new distributed version

of AIRS. We highlight here the changes made to our parallelization of AIRS

and the implications these have in terms of classification. We follow this with

a series of experiments that echo the ones presented in chapter 6. We find that

our computational gains are much greater through this distributed approach and

that our new version of AIRS is much more scalable. Yet these changes present

several question with regards to the purpose of the AIRS algorithm. We conclude
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this chapter with a discussion of how this new version of AIRS provides for the

potential for more biologically plausible immune algorithms.

7.1 A Distributed Approach

As previously mentioned, the reaction of the biological immune system to incoming

antigens takes place in numerous places throughout the body. Unlike the nervous

system which is centrally located, there is no one site that we can point to as the

source of all immune responses. Immunological components circulate throughout

the system and react in place as needed. We would like to be able to capture this

idea in our artificial immune algorithms as well. Our new approach to exploiting

increased computational resources for AIRS begins this process.

We start with a simple model of distribution. For this method, we begin as

with the previous parallel version of AIRS by distributing a random subset of the

training data to each process. We continue, as before, by allowing each process

to react to this subset of data with the usual AIRS training routine. However,

unlike in our previous approach, we no longer gather the developed memory cells

back to the root process. Instead, we now view the entire parallel system as a

distributed classifier with multiple classification sites. Some of these sites may be

better trained to handle certain classes of the data than others. This is in keeping

with our biological systems where there is a need for cell recruitment to certain

areas that are under attack if the cells currently at that location are not trained

to handle the given invader. We wdo not tackle the issue of recruitment and the
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communication of developed memory cells at this time. Rather, we focus only on

allowing each processing site to develop its own miniature model of the data set

based on its training subset.

For classification, we again distribute the test data throughout the parallel

system. This may lead to uneven classification of some data items if the data

items are assigned to sites that are not as equipped to recognize them as others

sites may be. Nevertheless, we can then evaluate the performance of the system

globally on the test data. We can also investigate the local reactions made by

each processing site to its assigned pieces of data.

This introduces the need for multiple ways of assessing the performance of

the system. As in our previous experiments, one of our chief concerns is the

runtime of the system. We want to examine how utilizing more processing power

increases our computational gains. We can also still grade the performance of

the entire system based on the same classification criterion used earlier. However,

the introduction of this distributed memory and reaction model means that we

also want to assess the performance at the local level as well. To this extent, we

examine the classification capabilities of individual processors on their randomly

assigned data. Eventually, this could lead to a network or recruitment based model

in which individual populations of memory cells can pass on their classifications

and their degrees of confidence in that classification. For now, however, we present

a model that is divorced of any interaction other than the initial scattering of the

data.
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Returning to our MAD framework for learning, we find that the core

characterization of AIRS does not change. However, as with our parallel version

presented in chapter 6, the final memory model and subsequent decisions based on

this model do need to be reevaluated. Each processing site continues to develop its

own set of memory cells in the same way as the serial version of AIRS. However,

the decision that the system makes concerning a given input is now completely

decentralized. While the mechanics of this decision remain the same (i.e., an

affinity based approach involving the closest memory cells), the memory structure

itself has been altered due to less information available at any one given site. For

the current formulation, each site remains limited in this way; however, this is only

an initial prototype step. A next step in the evolution of this algorithm could be

to incorporate meta-learning strategies or other distributed learning approaches

to the disparate memory models [15, 21], or it could be to examine communication

strategies available in the immune system, such as cytokine networks or immune

network models, to more fully integrate the localized reactions of the system.

7.2 Verification Experiments

We begin by performing similar experiments to those presented in section 6.2

on our three machine learning benchmark data sets. We want to examine both

the global and local performance of our new classifier. Additionally, we are still

concerned with computational gains, and this is presented here as well.
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7.2.1 Experimental Design

For these experiments, we are utilizing the same data sets and processing

architecture discussed in section 6.2.1. Again, we perform averages over 30 runs

of multiple-way cross-validation.

In order to assess the performance of this new formulation, we offer several

metrics. We begin with the global accuracy of the system. This is measured

by counting the number of correctly classified test items at each processor and

dividing it by the total number of test items distributed to the system. While

this global accuracy is not identical to that achieved through a single merged

memory cell pool, it does provide a quick overview of how, on average, the system

would react to a random data item presented to a random processing site. We

then examine the local accuracy. For this, we report the average minimum local

accuracy and the average maximum local accuracy. That is, for each run we

record which site did the poorest on its assigned test data and which did the best.

We also explore the size of the memory model developed. We look globally at

the number of memory cells developed throughout the system, and we also look

at the minimum and maximum number of memory cells developed at individual

sites. Finally, we look at the parallel performance characteristics. In keeping with

our goals of achieving faster and more efficient processing, we measure the average

run times, speedup, and parallel efficiency of the system.
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7.2.2 Results

Tables 7.2.1, 7.2.2, and 7.2.3 give the global accuracy and memory cells developed

from this distributed version of AIRS on the Iris, Pima Diabetes, and Sonar data

sets.

Table 7.2.1: Distributed Iris: Global Accuracy
np Accuracy MCs
1 95.16%(3.06) 63.11(4.70)
2 94.56%(3.98) 74.15(4.53)
4 94.38%(4.59) 84.17(4.12)
8 93.53%(4.04) 95.49(3.56)
16 88.33%(4.88) 104.49(2.91)

Table 7.2.2: Distributed Pima Diabetes: Global Accuracy
np Accuracy MCs
1 73.00%(4.40) 279.04(10.11)
2 72.29%(5.00) 317.44(11.00)
4 71.80%(4.75) 358.16(11.39)
8 71.67%(5.06) 400.03(11.63)
16 69.24%(5.15) 445.96(11.06)

Table 7.2.3: Distributed Sonar: Global Accuracy
np Accuracy MCs
1 84.79%(8.15) 173.11(3.62)
2 78.81%(9.00) 179.89(3.04)
4 72.61%(11.24) 184.65(2.41)
8 66.97%(11.64) 187.80(1.90)
16 61.94%(12.28) 190.05(1.25)

For all of these results we see a drop-off in this measure of global accuracy

as we increase the number of processing sites. However, what this actually
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means as far as the classification performance of our new algorithm is less clear.

As we mentioned in section 7.2.1, this metric is not exactly equivalent to the

accuracy measures for AIRS when using a global memory cell set. This is merely

a measurement of the sum of the number of correctly classified items at each

processing site divided by the total number of test items distributed throughout

the system. Section 7.2.3 provides more discussion into this matter.

Tables 7.2.4, 7.2.5, and 7.2.6 provide the average minimum and maximum test

set accuracies and minimum and maximum number of memory cells developed at

individual processing sites for distributed AIRS on our three bench mark learning

problems.

Table 7.2.4: Distributed Iris: Local Accuracy
np Min. Acc. Max. Acc. Min MCs Max MCs
1 95.16%(3.06) 95.16%(3.06) 63.11(4.70) 63.11(4.70)
2 90.58%(7.25) 98.53%(2.88) 35.11(2.81) 39.03(2.48)
4 87.36%(8.88) 99.42%(2.65) 18.83(1.43) 23.45(1.52)
8 64.94%(20.24) 100.00%(0.00) 9.56(1.00) 14.03(0.70)
16 19.00%(29.92) 100.00%(0.00) 4.80(0.60) 7.92(0.27)

Table 7.2.5: Distributed Pima Diabetes: Local Accuracy
np Min. Acc. Max. Acc. Min MCs Max MCs
1 73.00%(4.40) 73.00%(4.40) 279.04(10.11) 279.04(10.11)
2 67.83%(6.20) 76.75%(5.39) 154.71(6.51) 162.73(6.20)
4 60.62%(7.69) 82.40%(5.78) 83.33(3.94) 95.62(3.89)
8 48.87%(9.87) 90.42%(7.05) 43.76(2.68) 55.85(2.39)
16 30.33%(12.71) 99.40%(3.42) 22.73(1.53) 32.98(1.48)

What this metric provides is a glimpse of the range of reactions by individual

processors to their assigned data sets. Again, we see the widest range of values
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Table 7.2.6: Distributed Sonar: Local Accuracy
np Min. Acc. Max. Acc. Min MCs Max MCs
1 84.79%(8.15) 84.79%(8.15) 173.11(3.62) 173.11(3.62)
2 70.64%(12.10) 86.99%(9.60) 88.66(2.02) 91.23(1.58)
4 48.40%(18.25) 94.55%(10.64) 44.86(1.04) 47.39(0.63)
8 19.62%(24.44) 100.00%(0.00) 22.39(0.65) 24.00(0.05)
16 0.00%(0.00) 100.00%(0.00) 11.06(0.38) 12.00(0.00)

for the maximum number of processors. We discuss this further in section 7.2.3.

Figures 7.2.1, 7.2.2, and 7.2.3 present these accuracy measurements as log-linear

graphs with 3σ error bars, and figures 7.2.4, 7.2.5, and 7.2.6 present the memory

cells results.

Finally, tables 7.2.7, 7.2.8, and 7.2.9 and figures 7.2.7, 7.2.8, and 7.2.9 provide

the parallel performance of the distributed version of AIRS on our three learning

problems.

Table 7.2.7: Distributed Iris: Parallel Performance
np time (s) S Ep

1 0.33(0.04) 1.00(0.00) 1.00(0.00)
2 0.17(0.03) 1.96(0.28) 0.98(0.14)
4 0.17(0.07) 2.19(0.77) 0.55(0.19)
8 0.17(0.08) 2.36(1.01) 0.29(0.13)
16 0.22(0.13) 1.84(0.87) 0.12(0.05)

Here we find much more solid parallel gains than seen in chapter 6. Once

again, we see inconclusive results Iris data set: it is simply too small and too easy

of a classification task to gain much from the use of multiple processors. That is,

the time to setup the communication fabric and distribute the data items to the

individual processors is greater than the actual time to classify the data. However,
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Figure 7.2.1: Distributed AIRS: Iris: Accuracies (x-axis offset applied for visual
clarity)
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Figure 7.2.2: Distributed AIRS: Pima Diabetes: Accuracies (x-axis offset applied
for visual clarity)
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Figure 7.2.3: Distributed AIRS: Sonar: Accuracies (x-axis offset applied for visual
clarity)
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Figure 7.2.4: Distributed AIRS: Iris: Memory Cells (x-axis offset applied for visual
clarity)
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Figure 7.2.5: Distributed AIRS: Pima Diabetes: Memory Cells (x-axis offset
applied for visual clarity)
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Figure 7.2.6: Distributed AIRS: Sonar: Memory Cells (x-axis offset applied for
visual clarity)
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Figure 7.2.7: Distributed AIRS: Run Times (x-axis offset applied for visual clarity)
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Figure 7.2.8: Distributed AIRS: Speedup (x-axis offset applied for visual clarity)



CHAPTER 7. DISTRIBUTED AIRS 206

Table 7.2.8: Distributed Pima Diabetes: Parallel Performance
np time (s) S Ep

1 3.34(0.06) 1.00(0.00) 1.00(0.00)
2 1.36(0.05) 2.46(0.09) 1.23(0.05)
4 0.67(0.07) 5.07(0.44) 1.27(0.11)
8 0.38(0.11) 9.17(1.55) 1.15(0.19)
16 0.31(0.11) 11.46(2.34) 0.72(0.15)

Table 7.2.9: Distributed Sonar: Parallel Performance
np time (s) S Ep

1 54.84(3.07) 1.00(0.00) 1.00(0.00)
2 32.10(1.94) 1.71(0.14) 0.86(0.07)
4 18.50(1.32) 2.98(0.27) 0.74(0.07)
8 10.78(0.81) 5.11(0.47) 0.64(0.06)
16 6.30(0.62) 8.79(0.97) 0.55(0.06)

for our other two data sets we continue to see runtime improvement through the

use of our parallelization schemes.

7.2.3 Discussion

The accuracy results presented above raise some potentially troubling questions

about this distributed version of AIRS. The behavior exhibited is not surprising.

An increase in the number of processing sites decreases the amount of data

each site has available for learning. With fewer examples to learn from, the

generalizations possible at the individual site are much more limited. That is,

with a more incomplete picture of the world, each site’s model of the world is also

less complete. So, how then, should we view these results? Do they indicate that

this approach is useless?
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Figure 7.2.9: Distributed AIRS: Parallel Efficiency (x-axis offset applied for visual
clarity)

One way of addressing these issues would be through a re-formulation of the

approach. Looking at tables E.0.1, E.0.2, and E.0.3 and figures 7.2.10, 7.2.11, and

7.2.10 we find that the distributed version of AIRS is capable of classifying the

training data, both at a global and at a local level.

Since AIRS is a supervised learning algorithm, we could embody this

knowledge somehow at each processing site. That is, each site can keep track

of what type of data (i.e., what classes of data) it has been trained on and its

individual performance on that data. This knowledge could then be used in a

more global reaction sense. That is, when an individual site is asked to classify

some piece of data, it could do so while attaching a degree of confidence to that

classification. This degree of confidence could be based on the data’s similarity



CHAPTER 7. DISTRIBUTED AIRS 208

50

60

70

80

90

100

110

1 10 100

Number of Processors

T
ra

in
in

g 
Se

t A
cc

ur
ac

y

Global

Local: Min

Local: Max

Figure 7.2.10: Distributed AIRS: Iris: Training Set Accuracies (x-axis offset
applied for visual clarity)
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Figure 7.2.11: Distributed AIRS: Pima Diabetes: Training Set Accuracies (x-axis
offset applied for visual clarity)
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Figure 7.2.12: Distributed AIRS: Sonar: Training Set Accuracies (x-axis offset
applied for visual clarity)

to the training data seen at that particular site as well as the individual site’s

ability to classify that training data. The site could then pass on this confidence

to other sites within the system. Basically, what we are proposing is that there

could be more interaction among the processing sites, rather than the simple

limited isolation in the current model. This approach would not be an attempt to

reformulate a global memory cell pool presented in chapter 6. Rather, we could

begin to model local interactions, define areas of communication, and introduce

concepts of a topology of reaction to a given test data item. This would allow

certain sites to share information with other sites, which is more akin to the

biological model, while limiting the need for global communication, which is not

as biologically plausible.
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7.3 Scalability

This section presents scalability tests of distributed AIRS. Again, our chief concern

is parallel performance.

