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Abstract

We study decentralised low delay degree-constrained overlay multicast
tree construction for single source real-time applications. This optimisation
problem is NP-hard even if computed centrally. We identify two problems
in traditional distributed solutions, namely the greedy problem and delay-
cost trade-off. By offering solutions to these problems, we propose a new
self-organising distributed tree building protocol called MeshTree. The main
idea is to embed the delivery tree in a degree-bounded mesh containing many
low cost links. Our simulation results show that MeshTree is comparable to
the centralised Compact Tree algorithm, and always outperforms existing
distributed solutions in delay optimisation. In addition, it always yields trees
with lower cost and traffic redundancy.

1 Introduction

This paper considers the problem of constructing “good” distribution trees for real-
time applications such as audio/video conferencing and live webcasting from a data
source. For these applications, low-latency delivery is of paramount importance.
To accommodate large member populations, a cost-effective delivery mechanism
such as multicasting is necessary. Since IP multicast has not been widely available,
we consider the problem in the context of application layer multicast (ALM).

ALM implements multicast functions such as membership management and
packet replication directly at the end systems. The end systems are organised into
a logical overlay network, and multicast data using the overlay edges which are
unicast tunnels. Hence ALM bypasses the need for network layer multicast sup-
port.

Creating an efficient overlay multicast tree is a challenging task. First, routing
on top of the overlay results in redundant data traffic and prolonged end-to-end de-
lay [8]. Secondly, end systems lack knowledge of the underlying topology, which
is the key to building efficient overlays. As end systems often have limited pro-
cessing power and available bandwidth, a degree constraint must be enforced in
the delivery structure. In addition, the overlay structure is highly dynamic as it is
formed by end systems that are prone to failures and may join/leave the session at
will.

The above challenges and the requirement of low delay delivery in the real-time
applications considered suggest that a solution must exhibit the following features.

• Scalability. This requires a decentralised scheme which imposes little proto-
col overhead (in terms of messages used to infer the node-to-node distances
and to exchange the state information between the nodes).



• Optimised Structure. The overlay tree must be degree-bounded while provid-
ing low source to receivers latency. This however, is an NP-hard optimisation
problem [20].

• Adaptability. The solution must be able to react quickly to changes in the
overlay membership (join/leave/failure) and network conditions.

We propose MeshTree, which fulfils the above properties in the following man-
ner. First, MeshTree constructs overlay trees in a self-organising and fully dis-
tributed manner. The process uses limited network measurements and limited co-
ordination between the nodes, hence has low overhead. MeshTree follows a mesh-
based approach where the degree-bounded delivery tree is derived from a mesh.
The mesh structure is inspired by the greedy problem and delay-cost trade-off (to
be explained shortly) observed in distributed delay optimisation. We believe the
structure offers a solution to the problems, and hence has low latency property. A
mesh is also adaptable and provides good robustness.

Using detailed simulation experiments, we show that MeshTree is comparable
to the centralised Compact Tree algorithm [20]. In addition, it always performs
better than a distributed scheme proposed by Banerjee et al. [5] — which we have
previously shown [21] to outperform switch-trees, HostCast, TBCP [15], HMTP
[25] and AOM [23] in delay optimisation. We also show that MeshTree offers
quick failure recovery and is very responsive to changes in group membership.

Problems in Distributed Delay Minimisation Intuitively, a good solution to the
delay optimisation problem can be achieved with a delay-centric approach where
nodes are placed as close as possible to the root. However, in a distributed envi-
ronment where the degree-bounded nodes need to make decisions based on limited
coordination using little knowledge about the topology, this approach can result in
a greedy problem.

We explain this problem by using two existing decentralised protocols, i.e.
switch-trees [12] and HostCast [14]. In these protocols, every node (except the
root) maintains the delay from the root via the overlay tree to itself. Periodically,
a node will try to improve its on-tree position by finding a better parent, i.e. a
non-descendant node that provides a lower delay to the root. However, when a
node has reached its degree bound, it will reject any new request from potential
children. This can force nodes that are ideally placed near to the root to be placed
far from the root. For example, Fig. 1(a) shows node x which is topologically close
to the root is positioned under z that is far from the root. As y (as well as other
children of s) has found the best possible parent (the root), it will greedily stick to
s. This may prevent a better configuration (e.g. see Fig. 1(b)) from happening.
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Figure 1: The greedy problem

The configuration in Fig. 1(b) suggests that the greedy problem can be avoided
if the end systems are connected based on their relative position in the underlying
topology, i.e. if nodes close by are connected together. As the aim is to construct
a tree, we can view this as the minimum spanning tree problem with the delay
between two nodes as the cost function. First, creating a degree-bounded minimum
spanning tree is an NP-hard problem [13]. In addition, a low cost tree often results
in high end-to-end delay [21]. Our proposed mesh structure addresses the above
two problems.

