
Chadwick, David W., Otenko, Sassa and Xu, Wensheng (2005) Adding Distributed
Trust Management to Shibboleth. In: NIST 4th Annual PKI Workshop. .
pp. 3-14. , Gaithersberg, USA

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14343/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Available from: http://middleware.internet2.edu/pki05/proceedings/chadwick-distributed-shibboleth.pdf

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14343/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Adding Distributed Trust Management to Shibboleth
David Chadwick, Sassa Otenko, Wensheng Xu
University of Kent, Computing Laboratory, Canterbury, England, CT2 7NF

Abstract
This paper analyses the simplicity of the
trust model adopted by the Shibboleth
infrastructure and describes an enhanced
distributed trust model and authorisation
decision making capability that can be
implemented by using X.509 attribute
certificates and a Privilege Management
Infrastructure such as PERMIS. Several
different combinatorial approaches can be
taken, depending upon the trust models
adopted by the Shibboleth target and origin
sites, and each of these are described. The
paper also discusses whether user privacy,
which is strongly protected by Shibboleth, is
bound to be weakened by the use of X.509
attribute certificates rather than simple
attributes, and concludes that this does not
have to be the case.

1. Introduction
Shibboleth [1] is a distributed web resource
access control system that allows federations
to co-operate together to share web based
resources. It has done this by defining a
protocol for carrying authentication
information and user attributes from a home
site to a resource site. The resource site can
then use the attributes to make access
control decisions about the user. The
Shibboleth project is run by the Internet2
consortium in the USA, and universities
throughout the USA and Europe (at least)
are now starting to build experimental
services based upon it.

At the heart of Shibboleth is a trust model
that allows the members of a federation to
cooperate together. This trust model, whilst
functional, is somewhat limited. Basically

each Shibboleth target resource site trusts
each Shibboleth origin (home) site in the
federation, so that whatever assertions –
authentication or authorisation – are
digitally signed by the origin site, they will
be believed and trusted by the target site.
There is little scope for differentiation
between authentication authorities and
attribute authorities, or for allowing more
sophisticated distribution of trust, such as
static or dynamic delegation of authority.

Another limitation of the Shibboleth
infrastructure is that it only provides a basic
access control decision making capability.
Whilst this is adequate for many use cases, it
lacks the flexibility and sophistication
needed by many applications, for example,
to make access control decisions based on
role hierarchies or various constraints such
as the time of day or separation of duties.

We realised that both these limitations could
be addressed by integrating an X.509
Attribute Certificate (AC) Privilege
Management Infrastructure (PMI) [3] with
Shibboleth. PERMIS [2] is one such
infrastructure that has already been
successfully integrated into Grid application
target sites [4] to support the distributed
management of trust. PERMIS incorporates
a sophisticated policy controlled RBAC
access control decision engine (also called a
policy decision point (PDP)). The PERMIS
PMI has been used to implement distributed
trust management in Shibboleth.

The rest of this paper is structured as
follows. Section 2 provides an overview of
Shibboleth. Section 3 introduces the more
sophisticated distributed trust model that we

wanted to introduce into Shibboleth. Section
4 describes how the trust model can be
implemented using an X.509 PMI such as
PERMIS. Section 5 describes the different
combinations of X.509 ACs, attributes, and
the PERMIS PDP that may be integrated
with Shibboleth to provide the desired trust
models of the Shibboleth target and origin
sites. Section 6 discusses user privacy
issues and section 7 discusses revocation
and performance issues that arise with using
X.509 ACs. Finally Section 8 concludes.

2. Overview of Shibboleth
Shibboleth is a web based middleware layer
that currently makes use of SAMLv1.1 [5]
for encoding some of its messages. When a
user contacts a Shibboleth resource site from
their browser, requesting access to a
particular URL, Shibboleth single sign on
and access control takes place in two stages:

– In stage one the resource site
redirects the user to their home site,
and obtains a handle for the user that
is authenticated by the home site

– In stage two, the resource site returns
the handle to the attribute authority
of the home site and is returned a set
of attributes of the user, upon which
to make an access control decision.