7.3.1 Experimental Design

For these tests we used the same data sets as in section 6.3. Again we performed

30 runs of 5-fold crossvalidation. We examined the parallel performance of

distributed AIRS as we varied the number of training vectors and the number

of features in these training vectors.

7.3.2 Results

Varying the Number of Training Items

Table E.0.4 and figure 7.3.1 give the runtimes and table E.0.5 and figures 7.3.2 and

7.3.3 provide the speedup and parallel efficiency measures on the simulated data

for distributed AIRS when varying the number of training instances. The number

of test data items is N
4
. Unlike the similar results presented in section 6.3, these

experiments show that the distributed version of AIRS is scalable in terms of the

number of training items used. Again we see that an increase in the number of

training vectors increases the runtime, but this increase can be counteracted by

an increase in the number of processors used. Interestingly, while we see very

small runtimes for these experiments, we also find a high degree of variability

as noted by the large error bars. In fact, for some of the runtimes there is no
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Figure 7.3.1: Distributed AIRS: Run Times when Varying the Number of Training
Vectors (x-axis offset applied for visual clarity)
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Figure 7.3.2: Distributed AIRS: Speedup when Varying the Number of Training
Vectors (x-axis offset applied for visual clarity)
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Figure 7.3.3: Distributed AIRS: Parallel Efficiency when Varying the Number of
Training Vectors (x-axis offset applied for visual clarity)

distinguishable difference between running the same dataset on more processors.

Still, the general trend with these results is that an increase in processing power

coupled with an increase in data size leads to scalable efficiency

Varying the Number of Features

Table E.0.6 and figure 7.3.4 give the run times and table E.0.7 and figures 7.3.5

and 7.3.6 provide the speedup and parallel efficiency measures on the simulated

data for distributed AIRS when varying the length of the input vector. As

with the results seen when varying the number of input items, we find that our

distributed version of AIRS appears to scale well when increasing the number of

features in the data set. The fundamental relationship between the runtime and

the number of features has not changed. That is, with an increase in the number
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Figure 7.3.4: Distributed AIRS: Run Times when Varying the Length of the Input
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Figure 7.3.6: Distributed AIRS: Parallel Efficiency when Varying the Length of
the Input Vector (x-axis offset applied for visual clarity)

of features in the data set there is a corresponding increase in the runtime of

the system. However, unlike the results seen for the parallel version presented in

section 6.3, these results indicate scalability in the distributed system.

7.3.3 Discussion

This section has demonstrated that our distributed version of AIRS is much more

scalable in terms of the number of training items and number of features in

the data set than was parallel AIRS. Tables E.0.8 through E.0.19 in appendix

E provide the global and local accuracy measures for these experiments along

with the number of memory cells developed. As discussed in section 7.2.3, the

interpretation of these “accuracy” numbers is somewhat problematic. However,
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what they do reveal is this continued sense of a local reaction. This lack of

global interaction together with the development of locally learned models and

local reactions is much more biologically appealing. Couple this with the stable

performance gains, and the distributed version of AIRS offers interesting areas of

exploration. Still, one of the key issues that must be addressed is how to utilize

these local reactions for solving real-world problems.

7.4 Discussion

This distributed version of AIRS presented in this chapter offers a basic alternative

model to using multiple processors when compared to the parallel version discussed

in chapter 6. While this model is undeniably faster, its usefulness as a classifier

is much more difficult to assess. One of the goals from using this approach

was to remove the need for global interaction that was present in previous

parallel versions. By doing this, we begin to explore the distributed concepts

exhibited in biological immune systems. However, this also possibly limits the

predictive capabilities of the system. This distributed design presented here is,

admittedly, limited in scope. It removes all interactions among processing sites

in the development of individual miniature world views at each site. One way of

extending this work and recapturing some of the predictive capabilities of AIRS

would be to allow for communication among the sites. While all of the interaction

in our parallel model occurred on a global level, we could develop more local

interactions. In this way we could begin to simulate cell recruitment and the
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diversity of reactions seen in the biological system. While this again may impact

our overall runtime, it may offer us more insight into our learning task.

Another key aspect that this distributed approach could allow us to investigate

is that of emergence. Much of the field of immune-inspired learning has focused

on the engineering of desired behavior into the given system. If what is needed

is a classification algorithm, then the biological metaphors are manipulated

or engineered to provide this behavior. However, this is counter-intuitive to

the development of the biological system itself. Within the immune system

the properties that computer scientists find so attractive are in fact emergent

properties of the system as a whole. It is through the distributed, diverse reactions

of the system that the cognitive capabilities of learning emerge. A distributed

approach to learning with local reactions leading to global interaction can provide

a truer path to exploring ways that these attractive characteristics evolve and

emerge apart from the a priori intent engineered into such a system.

7.5 Summary

This chapter presented a distributed version of AIRS as an alternative approach

to utilizing multiple processes in an AIS learning algorithm. The results presented

here indicate faster processing of the data. However, this decrease in run times

is also associated with a seeming decrease in classification accuracy. We have

argued that this distributed approach should be seen as a first step along the

path to developing more complex and diverse immune algorithms. The biological
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immune system is decentralized in its reactions, and we have begun to capture

that idea here. The next chapter expands on these areas of future work and offers

concluding remarks for this thesis.



Chapter 8

Conclusions and Future Work

We began this discussion by arguing that the development of thinking, intelligent

machines has been a fundamental quest for computer science since virtually its

inception. One of the hallmarks of human intelligence, we claim, is the ability

to learn—that is the ability to improve with experience. The field of machine

learning is vast and has been widely studied. Yet, we are always looking for

better learning programs. We do this for a couple of reasons. One reason is that

we have real world problems that we would like to have computers solve for us.

Many of these problems would be too labor-intensive (and possibly monotonous)

to have human experts take the time to address them. This is particularly true

given the large amounts of digital data that we are now able to collect. Having

our machines solve these problems automatically, or at least partially solve them,

would be invaluable. The second reason is an inquiry into the nature of learning

and intelligence itself. Simply through the process of developing programs that

218
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learn, we discover more about the nature of our own intelligence and capabilities

to learn.

We spent the majority of this thesis looking at one avenue for the development

of learning algorithms: we examined how the immune system seems to exhibit

many characteristics that are necessary for learning. We then showed how

these mechanisms and characteristics could be harnessed as metaphors for

developing learning algorithms. This chapter provides a summary overview of

this investigation into the use of immunological metaphors for developing learning

algorithms, details the contributions offered by this thesis, and points to avenues

for the future of this work.

8.1 Goals Revisited

The hypothesis of this work was that the mechanisms of the human immune

system coupled with standard computing technology could be exploited in the

development of machine learning algorithms. While investigating this hypothesis,

we identified the need within the field of immune-inspired learning for the

exploration of the use of parallel and distributed computing techniques. To achieve

our goals, we examined basic immunological components and then answered

the question “How can these be used for learning algorithms?” We proposed

serial, parallel, and distributed learning algorithms that demonstrated that

immunological metaphors can be used to develop successful learning algorithms.
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8.2 Summary of the Thesis

8.2.1 Immune Learning

We began this thesis by providing an overview of the biological immune system

with the bias of identifying those components that exhibit learning. Since

learning is an adaptive process, we chose to focus on the adaptive layer of the

immune system. Within this layer we detailed the workings of the B- and T-cell

lymphocytes. As with other immune-inspired learning algorithms, we narrowed

the scope of our discussion primarily to the workings of the B-cells. B-cells develop

through a process of clonal selection and somatic hypermutation. These two

processes were proposed to be key mechanisms for learning. However, learning

is more than just adaptation. In order to provide rapid secondary responses to

previously seen antigens, the adaptive immune system develops a set of memory

cells which are more easily stimulated upon encountering an antigen. We identified

this memory mechanism as key to the immune system’s ability to improve with

experience.

This led to the identification that any learning system is composed of three

components: memory, adaptation, and decision-making. We used these three

components as a simple framework for discussing learning. In doing so, we were

able to discuss a wide-variety of learning algorithms—both biologically-inspired

and more traditional.

This was followed by a review of immune-inspired learning algorithms. Several

avenues of investigation have been pursued for using immunological metaphors
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for learning. These were divided into population-based and network-based

algorithms. Within the population-based algorithms, several different immune

mechanisms have been explored: gene libraries, negative selection, clonal selection,

and memory cell development. The network-based algorithms have focused on the

use of Jerne’s immune network theory to model the interactions of the immune

system. Immunological memory is maintained within the network of connections

among the immune cells. We recognized the fact that very little had been done

with immune-inspired supervised learning. This led to the development of the

AIRS learning algorithm which we studied in-depth.

8.2.2 AIRS: A Immune-Inspired Supervised Learning

Algorithm

The Artificial Immune Recognition System (AIRS) immune learning algorithm

developed from the identification that immunological metaphors had not been

exploited for the field of supervised learning. The initial work on this algorithm

demonstrated that exploiting such immunological metaphors as clonal selection,

B-cell growth and death, affinity maturation, and memory cell development

could lead to the development of a successful supervised learning algorithm.

However, the initial algorithm contained some unnecessary complications. In this

thesis, we identified those complicating factors and proposed ways to simplify the

algorithm. In doing so, we were also able to introduce another immunological

component that the original algorithm was lacking: affinity-based hypermutation.
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We demonstrated that, by using the affinity of a cell to guide its mutation, a

more efficient memory model was developed. With this change, we found that

the quality of the classification algorithm remained the same while its data-

reduction capabilities increased. With AIRS we demonstrated how immunological

metaphors can be used in the development of a serial learning algorithm.

8.2.3 Parallel and Distributed Learning

We spent the last half of this thesis focused on the use of more processing power.

Since the immune system is distributed throughout the body with no central

processing site, we wanted to explore how we could use multiple processors for

the development of immune-inspired learning algorithms. Initially, however, our

primary focus has been computational gains rather than behavioral changes.

We began with the simple CLONALG immune-learning algorithm. This

population-based algorithm focuses on the development of memory cells with no

real interaction among the immunological components. This lack of interaction

made it an ideal candidate for our initial parallel investigations. We demonstrated

that, by scattering the training data to various processors and allowing each

processor to develop its separate memory model of the given data speedup, in

the overall processing time is achieved. We showed that this basic parallelization

is also scalable in terms of the number of input items and the number of features

in the input space.
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We then took this basic method of parallelization and applied it to the AIRS

algorithm. One major issue with the AIRS algorithm, however, is that there is

a degree of interaction among the cells. This led to the need to devise a means

of recapturing the predictive model of AIRS after the development of memory

cells had occurred at individual processing sites. Several methods were proposed,

and while none of them were wholly satisfactory, we did find that using multiple

processors in this manner provided a decrease in runtime for many data sets.

We concluded our investigations of using multiple processors for the AIRS

algorithm by proposing a simple distributed approach. As it is formulated,

this distributed approach is of questionable use. However, this simple model

is presented as the first step in a line of investigation of ways to remove the need

for central control within this immune-inspired learning algorithm. In section 8.4,

we discuss how this line of work might continue.

8.3 Contributions

This thesis has provided the following contributions to the fields of immune-

inspired computing and machine learning:

• The components of the immune system that exhibit the capacity for learning

were detailed.
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• A framework for discussing learning algorithms was proposed. Three

properties of every learning algorithm—memory, adaptation, and decision-

making—were identified for this framework, and traditional learning

algorithms were placed in the context of this framework.

• An investigation into the use of immunological components for learning was

provided. This led to an understanding of these components in terms of the

learning framework

• A simplification of the AIRS immune-inspired learning algorithm was

provided by employing affinity-dependent somatic hypermutation.

• A parallel version of the CLONALG immune learning algorithm was

developed. It was shown that basic parallel computing techniques can

provide computational benefits for this algorithm.

• A parallel version of AIRS was offered. It was shown that applying these

same parallel computing techniques to AIRS, while less scalable than when

applied to CLONALG, still provided computational gains.

• A distributed approach to AIRS was offered, and it was argued that

this approach provided a more biologically appealing model. The simple

distributed approach was proposed in terms of an initial step toward a more

complex, distributed system.
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8.4 Future Work

This thesis has investigated ways of using the immune system as a source of

inspiration for the development of learning algorithms. In doing so, it has focused

on fairly specific examples of accomplishing this. It has hinted at a general

means for using parallel processing techniques in the development of more efficient

learning algorithms as well. All of this can be seen as proof-of-concept type

activities. As such, there is inevitably more to be done. We discuss some of these

ideas here.

8.4.1 Theory of Convergence

In our asymptotic analysis of the AIRS algorithm presented in section 3.5.3, we

were unable to completely simplify the runtime analysis in terms of the input size.

This was due to no general way of predicting the number of training generations

needed before converging on an appropriate candidate memory cell. We again

saw this issue when analyzing the CLONALG algorithm. This points to the need

for theoretical models of convergence for immune-inspired learning algorithms.

Although the authors of [123] offer one model based on Markov chains for the

convergence analysis of a multiobjective immune-inspired algorithm, little else

has been done in this area. While some ideas may be borrowed from convergence

studies in genetic algorithms, there is enough difference in the behavior of immune-

inspired algorithms to warrant further investigation.