In the rest of this paper, we first discuss related work in next section. Section 3
describes MeshTree while Section 4 presents our evaluation results and discussion.
Finally, Section 5 concludes the paper.

2 Related Work

In general, ALM protocols can be classified as either tree-based or mesh-based [9].
Several distributed tree-based protocols also attempt to create optimised delivery
trees. Most notably, HMTP constructs low cost trees; HostCast, on the other hand,
creates low delay trees; AOM attempts to achieve a balance between cost and delay;
TBCP and switch-trees define generic techniques which can be adapted to different
metrics, e.g. cost and delay. Our previous study has shown that the Banerjee at al.
scheme that we use to compare with MeshTree, has superior delay performance
to the above protocols. Yoid [11], another tree-based protocol, includes additional
links to improve the tree robustness. However, these additional links are added
without considering the degree constraint — hence, may not be useful in degree-
bounded tree restoration. In addition, Yoid does not focus on overlay optimisation.
NICE [4] and ZIGZAG [22] use a hierarchical cluster-based approach to construct
overlay trees for large-scale applications. However, the resultant overlays are not
degree-bounded based on a individual node’s capacity constraint.

Several projects also consider the mesh-based approach for overlay construc-



tion. Narada [8] and Gossamer [7] run the path-vector protocol over a mesh overlay
to derive source-specific tree for each node, which is more suitable for many-to-
many applications. Scribe [6] and CAN-multicast [17] build trees on top of the
mesh overlay built with the distributed-hash table (DHT) techniques (i.e. Pastry
[19] and CAN [16] respectively). However the DHT-based overlays provide scal-
able and robust data distribution at the expense of added difficulties in achieving a
tree-wide optimisation [18]. The HyperCast project [3] studies the use of overlays
based on geometric properties of logical graphs, e.g. hypercube and Delaunay tri-
angles. The performance of these overlays depends highly on the mapping between
the underlying network metrics and the geometric space.

3 MeshTree

MeshTree is motivated by the greedy problem and the delay-cost trade-offs dis-
cussed previously. It attempts to solve the problem by creating an overlay mesh
which consists of two main components: (i) a backbone structure; and (ii) addi-
tional links to form the mesh. The backbone is a low cost spanning tree1 rooted
at the source node. The low cost backbone connects nodes that are topologically
close together, and thus helps to avoid the greedy problem. As a spanning tree
uses the minimal number of links, additional links can be included in the overlay
to improve the delay properties of the low cost tree. The resultant mesh is degree-
bounded based on each individual node’s capacity constraint. Finally, the actual
delivery tree is derived from the mesh using a path-vector routing protocol.

Indeed, one could use more flexible overlay reconfiguration operations and ad-
ditional information such as subtree delay to improve upon switch-trees and Host-
Cast performance. Banerjee et al. [5] provide such a scheme. In Section 4, we
show that our approach achieves better performance than their solution.

Maintaining a mesh has several advantages over maintaining only the delivery
tree structure — an approach adopted by several tree-based protocols (e.g. HMTP
and switch-trees). First, a mesh consists of multiple paths, and hence is more robust
than a tree structure which can be partitioned by a single node failure. The mul-
tiple paths property is also useful for the overlay optimisation (see Section 3.3.1).
Finally, we can take advantage of the standard routing protocol to construct the
delivery tree. The routing protocol automatically handles the potential looping
problem in distributed tree maintenance.

1In fact, the backbone tree is only loosely maintained, and it is possible that the backbone may
be partitioned into a forest of trees (see 3.3.2).
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Figure 2: An example of MeshTree overlay

3.1 MeshTree Overlay Structure

MeshTree’s overlay includes a backbone tree and a delivery tree, both rooted at the
data source, s. The degree bound for a node, i is given by f max

i which includes the
incoming link from the parent (except when i = s) and the maximum number of
out-going links to the set of downstream children.

