University of

"1l Kent Academic Repository

Li, Huiging and Thompson, Simon (2013) Multicore Profiling for Erlang
Programs Using Percept2. In: Erlang Workshop 2013, 28 September 2013,
Boston, USA.

Downloaded from
https://kar.kent.ac.uk/34875/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/2505305.2505311

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/34875/
https://doi.org/2505305.2505311
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Multicore Profiling for Erlang Programs Using Percept2

Huiqing Li

Computing Laboratory, University of Kent, UK
H.Li@kent.ac.uk

Abstract

Erlang is a functional programming language with built-in sup-
port for concurrency based on share-nothing processes and asyn-
chronous message passing. The design of Erlang makes it suitable
for writing concurrent and parallel applications, taking full advan-
tage of the computing power of modern multicore machines. How-
ever many existing Erlang applications are sequential, in need of
parallelisation.

In this paper, we present the Erlang concurrency profiling tool
Percept2, and demonstrate how the information provided by it can
help the user to explore the potential parallelism in an Erlang
application and how the system performs on the Erlang multicore
system. Percept2 thus allows users improve the performance and
scalability of their applications.

Categories and Subject Descriptors D.2.3 [SOFTWARE ENGI-
NEERING]: Coding Tools and Techniques; D.2.6 []: Program-
ming Environments; D.2.7 []: Distribution, Maintenance, and En-
hancement; D.3.2 [PROGRAMMING LANGUAGES]: Language
Classifications—Applicative (functional) languages; Concurrent,
distributed, and parallel languages; D.3.4 []: Processors

Keywords Erlang, multicore, profiling, tracing, parallelisation.

1. Introduction

The demise of Moore’s Law has shifted programmers’ attention to
parallelism in order to improve the performance and scalability of
an application when the language in which the application is writ-
ten supports multicore programming. Among such languages, Er-
lang [7, [10] has been gaining popularity recently, largely because
of its lightweight concurrency model, in which share-nothing pro-
cesses communicate through asynchronous message passing.

Erlang allows programmers to express concurrent processes and
communications in a concise way. A process executing a function
is created using the spawn primitive with the function name and
its arguments as arguments; message passing between processes is
expressed as Pid!Message, where Pid is the process identifier of
the target process and Message is the message being sent.

When an Erlang Virtual Machine (VM) with symmetric multi-
processing (SMP) support is started, by default it creates a sched-
uler for each CPU core available. Each scheduler has its own pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

Erlang °13, September 28, 2013, Boston, MA, USA.

Copyright © 2013 ACM 978-1-4503-2385-7/13/09. .. $15.00.
http://dx.doi.org/10.1145/2505305.2505311

Simon Thompson

Computing Laboratory, University of Kent, UK
S.J. Thompson®@kent.ac.uk

cess run-queue, and handles the scheduling of processes in its run-
queue, independent of other schedulers. A process migration mech-
anism is applied periodically to balance the workload between
schedulers. Erlang applications, especially those that are CPU-
intensive, scale very well in a multicore environment with SMP
enabled [9, 22].

Although many concurrent Erlang applications have been de-
veloped, less effort has been made to develop parallel Erlang appli-
cations. One of the reasons for this is that SMP support was only
added to Erlang less than ten years ago, and it has taken a few years
since then for the system to mature. Without SMP, it is still possible
to write concurrent programs, in which case each Erlang process
would have its own slice of time to run; however to get parallelism
on a multicore computer, it would instead be necessary explicitly to
start multiple instances of the Erlang VM. Nowadays there is still
a lack of tools that allow users to develop such applications by ex-
ploring the potential parallelism in an Erlang application. We have
therefore developed Percept2, an enhanced version of the Erlang
concurrency profiling tool, Percept [11].

We have given the tool a new name instead of a new version
number because the original Percept tool is part of the standard
Erlang distribution, whereas Percept2 is an evolution of it, and
whether or nit it is going to replace Percept in the distribution is
not under our control. Giving them different names also allows the
continued evolution and development of both tools.

Percept is a tool for offline visualisation of Erlang application
level concurrency and identification of concurrency bottlenecks. It
utilises Erlang’s built-in support for tracing to monitor events from
process states. Trace events are collected and stored in a file, which
can then be analysed offline. Once the analysis is done, the data can
be viewed through a web-based interface.

Percept is able to give a picture of application-level parallelism,
as well as how much time processes spend waiting for messages,
but it does not provide any core/scheduler-related information, nor
does it support the process of parallelising existing sequential pro-
grams. In Percept2, we aim to meet these goals:

e Expose scheduler-related activities to end-users. These include
message communication between schedulers, process migra-
tion from one scheduler to another, scheduler activity, etc.

e Provide finer-grained profiling information about the existing
parallelism of an application, and help the user to explore the
potential parallelism.

e Parallelisation increases the number of processes and therefore
the number of events traced in a given period of time. Percept2
should therefore scale well to parallel applications running on
multiple cores.

The rest of the paper is organised as follows: Section [2| gives an
overview of Erlang and Percept, and Section [3] introduces Per-
cept2. The scalability of Percept2, as well as how this is achieved,
is discussed in Section[d] The usage of the tool is described in Sec-

tion El A case study showing how Percept2 is used to guide the
parallelisation of an Erlang application in described in Section (6]
The Erlang built-in trace mechanisms are discussed in Section
Finally, Sections 8] and] conclude after addressing related and fu-
ture work.

2. Erlang and Percept

Erlang [10] makes parallel programming easy by modelling the
world as sets of parallel processes that can interact only by ex-
changing messages. Erlang concurrency is directly supported in the
virtual machine, rather than indirectly by operating system threads.
Erlang processes are very lightweight, and as a result an Erlang
program can be made up of thousands or millions of processes that
may run on a single processor, a multicore processor or a manycore
system.