In a large distributed open environment
stage one has a number of complications.
Firstly how does the resource site know
where the user’s home site is? Secondly,
how can the resource site trust the handle
that is returned? The answer to these two
questions is surprisingly simple, and is part
of the Shibboleth trust model. When the user
first attempts to access a resource site,
he/she is redirected to a Where Are You
From? (WAYF) server, that simply asks the
user to pick his/her home site from a list of
known and trusted home (Shibboleth origin)
sites. The target site already has a pre-
established trust relationship with each
home site, and trusts the home site to

authenticate its users properly. This is
facilitated by the exchange of public key
certificates or the use of a common trusted
root Certification Authority. In the latter
case both sites will have been issued with a
certificate by the root CA (or one of its
subordinates). When a digitally signed
SAML message1 arrives from the home site,
such as one containing a user handle, this
can be validated and trusted by the resource
site.

After the user has picked his/her home site,
their browser is redirected to their site’s
authentication server and the user is invited
to log in. If a user is untrustworthy and tries
to fool the system by picking a home site to
which they do not belong, they will have
difficulty authenticating themselves to that
site’s authentication server, since they won’t
have any valid credentials. However, if they
pick their own home site, they should find
authentication is no problem. After
successful authentication, the home site re-
directs the user back to the resource site and
the message carries a digitally signed SAML
authentication assertion message from the
home site, asserting that the user has been
successfully authenticated by a particular
means e.g. username/password, Kerberos or
digital signature. The actual mechanism
used is local to the home site, and the
resource site simply has to have a prior
agreement with the home site which
authentication mechanism(s) will be trusted.
If the digital signature on the SAML

1 Note that the connection from the origin server to
the target server can also be optionally protected by
SSL in Shibboleth, but this is used to provide
confidentiality of the connection rather than message
origin authentication. In many cases a confidential
SSL connection between the origin and the target will
not be required, since the handle is obscure enough to
stop an intruder from finding anything out about the
user, whilst the SAML signature makes the message
exchange authentic.

authentication assertion verifies OK, then
the resource site has a trusted message
providing it with a temporary pseudonym
for the user (the handle), the location of the
attribute authority at the origin site and the
resource URL that the user was previously
trying to access. The resource site then
returns the handle to the home site’s
attribute authority in a SAML attribute
query message and is returned a signed
SAML attribute assertion message. The
Shibboleth trust model is that the target site
trusts the origin site to manage each user’s
attributes correctly, in whatever way it
wishes. So the returned SAML attribute
assertion message, digitally signed by the
origin, provides proof to the target that the
authenticated user does have these attributes.
This message exchange should be protected
by SSL if confidentiality/privacy of the
returned attributes is required. The attributes
in this assertion may then be used to
authorise the user to access particular areas
of the resource site, without the resource site
ever being told the user’s identity.

The latest version of the Shibboleth
specification has introduced a performance
improvement over the earlier versions, by
optionally allowing stage one and stage two
to be combined together, in that the initial
digitally signed SAML message may
optionally contain the user’s attributes as
well as the authentication assertion. It is
expected that the Shibboleth software will
be upgraded to this during 2005.

Shibboleth has two mechanisms to ensure
user privacy. Firstly it allows a different
pseudonym for the user’s identity (the
handle) to be returned each time, and
secondly it requires that the attribute
authorities provide some form of control
over the release of user attributes to resource
sites, which they term an attribute release
policy. Both users and administrators should

have some say over the contents of their
attribute release policies. This is to minimise
the loss of a user’s privacy.

3. An Enhanced Trust Model for
Shibboleth
As can be seen from the above overview of
Shibboleth, its trust model is sound although
rather limited. The model is that the target
site trusts the origin site to authenticate its
users and to manage their attributes correctly
whilst the origin site trusts the target site to
provide services to its users. The trust is
conveyed using digitally signed SAML
messages using target and origin server
X.509 key pairs/certificates, configured into
the Shibboleth software by their filenames.
(Note that the private key files were held
unencrypted in the Shibboleth software we
were using, so this is a weakness in the
implementation if not actually in the trust
model.) As each site will typically only have
one key pair per Shibboleth system, from
the recipient’s perspective, there is only a
single point of trust per sending Shibboleth
system. Although it is not difficult to
configure multiple roots of trust into a
Shibboleth target site – it is, in fact, a matter
of updating one XML file only – the issue is
one of being able to use a finer grained
distributed trust model, and of being able to
use multiple origin site authorities (and
private keys) to issue and sign the
authentication and attribute assertions.