Two nodes are said to have a neighbouring relationship when the overlay link
between them exists in the constructed mesh. In general, the set of neighbours for
a node, i is represented by Ni. We then define N b

i as the set of i’s neighbours in
the backbone tree, where N b

i = {pb
i}∪Cb

i , pb
i and Cb

i are i’s parent and children in
the backbone tree respectively. Similarly, N d

i , pd
i and Cd

i are used for the delivery
tree. N o

i represents i’s non-tree neighbours, where N o
i = Ni \ (N b

i ∪ Nd
i ).

Hence, Ni = N b
i ∪Nd

i ∪No
i . In addition, we define Nw

i as the set of nodes that
i has agreed to accept as neighbours, while waiting for the neighbour setup process
to be completed. During the execution of the protocol, i strictly enforces the fan-
out constraint, fmax

i by |Ni| + |Nw
i |≤ fmax

i . As the delivery tree is derived from
the degree-bounded mesh, the fan-out constraint for each node is guaranteed.

Fig. 2 shows a sample MeshTree overlay where s is the data source. The dashed
lines define the mesh links. The backbone and delivery trees links are shown as
blue and red lines connecting a parent to its child, respectively. The value beside
a link represents its delay. For node x, we can see that Nx = {q, t, v, y, z}; N b

x =
{v, y} with pb

x = v; Nd
x = {q, y, z} with pd

x = q, and No
x = {t}. The example

shows that some of the mesh links provide shortcuts which reduce the delay from
the source. It also shows that a neighbour of a node can assume more than one role.

3.2 State at a MeshTree Node

For a node i, we use Υi(j) to denote the overlay distance from s to i via i’s neigh-
bour, j via the delivery tree. As the shortest path routing protocol is used, the



distance via the delivery tree parent, pd
i is the shortest. We denote the maximum

subtree delay, Λi as the distance from i to its farthest descendant via the delivery
tree. We use Λi(c) to represent the subtree delay observed by i via its delivery
tree child, c, i.e. Λi(c) = d(i, c) + Λc, where d(i, c) denotes the unicast distance
between i and c. If i is a leaf node, Λi = 0. Node i can estimate the total tree
height in delay due to itself, Hi as: Hi = Υi(pd

i ) + Λi. Referring to Fig. 2, for
node x: Υx(q) = 4, Υx(v) = 8, Υx(t) = 9, Λx(y) = 4, Λx(z) = 3. Hence,
Λx = Λx(y) = 4 and Hx = Υx(q) + Λx = 8.

Each node, i keeps the following state information: (i) Backbone information:
The overlay path from s to i via the backbone tree, i.e. backbone root path; (ii)
Routing information: The best overlay distance (Υi(pd

i )) and path to s; (iii) Alter-
nate path information: The overlay distance of the best alternative path to s, if any;
(iv) Subtree information: The maximum subtree delay, Λi; (v) Members list: Node
i keeps a small list of members currently in the overlay. The list comprises nodes
within a predefined neighbourhood of i, and nodes learned via a simple gossip-style
node discovery technique [7]. The predefined neighbourhood for i consists of i’s
grandparent, siblings, and its parent’s siblings in the backbone tree. The members
list is used in overlay optimisation and is only lazily maintained.

Each node also maintains the routing information for all of its mesh neighbours,
and the alternative path and subtree information for its delivery tree children. This
information is obtained from the routing and refresh messages exchanged with the
respective neighbours.

The alternative path and subtree information of the delivery tree children is
needed for the overlay optimisation process to be described in Section 3.3.1. Ba-
sically, a node needs to estimate the tree height for the children using an alterna-
tive parent. Referring to Fig. 2 again, node z has an alternative path to s via t,
Υz(t) = 7, and has a maximum subtree delay, Λz = 1. Hence, x can calculate the
tree height for z (using an alternative parent) as Hz = Υz(t) + Λz = 8.

3.3 MeshTree Protocol Description

MeshTree initially constructs a random structure and relies on a periodical overlay
reconfiguration process to improve the overlay towards the desired structure.