The main implementation of Erlang is the Erlang/OTP (Open
Telecom Platform) system [4]], and this was equipped with sym-
metric multi-processing (SMP) capabilities in 2006; SMP support
has been improved continuously since then. In the current release
(R16B), the VM detects the CPU topology automatically at startup,
and creates a scheduler for each CPU core available. Each sched-
uler has it own process run-queue, and processes are migrated be-
tween run-queues if scheduler loads need to be balanced 21

Built-in Tracing. The Erlang runtime system has built-in sup-
port for tracing many types of events, allowing an application to be
traced while being executed. No special compilation or instrumen-
tation of the program is needed.

Erlang’s built-in support for tracing is exposed to end users
through a number of built-in functions (BIFs): erlang:trace/3,
erlang:trace_pattern/3, and erlang:trace_info/2. The
function erlang:trace/3 enables and disables the low-level trac-
ing. When enabling tracing, the user can specify which processes
to trace, and which events they are interested in. The process that
makes the call to erlang:trace/3 to enable the tracing is known
as the tracer process. In Erlang, at any one time, any process can
only be traced by one tracer process.

Events that can be traced include: global and local function
calls, process-related activities, message passing, garbage collec-
tion and memory usage. When tracing is enabled, trace events are
sent as messages of the following format:

{trace, Pid, Tag, Datal [,Data2]}

where [,Data2] denotes an optional field dependent on the trace
message type. If the timestamp flag is given, the first element of
the tuple will be trace_ts instead and the timestamp is added as
the last element of the tuple.

The erlang:trace_pattern/3 BIF, used in conjunction with
erlang:trace/3, is for enabling the tracing of local and global
function calls, with which, a user can specify the subset of func-
tions to be traced using Erlang’s match specification mechanism. A
match specification consists of an Erlang term describing a small
program that expresses a condition to be matched over a set of
arguments. If the matching succeeds, a trace event is generated
and some predefined actions can be executed. A function call or
return_to trace event will only be generated if a traced process
executes a traced function.

Percept [11] is a offline profiling tool included in the Er-
lang/OTP distribution. It utilises trace information and profiler
events to form a picture of the runnability of processes, from which
one can infer the level of parallelism the application supports, and
hopefully identify bottlenecks in the application.

In Percept, process states are monitored. A waiting or suspended
process is considered to be inactive and a running or runnable
process is considered active. Process events are collected and stored
to a file that can then be analysed; the analyser parses the data file

| overview | processes

databases

Profile time: 1.0451
Processes: 17

Ports: 0
Min. range: 0.0000
Max. range: 1.0451

%0.800 0,062 0,125 0,218 0,201 0,343 0,437 0,499 0.962 O,

Min: 0.0000 Ports & Processes -
Max: 1.0451 Code location

0.702 0.764 0,827 0.995 0,967 1030

Figure 1. Percept: concurrency overview

and inserts all events into the percept_db database. After analysis
the data can be viewed through a browser-based interface.

Percept generates an application-level concurrency profile, as
shown in Fig[T] which is generated by profiling the example module
sorter.erl used in the Percept documentation [I1]]. The profile
shows the number of active processes at any point during profiling;
dips represents low concurrency/parallelism. It is possible to zoom
in on different parts of the profile to see the data for a specific
time interval. The ratio between the number of runnable processes
and the number of Erlang schedulers available can be used as an
indicator of resource utilisation. For example, a very low ratio (less
than 1) indicates under-utilisation of available Erlang schedulers,
whereas a very high ratio indicates the high number of unfinished
processes, which could potentially be a problem if the amount of
memory used by each process is large.

Selecting the processes option from the menu leads to the pro-
cess table page, as shown in Fig |Zl Each row in the table shows
information about a process, identified by its Process id (Pid): a
lifetime bar that shows a rough estimate of when the process is alive
during the profile, the entry-point, the process’s registered name if
it has one, and process’s parent Pid. Pids in the table are clickable,
and clicking on a Pid leads to the information page for this par-
ticular process, as shown in Fig [3] Apart from the basic process
information shown in process table, this page also shows the Pids
of the process’ children, if any, and the process’ inactive times. This
latter includes how many times the process has been waiting for a
message and in which function.

It is possible to select a number of processes of interest by
ticking the select box in the process table, as shown in Fig
and compare their runnability during the execution by pressing the
compare button. Fig[]shows the runnablity of each of the processes
selected during the period of profiling. In a runnability bar, green
means the process is active (i.e running or runnable), and white
means the process is inactive.

overview | procesees | dotabases

Processes

Select pid Lifetime Entrypoint Name Parent
<0.41.0> | — undefined undefined undefined
<0.44.0= | — sorter:main/4 undefined <0.41.0>

<0.45.0> | — sorter:loop/0 undefined <0.44.0>
<0.46.0% | — sorter:loop/0 undefined <0.44.0>
<0.47.0> e sorter:loop/0 undefined <0.44.0>
<0.48.0> | — sorter:loop/0 undefined <0.44.0>
<0.49.0> | — sorter:loop/0 undefined <0.44.0>
<0.50.0> | — sorter:loop/0 undefined <0.44.0%
<0.51.0> | — sorter:loop/0 undefined <0.44.0>
<0.52.0> | —— sorter:loop/0 undefined <0.44.0>
<0.53.0> | — sorter:loop/0 undefined <0.44.0>
<0.54.0> | —— sorter:loop/0 undefined <0.44.0>
<0.55.0> | — sorter:loop/0 undefined <0.44.0>
<0.56.0> | —— sorter:loop/0 undefined <0.44.0>
<0.57.0> | — sorter:loop/0 undefined <0.44.0>
<0.58.0 | E—— sorter:loop/0 undefined «<0.44.0>
<0.59.0> | —— sorter:loop/0 undefined <0.44.0>