In many origin sites a single back end
LDAP server is the sole authoritative source
for both authentication and attribute
information. Typically Shibboleth sites
implement stage one by issuing a Bind
operation on their LDAP server, using the
username and password provided by the user
to the web login prompt. If the Bind
succeeds, the user has been successfully
authenticated against the password stored in
the LDAP server. Stage two is implemented

by searching the LDAP server for the
attributes stored in the user’s entry, and
filtering these against the Shibboleth
origin’s attribute release policy before
returning them to the Shibboleth target site
as signed SAML attribute assertions. One
can see that in such an implementation, and
as a consequence of the Shibboleth trust
model, the Shibboleth target site has no
choice but to make access control decisions
based on these attributes, without knowing
who actually issued them to the user,
whether they are still valid or not, or
whether they are even the correct attributes
for the particular user, since the user’s name
is not provided to the target site for privacy
reasons. The Shibboleth origin doesn’t trust
anyone to see the attributes except the
trusted targets, but even they are not allowed
to see the binding between the attributes and
the owner’s identity. (The two reasons given
for this in the Shibboleth documentation are
user privacy and legal requirements for
universities to protect a student’s privacy).
The target site thus has no option but to
indirectly trust the contents of the origin
site’s LDAP server or other attribute
repository, since it trusts the origin site
directly. One can further see that the origin
site has to strongly protect the attributes in
its (LDAP) repository, which means that it is
probably restricted to centrally
administering these, and so would prefer
that they do not change that often.
Flexibility and distributed management of
the attributes is hard to adopt. Dynamic
delegation of authority would be even harder
to support.

We propose that an enhanced trust model
should have the following features.
- Multiple authorities should be able to

issue attributes to the users, and the
target site should be able to verify the
issuer/user bindings. For example, a
manager should be able to assign a

project leader attribute to an employee
under his control.

- The target should be able to state, in its
policy, which of the attribute authorities
it trusts to issue which attributes to
which groups of users. The target site
should be able to decide independently
of the issuing site which attributes and
authorities to trust when making its
access control decisions.

- Not all attribute issuing authorities need
be part of the origin site. A target site
should be able to allow a user to gain
access to its resources if it has attributes
issued by multiple authorities, for
example, a target site holding statistics
on medical data may require a user to
have an attribute issued by a medical
authority as well as one issued by the
university that employs the user as a
researcher.

- The trust infrastructure should support
dynamic delegation of authority, so that
a holder of a privilege attribute may
delegate (a subset of) this to another
person without having to reconfigure
anything in the system. For example, a
project leader may wish to assign a role
of team leader to one of his team
members; he should be enabled to do
this dynamically by the infrastructure
without having to reconfigure the
system. The target site should be able, in
turn, to state in its policy whether it
trusts these delegated attributes or not,
regardless of the delegation policy at the
user’s site.

- The target site should be able to decide if
it really does trust the origin’s attribute
repository (e.g. LDAP server), and if
not, be able to demand a stronger proof
of attribute entitlement than that
conferred by a SAML signature from the
sending Web server.

- Finally, the origin site, if it chooses,
should be able to use a Privilege

Management Infrastructure, rather than a
strongly protected attribute repository,
for allocating attributes to its users. This
will allow the origin to distribute the
management of attributes throughout its
site. Nevertheless, the origin site should
still be able to communicate with
Shibboleth targets as usual by only
sending attributes to them, if the targets
are happy to trust these.

4. Implementing the Enhanced
Trust Model using an X.509 PMI
X.509 attribute certificates (ACs) provide a
convenient, standardised and compact
representation of attribute assignments, and
satisfy several of the above requirements.
The basic X.509 attribute certificate
construct comprises: the name of the holder
of the attributes, the name of the issuing
authority, the set of attributes, and the time
that they are valid for. An extension field
can optionally be inserted to state that the
holder is allowed to dynamically delegate (a
subset of) these attributes to another user,
and the depth to which delegation can take
place. The whole AC construct is digitally
signed by the issuer (attribute authority),
thus providing integrity control and tamper
resistance. Multiple attribute authorities can
co-exist, either in a hierarchical relationship
or as separate independent authorities.
Attribute certificates are typically long lived,
and after issuance, the ACs need to be stored
somewhere for retrieval by the target’s
policy decision point (PDP), and LDAP
repositories at the AA site are a natural
choice for this, although web servers,
filestores and other repositories can also be
used.

