University of

"1l Kent Academic Repository

Pediaditakis, Michael (2001) Integration of Web Browsers and Interactive
TV. Other masters thesis, Computing Laboratory, University of Kent at
Canterbury.

Downloaded from
https://kar.kent.ac.uk/13579/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/13579/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Integration Of Web Browsers and
Interactive TV

A dissertation submitted for the degree of
MSc in Distributed Systems and Networks
Computing Laboratory

University of Kent at Canterbury

Michael Pediaditakis

August 31, 2001

Abstract

Interactive TV(ITV) technologies enhance the conventional TV services
and enable user—content interaction. The World Wide Web is currently
the most popular approach to information exchange. The “Integration of
Interactive TV and web browsers” project studies the convergence of the
two areas which is important since both areas can benefit each other.

We focus on an ITV extension for an existing web browser. The “Multi-
media and Hypermedia information coding Experts Group” part 5 (MHEG-
5) standard is selected as representative for the ITV area, and the Extensible
Markup Language (XML) and Document Object Model (DOM) standards
for the web browsers area. We present the design and implementation of
an MHEG extension for a web browser and integrate the MHEG and DOM
event models in order to achieve an easier and more compact MHEG event
model implementation.

Our study provides the foundation for the convergence of the two tech-
nologies by a thorough study, implementation and evaluation of ITV and

browser integration.

Acknowledgments

T would like to thank my family for their support and guidance during this
year of study in the University of Kent at Canterbury and during my whole
life in general.

I would also like to thank my tutor and project supervisor Dr. David
Shrimpton for his guidance throughout this project, his inspirational ideas

and his support during the last difficult days of the dissertation preparation.

Contents

1 Introduction

1.1
1.2
1.3
1.4

The two areas and integration benefits
Related work oo
Our approach oo

Document layouto

2 Interactive TV — MHEG
2.1 Interactive TV
2.2 MHEG standards
2.3 Overview of MHEG parts band 8.
2.4 MHEG-5 object model oL
2.4.1 Introduction to MHEG objects
242 The MHEG classes
2.5 MHEG-5 event model
2.6 MHEG-5 conformance issues
2.7 Conclusiono
3 Web browsers - DOM
3.1 Webbrowsers
3.2 XML overview
3.3 DOM overview
3.3.1 DOM-2 core description
3.3.2 DOM-2 event model description

10
11

13
13
14
15
16
16
17
22
24
25

3.4 Conclusion e e

Browsers assessment — X-Smiles

4.1 Browsers assessment
4.1.1 Browser requirements
4.1.2 Browser alternatives

4.2 X-Smiles overviewo
4.2.1 Architecture overview
4.2.2 XML processing layer
4.2.3 Browser corelayer
4.2.4 User interface and interaction layer

4.3 Conclusion e

ITV — web browsers integration

5.1 The integration process

5.2 First step: minimal conforming engine
5.2.1 Design
5.2.2 TImplementation
5.2.3 Evaluation

5.3 Second step: Event model integration
5.3.1 Event models comparison
5.3.2 Designo
5.3.3 Implementationo
5.3.4 Evaluation

54 Conclusion e e

Evaluation — further research

6.1 Integration evaluation
6.1.1 Minimal conforming engine
6.1.2 Event models integration

6.1.3 General comments

34
34
34
36
36
37
38
39
41
42

43
43
44
45
52
56
o8
99
60
64
67
69

6.2 Comments on the standards used and X-Smiles
6.3 Comparison to the original project plan
6.4 Furtherresearch
6.4.1 TImplementation corrections — extensions
6.4.2 Further integration
6.4.3 Related research ideas

Concluding remarks

Abbreviations

Initial project description

B.1 Introduction.