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 226

8.4.2 Diversity of Cellular Types

As we saw in our overview of immune learning algorithms, the majority of such

algorithms have focused only on one type of immune cell. Yet, the immune system

contains a range of diverse cell types. There seems to be a need to look beyond just

single- cell models of inspiration. As we branch further out and look to developing

more complex, multi-cellular immune learning algorithms, we might discover more

interesting behavioral properties than our limited approaches currently provide.

Since each cell type performs a different function that is independent of a global

control yet leads to a cooperative reaction to a given stimulus, we could, again,

explore the ideas of emergent and cooperative behavior by exploiting more diverse

cellular metaphors in our artificial systems.

These ideas are echoed in [108] when the authors identify five key areas that

affect the behavior of complex systems. These areas include “openness, diversity,

interaction, structure, and scale.” With an increase in cellular types modeled

along with the ability to simulate localized response and learning, we can begin to

explore the impact these areas have on the development of our biologically-inspired

systems.

8.4.3 Distributed Learning

As we saw in chapter 7, taking a purely distributed approach to our learning

algorithms presents a change in the behavior of the algorithm. There is a wealth of
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possibilities to explore in this area. Some of this has been hinted at in the immune-

inspired security work where anomaly detection sites are scattered throughout a

protected network [72, 61]. However, we can take this further.

By focusing on the distributed nature of the immune system, we can model

such concepts as cellular recruitment and local reactions. One possibility would

be for clusters of computing nodes to become “experts” on certain types of data.

Utilizing the supervised learning ideas from AIRS, a group of nodes could learn

what areas of expertise it has. Then, when a new situation arises—a new piece of

data is presented to the system—different centers of expertise could contribute its

local knowledge to the reaction of the entire system. This also might allow for the

integration of multiple domains of knowledge throughout a distributed system or

for certain areas to become experts at identifying one class of knowledge within

a single domain. Figure 8.4.1 presents a stylized architectural view of this when

using our three benchmark domains.

Of course, if we integrate different domains within the system, knowledge

representation will become of key importance. Also, this view of distributed

learning is much different than the parallel approaches presented in most of this

thesis. Our concern would no longer be primarily with increased computational

gains, but would be more with diversity of response.
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Cluster of “ iris recognizing”processors Cluster of “pima recognizing”processors

Cluster of “sonar recognizing”processors

Cellular Exchange

Cellular Exchange

Cellular Exchange

Cluster of “ iris recognizing”processors Cluster of “pima recognizing”processors

Cluster of “sonar recognizing”processors

Cellular Exchange

Cellular Exchange

Cellular Exchange

Figure 8.4.1: Possible Architecture for a Multi-Domain Distributed Learning
System

8.4.4 Emergence

This diversity of response could also lead to an investigation into emergent

properties of such artificial immune systems. As hinted in section 7.4, rather

than being pre-engineered, many of the attractive characteristics of the immune

system emerge through the interactions of the diverse components. However,

little has been done by way of exploration of the mechanisms for emergence. By

building truly distributed systems, we can begin to address the questions of how
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such interconnected yet distinct reactions can lead to the emergence of global

reactions.

8.4.5 Interdisciplinary Research

As we have pointed out in the development of our immune-inspired learning

algorithms, the development process often swings back and forth from the biology

to standard computing techniques. The potential benefits of the process is

limited by the knowledge of the investigators. There is a definite need, from

a computer scientist’s perspective, for greater interaction with those working

in other disciplines. By working with biologists, we can delve deeper into our

understanding of the computational processes of the natural systems. This, in

turn, can inform and enhance our artificial systems. And by exploring more

computational models and techniques in our biologically-inspired systems, we can

potentially offer insights to biologists concerning the natural systems. There is

the need for the give and take offered by interdisciplinary research as we attempt

to explore these non-standard models of computation more fully.

8.5 Concluding Remarks

In this thesis we have shown that the immune system can be used for the

development of learning algorithms. We have followed the path of the development

of a particular biologically-inspired algorithm and demonstrated how this process

moves from biological inspiration to the incorporation of standard computing
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technologies and back again. We have seen ways of modifying existing immune

learning algorithms to take advantage of multiple processes. And we have

examined the beginnings of the development of a distributed immune-inspired

learning system. However, is there a point in developing more algorithms based

on the immune system? Beyond the proof-of-concept type of activities that

have been done to date, why should we continue this line of immune-inspired

computational systems building? One way to answer this is by pointing out that

the fact that we can build immune-inspired learning algorithms at all is quite

fascinating and points to some interesting questions. Is the immune system really

a cognitive system? What are the interactions between the immune system and

our traditional cognitive system—the nervous system? We argue that by building

immune-inspired learning systems we begin to tackle some of these larger biological

questions as well. That is, through our system development work, we discover

more about what the ingredients of cognition are and where the boundaries of

human cognition exist. Also, on a more pragmatic side, the development of

immune-inspired machine learning systems might point to more efficient or robust

methods of addressing learning problems. We already see hints of this with the

algorithms that have been developed to date. AIRS, for example, performs as

well as many other machine learning techniques and offers several advantages

(such as one-pass learning and large-scale data reduction) that are not present in

these other techniques. The immune system seems to have numerous avenues of

exploration yet to be tapped for the development of computational systems. As

with any field of research, there is no guarantee that this will lead to anything
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useful in the long run. Yet, the potential definitely seems to exist, and just the

process of building these systems, as with most scientific pursuits, will inevitably

point toward answers to some fundamental questions concerning human nature

itself.
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Appendix A

Overview of the AIRS algorithm

This appendix presents an overview of the AIRS algorithm.1 A.1 defines some of

the key terms and concepts important to the understanding of the algorithm, and

A.2 provides a somewhat formal tour of the training routine of the algorithm.

A.1 Definitions

This subsection presents definitions of the key terms and concepts used throughout

the rest of this thesis, particularly as they apply to the AIRS algorithm.

• affinity : a measure of “closeness” or similarity between two antibodies or

antigens. In the current implementation, this value is guaranteed to be

between 0 and 1 inclusively and is calculated simply as the Euclidean

distance of the two objects’ feature vectors. Thus, small affinity values

indicate strong affinity.

1This overview is taken directly from [124].
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• affinity threshold (AT): the average affinity value among all of the antigens

in the training set or among a selected subset of these training antigens.

• affinity threshold scalar (ATS): a value between 0 and 1 that, when

multiplied by the affinity threshold, provides a cut-off value for memory

cell replacement in the AIRS training routine.

• antibody : a feature vector coupled with its associated output or class ; the

feature vector-output combination is referred to as an antibody when it is

part of an ARB or memory cell.

• antigen: this is the same in representation as an antibody ; however, the

feature vector-class combination is referred to as an antigen when it is being

presented to the ARBS for stimulation and/or response.

• Artificial Immune Recognition System (AIRS): a classification algorithm

inspired by natural immune systems.

• Artificial Recognition Ball (ARB): also known as a B-cell. It consists of an

antibody, a count of the number of resources held by the cell, and the current

stimulation value of the cell.

• B Cell : in this thesis, more commonly referred to as an Artificial Recognition

Ball.

• candidate Memory Cell : the antibody of an ARB, of the same class as the

training antigen, which was the most stimulated after exposure to the given

antigen.
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• class : the category of a given feature vector. This is also referred to as the

output of a cell.

• clonal rate: an integer value used to determine the number of mutated

clones a given ARB is allowed to attempt to produce. In the current

implementation, a selected ARB is allowed to produce up to clonal rate *

stimulation value mutated clones after responding to a given antigen. This

product is also used in assigning resources to an ARB. Therefore, the clonal

rate serves a dual-role as resource allocation factor and clonal mutation

factor for the cell population.

• established Memory Cell : the antibody of an ARB which has survived

competition for resources and was the most stimulated to a given training

antigen and has been added to the evolving set of memory cells.

• feature vector : one instance of data represented as a sequence of values.

Each position in the sequence represents a different feature associated with

the data, and each feature has its own range of legitimate values.

• hyper-mutation rate: an integer value used to determine the number of

mutated clones a given memory cell is allowed to inject into the cell

population. In the initial implementation, the selected memory cell injects

at least hyper-mutation rate * clonal rate * stimulation value mutated clones

into the cell population at the time of antigen introduction.
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• k nearest neighbor (KNN): a classification scheme in which the response of

the classifier to a previously unseen item is determined by a majority vote

among the k closest data points. For the AIRS algorithm, the k closest data

points are in actuality the k most stimulated memory cells to a given test

antigen.

• k value: the parameter which indicates how many memory cells should be

used to determine the classification of a given test item. (see k nearest

neighbor for more details)

• memory cell (mc): the antibody of an ARB which was the most stimulated

by a given training antigen at the end of exposure to that antigen. It

is used for hyper-mutation in response to incoming training antigens (see

hyper-mutation rate). An mc can be replaced, however. This occurs only

when a candidate mc is more stimulated to a given training antigen than

the most stimulated established mc and the affinity between the established

mc and the candidate mc is less than the product of the Affinity Threshold

and the Affinity Threshold Scalar.

• mutation rate: a parameter between 0 and 1 that indicates the probability

that any given feature (or the output) of an ARB will be mutated.

• output : the classification category associated with a cell. Same as the class

of the feature vector corresponding to the cell.
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• resources : a parameter which limits the number of ARBs allowed in

the system. Each ARB is allocated a number of resources based on its

stimulation value and the clonal rate. The total number of system wide

resources is set to a certain limit. If more resources are consumed than are

allowed to exist in the system, then resources are removed from the least

stimulated ARBs until the number of resources in the system returns to the

number allowed. If all of a given ARB’s resources are removed, then that

ARB is removed from the cell population.

• seed cell : an antibody, drawn from the training set, used to initialize Memory

Cell and ARB populations at the beginning of training.

• stimulation function: a function used to measure the response of an ARB

to an antigen or to another ARB. In the current formulation of the AIRS

classifier, this function should return a value between 0 and 1 inclusively.

For the implementation of AIRS presented in this study, the stimulation

function is inversely proportional to the Euclidean distance between the

feature vectors of the ARB and the antigen.

• stimulation value: the value returned by the stimulation function.

• stimulation threshold : a parameter between 0 and 1 used as a stopping

criterion for the training on a specific antigen. For the initial

implementation, only when the average stimulation value of the ARBs of
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each class is above the stimulation threshold does training in reaction to the

particular antigen stop.

• test set : the collection of antigens used to evaluate the classification

performance of the trained AIRS classifier.

• training set : the collection of antigens used to train the AIRS classifier.

A.2 Tour of the Algorithm

This section presents a tour of the AIRS algorithm. In particular, this section

presents an overview of the primary routines, methods, and equations used

in the training and building of an immune-system based classifier. There are

four primary stages involved in the AIRS algorithm. The first stage is data

normalization and initialization. The second stage is memory cell identification

and ARB generation. The third stage is competition for resources in the

development of a candidate memory cell. The final stage of the training

algorithm is the potential introduction of the candidate memory cell into the

set of established memory cells.

For this discussion, let us establish the following notational conventions:

• Let MC represent the set of memory cells and mc represent an individual

member of this set.

• Let ag.c represent the class of a given antigen, ag, where ag.c ∈ C =

{1, 2, . . . nc} and nc is the number of classes in the data set.
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• Let mc.c represent the class of a given memory cell, mc, where mc.c ∈ C =

{1, 2, . . . nc}.

• Define MCc ⊆ MC = {MC1 ∪MC2 ∪ . . .MCnc} and mc ∈ MCc iff mc.c ≡

c.

• Let ag.f and mc.f represent the feature vector of a given antigen and

memory cell, ag and mc, respectively. Let ag.fi represent the value of the

ith feature in ag.f and mc.fi the value of the ith value of mc.f .

• Let AB represent the set of ARBs, or the population of existing cells,

and MU represent a set of mutated clones of ARBs. Furthermore, let ab

represent a single ARB where ab ∈ AB.

• Let ab.c represent the class of a given ARB, ab, where ab.c ∈ C =

{1, 2, . . . nc}.

• Define ABc ⊆ AB = {AB1 ∪ AB2 ∪ . . . ABnc}, and ab ∈ ABc iff ab.c ≡ c.

• Let ab.stim represent the stimulation level of the ARB ab.

• Let ab.resources represent the number of resources held by the ARB ab.

• Let TotalNumResources represent the total number of system wide

resources allowed.
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A.2.1 Initialization

The first stage of the algorithm, initialization, can primarily be thought of as

a data pre-processing stage combined with a parameter discovery stage. During

initialization, first all items in the data set are normalized such that the Euclidean

distance between the feature vectors of any two items is in the range of [0,1].2

This can be performed through a variety of methods and could also be performed

as a true pre-processing stage before the algorithm begins. It is important to

note that, while for the current investigation Euclidean distance is the primary

metric of both affinity and stimulation, other functions could be employed as well.

What is important about this normalization is only that the range of possible

reactions from cell-to-cell interaction remains within the range of [0,1]. After

normalization, the affinity threshold is calculated. The affinity threshold is the

average affinity value over all training data items’ feature vectors. The affinity

threshold is calculated as described in equation (A.2.1) below:

affinity threshold =

∑n
i=1

∑n
j=i+1 affinity(agi, agj)

n(n−1)
2

(A.2.1)

where n is the number of training data items (antigens) in question, agi and agj are

the ith and jth training antigen in the antigen training vector, and affinity(x,y)

returns the Euclidean distance between the two antigens’ feature vectors.

2Euclidean distance was chosen as an initial starting place for this prototype as it has been
used in many standard machine learning algorithms.
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The final step in initialization is the seeding of the memory cells and initial

ARB population. This is done by randomly choosing 0 or more antigens from the

set of training vector to be added to the set of memory cells and to the set of

ARBs.