If the ACs are stored in the AA site’s LDAP
directory or other repository, and transferred
from there to the target site’s PDP by
Shibboleth, then the target site’s PDP does
not need to indirectly trust the attribute

repository or the underlying transport
mechanism used to convey them, since it
can directly validate the digital signatures on
the attribute certificates when it receives
them2. Furthermore, if the target site’s PDP
policy is willing to allow dynamic
delegation of authority, the PDP can check
the attribute certificate chain to ensure that
all ACs were properly authorised by their
issuing authorities. By using ACs in its
authorisation decision making, rather than
plain attributes, a target site can support
much more sophisticated and finer grained
access control policies, for example, by
requiring a user to have ACs issued by
multiple authorities, from different issuing
domains, before they are granted access to
particular resources.

The PERMIS X.509 PMI is part of the US
NSF Middleware Initiative software release.
PERMIS provides a policy controlled role
based access control (RBAC) infrastructure,
in which the user’s roles are stored in X.509
ACs. These ACs are either passed to the
PERMIS PDP along with the user’s
requested action (the push model), or can be
fetched from one or more LDAP servers by
the PDP (the pull model). The PERMIS
PDP then returns a granted or denied
response according to the policy in force at
that time. The PERMIS policy is written in
XML, and is in many respects a simplified
alternative to XACML [6], although the
PERMIS policy supports dynamic
delegation of authority, unlike XACML.
The XML policy is itself stored in an X.509
attribute certificate, and is digitally signed
by the trusted authority in control of a target
resource. This policy certificate is the root of

2 It is the case with ACs that the holder’s identity is
revealed in the Holder field of the AC. But the
Holder field could still be an opaque string,
understood by the Issuer at the Origin, and it doesn’t
have to be understood by the AC verifier at the
Target site. See section 6 for a fuller discussion of
this issue.

trust for the access control decision making.
When the PERMIS PDP is initialised, it is
given the name of the trusted authority, and
the ID of the policy to use (each policy has a
globally unique identifier). PERMIS reads in
the policy certificates from the authority’s
LDAP entry, checks their signatures, and
keeps the one with the correct ID. It now has
the correct trusted policy with which to
make access control decisions. PERMIS
thus forms a good basis for demonstrating
the distributed management of trust with
Shibboleth.

4.1 The PERMIS PDP Policy
The PERMIS policy contains a list of trusted
attribute authorities, the set of attributes they
are trusted to assign, and the groups of users
they can be assigned to. This is called the
role allocation sub-policy (RAP). Attribute
authorities can be distributed worldwide,
and can be trusted to issue ACs to users
from any domain, according to the RAP.
When the PERMIS PDP is passed a set of
attribute certificates by Shibboleth, it can
determine from the RAP which are trusted
to keep, and which should be discarded as
untrusted. All the trusted attributes are
extracted and stored for later access control
decision making.

The PERMIS policy also contains the set of
targets that are being protected by this
policy, the associated actions that can be
performed on them (along with their
parameters), and the attributes (or roles) that
a user needs in order to be granted the
access. In addition, constraints can be placed
on these grants, such as, only between 9am
and 5pm, or only if the user holds non-
conflicting roles3, or only if the size is less
than 3Mbytes etc. This is called the target
access sub-policy (TAP). When the
PERMIS PDP is asked if a user with the

3 Separation of duties is currently being implemented
but is not in the current NMI release.

current roles/attributes is allowed to access a
particular target resource, it consults the
TAP and returns granted or denied based on
its contents and the current state of the
environment (time of day, resource usage
etc.).

Because PERMIS can act in either push or
pull mode with attribute certificates, then it
is possible for a target site to create a policy
that requires a user to have attributes issued
by multiple different authorities in different
domains, and the PERMIS PDP can then
pull these at authorisation time regardless of
the origin site that the user has actually
authenticated to.