Select all
Figure 2. Percept: process table
| overview | processes | databases
Pid <0.61.0>
Name undefined

Entrypoint sorter:loop/0
Arguments

Timestamp Profile Time

Timetable start {1374,510518,415047} 0.0000

Stop {1374,510519,492030} 1.0770

Parent <0.46.0
Children

percentage total mean stddev #recv module:function/arity
s 0.7180 0.1197 0.0606 6 sorter:loop/0
2% I 0.0160 0.0160 0 1 code_server:call/2

<0
<0
<0
<0
<0
<0
<0

Figure 3. Percept: process information page

41,0
44,0
45,0
46.0
47,0
48,0
49,0
.50.0
.51.0
.52.0
.53.0
.54.0=
.55.0
.56.0
.57.0=
.5B.0=
.59.0=

L

T ITTT TTTTT T 17T TTTT TTTTIT

|||||||||

|

3.

Figure 4. Percept: process runnability comparison

Percept2

The information provided by Percept is useful, but also limited. We
have therefore extended Percept in two dimensions: functionality
and scalability, and named the enhanced version Percept2. Percept2
is open source and downloadable from https://github.com/
huiqing/percept2. The new functionalities added to Percept2
and the rationale behind the changes are discussed in this section;
the performance and scalability of Percept2 is discussed in the next
section.

Scheduler Activity. Profiling the number of active schedulers at
any time during program execution is a first step towards exposing
multicore-related information to end users. In order to make full

use of the multicore resource, an Erlang application should have
enough processes to keep all the schedulers busy to avoid (as much
as possible) any schedulers being inactive. In Percept2, a user can
view the activeness of schedulers from the overview page by select-
ing the scheduler option from the drop list. The scheduler activity
graph, as shown in Fig[5] generated by profiling type checking the
Erlang erts library using Dialyzer [18], has a similar layout to the
process activity graph shown in Fig[T] except that the Y-axis repre-
sents the number of active schedulers.

Profile time: 35.6460

Schedulers: 4
Processes: 4875

Ports: 829
Min. range: 0.0000

Max. range: 35.6460
%

Min: 0.0000

Max: 356460 Code location

Figure 5. Percept2: active schedulers

Process Migration. One of the most important aspects of the
multicore implementation is balancing workload between sched-
ulers. In the Erlang VM, both work sharing and stealing approaches
are employed. Once migration paths have been decided, schedulers
with less work will pull processes from their counterparts, while
schedulers with more work will push processes to others [19]. In
Percept2, the migration history of a process from one scheduler to
another is recorded, as is shown in the RQ_history row in the pro-
cess information page in Fig|§| This information is not only useful
for end-users, but also for the implementers of the virtual machine.
Message Passing Between Processes/Schedulers. Message pass-
ing between processes can be monitored by enabling the tracing of
send and receive events. This information shows how frequent the
communication is between processes and the amount of data being
sent/received by a process. In Erlang, messages between processes
are copied, so frequent big messages being passed could affect the
performance of an application. As shown in Fig [} the number, as
well as the average size, of messages sent/received by a process is
profiled.

With Percept2, it is also possible to view process-to-process
message passing, as shown in Fig[7] Each node in this graph rep-
resents a process, and the label on the link from one process to

https://github.com/huiqing/percept2
https://github.com/huiqing/percept2

‘ overview | processes ‘ ports | inter-node i isuali ing data [[£0.1508.0» — .
[71£0.1509.0> — — W T
pid £0.50.0> [7120.1510.0>m — — S S——C
[[1<0.1511.0 " __ E— W E—) - -
Name undefined [[]<0.1512,0-wm — R TN N S W W W
Entrypoint dialyzer_coordinator:regulator_loop/2 [[1£0.1513.0> O 1 - m— - —C B
[[]<0.1514. 0> Commm——) _ — _ m— m mC—]
Arguments []0.1515.05C n —— — —— L e S S
Timestamp Profile Time [)<0.1516.0>" o — L E — m— .
Timetable start{1374,576352,571381} 5.4294 g‘“‘m”} — - - — e
<0.1518.0> 03 = m —— — _ — — ——
Stop{1374,576355,940055} 8.7981 20, 1510 Do e
Parent £0.48.0> [[<0.1520.0>% —m e —
Children [[]<0.1521.050) L __ I | L | - 1
. [720.1522.0>00 T I ; L E— —
RQ_history [1,2,1,3,1,2,4,2,3,4,2,3,1,3,1,3,1] [F]£0.1507.0>"T O TTTTT) T T T TTTTTT TV

{#msg_received,

avg_msg_size} {129,21}
{#msg_sent, .
avg_msg_size} .
accumulated runtime (in secs) DT

Callgraph/time show call graph/time
percentage of
total waiting time
@@ 3.3080 0.0501 0.0812

total mean stddev #recv

Figure 6. Percept2: process information page

<0.59.0>; undefined;
{dialyzer_worker,loop,2}

{2,13808} {2,10786}

<0.48.0>; undefined;
{dialyzer analysis callgraph,
analysis_start,2

{7,4740528}

<0.47.0>; undefined;
{dialyzer_analysis_callgraph,
start,3}

{6,5495552}
Y

<0.46.0>; undefined;
{p2d,undefined_fun_function,0}

Figure 7. Percept2: process communication graph

another indicates the total number of messages sent from the origi-
nating node to the target node, and the average size of the messages
sent. The graph can be simplified by increasing the threshold val-
ues as shown at the top of the figure, so that one can focus on those
processes with heavy communication.

Information about inter-scheduler message passing can be
derived from inter-process message passing events and process
scheduling events, i.e. which process is scheduled to run and on
which scheduler.