B.2 The problemarea
B.2.1 Thestandards
B.2.2 Mozilla
B.2.3 Project schedule

B.3 Conclusion e

Minimal application domain definition

Browser alternatives

D.1 Mozilla browser o
D.2 X-Smiles browser o
D.3 Amaya browser L
D.4 HotJava browser

D.5 Arena and Mosaic browsers

Execution examples

E.1 XML sources
E.1.1 The applicationfile.
E.1.2 Thescenefile

82

84

86
86
87
87
89
90
91

93

96
96
98
99
99
100

E.2 Engine output for Section 5.2.3 test
E.3 Engine output for Section 5.3.4 test

List of Tables

2.1
2.2

3.1

4.1
4.2

5.1
5.2
5.3
5.4
9.5

C.1
C.2
C.3

MHEG family of standards 14
Event and execution types 23
DOM-2 recommendations 29
Summary of browser requirements 35
Browser qualification information 37
Minimal application domain classes features 45
MHEG - OO model mapping 47
MHEG engine components 93
Event models comparison, 61
Event models mapping L 64
Minimal application domain classes 94
Minimal application domain features 94
Minimal application domain constraints 95

List of Figures

2.1 MHEG core classeso 18
2.2 MHEGclassstates 19
2.3 MHEG ingredient hierarchy 21
2.4 MHEG execution example L. 24
3.1 DOM core interfaces 30
3.2 DOM treeexample L. 31
3.3 Event flowexample L oL 32
4.1 Top level browser architecture (based on [13]) 38
4.2 X-Smiles document flow example 39
4.3 X-Smiles state model (based on the state model figure in [13]) 40
5.1 MHEG - OO mapping example 48
5.2 Stack event model example L. 51
5.3 Engine MHEG class hierarchy 54
5.4 Engine execution hierarchy, 95
5.5 Engine reference class hierarchy 55
5.6 Engine managerclass. 56
5.7 New link processor hierarchy 65
5.8 DOM event hierarchy 66
5.9 Event listener hierarchy 67
5.10 New event model design 68

Chapter 1

Introduction

Interactive TV (ITV) has received major attention since it is a relatively
new technology that enhances the TV experience and offers a brand new
way of information exchange using the TV set. Moreover, the World Wide
Web (WWW) can be considered as the dominant means of communicating
information. “Integration of Web Browsers and Interactive TV” project’s

principal aim will be to investigate the convergence of these two areas.

1.1 The two areas and integration benefits

ITV technologies enhance the conventional TV services by allowing the user
to interact with the presented content. The required additional functionality
for interaction support is currently provided by a set-top box (STB). The
“Multimedia and Hypermedia information coding Experts Group” part 5
(MHEG-5)[14] standard has been accepted as part of the Digital Audio and
Visual Council (DAVIC) ITV specification and for the U.K. terrestrial ITV
for interactive content representation and handling. The MHEG-5 stan-
dard provides a means for representing, transferring and handling data for
interactive multimedia client server applications.

Web content is processed and presented by a “web browser” applica-
tion. Web browsers are mainly focused on the support of W3C international

standards which provide a standard and internationally recognized way to

represent the information available through the web. Nevertheless, there are
always some platform-specific or non-standard extensions that are needed
in order to support content types which are not described by international
standards and are based on proprietary data formats.

We will mainly focus on the integration of MHEG-5 functionality into
the web browsers. This integration will be beneficial since it will provide web
browsers capable for interactive multimedia and ITV content handling and
will also allow users to seamelessly change between ITV and web content.
Moreover, we will see how web technologies can be used in order to support

an interactive multimedia application.

1.2 Related work

There have been several proposals for web browser and interactive TV do-
mains convergence. In this section we will present three different approaches
which look at the problem from a different perspective.

One of the first proposed solutions[2], when there was no support for
web scripts and dynamic HTML, used gateways that emulated MHEG be-
haviour through dynamically generated HTML pages. The principal aim
was to use an MHEG-unaware web browser for presenting MHEG content.
The basic problem was the user interaction handling, since, HTML was not
adequate for handling MHEG applications. The proposed solution was based
on “image-maps” which displayed MHEG content and provided feedback on
the user interaction. The proxy was processing MHEG data and generated
an “image-map” representing the presentation screen content. User mouse-
interaction was fed back to the proxy in terms of mouse “clicks” over the
image map. Then, the proxy processed the user interaction and returned
a new image map representing the new screen layout. This solution was
obviously slow, non-scaleable, required heavy network support and the user

experience was less than satisfactory. However, it was the only way to rep-

resent interactive multimedia content without modifying the web client.