A.2.2 Memory Cell Identification and ARB Generation

Once initialization is complete, training proceeds as a one-shot incremental

algorithm. That is, each element of the training data is presented to the AIRS

learning algorithm exactly once. The first step of this stage of the algorithm is

memory cell identification and ARB generation. Given a specific training antigen,

ag, find the memory cell, mcmatch, that has the following property:

mcmatch = argmaxmc∈MCag.cstimulation(ag,mc) (A.2.2)

where stimulation(x, y) is defined as in equation (A.2.3) below:

stimulation(x, y) = 1− affinity(x, y) (A.2.3)

If MCag.c ≡ ®, then mcmatch ← ag and MCag.c ← MCag.c ∪ ag. That is, if the set

of memory cells of the same classification as the antigen is empty, then add the

antigen to the set of memory cells and denote this newly added memory cell as the

match memory cell, mcmatch. It should be noted here that while the stimulation
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function for the current work relies solely on Euclidean distance, this need not

necessarily be the case.

Once mcmatch has been identified, this memory cell is used to generate new

ARBs to be placed into the population of (possibly) pre-existing ARBs (i.e., those

ARBs left in the system from exposure to previous antigens). This is done through

the method shown in Figure A.2.1, where the function makeARB(x) returns an

ARB with x as the antibody of this ARB and where mutate(x, b) is defined in

Figure A.2.2. In Figure A.2.2, the function drandom() returns a random value

MU ← ®
MU ← MU ∪makeARB(mcmatch)
stim ← stimulation(ag, mcmatch)
NumClones ← hyper clonal rate ∗ clonal rate ∗ stim
while (| MU |< NumClones)
do

mut ← false
mcclone ← mcmatch

mcclone ← mutate(mcclone,mut)
if(mut ≡ true)

MU ← MU ∪makeARB(mcclone)
done
AB ← AB ∪MU

Figure A.2.1: Hyper-Mutation for ARB Generation

in the range [0,1] and (lrandom() mod nc) returns a random value in the range

{0,nc}.
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mutate(x, b)
{

foreach(x.fi in x.f)
do

change ← drandom()
change to ← drandom()
if(change < mutation rate)

x.fi ← change to ∗ normalization value
b ← true

done
if(b ≡ true)

change ← drandom()
change to ← (lrandom() mod nc)
if(change < mutation rate)

x.c ← change to
return x

}

Figure A.2.2: Mutation Routine

A.2.3 Competition for Resources and Development of a

Candidate Memory Cell

At this point a set of ARBs (AB) exists which includes mcmatch, mutations from

mcmatch, and (possibly) remnant ARBs from responses to previously encountered

antigens. Recall that the AIRS algorithm is a one-shot algorithm, so while the

discussion has been divided into separate stages, only one antigen goes through

this entire process at time (with the obvious exception being the initialization

stage which takes place over the entire data set before training begins). The

goal of the next portion of the algorithm is to develop a candidate memory

cell which is most successful in correctly classifying a given antigen, ag. This

is done primarily through three mechanisms. The first mechanism is through the
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competition for system wide resources. Following the methods first outlined by

[116] and more fully realized by [117], resources are allocated to a given ARB

based on its normalized stimulation value, which is used as an indication of its

fitness as a recognizer of ag. The second mechanism is through the use of mutation

for diversification and shape-space exploration. The third mechanism is the use

of an average stimulation threshold as a criterion for determining when to stop

training on ag.

Similar to principles involved in genetic algorithms, the AIRS algorithm

employs a concept of fitness for survival of individuals within the ARB population.

Survival of a given ARB is determined in a two-fold, interrelated manner. First,

each ARB in the population AB is presented with the antigen ag to determine

the ARB’s stimulation level. This stimulation is then normalized across the ARB

population based on both the raw stimulation level and the class of the given ARB

(ab.c). Based on this normalized stimulation value, each ab ∈ AB is allocated a

finite number of resources. If this allocation of resources would result in more

resources being allocated across the population than allowed, then resources are

removed from the weakest (least stimulated) ARBs until the total number of

resources in the system returns to the number of resources allowed. Those ARBs

which have zero resources are removed from the ARB population. This process is

formalized in Figure A.2.3.

Two key aspects of this resource allocation routine for the initial formulation

of the AIRS algorithm are noted here. First, the stimulation value of an ARB

is not only determined by the stimulation function in equation A.2.3 but is also
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minStim ← MAX
maxStim ← MIN
foreach(ab ∈ AB)
do

stim ← stimulation(ag, ab)
if (stim < minStim)

minStim ← stim
if (stim > maxStim)

maxStim ← stim
ab.stim ← stim

done
foreach(ab ∈ AB)
do

if(ab.c ≡ ag.c)
ab.stim ← ab.stim−minStim

maxStim−minStim

else
ab.stim ← 1− ab.stim−minStim

maxStim−minStim

ab.resources ← ab.stim ∗ clonal rate
done
i ← 1
while(i ≤ nc)
do

resAlloc ← ∑|ABi|
j=1 abj.resources, abj ∈ ABi

if(i ≡ ag.c)
NumResAllowed ← TotalNumResources

2

else
NumResAllowed ← TotalNumResources

2∗(nc−1)

while(resAlloc > NumResAllowed)
do

NumResRemove ← resAlloc−NumResAllowed
abremove ← argminab∈ABi

(ab.stim)
if(abremove.resources ≤ NumResRemove)

ABi ← ABi − abremove

resAlloc ← resAlloc− abremove.resources
else

abremove.resources ← abremove.resources−NumResRemove
resAlloc ← resAlloc−NumResRemove

done
i ← i + 1

done

Figure A.2.3: Stimulation, Resource Allocation, and ARB Removal
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based on the class of the ARB. The stimulation calculation method outlined in

Figure A.2.3 provides reinforcement both for those ARBs of the same class as

ag that are highly stimulated by ag and for those ARBs that are of a different

class from ag that do not exhibit a strong positive reaction to ag. Second, the

distribution of resources is also based on the class of the ARB. This is done to

provide additional reinforcement for those ARBs of the same class as ag without

losing the potentially positive qualities of the remaining ARBs for reaction to

future antigens.

At this point in the algorithm, the ARB population AB consists of only those

ARBs that were most stimulated by the given antigen, ag, or more specifically, AB

now consists of those ARBs that were able to successfully compete for resources.

The algorithm continues first by determining if the ARBs in AB were stimulated

enough by ag to stop training on this item. This is done by defining a vector ~s

that is nc in length to contain the average stimulation value for each class subset

of AB. That is:

si ←
∑|ABi|

j=1 abj.stim

| ABi | , abj ∈ ABi (A.2.4)

The stopping criterion is reached iff si ≥ stimulation threshold for all elements

in ~s = {s1, s2, . . . snc}.

Regardless of whether the stopping criterion is met or not, the algorithm

proceeds by allowing each ARB in AB the opportunity to produce mutated

offspring. While this adding of mutated offspring is similar to the method outlined
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in Figure A.2.1, there are a few differences. This modified mutation generation

routine is presented in Figure A.2.4.

MU ← ®
foreach(ab ∈ AB)
do

rd ← drandom()
if(ab.stim > rd)

NumClones ← ab.stim ∗ clonal rate
i ← 1
while(i ≤ NumClones)
do

mut ← false
abclone ← ab
abclone ← mutate(abclone,mut)
if(mut ≡ true)

MU ← MU ∪ abclone

i ← i + 1
done

done
AB ← AB ∪MU

Figure A.2.4: Mutation of Surviving ARB

After allowing each surviving ARB the opportunity to produce mutated

offspring, the stopping criterion is examined. If the stopping criterion is met,

then training on this one antigen stops. If the stopping criterion has not been

met, then this entire process, beginning with the method outlined in Figure

A.2.3, is repeated until the stopping criterion is met. The only exception to this

repetition is that on every pass through this portion of the algorithm, except the

first pass already discussed, if the stopping criterion is met after the stimulation

and resource allocation phase, then the production of mutated offspring is not

performed. Once the stopping criterion has been met, then the candidate memory
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cell is chosen. The candidate memory cell, mccandidate, is the feature vector and

class of the ARB that existed in the system before the most recent round of

mutations that was the most stimulated ARB of the same class as the training

antigen ag.

A.2.4 Memory Cell Introduction

The final stage in the training routine is the potential introduction of the just-

developed candidate memory cell, mccandidate, into the set of existing memory

cells MC. It is during this stage that the affinity threshold calculated during

initialization becomes critical as it dictates whether the mccandidate replaces

mcmatch that was previously identified. The candidate memory cell is added to the

set of memory cells only if it is more stimulated by the training antigen, ag, than

mcmatch, where stimulation is defined as in equation (A.2.3). If this test is passed,

then if the affinity between mccandidate and mcmatch is less than the product of

the affinity threshold and the affinity threshold scalar, then mccandidate replaces

mcmatch in the set of memory cells. This memory cell introduction method is

presented in figure A.2.5.

Once the candidate memory cell has been evaluated for addition into the set

of established memory cells, training on this one antigen is complete. The next

antigen in the training set is then selected, and the training process proceeds with

memory cell identification and ARB generation. This process continues until all

antigens have been presented to the system.
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CandStim ← stimulation(ag, mccandidate)
MatchStim ← stimulation(ag,mcmatch)
CellAff ← affinity(mccandidate,mcmatch)
if(CandStim > MatchStim)

if(CellAff < AT ∗ ATS)
MC ← MC −mcmatch

MC ← MC ∪mccandidate

Figure A.2.5: Memory Cell Introduction

A.2.5 Classification

After training has completed, the evolved memory cells are available for use for

classification. The classification is performed in a k-nearest neighbor approach.

Each memory cell is iteratively presented with each data item for stimulation.

The system’s classification of a data item is determined by using a majority vote

of the outputs of the k most stimulated memory cells.



Appendix B

Statistical Note

B.1 t-test

In order to test for the statistical significance between two results, we use Student’s

t-test throghout this thesis [102, chap11, pp387-441]. The hypothesis that we are

testing throughout is that the mean value of two results are the same. We use

the two-tailed t-test to determine if we can accept or reject this hypothesis at a

given significance level. Or, to put it another way, we determine the probablity

(α) of rejecting this hypothesis when, in fact, it is true. For all of our tests, we

assume that the mean and variance of the samples are unknown. Given these

assumptions, we calcluate the t-statistic with the following formula:

Tf =
X̄1 − X̄2

sp

√
1
n1

+ 1
n2

(B.1.1)

260
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where X̄i is the sample mean, sp is the square root of the pooled sample variance,

and ni is the sample size. The pooled sample variance is calculated by:

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
(B.1.2)

where s2
i is the sample vairance. The degrees of freedom (f) for this variable T is

calculated by x1 + x2− 2. Once we have f caculated, we can use this information

to look up the t-distribution value to determine the the rejection region for our

hypothesis that the two means are equal. We will reject our hypothiesis if:

|T | ≥ tf,1−α
2

(B.1.3)

Otherwise, we can accept our hypothesis at the (1 − α)% significance level.

Alternatively, we can us the value of T and f to determine the p value of this

statistic. The p value indicates the probability that the two means are the same.

If p < α, then we decide that this probabilty is not sufficient for the difference

between the means to be based only on chance, and thus there is a statistically

significant difference in the means.

B.2 Parallel Speedup and Efficiency

Since both speedup and efficiency are ratios of times from two independent

distributions, we want to provide a means of determining the mean and standard

deviaions of these ratios in order to report error bars for these measurements. In
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order to calculate the mean value for the speedup we simply find the mean of the

pairwise combination of the sample ratios:

S̄ =
1

n1 ∗ np

n1∑
i=1

np∑
j=1

t1,i

tp,j

(B.2.1)

where n1 and np are the number of runs on a single processors and the number

of runs with the same parameters on multiple processors, respectively, t1,i is the

serial time for the ith run on one processor, and tp,j is the parallel time for the

jth run on multiple processors. The mean efficiency can be calculated in a similar

manner:

Ēp =
1

n1 ∗ np

n1∑
i=1

np∑
j=1

t1,i

np ∗ tp,j

(B.2.2)

where np is the number of processors used. We also can use these pairwise ratios

to calculate standard deviation in the usual way. For example,

√√√√ 1

(n1 ∗ np)− 1

n1∑
i=1

np∑
j=1

(
t1,i

tp,j

− S̄)2 (B.2.3)

gives the standard deviation for speedup.



Appendix C

Parallel CLONALG Results

This appendix presents results for experiments with the parallel version of

CLONALG.