The random mesh is constructed in the following manner. Each newcomer, say
x contacts a well-known Rendezvous Point [11] to obtain a small list of overlay
members. From the given list, x randomly picks a number of joining targets (lim-
ited by fmax

x ) and sends to each of them a joining message. It repeats the process
(from other nodes) until it is accepted by at least one of the targets. On receiving a
join request message from x, a node say y will accept x if it has spare fan-out, or
if it has a neighbour, say z in N o

y (in this case, y will drop z to maintain its degree



bound). Node x will take the first node that accepts itself as its parent node in the
backbone and delivery trees. For other nodes that are also able to accept x as a
child, x converts them into non-tree neighbours. The randomised joining process
quickly attaches new nodes into the overlay. In addition, it distributes the joining
overhead among the members, rather than overloading a single node (e.g. the root).

Once joined to the overlay, x participates in the path-vector routing protocol
[8] (with s as the only destination in the routing table) to derive the data delivery
tree rooted at s. Using the whole path prevents the well-known count-to-infinity
problem. We next explain how the overlay is optimised and maintained.

3.3.1 Overlay Improvement

The improvement process is needed to optimise the initial random structure as well
as to adapt the overlay to the changes in the overlay memberships (join/leave/fail)
and in the underlying network conditions.

The improvement process involves adding/deleting links to/from the overlay
using a set of local rules running at each node. The rules prioritise the minimisation
of the (backbone tree) cost over the (delivery tree) delay so as to obtain a low cost
backbone augmented with short-cut links — our desired structure. Each reconfig-
uration operation consists of a request-reply-acknowledgement cycle between the
end-points of a link, and requires no global coordination with other nodes in the
overlay.

We next describe the request-reply-acknowledgement sequence. Hereafter, we
refer to x as the node that is initiating an improvement process.

3.3.1.1 Request Component In this component, x selects a potential neigh-
bour (hereafter refer to as y), and initiates a peering request to y.

In order to select y, x first picks a fixed number of non-neighbour nodes (5 in
our implementation) as candidates from its known member list (see Section 3.2).
Node x then probes the candidates to estimate the distance from itself to these
nodes. From the measurement results, if there exists a candidate that is nearer to
x than pb

x, the node is selected as y. Otherwise, x randomly picks a node from the
candidates list as y. Node x will then send a peering request message to y. The
message contains the distance measured (i.e. d(x, y)) and the root paths and costs
of x’s backbone and delivery trees.

3.3.1.2 Reply Component When y receives x’s request, it decides whether to
accept x as a mesh neighbour, or a backbone tree child or parent, or simply reject
x’s request. The result will be conveyed to x by a peering reply message. If y



accepts x, the message will also contains y’s backbone and delivery trees’ infor-
mation. In addition, y will add x into Nw

y while waiting for the acknowledgement
from x.

The admission control algorithm consists of two main parts: (i) determine the
neighbouring relationship with x; and (ii) decide whether to accept or reject x’s
request.

Determining the Neighbour Type This process checks if x should be regarded
by y as a backbone tree parent or child, or a mesh neighbour. The decision rules
prioritise the backbone peering.

We first determine the relationship between x and y on the backbone tree, i.e.
if x is an ancestor of y, or vice-versa, or neither of these two. This is to prevent
an ancestor from using its descendant as parent in the tree, i.e. a simple loop
prevention. The relationship can be easily inferred from the backbone root paths
for x (included in the request message) and for y. As a descendant, y will treat
the ancestor (x) as a potential backbone parent if d(x, y) < d(y, pb

y). (A similar
consideration is needed in the case that y is x’s ancestor). Otherwise, y will regard
x as a mesh neighbour.

If x and y are unrelated in the backbone tree, one can freely become parent
or child of the other node and vice-versa. In this case, we compare the distance
between x and y, x and pb

x (given in the request message), and y and pb
y. If d(x, y)

is smaller than one of the d(x, pb
x) and d(y, pb

y), or both of them, the node (x or y)
that has a larger distance from its parent will become the child node. This helps to
reduce the overall cost. Finally, if d(x, y) is the largest among the distances, y will
regard x as a mesh neighbour.