5. Supporting the different trust
models of Shibboleth sites
One can immediately see that if Shibboleth
and PERMIS are integrated together, then
the enhanced distributed trust model that we
wish to provide to target and origin sites can
be obtained. However, a number of
misalignments between PERMIS and
Shibboleth need to be addressed first. Either
Shibboleth needs to transfer X.509 attribute
certificates (ACs) from the origin site to the
resource site instead of plain attributes, or
PERMIS needs to be modified to accept
plain attributes instead of X.509 ACs. In
fact, both of these methods have been
implemented so as to provide resource sites
with the maximum of flexibility. We have
modified the Shibboleth origin site to
retrieve X.509 ACs from its LDAP
directory, and to pass these as text encoded
binary attributes within the SAML attribute
assertions. This facility should be provided
as part of the standard Shibboleth software
release during 2005. We have also modified
the code that calls the PERMIS PDP to
validate the plain attributes from Shibboleth
and use these instead of or as well as X.509
ACs.

Since it is the target site’s resources that are
being accessed, we are primarily concerned
with the trust that a target site is expected or
required to have in the attributes that it
receives in order for it to become Shibboleth
enabled. An origin site will also have its
own preferred trust model for the allocation
of attributes, but the target site’s trust model
must always take precedence since it is the
owner of the resources that are being
accessed. We can look at trust from two
different aspects: the distribution of trust in
the attribute issuing authorities (centralised
or distributed) and the trustworthiness of an
origin site’s attribute repository (trusted or
not).

Firstly, we consider the distribution of trust.
In the simplest case the origin site has a
single attribute issuing authority. If the
target site trusts the origin site’s attribute
authority, this authority can issue and sign
all the SAML attribute assertions. (This is
the standard Shibboleth model.)
Alternatively, the origin site may wish to
distribute the management of attributes
between different trusted authorities in its
domain and to allow dynamic delegation of
authority. If the target site wishes to
distribute its trust to these different
authorities, then it can allow (trust) each one
of them to issue and sign different attribute
assertions, and further decide if it will allow
dynamic delegation of authority to take
place. Furthermore, in this distributed trust
scenario, the target site may be willing to
trust, or even require, some attribute
authorities that are not even based at the
origin site to issue attributes to users. (This
is typically the case in today’s world when
one presents plastic cards from multiple
different issuers in order to gain access to a
particular resource e.g. access to an airport

business lounge may be granted by
presenting frequent flyer cards from a
number of different airlines or diners clubs.)
On the other hand, if the target site is not
willing to recognise these multiple
authorities, then the origin site will need to
(re-)sign all the SAML attribute assertions
by the single authority that the target site is
willing to trust.

Secondly, we consider the origin site’s
attribute repository (typically an LDAP
server). If either the target or origin site do
not trust this to store unprotected attributes
securely, then the origin will need to store
digitally signed attributes in it, rather than
plain attributes. We now consider each
combination in turn. Figure 1 pictorially
represents each of the trust models shown in
the following sections.

5.1 Target trusts origin’s attribute
repository and origin as a single
attribute authority
This is the original Shibboleth trust model
and both the target site and origin site will
use standard Shibboleth. The origin will
store plain attributes in its repository, and
pass them in digitally signed SAML
messages to the target. The target site may
use the standard Shibboleth authorisation
mechanism, or optionally, for a finer grained
and more refined access control mechanism,
use a policy controlled PDP to make
decisions. When using the PERMIS PDP for
authorisation, the PERMIS target access
sub-policy (TAP) is used to say which
attributes are needed in order to gain access
to the targets, and the (unsigned) attributes
from the SAML message are passed to the
PERMIS PDP.