After scripting support and additional functionality was added to the
HTML standard, a different approach became feasible. The basic concept
was the conversion from MHEG to HTML content and vice-versa[l1]. In or-
der to achieve the conversion, an investigation of the common aspects of the
two standards was made and a mapping was provided for the corresponding
concepts of both standards. For the MHEG to HTML conversion, in order to
support the MHEG features which could not be directly mapped to HTML
concepts, JavaScript and Cascading Style Sheets (CSS) were used. This
approach allows representation of both content types in a platform that is
designed to handle only one of them. Moreover, it provides a standard and
platform independent way to integrate the two areas since there is direct
translation between the standards and there is no need to focus on specific
platforms. The basic drawback is that some MHEG concepts could not be
efficiently translated. Additionally, the differences of the display and user
interaction capabilities of the corresponding platforms introduce even more
problems which are addressed in [23].

The third proposal[8] makes use of downloadable applets that provide the
MHEG functionality. Applets allow the development of an MHEG engine
in a way similar to a stand-alone application. The only disadvantage of this
solution seems to be the fact that it is difficult to use existing browser func-
tionality for supporting MHEG handling and is simply a way of “attaching”

an MHEG engine to a browser.

1.3 Our approach

Our approach is to extend a web browser architecture in order to make it
MHEG-aware by modifying its implementation. This would require an open
source browser and probably more effort than the related work discussed in

Section 1.2. The latter is true because it is usually more difficult to support

10

the new content by modifying an existing architecture than to independently
implement the new functionality or to convert the new content to an already
handled document type. However, this approach would allow the use of
existing browser features and already implemented Internet standards to
support the MHEG engine extension.

What we want to avoid is a platform and browser dependent MHEG
extension. If that was the case it would be easier to develop a “plug-in” that
implements an MHEG engine. This approach is not of major interest since it
provides no more than an MHEG engine implementation. Therefore, we will
focus on using standard browser and international standards functionality
for supporting the MHEG extension.

Our goal is to find ways of making a web browser MHEG-aware by using
as many already implemented features as possible. This would normally
end up to a more compact and efficient MHEG extension implementation

as opposed to one which does not use the existing features.

1.4 Document layout

The document is divided into three basic parts: the background information,
the integration process description and the evaluation. Moreover, additional
informative material that provides details which are not essential for our
study is included in the appendices.

Background information is included in the next three chapters. Chapter
2 provides information on the ITV domain and an overview of the MHEG
standards. The description of MHEG is essential for the rest of the project
since it will be our main point of interest. Chapter 3 is concerned with the
other area of the integration, web browsers. It presents the current browsers
situation and the XML and DOM standards which will be used extensively
for the integration process. Finally, Chapter 4 is concerned with the identifi-

cation of the requirements for the target browser platform. Several different

11

alternatives are examined and X-Smiles is selected as the most adequate
one for our research. Then, an overview of X-Smiles architecture is given in
order to provide the required context for our discussion on the extension of
the browser.

After the background information, Chapter 5 describes the integration
process and our achievements. It describes how the integration process is
structured and contains the design, implementation and a first level evalua-
tion of the two main parts of the integration: the MHEG extension and the
event models integration.

An evaluation of the whole project and further research ideas are in-
cluded in Chapter 6. The evaluation follows a bottom-up structure where
we start from the implementation evaluation and continue up to a general
discussion about the project contribution and the standards used. Further
research follows a similar structure by starting by minor implementation
problems and ending up with research ideas in the wider area of the web
and interactive TV.

Finally, the appendices contain additional information on the abbrevi-
ations and the MHEG application domain used, the original project de-
scription, the browser alternatives, the examples and the output for the

evaluation and some illustrative code examples.

12

Chapter 2

Interactive TV — MHEG

In this chapter we will give a brief description of the Interactive TV (ITV)
domain, its relation to the ISO/IEC MHEG standards[14, 15] and an overview
of MHEG parts 5 and 8. Our aim is to signify the importance of MHEG-5
for ITV and to describe the basic MHEG aspects which are important for

the rest of our study.

2.1 Interactive TV

Interactive TV technologies enhance the conventional TV services by allow-
ing the user to interact with the TV set.! For instance, the user may request
information on the TV programe or take part in a multi-player game using
the TV set. The ITV information would normally be displayed on top of
the conventional TV programe, while the interaction might take place with
an enhanced remote control.

In order to support the enhanced ITV functionality, a set-top box (STB)
is used[3]. STBs are currently used in order to provide the “missing intel-
ligence” of TV sets. In the future, STB functionality might be integrated
into the stock TV sets. STBs need a well defined application programming

interface (APT) for supporting the interactive services. Currently, there are

'Tn this context the term “interaction” is used as in “interactive multimedia”. In other
words, it is not meant for conventional TV interactions such as increasing the volume or
changing the contrast.