Accept / Reject The main decision making is based y’s available capacity. Node
y will accept x if: (i) |Ny| + |Nw

y |< fmax
y ; or (ii) |Ny| + |Nw

y | − |No
y |< fmax

y .
The first condition happens when y still has spare fan-out for new neighbours.
Otherwise, if there exists a neighbour in N o

y , then x can still be accepted. In this
case, a randomly selected node from N o

y will be dropped. In other cases, y executes
a pruning decision to determine if it is beneficial to drop an existing neighbour to
accept x. Nw

y is added into the equations above to enforce y’s degree constraint.
By referring to the definitions described in Section 3.2, a neighbour v is said to

be prunable if: (i) v ≡ pb
y and x is accepted as the new backbone parent, i.e. y is

trying to switch to a closer backbone parent; (ii) v ≡ pd
y and x provides a shorter

route to the root, i.e. Υy(x) < Υy(pd
y); (iii) v ∈ Cd

y and v has an alternate path
to s, and the total tree height due to v (estimated by y) does not exceed that of y,
estimated after omitting v. This is to prevent an increase in the delivery tree height;



if (pb
y �∈ Nd

y ) ⇒ return pb
y;

if (pb
y ≡ pd

y ∧ ∃ alt. path to s) ⇒ return pb
y;

if (pb
y ∈ Cd

y ∧ Hpb
y

< Hy) ⇒ return pb
y;

if (Υy(x) < Υy(pd
y))

if (pd
y �∈ Cb

y) ⇒ return pd
y;

elsif (pd
y ∈ Cb

y ∧ d(y, x) < d(y, pd
y)) ⇒ return pd

y;
if (Hc < Hy : c ∈ Cd

y ∧ c �∈ Cb
y) ⇒ return c;

if (d(y, x) < d(y, c) : c ∈ Cb
y ∧ c �∈ Cd

y ) ⇒ return c;
if (Hc < Hy ∧ d(y, x) < d(y, c) : c ∈ Cb

y ∧ c ∈ Cd
y ) ⇒ return c;

return nil;

Figure 3: Conditions used by y to determine a prunable neighbour so as to accept
x as the backbone tree parent

(iv) v ∈ Cb
y and d(x, y) < d(y, v) — an attempt to minimise the backbone cost.

Based on the above criteria and the new neighbouring relationship to be estab-
lished, we devise a set of conditions to determine if an existing neighbour can be
pruned. Fig. 3 depicts the pruning conditions if x is to be added as y’s backbone
tree parent. The conditions find a prunable neighbour (if any) by trying to maintain
the tree structure of the backbone and prioritise cost over delay optimisation. In
particular, y considers dropping pb

y only if x is replacing it, and the delivery tree
neighbours are considered before the backbone children. For the case that y is ac-
cepting x as a backbone child, the test for the backbone parent will be excluded; If
x is to be added as a mesh neighbour, y will only consider the cases for the delivery
tree parent and children.

Referring back to Fig. 1, the configuration in panel (b) can be achieved if node
s can accept x by pruning an existing child. Otherwise, when one of the children
finds a closer node as backbone parent, it may detach itself from s to allow an
alternative configuration.

The prunable neighbour will not be dropped until y receives a positive feedback
from x. To prevent transient disruption to the data delivery, a parent node continues
to transmit data to a pruned child for a short time.

3.3.1.3 Acknowledgement Component When x receives the acceptance reply
from y, it tries to admit y using the same admission control procedure described in
the previous section (using the neighbour type determined by y). This is to prevent
any discrepancy between the nodes. Based on the admission result, x finalises the
whole process by either adding a link to y or rejecting the link establishment.



3.3.2 Overlay Maintenance

The overlay maintenance takes care of the peering relationship between a node and
its neighbours. If a node leaves the session, it needs to inform its neighbours so
that they can adapt to the change quickly. On the other hand, if a node fails, it is the
responsibility of its neighbours to detect the case. This is done by periodically ex-
changing refresh messages between two neighbours. When a node stops receiving
refresh messages from a neighbour for a predefined time, it regards the neighbour
as having failed. The node, say x that detects the departure of its neighbour, say y,
will trigger the following failure handling mechanism.

First, if y ∈ N o
x or y ∈ Cd

x , x only needs to update the corresponding list. If y
is pd

x, x will first try to recompute an alternate path to the root. If no alternate path
exists, x will trigger a rejoin process from nodes contained in its delivery tree root
path, starting from its grandparent.