Accumulated Process Runtime. Unlike Percept, Percept2 dis-
tinguishes between process states of running and runnable (i.e.
the process is ready to run, but another process is currently run-
ning). This is achieved by enabling the tracing of process schedul-
ing events. As a result, we are able to calculate the accumulated
runtime of a process, also shown in Fig[f] more accurately.

module:function/arity

66 dialyzer_coordinator:regulator_loop/2

Figure 8. Percept2: process runnability comparison

The distinction between running and runnable is also reflected
in the process runnability comparison. For instance, after profiling
the same program used in Section [2] using Percept2, the process
runnability comparison table is as shown in Fig [8] where orange
represents runnable and green represents running.

Structured Process Display. Processes are shown in an expand-
able/collapsible tree structure in Percept2, as in Fig[0] which is gen-
erated by profiling Wrangler [17]’s similar code detection function-
ality, so the parent-child relationships between processes are made
explicit.

The number of processes spawned by an application may well
increase significantly when parallelism is added, challenging the
scalability of the tool, and making it difficult for users to navigate
through the process tree and to spot interesting processes. Based
on the observation that processes with the same entry function and
spawned by the same parent process (possibly with different ar-
guments) in general exhibit common behaviour, Percept2 displays
a compressed version of the process tree for users to explore. For
those sibling processes which share the same entry function, only
one representative process is displayed, and all the remaining are
combined into one artificial process.

For instance, in Fig[9] the process with pid <0.371.0> spawned
11 processes because of the use of the parallel version of the
lists:foreach function. Instead of listing all the 11 processes,
Percept2 shows the process with the pid <0.377.0>, and collapses
the remaining 10 processes into the artificial entry <0.*0x.0>.
The uncompressed process (<0.377.0> in this case) is not chosen
randomly, instead it is the process with the most accumulated
runtime among the siblings. Although not shown in the process
tree, information about those compressed processes is reachable
by clicking on the artificial pid, i.e. <0.*0%*.0>, which leads to
a process information page containing links to those processes
compressed.

A graph representation of the process tree structure is also
generated by Percept2, and can be reached by clicking on the
‘Process Tree Graph’ link from the process tree page.

Function Profiling. Process information alone does not say
much about how a process’s execution time is used, or how much
of a process’s execution time is spent on a particular computation
of an Erlang application.

To address this problem, Percept2 allows the tracing of func-
tion activities, and is able to provide the user with profiling infor-
mation including: dynamic, calling-context-aware, callgraphs; the
total amount of time the process spent on a particular function, in-
formation about which functions are active during a specific time-
interval, etc.

There are already a number of function profiling tools available
as a part of the Erlang distribution, including fprof [3]], eprof [3],
cover [1]] and cprof [2]. Among these profiling tools, fprof pro-
vides the most detailed information about functions. It measures
the execution time for each function, both own time and accumu-
lated time, and also records the amount of time a process spends

Select [+,(—] Pid Lifetime Name Parent #RQ chgs #msgs received #msgs sent Entrypoint Callgraph
B <0.370.0> [undefined <0.358.0> 3 {214,157} {105,828} sim_code:hash_loop/1 m"—tﬁi
= [—] «0.371.0> B undefined <0.358.0= 4 {11,24} {1,24} sim_code:pforeach_0/3 m—tr:ni!

Select[+/-] Pid Lifetime Name Parent#RQ_chgs#msgs_received #msgs_sent Entrypoint Callgraph
B [-]<0.*0%.0> m—— loomf’trto:ds, £0.371.0> 1545 {14892,142} {14961,66} sim_code:pforeach_1/3 Ca”graphftimnz
] =] <0.377.0-E — undefined <0.371.0> 583 {6265,151%} {6351,65} sim_code:pforeach_1/3
] - =0.895.0= B undefined =0.358.0> 3 {89,2525} {1,36401} sim_code:clone_check_loop/3 m’v—ticni:
] £0.896.0> [undefined <0.358.0> 5 {99,243 {1,243 sim_code:pforeach_o/3 %
[[-] <0.1110.05 ————"1 undefined <0.358.0> 0 {0,0} {1,505} sim_code:pmap_1/3 m’“—tﬁi
B [-] =0.3*0> 308mﬁ’trt°:d5. £0.358.0> 37 {0,0} {38,970} simfcode:pmap71f3ca|‘graphf,tir2:

Figure 9. Percept2: compressed process tree

on garbage collection and suspension while executing a function.
The caller of a function call is recorded, hence a callgraph for a
process can be built from the trace information. The disadvantage
of fprof is that it slows down program execution significantly, and
the trace file can be very large. eprof has less impact on the pro-
gram execution, but it also provides less profiling information. For
example, eprof does not measure the time spent on garbage col-
lection or suspension, and does not record the caller function of
a function call, which means a callgraph cannot be built from the
trace data. cover and cprof provide even less profiling informa-
tion; both tools collect information on a per module basis, hence
are not suitable for use in Percept2 either.

In order to provide ‘good enough’ profiling information to end
users while avoiding slowing down program execution signifi-
cantly, we decided to build into Percept2 a simplified version of
fprof. Compared to fprof, Percept2’s support for function profil-
ing does not measure a function’s own execution time, but measures
everything else that fprof measures. Eliminating measurement of
a function’s own execution time gives a user the freedom of not
profiling all the function calls invoked during the program execu-
tion. For example, they can choose to profile only functions defined
in the user’s application code, and not those in libraries.

To further reduce the impact on program execution time and
the size of trace data, a user can replace the uses of standard
spawn/spawn_link functions in her/his application code with the
spawn/spawn_link functions provided by Percept2, so that Per-
cept2 could selectively trace those processes that exhibit a common
behaviour, i.e. function activities are recorded for a processes only
if it has been selected to be traced by Percept2. The selectivity only
applies to function activities, and does not affect the tracing of other
process activities in any way.