Table C.0.1: Parallel CLONALG: Runtimes when Varying N
np⇒ 1 2 4 8
N⇓ Time Time Time Time
10 11.86(0.03) 6.39(0.08) 3.68(0.01) 1.85(0.07)
20 15.07(0.05) 7.74(0.07) 3.79(0.02) 2.28(0.05)
40 23.21(0.02) 10.03(0.14) 5.75(0.09) 2.81(0.08)
80 33.49(0.02) 16.45(0.12) 9.17(0.15) 4.73(0.06)
160 57.58(0.03) 31.08(0.08) 16.20(0.22) 7.64(0.21)

263
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Table C.0.2: Parallel CLONALG: Generations to Converge when Varying N
np⇒ 1 2 4 8
N⇓ Gens Gens Gens Gens
10 72(0) 75(0) 87(0) 82(0)
20 44(0) 44(0) 43(0) 51(0)
40 32(0) 27(0) 30(0) 29(0)
80 22(0) 21(0) 23(0) 24(0)
160 18(0) 19(0) 19(0) 18(0)

Table C.0.3: Parallel CLONALG: Runtimes when Varying n1
np⇒ 1 2 4 8
n1⇓ Time Time Time Time
2 9.64(0.02) 4.89(0.03) 2.56(0.09) 1.60(0.05)
4 16.20(0.02) 8.01(0.05) 4.09(0.06) 1.91(0.07)
8 23.21(0.02) 10.03(0.14) 5.75(0.09) 2.81(0.08)
16 31.68(0.02) 14.70(0.12) 8.16(0.17) 4.53(0.07)
32 49.84(0.02) 23.57(0.31) 12.80(0.36) 6.24(0.07)

Table C.0.4: Parallel CLONALG: Generations to Converge when Varying n1
np⇒ 1 2 4 8
n1⇓ Gens Gens Gens Gens
2 31(0) 31(0) 30(0) 36(0)
4 33(0) 32(0) 32(0) 29(0)
8 32(0) 27(0) 30(0) 29(0)
16 31(0) 27(0) 29(0) 33(0)
32 33(0) 28(0) 31(0) 29(0)

Table C.0.5: Parallel CLONALG: Runtimes when Varying n2
np⇒ 1 2 4 8
n2⇓ Time Time Time Time
0 27.34(0.02) 10.34(0.03) 5.31(0.09) 3.11(0.06)
1 23.19(0.03) 11.44(0.05) 5.89(0.11) 2.78(0.13)
2 23.21(0.02) 10.03(0.14) 5.75(0.09) 2.81(0.08)
4 22.51(0.02) 11.37(0.04) 5.85(0.08) 3.04(0.07)
8 24.64(0.03) 11.03(0.04) 5.64(0.05) 2.80(0.07)
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Table C.0.6: Parallel CLONALG: Generations to Converge when Varying n2
np⇒ 1 2 4 8
n2⇓ Gens Gens Gens Gens
0 38(0) 28(0) 28(0) 32(0)
1 32(0) 31(0) 31(0) 28(0)
2 32(0) 27(0) 30(0) 29(0)
4 31(0) 31(0) 30(0) 31(0)
8 34(0) 30(0) 30(0) 29(0)
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Figure C.0.1: Speedup of CLONALG when varying n1 (x-axis offset applied for
visual clarity)

Table C.0.7: Parallel CLONALG: Speedup when Varying N
np⇒ 1 2 4 8
N⇓ S S S S
10 1.00(0.00) 1.86(0.02) 3.23(0.01) 6.43(0.23)
20 1.00(0.00) 1.95(0.02) 3.98(0.03) 6.62(0.14)
40 1.00(0.00) 2.31(0.03) 4.04(0.06) 8.28(0.22)
80 1.00(0.00) 2.04(0.01) 3.65(0.06) 7.08(0.09)
160 1.00(0.00) 1.85(0.00) 3.56(0.05) 7.54(0.19)
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Figure C.0.2: Parallel efficiency of CLONALG when varying n1 (x-axis offset
applied for visual clarity)
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Figure C.0.3: Speedup of CLONALG when varying n2 (x-axis offset applied for
visual clarity)
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Figure C.0.4: Parallel efficiency of CLONALG when varying n2 (x-axis offset
applied for visual clarity)

Table C.0.8: Parallel CLONALG: Parallel Efficiency when Varying N
np⇒ 1 2 4 8
N⇓ Ep Ep Ep Ep

10 1.00(0.00) 0.93(0.01) 0.81(0.00) 0.80(0.03)
20 1.00(0.00) 0.97(0.01) 1.00(0.01) 0.83(0.02)
40 1.00(0.00) 1.16(0.02) 1.01(0.01) 1.04(0.03)
80 1.00(0.00) 1.02(0.01) 0.91(0.01) 0.88(0.01)
160 1.00(0.00) 0.93(0.00) 0.89(0.01) 0.94(0.02)

Table C.0.9: Parallel CLONALG: Speedup when Varying n1
np⇒ 1 2 4 8
n1⇓ S S S S
2 1.00(0.00) 1.97(0.01) 3.77(0.12) 6.04(0.19)
4 1.00(0.00) 2.02(0.01) 3.97(0.06) 8.47(0.28)
8 1.00(0.00) 2.31(0.03) 4.04(0.06) 8.28(0.22)
16 1.00(0.00) 2.15(0.02) 3.88(0.08) 6.99(0.11)
32 1.00(0.00) 2.11(0.03) 3.90(0.11) 7.99(0.09)
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Table C.0.10: Parallel CLONALG: Parallel Efficiency when Varying n1
np⇒ 1 2 4 8
n1⇓ Ep Ep Ep Ep

2 1.00(0.00) 0.99(0.01) 0.94(0.03) 0.75(0.02)
4 1.00(0.00) 1.01(0.01) 0.99(0.01) 1.06(0.03)
8 1.00(0.00) 1.16(0.02) 1.01(0.01) 1.04(0.03)
16 1.00(0.00) 1.08(0.01) 0.97(0.02) 0.87(0.01)
32 1.00(0.00) 1.06(0.01) 0.97(0.03) 1.00(0.01)

Table C.0.11: Parallel CLONALG: Speedup when Varying n2
np⇒ 1 2 4 8
n2⇓ S S S S
0 1.00(0.00) 2.64(0.01) 5.15(0.08) 8.78(0.17)
1 1.00(0.00) 2.03(0.01) 3.94(0.07) 8.35(0.33)
2 1.00(0.00) 2.31(0.03) 4.04(0.06) 8.28(0.22)
4 1.00(0.00) 1.98(0.01) 3.85(0.05) 7.41(0.16)
8 1.00(0.00) 2.23(0.01) 4.37(0.04) 8.79(0.20)

Table C.0.12: Parallel CLONALG: Parallel Efficiency when Varying n2
np⇒ 1 2 4 8
n2⇓ Ep Ep Ep Ep

0 1.00(0.00) 1.32(0.00) 1.29(0.02) 1.10(0.02)
1 1.00(0.00) 1.01(0.00) 0.99(0.02) 1.04(0.04)
2 1.00(0.00) 1.16(0.02) 1.01(0.01) 1.04(0.03)
4 1.00(0.00) 0.99(0.00) 0.96(0.01) 0.93(0.02)
8 1.00(0.00) 1.12(0.00) 1.09(0.01) 1.10(0.03)
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Table C.0.13: Parallel CLONALG: Run Times when Varying the Number of Input
Vectors

np→ 1 2 4 8 16
M↓ time (s) time (s) time (s) time (s) time (s)
8 41.70(0.05) 21.33(0.28) 10.94(0.17) 6.09(0.10)
16 94.31(0.06) 42.74(0.10) 21.70(0.17) 10.84(0.12) 5.53(0.10)
32 187.85(0.08) 95.95(0.22) 48.34(0.15) 24.26(0.36) 12.10(0.10)
64 377.83(0.10) 192.01(0.39) 96.14(0.22) 48.33(0.28) 24.35(0.33)
128 834.56(0.21) 383.39(0.50) 191.63(0.35) 96.48(0.20) 48.22(0.80)

Table C.0.14: Parallel CLONALG: Speedup when Varying the Number of Input
Vectors

np→ 1 2 4 8 16
M↓ S S S S S
8 1.00(0.00) 1.96(0.02) 3.81(0.06) 6.85(0.11)
16 1.00(0.00) 2.21(0.01) 4.35(0.03) 8.70(0.09) 17.06(0.30)
32 1.00(0.00) 1.96(0.00) 3.89(0.01) 7.74(0.11) 15.53(0.12)
64 1.00(0.00) 1.97(0.00) 3.93(0.01) 7.82(0.04) 15.52(0.20)
128 1.00(0.00) 2.18(0.00) 4.36(0.01) 8.65(0.02) 17.31(0.27)

Table C.0.15: Parallel CLONALG: Parallel Efficiency when Varying the Number
of Input Vectors

np→ 1 2 4 8 16
M↓ Ep Ep Ep Ep Ep

8 1.00(0.00) 0.98(0.01) 0.95(0.01) 0.86(0.01)
16 1.00(0.00) 1.10(0.00) 1.09(0.01) 1.09(0.01) 1.07(0.02)
32 1.00(0.00) 0.98(0.00) 0.97(0.00) 0.97(0.01) 0.97(0.01)
64 1.00(0.00) 0.98(0.00) 0.98(0.00) 0.98(0.01) 0.97(0.01)
128 1.00(0.00) 1.09(0.00) 1.09(0.00) 1.08(0.00) 1.08(0.02)



APPENDIX C. PARALLEL CLONALG RESULTS 270

Table C.0.16: Parallel CLONALG: Runtimes when Varying the Length of the
Input vector

np→ 1 2 4 8 16
L↓ time (s) time (s) time (s) time (s) time (s)
1 13.76(0.01) 7.11(0.35) 3.70(0.24) 2.01(0.41) 1.01(0.03)
2 14.97(0.02) 7.63(0.09) 3.93(0.03) 2.04(0.04) 1.11(0.10)
4 15.52(0.01) 7.90(0.09) 4.09(0.07) 2.12(0.04) 1.13(0.03)
8 15.49(0.03) 7.86(0.08) 4.06(0.04) 2.14(0.16) 1.13(0.05)
16 32.82(0.02) 16.64(0.07) 8.48(0.12) 4.31(0.04) 2.23(0.08)
32 89.22(0.05) 36.50(0.10) 18.36(0.06) 9.26(0.04) 4.69(0.05)
64 187.88(0.07) 95.97(0.16) 48.35(0.15) 24.24(0.20) 12.14(0.14)
128 607.88(0.31) 316.62(2.14) 162.31(3.49) 79.83(0.99) 40.14(0.81)

Table C.0.17: Parallel CLONALG: Speedup when Varying the Length of the Input
Vector

np→ 1 2 4 8 16
L↓ S S S S S
1 1.00(0.00) 1.94(0.08) 3.73(0.18) 6.99(0.83) 13.68(0.43)
2 1.00(0.00) 1.96(0.02) 3.81(0.03) 7.33(0.15) 13.59(0.91)
4 1.00(0.00) 1.97(0.02) 3.80(0.06) 7.32(0.14) 13.79(0.40)
8 1.00(0.00) 1.97(0.02) 3.81(0.03) 7.27(0.41) 13.69(0.55)
16 1.00(0.00) 1.97(0.01) 3.87(0.05) 7.62(0.08) 14.73(0.47)
32 1.00(0.00) 2.44(0.01) 4.86(0.02) 9.64(0.04) 19.01(0.18)
64 1.00(0.00) 1.96(0.00) 3.89(0.01) 7.75(0.06) 15.48(0.17)
128 1.00(0.00) 1.92(0.01) 3.75(0.08) 7.62(0.09) 15.15(0.31)

Table C.0.18: Parallel CLONALG: Parallel Efficiency when Varying the Length
of the Input Vector

np→ 1 2 4 8 16
L↓ Ep Ep Ep Ep Ep

1 1.00(0.00) 0.97(0.04) 0.93(0.05) 0.87(0.10) 0.86(0.03)
2 1.00(0.00) 0.98(0.01) 0.95(0.01) 0.92(0.02) 0.85(0.06)
4 1.00(0.00) 0.98(0.01) 0.95(0.01) 0.91(0.02) 0.86(0.02)
8 1.00(0.00) 0.99(0.01) 0.95(0.01) 0.91(0.05) 0.86(0.03)
16 1.00(0.00) 0.99(0.00) 0.97(0.01) 0.95(0.01) 0.92(0.03)
32 1.00(0.00) 1.22(0.00) 1.21(0.00) 1.20(0.01) 1.19(0.01)
64 1.00(0.00) 0.98(0.00) 0.97(0.00) 0.97(0.01) 0.97(0.01)
128 1.00(0.00) 0.96(0.01) 0.94(0.02) 0.95(0.01) 0.95(0.02)



Appendix D

Parallel AIRS Results

This appendix presents results for experiments with the parallel version of AIRS.

Table D.0.1: Iris Results: Concatenation
np Test Set Accuracy Memory Cells Overall Runtime(s)

1 95.69%(3.05) 63.09(3.75) 0.34(0.05)
2 95.64%(3.21) 73.52(4.35) 0.23(0.03)
4 95.00%(3.76) 83.69(3.91) 0.24(0.08)
8 95.82%(3.19) 95.77(3.78) 0.23(0.09)
16 95.38%(2.75) 104.53(2.82) 0.23(0.15)

Table D.0.2: Pima Diabetes Results: Concatenation
np Test Set Accuracy Memory Cells Overall Runtime(s)
1 72.80%(5.04) 279.82(11.05) 3.43(0.12)
2 73.26%(4.81) 317.86(10.46) 2.75(0.05)
4 74.05%(4.91) 356.64(10.42) 2.23(0.06)
8 74.02%(4.68) 400.63(11.90) 2.00(0.07)
16 74.12%(4.87) 445.64(11.19) 1.96(0.16)

271
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Table D.0.3: Sonar Results: Concatenation
np Test Set Accuracy Memory Cells Overall Runtime(s)
1 84.46%(7.68) 173.10(3.73) 54.74(3.03)
2 83.94%(7.88) 179.71(3.09) 32.73(1.80)
4 84.94%(7.88) 184.82(2.54) 19.41(1.25)
8 83.93%(8.48) 187.74(1.87) 11.54(0.93)
16 84.12%(7.86) 189.90(1.39) 6.99(0.54)

Table D.0.4: Concatenation: Speedup and Efficiency

Iris Pima Diabetes Sonar
np S Ep S Ep S Ep

1 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
2 1.50(0.24) 0.75(0.12) 1.25(0.05) 0.62(0.03) 1.68(0.13) 0.84(0.07)
4 1.51(0.42) 0.38(0.10) 1.54(0.07) 0.38(0.02) 2.83(0.24) 0.71(0.06)
8 1.68(0.55) 0.21(0.07) 1.71(0.08) 0.21(0.01) 4.77(0.46) 0.60(0.06)
16 1.69(0.50) 0.11(0.03) 1.76(0.10) 0.11(0.01) 7.87(0.73) 0.49(0.05)

Table D.0.5: Iris Results: Affinity-Based Merging
np Test Set Accuracy Memory Cells Overall Runtime(s)
1 95.07%(3.18) 61.75(4.26) 0.35(0.02)
2 94.71%(3.44) 67.44(4.33) 0.24(0.04)
4 94.58%(3.85) 72.18(4.30) 0.24(0.06)
8 95.24%(3.67) 79.81(4.20) 0.22(0.06)
16 94.67%(3.04) 84.14(3.97) 0.20(0.08)