5.1 Standard Shibboleth

Shibboleth
Origin

Domain

Shibboleth
Target
DomainTransfer attributes

TAP

= AA

Shibboleth
Origin

Domain

Shibboleth
Target
DomainTransfer ACs

RAP/TAP

5.2 Multiple ACs at Origin

Shibboleth
Origin

Domain

Shibboleth
Target
Domain

Transfer DN

RAP/TAP

5.3 Pull ACs from multiple AAs 5.4 Untrustworthy attribute repository

Shibboleth
Target
DomainTransfer ACs

RAP/TAP

Shibboleth
Origin

Domain

X

Shibboleth
Origin

Domain

Shibboleth
Target
DomainTransfer attributes

RAP

5.5 Multiple AAs at Origin not trusted by Target
TAP

RAP= role assignment policy

TAP=target access policy

= attribute repository

Figure1. Pictorial representation of different trust models

5.2 Origin wishes to distribute
attribute assignments and target
trusts different attribute
authorities at the origin
In this scenario the origin distributes
management between multiple authorities
and therefore must store attribute certificates
in its repository, so that the different
attribute authorities can be recognised by the
target. The target site uses the role
assignment sub-policy (RAP) to describe
who it trusts to assign which attributes to
whom, and the TAP to determine which
attributes are needed in order to access
which targets. Note that the target may only
trust a subset of the actual attribute
authorities at the origin site, according to its
RAP, and the policy specification allows for

this. Additionally, the target may allow
dynamic delegation of authority at the origin
site, by specifying this in the RAP4.
Shibboleth now fetches attribute certificates
from the origin site, rather than plain
attributes. Consequently the SAML attribute
assertions do no need to be signed, though
the link will still need to be SSL encrypted if
privacy protection is required. In this
scenario the origin’s attribute repository
may or may not be trusted by either the
target or the origin, but this is not an issue
since it is storing digitally signed ACs in the
repository.

4 Note that the enforcement of dynamic delegation of
authority is currently being implemented and will be
in a future release of PERMIS.

5.3 Target trusts different attribute
authorities at the origin site and
elsewhere
In this scenario, the target site wishes to
authorise users based on attributes assigned
to them by different attribute authorities that
are not always co-located with the origin
site. In this case, the origin site cannot push
all the attributes to the target site (unless the
AAs have distributed them to the origin site
in the first place, which cannot be
guaranteed), so the target will need to
operate in pull mode and fetch the ACs that
it needs directly from the AAs. The
PERMIS PDP can operate in pull mode and
fetch all the attribute certificates that are
needed from the various distributed (LDAP)
repositories. The SAML attribute assertions
from the origin site do not need to carry any
attribute certificates in this instance. They
only need to provide the holder identity of
the user, so that the target can know which
ACs to retrieve. Of course, each attribute
authority will need to let its repository
(LDAP server) be accessed by the target
site5. Once the ACs have been retrieved, the
target’s PDP will use the RAP to determine
which ACs are trusted, and the TAP to
determine if the user has the necessary
attributes to access the resource.

5.4 Target and/or origin do not
trust origin’s attribute repository
but target trusts origin as a single
attribute authority
In this scenario the origin cannot store
unsigned attributes in its repository, but
rather should store digitally signed attributes
in its (LDAP) repository. The exact format
of these could be X.509 attribute certificates
or (long lived) SAML attribute assertions.

5 Note that if a site’s firewall prevents the LDAP
protocol from passing through, there are several http
to ldap gateways available that allow the firewall to
be tunnelled through on port 80.

These should all be signed by the same
organisational attribute authority that is
trusted by the target. Shibboleth will then
carry either signed attribute certificates or
signed SAML assertions to the target site.
(Note that the latter is equivalent to the
model in 5.1). When the ACs are handed to
the PDP, the RAP will check that they have
been issued by the sole origin authority. The
TAP is then used to determine if the user has
sufficient attributes to be granted access to
the target or not. When Shibboleth is
transferring attribute certificates in the
SAML assertions, the assertions do not need
to be signed, though SSL encryption will be
needed if privacy protection is required.

5.5 Origin wishes to distribute
trust to multiple authorities, but
target does not recognise them
In this scenario the target wishes to run
standard Shibboleth but the origin wishes to
distribute the management of attributes to
different AAs i.e. to run its own PMI, with
all the advantages this brings such as
dynamic delegation of authority. The origin
will be creating and storing attribute
certificates in its AC repository signed by
multiple distributed attribute authorities.
However, because the target wishes to run
standard Shibboleth, and wants a single
point of trust at the origin, these ACs cannot
be passed to the target. Therefore the origin
site should run a PDP with its own RAP to
validate that the ACs are issued in
accordance with its own policy. This will
validate the stored attribute certificates,
extract the attributes that are trusted and
pass these to the local Shibboleth origin
server for transfer in signed SAML attribute
assertions to the target. The target site can
then run the standard Shibboleth
authorisation module, or for finer grained
control can run its own PDP and TAP, as in
5.1, to determine if the user is to be granted
access or not.