To enable the tracing of functions, both exported and local,
defined in a particular module, the user needs to supply Percept2
with the name of that module when the profiling is started. We
elaborate more about the calling-context-aware callgraph next.

Calling-context-aware Callgraph. Function callgraphs are a
commonly used representation of function invocation behaviour,
in which nodes representing functions are connected by directed
edges representing caller-callee relationships. In general, call-
graphs are succinct because each function is represented as a single
node regardless of the different paths on which the node occurs;
however this feature also limits the amount of information pro-
vided to the user, such as the calling-context information. In Per-
cept2, a partial calling-context-aware callgraph is used to represent
the dynamic function invocation behaviour.

Instead of merging every occurrence of the same function node,
Percept2 only merges identical function nodes that share the same
parent node, i.e. the same calling context, and identical function
nodes in a repeated call path sequence due to recursion (hence
partial).

With the callgraph, a user is able to understand the causes of
certain events, such as heavy calls of a particular function, by
examining the region around the node for the function, including
the path to the root of the graph. As shown in graph in Fig[T4] a
slice of a callgraph generated from the case study to be discussed
in Section 5, each edge is annotated with the number of times the
target function is called by the source function, and each node is
annotated with the time the function took as a percentage of the
process’s life time. In the callgraph, pseudo functions suspend and
garbage_collect are used to indicate the time a function spends
on suspension and garbage collection respectively.

Support for Distribution. With Percept2, it is also possible to
profile the inter-node message passing in a distributed Erlang sys-
tem. When multiple Erlang nodes are profiled, each node produces
its own trace data file, which can then be passed on to a Percept2
trace analyser. Percept2 is able to analyse multiple trace files in par-
allel, as will be discussed in the next section, hence there is no need
to merge trace files from different nodes into a single trace file.

4. Implementation and Scalability

The trace analyser in Percept is a sequential program, hence does
not scale well on multicore machines. To improve the performance
and scalability of Percept2, we have parallelised the trace analyser
in two ways: first, Percept2 is parallelised so that multiple trace
files can be analysed in parallel; second, the analysis of each single
trace file is parallelised.

Parallel analysis of multiple trace files. In Percept2, trace data
can be written to a number of files, each with a limited size.
When the file specification for the data destination is specified
in the format of {FileName, wrap, Suffix, WrapSize}, trace
data is initially written to FileName++"0"++Suffix until a trace
message written to the file makes it longer than WrapSize; at which
point, the file is closed and the trace following will be written to
FileName++"1"++Suffix until it reaches its size limit, and so on.

When multiple trace files are analysed, Percept2 starts a trace
analyser process for each trace file. A trace analyser reads a trace
message each time, process it, and update the database, which is
a collection of ETS (Erlang built-in Term Storage) tables used to
store the trace data internally. To reduce potential lock contention
on some frequently visited ETS tables, each trace analyser creates
its own database to hold its local data, while ETS tables that hold

percept - DEFOTP - DEFARGS
6 T T T T

T
([percept2)) ——
T
55 i - _
T T— —-"’/
5 _ R
45 —
4t N
£
B as| g
2
w
3| N
25 B
Fas N
1.5 | 4
1 1 1 1 1 1
0 2 4 6 8 10
Schedulers

Figure 10. Percept2 Speedup Diagram

global data, or are updated less frequently are shared among the
trace analysers.

Parallel analysis of a single trace file. The processing of a
single trace file is parallelised in the way that a process is spawned
for each particular kind of messages. For instance, there is a process
for handling process activities, scheduler activities, and function
activities respectively. The process handling function activities is
further parallelised so that a process is spawned for every process in
the application to handle the function trace events for that particular
process. With this parallelisation, the main trace analyser process is
only responsible for the reading and dispatching of trace messages
to other processes.

percept - DEFOTP - DEFARGS
550000 T T T T

\ ([percepiz) ——
500000 | ‘\

450000 \
400000 -
350000 \

300000

Time (ms)

250000 -
200000 -
150000 - —

100000 - —_—

50000

Schedulers

Figure 11. Percept2 Time Diagram

Performance and Scalalibity. The scalability of Percept2 on a
12-core processor running CentOS 6.3 is shown in Fig and
time spent is shown in Fig [IT] The figures were generated using
Bencherl [8]] — a scalability benchmark suite for Erlang/OTP. In
this experiment, Bencherl was configured to execute Percept2’s
trace analyser with five trace files as input. The total size of the
five trace files is 1.36G, and there are 11,008,609 trace messages
in total. Bencherl first runs the trace analyser on an Erlang VM
using only one scheduler, then adds a scheduler each run until there

are 12 schedulers. The results shows that the trace analyser scales
reasonably well. Timewise, the execution time with 1 core is 531
seconds, and this reduced to 99.5 seconds when the number of cores
reaches 12.

Profiling Overhead. To reduce the overhead of applying profil-
ing to an Erlang application, Percept2 allows a user to selectively
control which feature, or set of features, to profile. For instance,
if message passing is not of interest to the user, they can choose
not to include the feature message’ in the profiling options when
starting profiling. When function activities are not traced, the over-
head introduced by Percept?2 is reasonable. For instance, one of the
Erlang applications that we profiled creates 14848 processes and
672 ports during its execution. The running time without profiling
on a 12-core machine is 99.19 seconds. Using Percept2 to profile
this application with all the features supported by Percept2 (apart
from function profiling) enabled, the running time is 111.09 sec-
onds, a profiling overhead of 11% of the original execution time.
When the profiling of function activities is enabled, the overhead
could increase significantly depending on how many functions, and
how many processes executing these functions, are being profiled.
As mentioned earlier, our approach to reducing the overhead in-
troduced by function profiling is selective profiling, i.e., selectively
tracing only the function activities of a subset of processes that ex-
hibit common behaviour.