13

several proposals for the STB API but there is still no international agree-
ment. However, UK terrestrial interactive TV and the Digital Audio and
Video Council (DAVIC) have accepted MHEG-5 as the platform for ITV
support. Based on these two examples, we will consider MHEG-5 as an im-
portant platform for ITV, and our study on the integration of web browsers
and ITV will focus on the integration of MHEG-5 functionality into the web

browsers.

2.2 MHEG standards

MHEG stands for “Multimedia and Hypermedia information coding Experts
Group”. The MHEG group of standards is collectively called “Coding for
multimedia and hypermedia information”, and aims to provide international
standard specifications for the encoding of different kinds of multimedia and
hypermedia information.

Currently there are 8 parts, which are shown in Table 2.1. The core
standard is MHEG-1, which is a generic standard for multimedia object
representation that introduces as less constraints as possible in order to

support a wide range of multimedia platforms.

Part Description
MHEG-1 | Base notation (ASN.1).
MHEG-2 | Object alternate notation (withdrawn).
MHEG-3 | MHEG script interchange representation
MHEG-4 | MHEG registration procedure
MHEG-5 | Support for base-level interactive applications

MHEG-6 | Support for enhanced interactive applications
MHEG-7 | Interoperability and conformance testing for MHEG-5
MHEG-8 | XML notation for MHEG-5

Table 2.1: MHEG family of standards

MHEG-2 was intended to be an alternative representation of MHEG

objects in SGML, but is now withdrawn. Parts 3 and 4 introduce scripting

14

and identifier registration extensions respectively.

MHEG-5, “Support for base-level interactive applications”[14] can be
considered as a specialization of part 1 which is focused on simple client-
server interactive multimedia applications. It addresses limited resource
terminals such as STBs. It is not strictly backwards compatible with part
1 because of some optimizations due to the restricted application domain
range. MHEG-6 introduces scripting extensions (procedural code) to part
5. Part 7 addresses interoperability and conformance of part 5 applications
and engines.

Recently, MHEG-8 “XML Notation for ISO/TEC 13522-5 (MHEG XML)”
[15] was introduced. It provides an alternative interchange representation for
MHEG-5 using XML. It defines an XML language for representing MHEG-5

information in a device independent manner.

2.3 Overview of MHEG parts 5 and 8

MHEG-5 is a specification of objects and of an interchange format, based
on MHEG-1, for use in simple client-server ? interactive multimedia appli-
cations across platforms of different types and brands [14].

In order to support a wide variety of platforms, MHEG has optional and
non-standardized features. It introduces the “Application domain” concept
which must be precisely defined (in a standard manner) and specializes all
the abstract parts of the standard. An example of an application domain is
the UK terrestrial ITV domain. Examples of application domain constraints
are the set of multimedia objects supported, the transmission protocols used
and the support of a “free-moving cursor”. The conformance of an MHEG

application or an engine is always based on the definition of the application

%In this case “client-server” is used in the wide sense that there might not be a direct
“request” path between them. For instance, there can be an object carousel based architec-
ture in which the client waits for the transmission of the required multimedia application
elements.

15

domain.

MHEG follows the object oriented paradigm by defining a set of classes,
instantiations of which are transferred to the MHEG engine. The latter
is located at the client and it processes and renders the multimedia pre-
sentation. The MHEG classes are defined in terms of their attributes, the
actions that can be performed on them and the events that might be gen-
erated. An MHEG presentation is represented by an Application object.
Each application consists of a set of scenes that control what is presented
to the user. Scenes support spatio-temporal composition of presentable ob-
jects. Events and Links describe the behavior of a multimedia application.
Links can specify the action(s) to be executed when a corresponding event
is generated.

The MHEG-5 objects are transferred in well defined device independent
encodings. The MHEG-5 standard defines two of them: ASN.71 and the
textual notation, while the MHEG-8 standard defines an additional XML
representation. These notations give the “Author once, run everywhere”
property to MHEG-5, since they are independent of implementation archi-
tectures and transmission protocols.