6 User Privacy Issues
One of the limiting factors of X.509 attribute
certificates (ACs) is that they bind the
attributes to the holder, and if the holder is
identified by their real name in the AC e.g.
{CN=David Chadwick, OU=Computing
Laboratory, O=University of Kent, C=GB}
then the user’s privacy is (at least partially)
lost. There are a number of solutions to this
problem. X.509 ACs allow holders to be
identified in a number of different ways.
Firstly, they can be identified by a
distinguished name (DN). However, this DN
does not need to be the real name of the
holder or indeed in any way be similar to the
holder’s real name. It can be a pseudonym
rather than their real name e.g.
{CN=123456789}, or even a group name
e.g. {CN=Programmer, OU=Computing
Laboratory, O=University of Kent, C=GB}.
This opaque name only needs to have
meaning to the issuing site. The mapping
between the user’s login/authentication
identity and AC holder identity would be
performed at authentication time by the
origin site’s authentication server. It is
important to note that the binding between
the pseudonym in the AC and the
authentication name of the human user is
handled not by normal PKI registration
procedures, but by the origin authentication
system, so that the target site’s trust in user
authentication has to be placed in the origin
site’s systems and not in a trusted third party
CA. Further, the use of pseudonyms or
group names will make it much more
difficult for independent AC issuers to
participate in distributed trust management,
since they will need to liaise with the origin
site to know which opaque names have been
given to which users.

The difference between using a pseudonym
and a group identity is that in the former
case the target site would be able to profile
the user, without knowing the real physical

identity of the user. With a group identity
the target site would only be able to profile
the whole group, and would not be able to
differentiate between different group
members, or know how many members
were in the group.

Secondly, the holder can be identified
indirectly by reference to their X.509 public
key certificate. In this case the attribute
certificate holds the serial number and issuer
name of the user’s public key certificate e.g.
{x509serialNumber=123456 + x509issuer =
{OU=Some CA, O=Some Org, C=US}. The
limitations of this method are that the user
must be PKI enabled, which of course, many
are not; and that, depending upon the
contents of the user’s public key certificate,
the user might be identified via this.

Finally, the holder can be identified
indirectly by reference to the hash of a
public key that they hold. This is now
effectively a random number, giving good
privacy protection. The user can prove
ownership of the attribute certificate by
digitally signing a challenge provided by the
origin authentication server, which can then
provide this AC to the target site. The
restrictions are that the user needs to be
using some form of asymmetric
cryptography, has generated their own
private/public key pair, has created a self
signed certificate with a random DN and
does not have a corresponding X.509 public
key certificate identifying him/her. The main
limitation from a privacy perspective is that
the target site can profile the user, without
knowing the actual identity of the user, since
the same public key hash is used each time.

In all these cases there is a trade-off between
the “degree of anonymity” and the “quality
of issuance”. At one extreme we have
dynamically generated Shibboleth short
lived signed SAML attribute assertions that

provide anonymity but require a trusted
directory to store the user’s attributes. At the
other extreme we have long lived ACs
where each attribute authority can issue its
own attributes in a controlled manner, but
without any privacy protection. At various
points in the middle we have long lived ACs
with various forms of privacy protection
(pseudonyms, group names and public key
identifiers) where the AA or authentication
system maps the user’s name into a privacy
protected one.

In addition to protecting the identity of the
AC holder, the AC issuer name may also be
protected in the same ways as above. Note
that the name of the SOA may be privacy
protected or pseudonymised in some way,
but the target PDP will need to know who
this name actually belongs to if it is to be
configured as a root of trust. The privacy of
the embedded attributes may be protected by
encryption, as described in [3] and [7].
Different attributes can be encrypted for
different target sites. The main disadvantage
of encrypted attributes is that the issuer
needs to know in advance, when creating the
AC, who the targets are going to be. This of
course may not always be possible with
relatively long lived ACs, in which case SSL
encryption of the communications link is a
better option for attribute privacy.