5. How to use Percept2

Percept2 follows Percept’s API interface style with only minor
changes to the types of the arguments accepted by the profile and
analyze functions. As for Percept, the profiling process consists of
three steps: starting/stopping the profiling, analysing trace data and
visualising profiling result.

Depending on the size of the application being profiled, and the
parts of the application that a user is interested in, there are three
ways to invoke Percept2 profiling:

Profile a complete run of an application. Performing
this requires the entry function of the application, and the com-
mand for starting profiling is:

percept2:profile(FileSpec, Entry, Options).

where FileSpec specifies the files used to store trace data,
Entry is the {Module, Function, Args} representation of
the entry function of the application, and Options specifies
which aspects of the application should be profiled.

FileSpec can be the name of a single file, or in the format of
{FileName, wrap, Suffix, WrapSize} specifying a col-
lection of files to store the trace data. Options has the type
of [profile_option()], where the type profile_option()
is defined in Fig Profiling starts with execution of the en-
try function, and goes on for the whole duration until the entry
function returns and profiling has concluded.

Profile a time slice of the application run. The commands for
starting and stopping profiling while an application is already
up and running are:

percept2:profile(FileSpec, Options)
percept2:stop_profile().

Profile a particular part of an application. This can be achieved
by inserting the commands for starting and stopping profiling
at appropriate points in the application code. Obviously, the
application code needs to be recompiled after these changes.

Once profiling has been finished, the following commands used to
analyse the trace data: the former for a single file, the latter for
multiple trace files.

percept2:analyze([FileName])
percept2:analyze

(FileBaseName, Suffix, StartIndex, EndIndex).

The last step is to visualise the profiling result. To do this, use
percept2:start_webserver (8888) to start the web server, then
go to ’localhost:8888’ in your web browser. If the port number is
not given, an available port number is assigned automatically.

6. A Case Study

In this section we use Percept2 to guide the parallelisation of
the code clone detection functionality in Wrangler [17]], an Erlang
refactoring tool. The clone detection tool is able to find code frag-
ments that have a non-trivial common abstraction in Erlang sys-
tems. The algorithm consists of a number of phases: parse Erlang
files into abstract syntax trees (ASTs); generalise, flatten and hash
ASTs; identify clone candidates, and finally check clone candidates
to identify genuine clones. Apart from the identification of clone
candidates, which is implemented in C, all the other phases are
implemented in Erlang. The original implementation of the clone
detection algorithm is sequential, although with some concurrency
built-in; Fig[T3]shows the process activity profile of this implemen-
tation. As can be seen, most of computation is done by a single
process, i.e., the process <0.37.0>. Examining the dynamic call-
graph of process <0.37.0> in top-down order, we noticed that the
function generalise_and hash_file_ast_1/5 and its direct par-
ent have a larger number of call counts compared to their caller
functions, and consume 78% of the process lifetime. This portion
of the callgraph is shown in Fig[T4] The actual code shows that this
function is called in a list comprehension over a list of files. We
refactored the sequential list comprehension to a parallel version,
as shown in Fig[T5] where para_1ib is a library of parallel utility
functions (written by us).

The previous refactoring improves the parallelism of the algo-
rithm, however profiling the refactored program still shows that
some processes are more heavily loaded than others. We exam-
ined the callgraph of one of those processes, and this leads to the
refactoring step 2 (see Fig [I6), which turns the use of sequential
lists:foreach/2 into a parallel version. The macro ?PARALLEL
in the new code is used to control the maximum number of new
processes to be spawned; if this value is smaller than the number
of elements to be processed in the list, this list will be chopped into
smaller sublists and a process spawned for each sublist.

Repeating this profiling and examination process leads to our
third refactoring, as shown in Fig[I7} which involves the refactoring
of a recursive function definition. This refactoring is slightly more
complex than the previous two steps because of the need to elimi-
nate the data dependency between two consecutive recursions. On
a 4-core machine, the scalability of the clone detection algorithm
after the three refactoring steps is shown in Fig [T8] We note how-
ever that parallelisation of Erlang programs is by no means straight
forward due to the fact that Erlang allows expressions to have side-
effects and raise exceptions.

7. Extensions to Erlang Trace

The amount of data that needs to be collected and analysed limits
the scalability of profiling tools. Reducing data collection will thus
improve scalability, and we have written prototype extensions of
Erlang tracing to support this.

Message Size vs. Message Content. Currently Erlang tracing
logs the complete messages sent/received by traced processes when

the send/receive flags are on. While message content may be useful
for some cases, it will also increase the size of trace data signifi-
cantly, especially when large messages are sent between processes,
and there are frequent messages between processes. We extended
Erlang tracing with the option of logging the size of messages, to
be used in conjunction with the send/receive trace flags.

Dynamic Filtering and Manipulating of Trace Messages. Er-
lang’s built-in tracing provides powerful support for controlling
the function call events to be traced by means of match specifica-
tion. While match specifications can be used to filter/manipulate
function-related trace events, it is not applicable to other trace
events; this does not mean that there is no such a need for dynamic
filtering/manipulating of other trace events however, actually it is
quite the contrary.

We have therefore prototyped an extension to the Erlang built-in
trace and match specification implementation to allow the dynamic

filtering of general trace messages, and added erlang:trace_filter/2

as a new BIF function, with the following specification:
erlang:trace_filter (PidSpec,MatchSpec)->integer()>=0
where the spec uses the following types:

PidSpec = pid() | existing | new | all
MatchSpec = MatchSpecList | boolean()

erlang:trace_filter/2 works like this: for each trace event
generated by the process(es) represented by PidSpec, the trace
message is matched over the match specifications specified by
MatchSpec; the trace message is logged only if the match suc-
ceeds. Setting MatchSpec to true does not filter out any trace
messages, whereas setting it to false will filter out all the trace
messages, i.e. no trace messages will be recorded.