Table D.0.6: Pima Diabetes Results: Affinity-Based Merging
NP Test Set Accuracy Memory Cells Overall Runtime(s)
1 72.81%(4.62) 276.32(10.56) 3.60(0.06)
2 73.55%(4.54) 307.36(10.66) 2.99(0.06)
4 73.76%(4.40) 339.63(10.90) 2.53(0.08)
8 73.70%(4.49) 372.85(11.05) 2.36(0.11)
16 74.1%3(4.73) 408.83(11.65) 2.36(0.09)
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Table D.0.7: Sonar Results: Affinity-Based Merging
np Test Set Accuracy Memory Cells Overall Runtime(s)
1 84.58%(7.90) 173.37(3.79) 54.80(2.77)
2 84.50%(8.36) 179.73(3.26) 32.92(1.94)
4 83.97%(8.25) 184.85(2.29) 19.67(1.25)
8 83.99%(8.17) 187.87(1.86) 11.71(0.84)
16 84.38%(8.15) 189.87(1.33) 7.21(0.59)

Table D.0.8: Affinity-Based Merging: Speedup and Efficiency

Iris Pima Diabetes Sonar
np S Ep S Ep S Ep

1 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
2 1.47(0.15) 0.74(0.07) 1.20(0.03) 0.60(0.02) 1.67(0.13) 0.84(0.06)
4 1.51(0.34) 0.38(0.08) 1.42(0.05) 0.36(0.01) 2.80(0.23) 0.70(0.06)
8 1.73(0.48) 0.22(0.06) 1.53(0.05) 0.19(0.01) 4.70(0.41) 0.59(0.05)
16 1.86(0.52) 0.12(0.03) 1.53(0.05) 0.10(0.00) 7.65(0.73) 0.48(0.05)
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Table D.0.9: Iris Results: Processor Dependent, Affinity-Based Merging
np Test Set Accuracy Memory Cells Overall Runtime(s)
1 95.07%(3.18) 61.75(4.26) 0.35(0.02)
2 95.13%(3.78) 58.84(4.09) 0.23(0.02)
4 94.49%(3.94) 53.12(3.85) 0.23(0.05)
8 94.82%(4.22) 50.97(4.37) 0.23(0.21)
16 94.36%(3.58) 46.84(3.28) 0.21(0.07)

Table D.0.10: Pima Diabetes Results: Processor Dependent, Affinity-Based
Merging

np Test Set Accuracy Memory Cells Overall Runtime(s)
1 72.81%(4.62) 276.32(10.56) 3.60(0.06)
2 73.39%(4.72) 259.44(9.89) 2.83(0.06)
4 73.45%(4.33) 228.88(9.22) 2.17(0.06)
8 73.64%(4.87) 192.10(8.61) 1.78(0.04)
16 73.40%(5.19) 164.75(7.93) 1.57(0.12)

Table D.0.11: Sonar Results: Processor Dependent, Affinity-Based Merging
np Test Set Accuracy Memory Cells Overall Runtime(s)
1 84.58%(7.90) 173.37(3.79) 54.80(2.77)
2 84.02%(8.68) 173.65(3.59) 32.69(1.91)
4 83.96%(8.26) 175.75(3.09) 19.59(1.28)
8 83.72%(8.50) 177.21(3.33) 11.61(0.85)
16 83.91%(8.01) 179.65(3.04) 7.11(0.59)
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Table D.0.12: Iris Results: Varying the “Dampener”: Accuracy

np 1 2 4 8 16
D Accuracy Accuracy Accuracy Accuracy Accuracy
0.1 95.07%(3.18) 95.02%(3.64) 94.47%(3.82) 95.36%(3.92) 94.62%(3.43)
0.2 95.07%(3.18) 95.13%(3.78) 94.49%(3.94) 94.82%(4.22) 94.36%(3.58)
0.4 95.07%(3.18) 95.18%(3.22) 93.73%(4.38) 95.29%(4.11) 94.22%(3.95)
0.6 95.07%(3.18) 95.16%(3.27) 94.20%(4.33) 94.89%(4.28) 94.38%(4.05)
0.8 95.07%(3.18) 94.62%(4.08) 93.38%(4.95) 94.80%(4.04) 94.04%(3.61)
1 95.07%(3.18) 93.98%(4.60) 93.27%(5.00) 93.87%(4.21) 93.18%(4.67)

Table D.0.13: Iris Results: Varying the “Dampener”: Memory Cells
np 1 2 4 8 16
D MCs MCs MCs MCs MCs
0.1 61.75(4.26) 62.57(4.23) 62.26(3.80) 64.39(4.13) 63.93(3.50)
0.2 61.75(4.26) 58.84(4.09) 53.12(3.85) 50.97(4.37) 46.84(3.28)
0.4 61.75(4.26) 50.69(3.84) 39.31(3.42) 32.54(3.28) 26.39(2.71)
0.6 61.75(4.26) 43.74(3.34) 28.93(3.06) 21.96(2.28) 16.71(1.77)
0.8 61.75(4.26) 37.55(3.25) 22.24(2.45) 15.62(2.09) 11.32(1.45)
1 61.75(4.26) 32.82(2.78) 17.59(2.16) 11.65(1.44) 9.04(1.09)

Table D.0.14: Iris Results: Varying the “Dampener”: Run Time
np 1 2 4 8 16
D time (s) time (s) time (s) time (s) time (s)
0.1 0.35(0.02) 0.23(0.09) 0.25(0.06) 0.24(0.06) 0.23(0.09)
0.2 0.35(0.02) 0.23(0.02) 0.23(0.05) 0.23(0.21) 0.21(0.07)
0.4 0.35(0.02) 0.23(0.03) 0.22(0.04) 0.21(0.11) 0.20(0.07)
0.6 0.35(0.02) 0.23(0.02) 0.22(0.05) 0.20(0.07) 0.20(0.06)
0.8 0.35(0.02) 0.22(0.03) 0.22(0.05) 0.21(0.09) 0.21(0.06)
1 0.35(0.02) 0.22(0.03) 0.21(0.05) 0.20(0.07) 0.20(0.07)
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Table D.0.15: Pima Diabetes Results: Varying the “Dampener”: Accuracy

np 1 2 4 8 16
D Accuracy Accuracy Accuracy Accuracy Accuracy
0.1 72.81%(4.62) 73.56%(4.59) 73.85%(4.43) 73.85%(4.97) 73.69%(4.71)
0.2 72.81%(4.62) 73.39%(4.72) 73.45%(4.33) 73.64%(4.87) 73.40%(5.19)
0.4 72.81%(4.62) 73.25%(4.38) 73.25%(4.84) 73.15%(4.87) 72.44%(5.11)
0.6 72.81%(4.62) 73.30%(4.54) 72.67%(4.91) 70.90%(5.35) 69.43%(6.25)
0.8 72.81%(4.62) 72.91%(4.67) 71.82%(4.87) 69.49%(5.58) 63.68%(9.33)
1 72.81%(4.62) 72.66%(4.93) 70.21%(5.48) 65.54%(7.95) 55.34%(14.72)

Table D.0.16: Pima Diabetes Results: Varying the “Dampener”: Memory Cells

np 1 2 4 8 16
D MCs MCs MCs MCs MCs
0.1 276.32(10.56) 282.58(10.29) 281.62(10.11) 273.44(9.12) 265.97(9.70)
0.2 276.32(10.56) 259.44(9.89) 228.88(9.22) 192.10(8.61) 164.75(7.93)
0.4 276.32(10.56) 213.34(8.19) 144.61(6.92) 93.42(5.72) 64.66(5.37)
0.6 276.32(10.56) 173.13(7.69) 90.69(5.78) 48.09(4.11) 29.89(3.19)
0.8 276.32(10.56) 138.94(6.04) 59.00(4.33) 27.43(2.99) 16.21(2.40)
1 276.32(10.56) 112.04(5.51) 39.21(3.37) 17.15(2.36) 9.70(1.72)

Table D.0.17: Pima Diabetes Results: Varying the “Dampener”: Run Time
np 1 2 4 8 16
D time (s) time (s) time (s) time (s) time (s)
0.1 3.60(0.06) 2.91(0.07) 2.35(0.07) 2.04(0.04) 1.90(0.12)
0.2 3.60(0.06) 2.83(0.06) 2.17(0.06) 1.78(0.04) 1.57(0.12)
0.4 3.60(0.06) 2.67(0.06) 1.91(0.07) 1.49(0.04) 1.30(0.05)
0.6 3.60(0.06) 2.53(0.05) 1.75(0.10) 1.37(0.03) 1.22(0.04)
0.8 3.60(0.06) 2.41(0.05) 1.66(0.11) 1.33(0.06) 1.20(0.05)
1 3.60(0.06) 2.33(0.05) 1.60(0.05) 1.31(0.06) 1.19(0.11)
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Table D.0.18: Sonar Results: Varying the “Dampener”: Accuracy

np 1 2 4 8 16
D Accuracy Accuracy Accuracy Accuracy Accuracy
0.1 84.58%(7.90) 84.38%(8.43) 84.12%(8.27) 84.02%(8.66) 83.67%(8.12)
0.2 84.58%(7.90) 84.02%(8.68) 83.96%(8.26) 83.72%(8.50) 83.91%(8.01)
0.4 84.58%(7.90) 85.05%(8.11) 84.33%(8.57) 83.33%(8.79) 84.31%(8.17)
0.6 84.58%(7.90) 84.63%(8.64) 84.10%(8.45) 83.96%(8.37) 83.65%(8.08)
0.8 84.58%(7.90) 84.54%(7.76) 83.91%(8.66) 83.64%(8.38) 83.46%(9.09)
1 84.58%(7.90) 84.26%(7.89) 84.38%(8.15) 83.19%(8.28) 82.16%(9.37)

Table D.0.19: Sonar Results: Varying the “Dampener”: Memory Cells
np 1 2 4 8 16
D MCs MCs MCs MCs MCs
0.1 173.37(3.79) 176.55(3.13) 180.07(2.96) 182.80(2.43) 185.14(2.31)
0.2 173.37(3.79) 173.65(3.59) 175.75(3.09) 177.21(3.33) 179.65(3.04)
0.4 173.37(3.79) 168.01(3.84) 166.27(3.87) 166.85(3.72) 167.11(4.26)
0.6 173.37(3.79) 162.58(4.02) 158.27(4.36) 154.97(4.63) 151.37(4.61)
0.8 173.37(3.79) 157.52(4.51) 150.40(4.42) 140.96(4.79) 128.69(4.69)
1 173.37(3.79) 152.27(4.34) 140.84(4.87) 123.91(4.96) 101.62(4.78)

Table D.0.20: Sonar Results: Varying the “Dampener”: Run Time
np 1 2 4 8 16
D time (s) time (s) time (s) time (s) time (s)
0.1 54.80(2.77) 32.73(1.82) 21.14(8.36) 11.76(0.96) 7.18(0.59)
0.2 54.80(2.77) 32.69(1.91) 19.59(1.28) 11.61(0.85) 7.11(0.59)
0.4 54.80(2.77) 32.91(1.89) 19.55(1.30) 11.61(0.82) 7.14(0.58)
0.6 54.80(2.77) 32.93(1.86) 19.61(1.34) 11.56(0.83) 7.01(0.56)
0.8 54.80(2.77) 32.93(1.98) 19.63(1.35) 11.54(0.90) 6.90(0.56)
1 54.80(2.77) 32.55(1.98) 19.47(1.30) 11.45(0.91) 6.82(0.58)
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Table D.0.21: Procssor Dependent, Affinity-Based Merging: Speedup and
Efficiency

Iris Pima Diabetes Sonar
np S Ep S Ep S Ep

1 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
2 1.51(0.12) 0.76(0.06) 1.27(0.03) 0.64(0.02) 1.68(0.13) 0.84(0.06)
4 1.59(0.37) 0.40(0.09) 1.66(0.05) 0.41(0.01) 2.81(0.23) 0.70(0.06)
8 1.79(0.55) 0.22(0.07) 2.02(0.05) 0.25(0.01) 4.74(0.42) 0.59(0.05)
16 1.83(0.56) 0.11(0.03) 2.29(0.09) 0.14(0.01) 7.75(0.74) 0.48(0.05)

;**********************************************************
; Parameter file for DGP/2
num features = 64 ; Number of features
max feature value = 20 ; Maximum feature value
num peaks = 5 ; Number of peaks in the final space
num instances = 320 ; Number of instances generated
proto seed = 2398 ; Initial random seed
range = 3 ; Range for positive class membership
percentage = 67 ; Percentage of positive instances
trunc flag = 0 ; Out of range instance disposition flag
out file name = 320.64.dat ; Filename for instances
stat file name = 320.64.sts ; Filename for run statistics
; End of parameter file

Figure D.0.1: Sample DGP-2 Parameter File
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Table D.0.22: Parallel AIRS: Run Times when Varying the Number of Training
Vectors

np→ 1 2 4 8 16
N↓ time(s) time(s) time(s) time(s) time(s)
32 0.30(0.04) 0.21(0.04) 0.23(0.07) 0.20(0.08) 0.20(0.12)
64 0.64(0.06) 0.44(0.05) 0.36(0.06) 0.31(0.06) 0.28(0.08)
128 1.45(0.07) 1.05(0.06) 0.78(0.05) 0.65(0.07) 0.57(0.07)
256 3.64(0.12) 2.89(0.11) 2.17(0.07) 1.86(0.06) 1.67(0.05)
512 10.01(0.23) 9.01(0.21) 7.16(0.16) 6.25(0.38) 5.78(0.10)