Unlike the delivery tree, the backbone structure is only loosely maintained.
Normally, the joining and optimisation procedures will result in a loop-free back-
bone tree. However, occasionally, a loop may be formed due to multiple simultane-
ous transformations or a transformation which is done based on stale information
[11]. If x finds that a loop has been formed (by inspecting the root path carried in
the refresh message from its pb

x) or detects the departure of its pb
x, it will update

its descendants with a new root path which contains only the information of itself.
This essentially results in a forest of low cost trees (rooted at various nodes), rather
than a single spanning tree (rooted at s). In the case of loop, x withdraws its child
status from the parent node while keeping the overlay link and x will attempt to
acquire a new parent during the next improvement round.

4 Performance Evaluation

We conduct extensive simulations on a set of Transit-Stub topologies generated us-
ing the GT-ITM topology generator [2] as well as the power-law topologies gener-
ated by the Inet generator [1]. We report representative results from a 10100 nodes
transit-stub network. (Similar performance trends were observed in the power-law
topologies.) For all experiments, each end system is randomly attached to one of
the routers. For all the results (except Fig. 5(a)) to be presented, each data point in
the graph represents averages over 50 independent runs.

We first compare the quality of the delivery trees built by MeshTree with the
following two schemes.



Compact Tree Algorithm (CPT) [20]: CPT is a centralised greedy heuristic for
the degree-bounded minimum tree-diameter (i.e. the maximum distance on the tree
between any two nodes) problem. Since we study the single source application, we
modify the objective function to minimise the maximum delay from the root, rather
than the tree diameter.

Banerjee et al.’s scheme : This is a simple variant of the distributed iterative
tree-based scheme proposed in [5] . Each on-tree node maintains the overlay dis-
tance from the root and the subtree information as in MeshTree. A set of local
transformations such as switching and swapping are defined to reconfigure nodes
within two levels of each other towards the optimisation objective. In addition,
swapping between two randomly selected nodes is done probabilistically so as to
avoid local minima. In [5], the scheme is used to solve the minimum average delay
problem which is more suitable for a proxy-based architecture. It has been shown
to outperform a variant of CPT for the problem. We modify the objective function
based on the suggestion in the paper to minimise the root delay. In order to cap-
ture the main property of the scheme while avoiding complication in distributed
tree maintenance, we use a flow-level approach for the transformation process.
Specifically, a transformation operation is made directly without actual message
exchanges between the nodes involved.

The quality of the overlay tree is judged by the following metrics: (i) RMP and
RAP; (ii) tree cost ratio (TCR); and (iii) link stress. RMP and RAP are two vari-
ants of relative delay penalty [8]. RMP (RAP) is the ratio between the maximum
(average) overlay delay and the maximum (average) delay using unicast from s to
all other nodes. Hence, RMP represents our optimisation objective, while RAP in-
dicates the average delay observed by the receivers; Tree cost [25] is defined as the
sum of delays on the tree’s links. It provides a simplified view of the total network
resource consumption of a tree. TCR is the ratio of the cost between an overlay tree
and the corresponding network layer multicast tree; Finally, link stress is defined
as the number of duplicated copies of an identical packet sent over a single link.

In the experiments, all members randomly join to the session within the first
50s. The first member automatically becomes the data source. The out-degrees
of the overlay nodes are uniformly distributed between 2 and 10. For MeshTree,
we use one initial join target (see Section 3.3) and 5 candidates per improvement
round (see Section 3.3.1). Both MeshTree and Banerjee et al.’s scheme use an
improvement period of 30s, and the results are collected after the trees converge.

In terms of delay performance (RMP and RAP as in Fig. 4(a) and (b)), we
can see that MeshTree always outperforms the Banerjee et al.’s scheme. For group
sizes from 32 to 256, it produces trees with lower RMP and similar RAP com-



pared to CPT. For larger group sizes where we expect a centralised approach to be
unsuitable, MeshTree still shows reasonably good delay properties.

Fig. 4(c), (d) and (e) depict the worst-case and average link stress, and the
TCR performance. We can now observe that CPT produces low delay trees at the
expense of high traffic redundancy and network resource usage. The fact that its
worst-case stress grows rapidly also suggests that it is not suitable for larger group
sizes. MeshTree shows a much lower maximum stress performance, which is close
to that of the Banerjee et al.’s scheme. In addition, it always shows the lowest
average link stress and tree cost properties.