For instance, suppose we have a system using many processes,
and we would like to log the ‘send’ events when a process sends
the atom ‘true’ to another process. The following commands, when
used together, will make sure that only the sending of message
‘true’ is logged, whereas all others are ignored.

erlang:trace(all, true, [send],
erlang:trace_filter(all,
[{[‘trace’, ‘_’, ‘send’, ‘true’ ‘_’],
true, [{message, true}]}]).

sim_code - DEFOTP - DEFARGS
45 T T T T

T =
([wrangler])r7{
_—
—
4t e i
-
_
35 // B
g 3F o 4
B
a
@ a5} 4
2tk .
15 8
1 H L . L L
1 1.5 2 25 3 35 4

Schedulers

Figure 18. Clone Detection Speedup Diagram

-type profile_option():: procs %% profile process concurrency

| ports %% profile ports concurrency
| schedulers %% profile scheduler activity
| running %% profile process concurrency, also
%% distinguish running and runnable.
| message %% profile process concurreny and message passing.
| migration %% profile process concurreny and process migration.
| all %% enable all the above options.
|

{callgraph, [module_name()]}. %’ profile process concurrency, as well as
%% the ’call/return_to’ activties of funcitons
%% defined in the modules given in the list.

Figure 12. Type definition of profile_option()

<0.23.0 [IOMT_T 1T I TWTT I [1] 11|

<0, 370> (CTIANACACEY DTN 0000 0 00T T 0 0 o o e [[A eI i L o
=<0.42.0= [T I 1 I LR R N O O 0 O 1
<0.43.0> [L I OO O OC O DN N Y 0

<0.79.0= |

«0.80.0= [

<0.97.0= L am

=0.132.0= n

=0.134.0= L8101 1
=0.172.0 1

Figure 13. Clone detection: process activity comparison
\
@0 !-generalise_and_hash_ast/5-1c$"0/1-0-'/5(78%) 11
\\&1

sim_code vO:generalise_and hash file ast 1/6(78%)

i

Figure 14. Percept2: dynamic callgraph

J%Before:
[generalise_and_hash_file_ast_1(File, Threshold, ASTPid, true,SearchPaths, TabWidth)||File<-Files].
%After:
para_lib:pmap(fun(File) ->
generalise_and_hash_file_ast_1(File, Threshold, ASTPid, true, SearchPaths, TabWidth)
end, Files)

Figure 15. Refactoring 1: list comprehension to parallel map

% Before:

lists:foreach(fun(Form)-> F(Form) end, Forms).

% After:

para_lib:pforeach(fun(Form) ->F(Form) end, Forms, 7PARALLEL).

Figure 16. Refactoring 2: sequential foreach to parallel foreach

8. Related Work ing on using and extending the existing DTrace probes to profile
Erlang. DTrace [14] is a dynamic tracing framework, originally de-
veloped for Solaris, for observing performance issues of a running
system at all levels of the software stack. It allows users to define

Related to our work, but with a different approach, is the work led
by N.S.Papaspyrou from National Technical University of Athens.
Instead of using Erlang’s built-in trace, their work has been focus-

% Before:

examine_clone_candidates([],_Thresholds,CloneCheckerPid, Num) ->

get_final_clone_classes(CloneCheckerPid) ;

examine_clone_candidates([C|Cs],Thresholds,CloneCheckerPid,Num) ->

output_progress_msg(Num) ,
NewClones = examine_a_clone_candidate(C, Thresholds),
add_new_clones(CloneCheckerPid, {C, NewClones}),

examine_clone_candidates(Cs,Thresholds,CloneCheckerPid,Num+1) .

% After:

examine_clone_candidates(Cs, Thresholds, CloneCheckerPid) ->
NumberedCs = lists:zip(Cs, lists:seq(l, length(Cs))),

para_lib:pforeach(fun({C, Nth}) ->

examine_a_clone_candidate({C,Nth},Thresholds,CloneCheckerPid)

end,NumberedCs) ,
get_final_clone_classes(CloneCheckerPid) .

examine_a_clone_candidate({C,_Nth},Thresholds,CloneCheckerPid) ->

output_progress_msg(Nth),

NewClones = examine_a_clone_candidate(C, Thresholds),

add_new_clones(CloneCheckerPid, {C, NewClones}).

Figure 17. Refactoring 3: recursive function to parallel foreach.

what information is desired, how it should processed and formatted.
The work of extending with DTrace probes the Erlang VM source
code (implemented in C) was initiated in 2011 by Fritchie [[12], and
is part of the official Erlang/OTP source code from release R15B01;
this forms the foundation of Papaspyrou’s current research on Er-
lang profiling.

VampirTrace/Vampir [20] is a tool set and a runtime library for
instrumentation and tracing of software applications. It is particu-
larly tailored to parallel and distributed High Performance Comput-
ing (HPC) applications. The instrumentation part modifies a given
application in order to inject additional measurement calls during
runtime. The tracing part provides the actual measurement func-
tionality used by the instrumentation calls. By this means, a variety
of detailed performance properties can be collected and recorded
during runtime. This includes function enter and leave events, MPI
communication, OpenMP [6] events, and performance counters.
After a successful tracing run, VampirTrace writes all collected data
to a trace file in the Open Trace Format (OTF) [16]. As a result, the
information is available for post-mortem analysis and visualisation
by various tools. Most notably, VampirTrace provides the input data
for the Vampir analysis and visualization tool.