Table D.0.23: Parallel AIRS: Test Set Accuracy when Varying the Number of
Training Vectors

np→ 1 2 4 8 16
N↓ Accuracy Accuracy Accuracy Accuracy Accuracy
32 57.17%(21.05) 54.00%(13.53) 52.58%(11.15) 72.00%(9.89) 69.42%(15.36)
64 51.38%(8.86) 50.83%(7.16) 47.96%(13.36) 52.96%(16.84) 55.67%(9.08)
128 59.88%(6.84) 56.27%(8.18) 54.44%(6.72) 54.15%(7.74) 58.10%(5.22)
256 63.07%(5.45) 59.35%(5.16) 52.84%(5.11) 53.28%(6.63) 55.20%(6.12)
512 63.52%(5.11) 65.04%(5.19) 62.48%(4.99) 59.60%(5.69) 58.74%(4.81)
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Table D.0.24: Parallel AIRS: Number of Memory Cells when Varying the Number
of Training Vectors

np→ 1 2 4 8 16
N↓ MCs MCs MCs MCs MCs
32 23.06(2.31) 23.73(2.13) 25.32(1.74) 27.26(1.52) 29.68(1.24)
64 45.47(3.15) 45.03(3.07) 45.65(2.91) 47.63(2.77) 52.05(2.24)
128 89.07(4.97) 87.26(4.61) 86.83(4.33) 86.38(4.24) 88.71(3.87)
256 172.65(7.15) 169.09(6.02) 166.84(5.94) 166.13(5.63) 163.53(5.31)
512 337.24(10.72) 334.36(9.86) 327.41(8.51) 318.05(7.63) 313.77(7.60)

Table D.0.25: Parallel AIRS: Performance Metrics when Varying the Number of
Training Vectors

np→ 1 2 4 8 16
N↓ S S S S S
32 1.00(0.00) 1.48(0.28) 1.43(0.43) 1.65(0.58) 1.74(0.62)
64 1.00(0.00) 1.48(0.20) 1.81(0.29) 2.15(0.42) 2.39(0.55)
128 1.00(0.00) 1.38(0.10) 1.88(0.15) 2.26(0.21) 2.57(0.26)
256 1.00(0.00) 1.26(0.06) 1.68(0.07) 1.96(0.09) 2.18(0.09)
512 1.00(0.00) 1.11(0.04) 1.40(0.04) 1.61(0.07) 1.73(0.05)
N↓ Ep Ep Ep Ep Ep

32 1.00(0.00) 0.74(0.14) 0.36(0.11) 0.21(0.07) 0.11(0.04)
64 1.00(0.00) 0.74(0.10) 0.45(0.07) 0.27(0.05) 0.15(0.03)
128 1.00(0.00) 0.69(0.05) 0.47(0.04) 0.28(0.03) 0.16(0.02)
256 1.00(0.00) 0.63(0.03) 0.42(0.02) 0.24(0.01) 0.14(0.01)
512 1.00(0.00) 0.56(0.02) 0.35(0.01) 0.20(0.01) 0.11(0.00)
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Table D.0.26: Parallel AIRS: Run Times when Varying the Length of the Input
Vectors

np→ 1 2 4 8 16
L↓ time(s) time(s) time(s) time(s) time(s)
1 0.83(0.04) 0.49(0.03) 0.36(0.05) 0.31(0.18) 0.27(0.08)
2 0.79(0.04) 0.52(0.04) 0.41(0.05) 0.35(0.06) 0.31(0.06)
4 1.00(0.04) 0.74(0.03) 0.59(0.07) 0.54(0.15) 0.48(0.11)
8 1.28(0.05) 0.97(0.03) 0.77(0.04) 0.67(0.03) 0.62(0.03)
16 1.68(0.06) 1.29(0.04) 0.99(0.04) 0.84(0.03) 0.76(0.03)
32 2.39(0.07) 1.87(0.07) 1.41(0.05) 1.19(0.05) 1.07(0.03)
64 3.64(0.12) 2.89(0.11) 2.17(0.07) 1.86(0.06) 1.67(0.05)
128 5.83(0.19) 4.76(0.17) 3.60(0.11) 3.05(0.08) 2.80(0.07)

Table D.0.27: Parallel AIRS: Performance Metrics when Varying the Length of
the Input Vectors

np→ 1 2 4 8 16
L↓ S S S S S
1 1.00(0.00) 1.70(0.11) 2.32(0.28) 2.88(0.56) 3.22(0.67)
2 1.00(0.00) 1.54(0.11) 1.98(0.21) 2.29(0.32) 2.64(0.39)
4 1.00(0.00) 1.36(0.08) 1.70(0.16) 1.91(0.23) 2.14(0.22)
8 1.00(0.00) 1.32(0.06) 1.67(0.10) 1.91(0.11) 2.08(0.12)
16 1.00(0.00) 1.31(0.06) 1.70(0.09) 2.00(0.10) 2.21(0.11)
32 1.00(0.00) 1.28(0.06) 1.70(0.07) 2.02(0.10) 2.23(0.10)
64 1.00(0.00) 1.26(0.06) 1.68(0.07) 1.96(0.09) 2.18(0.09)
128 1.00(0.00) 1.23(0.06) 1.62(0.07) 1.91(0.08) 2.08(0.08)
L↓ Ep Ep Ep Ep Ep

1 1.00(0.00) 0.85(0.05) 0.58(0.07) 0.36(0.07) 0.20(0.04)
2 1.00(0.00) 0.77(0.06) 0.49(0.05) 0.29(0.04) 0.16(0.02)
4 1.00(0.00) 0.68(0.04) 0.42(0.04) 0.24(0.03) 0.13(0.01)
8 1.00(0.00) 0.66(0.03) 0.42(0.03) 0.24(0.01) 0.13(0.01)
16 1.00(0.00) 0.65(0.03) 0.43(0.02) 0.25(0.01) 0.14(0.01)
32 1.00(0.00) 0.64(0.03) 0.42(0.02) 0.25(0.01) 0.14(0.01)
64 1.00(0.00) 0.63(0.03) 0.42(0.02) 0.24(0.01) 0.14(0.01)
128 1.00(0.00) 0.61(0.03) 0.40(0.02) 0.24(0.01) 0.13(0.01)
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Table D.0.28: Parallel AIRS: Test Set Accuracy when Varying the Length of the
Input Vectors

np→ 1 2 4 8 16
L↓ Accuracy Accuracy Accuracy Accuracy Accuracy
1 97.47%(2.95) 96.72%(3.83) 94.78%(4.13) 88.33%(7.51) 88.30%(8.31)
2 92.05%(3.22) 91.17%(3.82) 89.78%(3.96) 88.91%(3.99) 89.10%(3.94)
4 77.82%(7.24) 76.67%(7.13) 75.41%(6.42) 73.88%(6.17) 77.71%(6.34)
8 71.30%(5.29) 70.97%(4.20) 70.56%(4.65) 70.60%(4.59) 73.77%(4.26)
16 63.66%(6.22) 64.83%(5.74) 64.78%(6.12) 61.75%(5.57) 62.44%(5.21)
32 63.16%(6.13) 61.02%(5.48) 59.11%(6.41) 58.78%(5.24) 58.58%(5.31)
64 63.07%(5.45) 59.35%(5.16) 52.84%(5.11) 53.28%(6.63) 55.20%(6.12)
128 62.93%(4.47) 59.79%(4.45) 55.07%(4.95) 54.32%(5.33) 54.41%(6.88)

Table D.0.29: Parallel AIRS: Number of Memory Cells when Varying the Length
of the Input Vectors
np→ 1 2 4 8 16
L↓ MCs MCs MCs MCs MCs
1 20.87(1.64) 22.83(2.25) 25.72(2.08) 26.29(2.56) 27.11(2.17)
2 94.59(4.83) 99.17(4.74) 101.22(4.60) 99.07(4.07) 96.73(3.60)
4 198.45(5.31) 204.65(5.74) 205.95(5.30) 207.64(5.18) 206.10(4.98)
8 225.91(4.75) 227.02(4.33) 226.55(4.58) 225.77(4.13) 227.41(4.70)
16 222.24(5.41) 218.00(5.57) 214.17(5.14) 212.11(4.99) 209.85(5.03)
32 198.43(6.09) 194.73(7.34) 190.47(5.35) 186.15(5.78) 185.60(5.67)
64 172.65(7.15) 169.09(6.02) 166.84(5.94) 166.13(5.63) 163.53(5.31)
128 148.37(7.89) 147.90(7.30) 144.85(5.97) 143.57(5.34) 144.07(4.74)



Appendix E

Distributed AIRS Results

This appendix presents results for experiments with the distributed version of

AIRS.

Table E.0.1: Distributed Iris: Training Set Accuracy
np Global Acc. Min. Acc. Max. Acc.
1 97.94%(0.99) 97.94%(0.99) 97.94%(0.99)
2 98.47%(0.96) 97.59%(1.36) 99.36%(0.96)
4 97.94%(1.20) 95.00%(2.72) 99.91%(0.54)
8 97.74%(1.03) 92.71%(2.60) 100.00%(0.00)
16 97.07%(1.00) 80.52%(6.99) 100.00%(0.00)

Table E.0.2: Distributed Pima Diabetes: Training Set Accuracy
np Global Acc. Min. Acc. Max. Acc.
1 76.47%(1.25) 76.47%(1.25) 76.47%(1.25)
2 76.17%(1.21) 74.79%(1.63) 77.55%(1.44)
4 76.01%(1.12) 73.41%(1.70) 78.65%(1.69)
8 75.84%(1.30) 69.90%(2.67) 82.00%(2.67)
16 75.22%(1.40) 63.07%(4.22) 85.68%(2.52)
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Table E.0.3: Distributed Sonar: Training Set Accuracy
np Global Acc. Min. Acc. Max. Acc.
1 97.79%(1.12) 97.79%(1.12) 97.79%(1.12)
2 96.72%(1.29) 95.67%(1.73) 97.77%(1.32)
4 95.06%(1.50) 91.49%(2.74) 98.13%(1.59)
8 93.68%(1.69) 86.05%(4.10) 99.37%(1.49)
16 93.00%(1.74) 77.91%(6.25) 100.00%(0.00)

Table E.0.4: Distributed AIRS: Run Times when Varying the Number of Training
Vectors

np→ 1 2 4 8 16
N↓ time(s) time(s) time(s) time(s) time(s)
32 0.29(0.06) 0.16(0.04) 0.17(0.06) 0.17(0.10) 0.21(0.09)
64 0.59(0.06) 0.30(0.04) 0.23(0.06) 0.19(0.08) 0.22(0.08)
128 1.37(0.10) 0.63(0.05) 0.36(0.06) 0.24(0.07) 0.24(0.08)
256 3.34(0.11) 1.41(0.09) 0.67(0.05) 0.36(0.07) 0.26(0.09)
512 9.11(0.20) 3.44(0.09) 1.45(0.07) 0.69(0.05) 0.41(0.17)

Table E.0.5: Distributed AIRS: Performance Metrics when Varying the Number
of Training Vectors

np→ 1 2 4 8 16
N↓ S S S S S
32 1.00(0.00) 1.87(0.49) 1.91(0.78) 2.07(1.04) 1.51(0.53)
64 1.00(0.00) 1.96(0.29) 2.68(0.67) 3.40(1.17) 2.89(0.83)
128 1.00(0.00) 2.19(0.22) 3.90(0.60) 6.16(1.37) 6.20(1.36)
256 1.00(0.00) 2.38(0.15) 5.05(0.39) 9.47(1.28) 13.48(2.37)
512 1.00(0.00) 2.65(0.09) 6.27(0.29) 13.24(0.87) 22.97(2.85)
N↓ Ep Ep Ep Ep Ep

32 1.00(0.00) 0.94(0.24) 0.48(0.19) 0.26(0.13) 0.09(0.03)
64 1.00(0.00) 0.98(0.14) 0.67(0.17) 0.42(0.15) 0.18(0.05)
128 1.00(0.00) 1.09(0.11) 0.98(0.15) 0.77(0.17) 0.39(0.09)
256 1.00(0.00) 1.19(0.07) 1.26(0.10) 1.18(0.16) 0.84(0.15)
512 1.00(0.00) 1.33(0.05) 1.57(0.07) 1.66(0.11) 1.44(0.18)
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Table E.0.6: Distributed AIRS: Run Times when Varying the Length of the Input
Vectors

np→ 1 2 4 8 16
L↓ time(s) time(s) time(s) time(s) time(s)
1 0.83(0.03) 0.41(0.04) 0.29(0.06) 0.24(0.09) 0.25(0.19)
2 0.76(0.05) 0.37(0.03) 0.27(0.07) 0.21(0.07) 0.22(0.07)
4 0.85(0.03) 0.40(0.03) 0.27(0.06) 0.22(0.07) 0.27(0.09)
8 1.08(0.06) 0.48(0.05) 0.30(0.06) 0.21(0.06) 0.25(0.08)
16 1.46(0.07) 0.63(0.04) 0.36(0.07) 0.24(0.08) 0.25(0.11)
32 2.17(0.11) 0.93(0.06) 0.47(0.08) 0.28(0.06) 0.27(0.10)
64 3.34(0.11) 1.41(0.09) 0.67(0.05) 0.36(0.07) 0.26(0.09)
128 5.44(0.17) 2.27(0.11) 1.05(0.08) 0.55(0.11) 0.33(0.05)