In the results presented, each data point in the figures represents the average for
experiments using different sets of randomly chosen members (We make sure that
all schemes were run with the similar set). For an iterative improvement scheme,
it is desirable that given the same data source and members, a solution should
converge to the same point regardless of the joining sequence. We randomly chose
a set of members and conducted 50 runs using different joining sequences. The
result in Fig. 4(f) shows that MeshTree consistently produces trees with about the
same delay property, compared to the Banerjee et al.’s scheme. This suggests that
it can avoid the inefficient structure better than the delay-centric approach.

We also conducted experiments where the source uses a direct unicast con-
nection to each of the receivers. Obviously, this has the best delay performance.
However, it overloads the source node, and results in a worst-case stress that is as
high as the group size. It also incurs much higher resource usage, for example,
its TCR is about 16.5 for a group size of 1024 members — an order higher than
the ALM solutions. The rest of the results present several interesting properties of
MeshTree. Fig. 5(a) shows the evolution of the TCR of the backbone tree, the RAP
and RMP of the delivery tree, for an 1024-node overlay. We can see that these
values increase quickly as nodes are joining the overlay. This is because the initial
overlay is randomly connected. In the experiment, each receiver has a improve-
ment period of 30s. We can see that the RAP and RMP values rapidly decrease
to a value less than 2 within the first 200s, i.e. less than 10 improvement rounds
per node. This indicates that MeshTree can converge very quickly. The result also
shows that MeshTree can achieve low backbone tree cost ratio, which suggests that
the overlay contains a lot of short links between the members. This helps to reduce
the delivery tree cost and link stress, as observed previously.

The high delay and cost at the early stage is obviously undesirable. While not
shown here, we have found that this can be greatly improved by using a larger
number of joining targets. For example, we can achieve a 50% improvement by
using two initial join targets per node.

An overlay tree needs to be restored after a non-leaf node, say x departs (fails
or leaves). It is important that x’s children can quickly locate a new parent to
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Figure 4: Comparison results: (a) RMP; (b) RAP; (c) Maximum link stress; (d)
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resume the data flow. In addition, the recovery process should not result in a fan-
out violation in any node. We compare MeshTree with the grandparent recovery
scheme studied in [24]2, in which the children of the departed node first try to
attach to their grandparent. The grandparent will try to accommodate them as long
as it has spare capacity. Otherwise, it will redirect them to its descendants.

In the experiments, we run the grandparent recovery scheme on trees con-
structed by MeshTree before a departure event. A number of randomly selected
nodes are instructed to leave the group at the same time. We calculate the average
recovery time as the average time for an affected node to find a new parent. We
use a 256-node overlay, and the out-degrees of the nodes are randomly distributed
between 2 and 6. Hence, even a small number of departures will result in overlay
reconstruction. The result depicted in Fig. 5(b) shows that MeshTree can recover
faster than the grandparent scheme.

Fig. 5(c) shows the protocol overhead (control message traffic sent and re-
ceived) per overlay node, in kbps. In the experiments, each node has a maximum
of 10 neighbours. We assume that each message is carried using TCP over IPv4,
which incurs a base size of 40 bytes per packet. The result shows that the per node
overhead is reasonably small, i.e. less than 1kbps, and it increases very slowly with
the group sizes. We note that the result does not include overheads due to network
measurement. First, each node only needs to know the distance to a small number
of members. The distances can be cached to reduce measurement overhead. In
addition, it may be possible to obtain the distance information from the Internet
distance services (e.g. IDMaps [10]).

5 Concluding Remarks

This paper studies the problem of creating overlay multicast trees for real-time
applications. We present MeshTree, which constructs overlay trees in a fully dis-
tributed manner using only limited overlay member information. It has low pro-
tocol overhead, and shows fast convergence and failure recovery properties. The
constructed trees are degree-bounded based on an individual node’s capacity con-
straint. Our simulation experiments reveal that the trees built with MeshTree have
delay properties comparable with (and sometimes better than) a centralised algo-
rithm, and always have lower delay than a decentralised scheme. Both alternative
schemes compared have previously been shown to perform well in their class. In
addition, trees constructed with MeshTree consume fewer network resources.

2In [24], the authors proposed a proactive tree recovery approach for creating minimum cost trees,
hence it is not used here. The grandparent scheme is the best reactive approach as shown in the paper
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