Scalasca [13] is another representative trace-based tools that
support performance optimization of parallel programs by measur-
ing and analysing their runtime behaviours. The analysis identifies
potential performance bottlenecks, in particular those concerning
communication and synchronization, and offers guidance in ex-
ploring their causes. Scalasca targets mainly scientific and engi-
neering applications based on the programming interfaces MPI and
OpenMP, including hybrid applications based on a combination of
the two.

In the functional programming paradigm, there is Thread-
Scope [15] for performance profiling of parallel Haskell programs.
ThreadScope reads GHC-generated tracing events from a log file,
and displays the thread profile information in a graphical viewer.
The tool allows users to check if work is well balanced across
the available processors and spot performance issues relating to
garbage collection and poor load balancing.

9. Conclusions and Future Work

We have presented the Erlang concurrency profiling tool Percept?2,
an extended version of Percept in both functionality and scalability.
Percept2 helps programmers to understand the parallelism inherent

in their programs and to identify potential parallelism that they
might introduce. The scalability of Percept2 allows it to handle
larger trace data more efficiently.

Our work on Percept2 is currently going on in a number of di-
rections. We are working on online visualisation of certain trace
events, such as the process migration, message passing between
schedulers, etc; Percept2’s support for distribution is being im-
proved, so that profiling information of multiple nodes can be
viewed and compared in one page. Automatic mining of trace data
and reporting of possible concurrency bottlenecks is another focus
of our work on improving Percept2.

This research is supported by EU FP7 collaborative project
RELEASE (http://www.release-project.eu/), grant num-
ber 287510. We are very grateful to the developers of Percept, on
whose work we have built.

References
[1] cover - A Coverage Analysis Tool for Erlang. http://www.erlang.
org/doc/man/cover.html,

[2] cprof - A simple Call Count Profiling Tool. http://www.erlang.
org/doc/man/cprof .html,

[3] eprof - A Time Profiling Tool for Erlang. http://wuw.erlang.org/
doc/man/eprof .html|

[4] Erlang/OTP. http://www.erlang.org.

[5] fprof - An Erlang File Trace Profiler. http://www.erlang.org/
doc/man/fprof .html.

[6] The OpenMP API specification for parallel programming. http:
//openmp . org/wp/|

[7]1 J. Armstrong. Programming Erlang. Pragmatic Bookshelf, 2007.

[8] S. Aronis, N. Papaspyrou, et al. A scalability benchmark suite for

Erlang/OTP. In Proceedings of the eleventh ACM SIGPLAN workshop
on Erlang, 2012.

[9] S. Aronis and K. Sagonas. On Using Erlang for Parallelization Expe-
rience from Parallelizing Dialyzer. In Draft Procs. of Symp. on Trends
in Funct. Prog.,2012.

[10] F. Cesarini and S. Thompson. Erlang Programming. O’Reilly Media,
Inc., 2009.

[11] B.-E. Dahlberg. Percept - An Erlang Concurrency Profiling Tool.
http://www.erlang.org/doc/man/percept.html|

[12] S. L. Fritchie. DTrace and Erlang: A new beginning. Erlang User
Conference 2011.

http://www.release-project.eu/
http://www.erlang.org/doc/man/cover.html
http://www.erlang.org/doc/man/cover.html
http://www.erlang.org/doc/man/cprof.html
http://www.erlang.org/doc/man/cprof.html
http://www.erlang.org/doc/man/eprof.html
http://www.erlang.org/doc/man/eprof.html
http://www.erlang.org
http://www.erlang.org/doc/man/fprof.html
http://www.erlang.org/doc/man/fprof.html
http://openmp.org/wp/
http://openmp.org/wp/
http://www.erlang.org/doc/man/percept.html

[13] M. Geimer, F. Wolf, B. J. N. Wylie, E. brahm, D. Becker, B. Mohr, and
F. Jlich. The SCALASCA performance toolset architecture. Concurr.
Comput. : Pract. Exper., 22(6):702-719, Apr. 2010.

[14] B. Gregg and J. Mauro. DTrace: Dynamic Tracing in Oracle Solaris,
Mac OS X, and FreeBSD. Prentice Hall, 2011.

[15] D. Jones Jr., S. Marlow, and S. Singh. Parallel performance tuning
for Haskell. In Haskell Symposium 2009, Edinburgh, Scotland, Sept.
2009. ACM Press.

[16] A. Knpfer, R. Brendel, H. Brunst, H. Mix, and W. Nagel. Introducing
the Open Trace Format (OTF). In V. Alexandrov, G. Albada, P. Sloot,
and J. Dongarra, editors, Computational Science, ICCS 2006, volume
3992 of Lecture Notes in Computer Science, pages 526-533. Springer
Berlin Heidelberg, 2006.

[17] H. Li and S. Thompson. Incremental Code Clone Detection and
Elimination for Erlang Programs. In Fundamental Approaches to
Software Engineering (FASE’11), 2011.

[18] T. Lindahl and K. Sagonas. Practical type inference based on success
typings. In Proceedings of the 8th ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming, pages 167-178,
New York, NY, USA, 2006. ACM Press.

[19] K. Lundin. About Erlang/OTP and Multi-core Performance in Partic-
ular. Erlang Factory London 2009.

[20] M. S. Mller, A. Knpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix,
and W. E. Nagel. Developing Scalable Applications with Vampir,
VampirServer and VampirTrace. In PARCO, volume 15 of Advances
in Parallel Computing, pages 637-644. 10S Press, 2007.

[21] P. Nyblom. Erlang SMP Support. Erlang User Conference 2009.

[22] J. Zhang. Characterizing the Scalability of Erlang VM on Manycore
Processors. Technical Report 5, KTH, School of Info. and Comm.
Tech., 2011.