Table E.0.7: Distributed AIRS: Performance Metrics when Varying the Length of
the Input Vectors

np→ 1 2 4 8 16
L↓ S S S S S
1 1.00(0.00) 2.03(0.15) 3.00(0.57) 3.95(1.28) 3.93(1.29)
2 1.00(0.00) 2.07(0.17) 2.97(0.60) 3.90(1.16) 3.77(1.02)
4 1.00(0.00) 2.15(0.14) 3.32(0.65) 4.18(1.28) 3.49(1.00)
8 1.00(0.00) 2.24(0.18) 3.74(0.72) 5.52(1.47) 4.78(1.27)
16 1.00(0.00) 2.32(0.16) 4.18(0.64) 6.49(1.67) 6.49(1.77)
32 1.00(0.00) 2.35(0.18) 4.68(0.58) 7.95(1.40) 8.74(2.16)
64 1.00(0.00) 2.38(0.15) 5.05(0.39) 9.47(1.28) 13.48(2.37)
128 1.00(0.00) 2.40(0.13) 5.20(0.38) 10.12(1.04) 16.56(1.85)
L↓ Ep Ep Ep Ep Ep

1 1.00(0.00) 1.02(0.08) 0.75(0.14) 0.49(0.16) 0.25(0.08)
2 1.00(0.00) 1.04(0.08) 0.74(0.15) 0.49(0.15) 0.24(0.06)
4 1.00(0.00) 1.07(0.07) 0.83(0.16) 0.52(0.16) 0.22(0.06)
8 1.00(0.00) 1.12(0.09) 0.93(0.18) 0.69(0.18) 0.30(0.08)
16 1.00(0.00) 1.16(0.08) 1.04(0.16) 0.81(0.21) 0.41(0.11)
32 1.00(0.00) 1.17(0.09) 1.17(0.14) 0.99(0.17) 0.55(0.14)
64 1.00(0.00) 1.19(0.07) 1.26(0.10) 1.18(0.16) 0.84(0.15)
128 1.00(0.00) 1.20(0.07) 1.30(0.09) 1.26(0.13) 1.04(0.12)
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Table E.0.8: Distributed AIRS: Global Test Set Accuracy when Varying the
Number of Training Vectors

np→ 1 2 4 8 16
N↓ Accuracy Accuracy Accuracy Accuracy Accuracy
32 56.75%(21.32) 62.00%(10.63) 59.50%(13.87) 72.08%(10.08) 51.75%(20.79)
64 52.08%(8.86) 55.67%(9.67) 58.08%(17.28) 61.46%(13.18) 56.58%(12.60)
128 59.06%(7.44) 59.23%(7.34) 58.63%(8.27) 55.88%(7.98) 57.90%(8.63)
256 62.52%(4.89) 59.02%(5.63) 54.56%(5.96) 57.50%(4.10) 57.40%(5.09)
512 63.88%(5.23) 62.88%(5.42) 61.48%(6.52) 59.02%(5.81) 55.43%(5.24)

Table E.0.9: Distributed AIRS: Global Number of Memory Cells when Varying
the Number of Training Vectors

np→ 1 2 4 8 16
N↓ MCs MCs MCs MCs MCs
32 22.98(2.68) 25.83(2.20) 27.94(1.56) 30.24(1.20) 31.63(0.57)
64 45.53(3.39) 49.64(3.40) 53.27(2.62) 56.89(2.55) 60.73(1.58)
128 88.91(4.82) 95.39(4.64) 102.18(4.73) 107.99(4.10) 114.00(3.45)
256 172.15(7.70) 185.25(7.13) 196.83(6.52) 210.01(5.82) 217.89(5.68)
512 338.06(11.30) 362.17(9.45) 385.57(9.24) 408.22(8.87) 424.48(8.34)

Table E.0.10: Distributed AIRS: Local Minimum Test Set Accuracy when Varying
the Number of Training Vectors

np→ 1 2 4 8 16
N↓ Min. Acc. Min. Acc. Min. Acc. Min. Acc. Min. Acc.
32 56.75%(21.32) 41.17%(13.93) 30.33%(24.51) 0.00%(0.00) 0.00%(0.00)
64 52.08%(8.86) 46.58%(12.86) 42.83%(19.72) 21.67%(24.86) 0.00%(0.00)
128 59.06%(7.44) 51.46%(9.23) 41.58%(14.45) 21.17%(14.98) 0.00%(0.00)
256 62.52%(4.89) 55.23%(6.55) 41.17%(8.17) 35.25%(8.20) 18.83%(11.92)
512 63.88%(5.23) 58.58%(6.86) 51.58%(7.94) 40.42%(8.80) 25.33%(8.44)
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Table E.0.11: Distributed AIRS: Local Maximum Test Set Accuracy when Varying
the Number of Training Vectors

np→ 1 2 4 8 16
N↓ Max. Acc. Max. Acc. Max. Acc. Max. Acc. Max. Acc.
32 56.75%(21.32) 82.83%(17.89) 98.00%(9.83) 100.00%(0.00) 100.00%(0.00)
64 52.08%(8.86) 64.75%(9.94) 73.67%(17.08) 100.00%(0.00) 100.00%(0.00)
128 59.06%(7.44) 67.00%(9.77) 77.58%(10.77) 93.00%(11.26) 100.00%(0.00)
256 62.52%(4.89) 62.81%(6.09) 67.54%(7.99) 80.33%(9.42) 93.50%(11.00)
512 63.88%(5.23) 67.17%(5.72) 70.63%(7.82) 79.13%(9.15) 83.50%(9.08)

Table E.0.12: Distributed AIRS: Local Minimum Number of Memory Cells when
Varying the Number of Training Vectors

np→ 1 2 4 8 16
N↓ Min MCs Min MCs Min MCs Min MCs Min MCs
32 22.98(2.68) 12.07(1.38) 6.07(0.71) 3.09 1.67(0.47)
64 45.53(3.39) 23.45(2.11) 11.80(1.14) 5.83 2.83(0.42)
128 88.91(4.82) 46.05(2.65) 23.17(1.86) 11.36 5.39(0.64)
256 172.15(7.70) 89.75(4.01) 45.65(2.67) 23.01 11.03(0.98)
512 338.06(11.30) 177.17(5.38) 91.35(3.38) 46.39 22.66(1.23)

Table E.0.13: Distributed AIRS: Local Maximum Number of Memory Cells when
Varying the Number of Training Vectors

np→ 1 2 4 8 16
N↓ Max MCs Max MCs Max MCs Max MCs Max MCs
32 22.98(2.68) 13.76(1.27) 7.83(0.37) 4.00(0.00) 2.00(0.00)
64 45.53(3.39) 26.19(1.97) 14.79(0.81) 7.97(0.16) 4.00(0.00)
128 88.91(4.82) 49.34(2.65) 27.85(1.44) 15.31(0.63) 8.00(0.00)
256 172.15(7.70) 95.50(4.19) 52.88(2.16) 29.15(1.17) 15.68(0.47)
512 338.06(11.30) 185.00(6.00) 101.35(3.44) 55.45(1.77) 30.09(0.92)
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Table E.0.14: Distributed AIRS: Global Test Set Accuracy when Varying the
Length of the Input Vectors

np→ 1 2 4 8 16
L↓ Accuracy Accuracy Accuracy Accuracy Accuracy
1 97.51%(2.45) 97.78%(2.09) 95.51%(2.38) 87.83%(2.96) 82.74%(3.23)
2 92.32%(3.22) 88.24%(3.53) 84.53%(3.77) 82.98%(3.87) 80.34%(3.25)
4 78.11%(6.69) 74.29%(6.83) 71.36%(6.15) 69.28%(5.91) 73.10%(8.34)
8 70.95%(4.88) 70.88%(5.16) 71.73%(5.42) 69.59%(4.80) 70.78%(3.72)
16 64.34%(6.39) 62.46%(6.61) 60.57%(6.77) 62.40%(6.98) 62.82%(5.87)
32 62.69%(5.75) 61.03%(5.82) 60.11%(5.28) 56.24%(6.39) 54.41%(5.44)
64 62.84%(4.72) 59.11%(5.61) 54.19%(5.64) 58.13%(3.87) 58.61%(4.91)
128 63.18%(3.79) 61.21%(5.12) 58.41%(4.85) 56.86%(4.65) 53.67%(6.40)

Table E.0.15: Distributed AIRS: Global Number of Memory Cells when Varying
the Lenght of the Input Vectors
np→ 1 2 4 8 16
L↓ MCs MCs MCs MCs MCs
1 21.35(1.84) 37.89(2.44) 64.70(2.64) 93.75(2.25) 133.37(2.42)
2 97.73(4.44) 125.69(5.23) 154.89(5.56) 185.58(4.84) 212.92(5.19)
4 199.28(6.10) 213.25(5.16) 224.87(4.37) 235.37(3.96) 242.66(3.46)
8 226.51(4.85) 232.35(4.30) 236.93(3.76) 241.90(3.78) 246.72(2.89)
16 221.37(5.67) 226.37(5.00) 231.32(4.57) 237.40(3.95) 243.18(3.34)
32 199.03(5.91) 207.42(6.06) 215.66(5.79) 223.67(5.04) 230.97(4.87)
64 172.15(7.70) 185.25(7.13) 196.83(6.52) 210.01(5.82) 217.89(5.68)
128 149.71(7.59) 164.80(7.72) 178.07(6.97) 190.45(7.13) 204.02(5.68)
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Table E.0.16: Distributed AIRS: Local Minimum Test Set Accuracy when Varying
the Length of the Training Vectors

np→ 1 2 4 8 16
L↓ Min. Acc. Min. Acc. Min. Acc. Min. Acc. Min. Acc.
1 97.51%(2.45) 96.27%(2.98) 88.92%(5.28) 64.92%(10.90) 42.33%(11.57)
2 92.32%(3.22) 85.46%(4.30) 75.42%(7.30) 65.67%(9.07) 46.67%(9.01)
4 78.11%(6.69) 69.29%(8.51) 60.42%(8.86) 43.25%(13.48) 24.83%(20.38)
8 70.95%(4.88) 66.46%(6.44) 59.13%(9.12) 44.83%(10.95) 29.17%(13.71)
16 64.34%(6.39) 57.42%(7.94) 45.17%(12.08) 34.50%(13.94) 19.00%(14.39)
32 62.69%(5.75) 54.13%(6.99) 46.42%(8.24) 31.25%(9.90) 11.67%(12.84)
64 62.84%(4.72) 55.42%(6.76) 41.17%(7.87) 36.00%(7.23) 19.33%(11.27)
128 63.18%(3.79) 56.42%(5.61) 46.63%(7.01) 33.25%(12.27) 13.33%(13.79)

Table E.0.17: Distributed AIRS: Local Maximum Test Set Accuracy when Varying
the Length of the Input Vectors

np→ 1 2 4 8 16
L↓ Max. Acc. Max. Acc. Max. Acc. Max. Acc. Max. Acc.
1 97.51%(2.45) 99.29%(1.70) 99.75%(1.23) 100.00%(0.00) 100.00%(0.00)
2 92.32%(3.22) 91.02%(4.00) 92.58%(4.77) 97.33%(5.14) 100.00%(0.00)
4 78.11%(6.69) 79.29%(6.47) 83.42%(7.24) 94.00%(8.28) 100.00%(0.00)
8 70.95%(4.88) 75.29%(6.17) 83.29%(5.54) 92.33%(7.90) 100.00%(0.00)
16 64.34%(6.39) 67.50%(7.16) 74.08%(7.81) 84.33%(7.96) 99.00%(4.92)
32 62.69%(5.75) 67.94%(8.26) 75.38%(8.48) 80.50%(9.66) 94.67%(10.28)
64 62.84%(4.72) 62.81%(6.04) 67.21%(7.27) 80.42%(9.21) 97.50%(7.53)
128 63.18%(3.79) 66.00%(6.47) 68.83%(6.39) 77.33%(5.68) 96.50%(8.70)
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Table E.0.18: Distributed AIRS: Local Minimum Number of Memory Cells when
Varying the Length of the Input Vectors

np→ 1 2 4 8 16
L↓ Min MCs Min MCs Min MCs Min MCs Min MCs
1 21.35(1.84) 17.60(1.15) 14.63(0.85) 10.09(0.33) 6.94(0.24)
2 97.73(4.44) 60.75(2.92) 35.84(1.97) 20.54(1.19) 11.24(0.66)
4 199.28(6.10) 104.58(3.00) 53.74(1.86) 27.25(1.07) 13.37(0.70)
8 226.51(4.85) 114.55(2.63) 56.93(1.56) 28.40(1.06) 13.83(0.75)
16 221.37(5.67) 110.97(3.15) 55.56(1.83) 27.29(1.16) 13.35(0.72)
32 199.03(5.91) 101.14(3.56) 50.75(2.30) 25.39(1.19) 12.19(0.82)
64 172.15(7.70) 89.75(4.01) 45.65(2.67) 23.01(1.65) 11.03(0.98)
128 149.71(7.59) 78.95(4.68) 40.77(2.58) 20.07(1.68) 9.82(1.02)

Table E.0.19: Distributed AIRS: Local Maximum Number of Memory Cells when
Varying the Length of the Input Vectors

np→ 1 2 4 8 16
L↓ Max MCs Max MCs Max MCs Max MCs Max MCs
1 21.35(1.84) 20.29(1.78) 18.43(1.15) 13.75(0.57) 10.01(0.41)
2 97.73(4.44) 64.94(3.04) 41.68(1.98) 25.73(1.07) 15.23(0.51)
4 199.28(6.10) 108.67(3.06) 58.65(1.51) 31.26(0.60) 16.00(0.00)
8 226.51(4.85) 117.79(2.46) 61.23(1.31) 31.73(0.44) 16.00(0.00)
16 221.37(5.67) 115.40(2.79) 60.04(1.27) 31.43(0.62) 16.00(0.00)
32 199.03(5.91) 106.28(3.55) 56.77(1.75) 30.25(0.90) 15.95(0.21)
64 172.15(7.70) 95.50(4.19) 52.88(2.16) 29.15(1.17) 15.68(0.47)
128 149.71(7.59) 85.85(4.47) 48.26(2.41) 27.15(1.24) 15.19(0.60)