7 Revocation and Performance
Issues
The signed SAML assertions of Shibboleth
do not need to be revoked due to their short
life times. Attribute certificates on the other
hand are expected to have a relatively long
life time, according to the
privileges/attributes being allocated. For
example, one might expect a “student”
attribute certificate to be valid for an entire
academic year. Whilst signed SAML
attribute assertions have the performance
overhead of requiring a digital signature per

message sent by the origin site, long lived
ACs may have the overhead of requiring
revocation list processing, depending upon
how they are stored and distributed. If the
ACs are stored in a repository under the
control of the issuer, and are retrieved from
there by either the Shibboleth origin or
target sites, or directly by the target’s PDP,
then a revocation list may be avoidable
providing the issuer deletes the ACs when
they need to be revoked, and third parties
are not able to surreptitiously write them
back again. In this way the revoked ACs
will not be available to the PDP when either
it or the Shibboleth components try to
retrieve them. If on the other hand the ACs
are not stored in a repository under the
control of the issuer, for example, they are
distributed directly to their holders, then
standard attribute certificate revocation lists
(ACRLs) will be needed, and the issuer will
need to periodically update them, in exactly
the same way as for public key certificate
CRLs. The PDP will need to ensure that it
has a current ACRL when validating the
ACs that have been presented to it. This will
cause some performance overhead at the
target site. Short lived ACs on the other
hand do not need ACRLs to be published,
just as the short lived SAML assertions do
no require them. Whilst short lived ACs do
not have the distributed trust management
benefits of long lived ones (one cannot
expect human managers to issue ACs to
their staff daily, whilst automated issuing
servers have the same trust related problems
as existing Shibboleth implementations),
they do have a significant performance
benefit over signed XML messages [8] [9],
so they might still be worthy of
consideration in this respect.

8 Conclusions
We have shown how a distributed, finer
grained and more functional trust model can
be added to Shibboleth, to increase the

latter’s flexibility and authorisation decision
making capabilities. We have further shown
how the model can support target and origin
sites using different combinations of
centralised and distributed trust models, and
different assumptions concerning the
trustworthiness of the origin’s attribute
repository. We have implemented this
distributed trust model in Shibboleth by
combining it with the PERMIS authorisation
infrastructure and X.509 attribute
certificates. Finally we have argued that user
privacy does not need to be compromised
per se by using long lived X.509 attribute
certificates instead of short lived digitally
signed SAML attribute assertions, although
it is certainly more difficult to fully protect a
user’s privacy in the former case.

8 Acknowledgements
The authors would like to thank the UK
JISC for funding this work under the SIPS
project.

9 References
[1] Scot Cantor. “Shibboleth Architecture,
Protocols and Profiles, Working Draft 02, 22
September 2004, see
http://shibboleth.internet2.edu/
[2] D.W.Chadwick, A. Otenko, E.Ball.
“Role-based access control with X.509
attribute certificates”, IEEE Internet
Computing, March-April 2003, pp. 62-69
[3] ISO 9594-8/ITU-T Rec. X.509 (2001)
The Directory: Public-key and attribute
certificate frameworks
[4] David Chadwick, Sassa Otenko, Von
Welch. “Using SAML to link the GLOBUS
toolkit to the PERMIS authorisation
infrastructure”. Proceedings of Eighth
Annual IFIP TC-6 TC-11 Conference on
Communications and Multimedia Security,
Windermere, UK, 15-18 September 2004
[5] OASIS. “Assertions and Protocol for the
OASIS Security Assertion Markup
Language (SAML) V1.1”, 2 September 2003

[6] OASIS. “eXtensible Access Control
Markup Language (XACML)” v1.0, 12 Dec
2002, available from http://www.oasis-
open.org/committees/xacml/
[7] S. Farrell, R. Housley. “An Internet
Attribute Certificate Profile for
Authorization”. RFC 3281, April 2002
[8] Mundy, D. and Chadwick, D.W., "An
XML Alternative for Performance and
Security: ASN.1", IEEE IT Professional,
Vol 6., No.1, Jan 2004, pp30-36
[9] “Fast Web Services,” P. Sandoz and
colleagues, Aug 2003, available from
http://java.sun.com/developer/technicalArtic
les/WebServices/fastWS/