Content encoding schemes (e.g. MPEG for video) and transfer protocols
(e.g. HTTP) are not specified and must be defined for each application

domain.

2.4 MHEG-5 object model

In this section we will describe the MHEG-5 object model and the inter-

change representation of objects as specified by the MHEG-8 standard.

2.4.1 Introduction to MHEG objects

MHEG defines a set of abstract and concrete classes for the interactive mul-

timedia content description. Only the concrete ones can be instantiated and

16

represented in MHEG notations. In a typical MHEG system, clients present
instantiated concrete classes sent by the MHEG server.

An MHEG class is described by its base class, its exchanged and inter-
nal attributes, the possible emitted events, its internal behaviours and the
elementary actions that affect it. Using object oriented design terminology,
exchanged and internal attributes correspond to public and protected at-
tributes respectively. Similarly, internal behaviors and elementary actions
correspond to protected and public class members respectively.

Finally, an object is able to emit synchronous and asynchronous events.
Each event has a source object, a type and may have an associated data
value. MHEG link objects can associate events with actions and are used
to react to the emission of events. When an event is generated, all the
corresponding (in terms of source, type and data) links are said to “fire” and
the specified action is executed. The exact time where this execution takes
place depends on the implementation of the engine. Generally, synchronous
events should be executed as soon as possible while asynchronous ones may

be queued. We will further examine events in Section 2.5.

2.4.2 The MHEG classes

In this section we will describe the functionality and the representation of
the most important MHEG classes. The core object model hierarchy is
represented in Figure 2.1, where the concrete classes (e.g. Application) are
represented using a normal font, while abstract ones using a lighter one (e.g.
Root). The ElementaryAction is not an MHEG class,® but it is included here
in order to show its relation to the Action class.

The Root class defines the basic MHEG objects functionality. It pro-

vides object identification by its exchanged attributes group identifier and

8 ElementaryAction is not an MHEG class since it is not described as such by the stan-
dard (e.g. description of internal behaviours, events etc). However, it is a concrete entity
(i.e. it is represented in the notations) that can be part of an MHEG class description.

17

| 0.+ |

| Group |<>_| Ingredient |
JAN

Application | | Scene | | Link |

Y

ElementraryAction | " Action |

1.*x

Figure 2.1: MHEG core classes

object number. The former is a string that must conform to the application
domain defined encoding, where the latter is an integer (0 for group objects
and non-0 for others). Root’s elementary actions, internal behaviours and
attributes control the four possible states of an MHEG object, which are
shown in Figure 2.2. Even if there is no defined encoding for the Root class,
it introduces the groupid and objnum attributes, which are inherited by all

of the sub-classes. For instance, for an Application object:

<application groupid="app.xml" objnum="0">
;)épplication>
Most of the MHEG classes can be categorized as containers or ingredi-
ents. The former ones are the subclasses of Group, namely the Application
and the Scene, while the latter ones are the subclasses of the Ingredient
clagss. The “grouping” behaviour is represented by the Group’s exchanged
attribute “items”, which describes the contained ingredients, as shown in

the example group representation below:

18

Unavailable |

destruction preparation

Available

activation

Cont.preparation

Prepared

deactivation activation

deactivation

Running

Figure 2.2: MHEG class states

<scene groupid="scenel.xml" objnum="0">
<onstartup>
<action>
</action>
</onstartup>
<items>
<link>
</link>
</items>
</scene>
In order to present an ingredient there must be an active Application and

an active Scene. The Application provides the generic engine functionality, is

19

responsible for initializing the presentation and groups the ingredients that
are shared among presentation scenes. On the other hand, Scene allows
the spatio-temporal coordination (coordinate system, timers etc) of ingredi-
ents and is responsible for the user interaction (user input events). Usually,
there is an application object which launches the first scene in order to initi-
ate the presentation, as shown in the following extract of an example in [15].
<application groupid="appl.xml">
<items>
<link objnum="1">
<linkcondition>
<eventsource objnum="0"/>
<eventtype type="isrunning"/>
</linkcondition>
<linkeffect>
<action>
<transitionto>
<objref objnum="0" groupid="scenel.xml"/>
</transitionto>
</action>
</linkeffect>
</link>

</items>
</application>

Most of the MHEG classes inherit the abstract class Ingredient which
provides the common functionality for objects that can be included in Group
objects (e.g. if they will be shared among scenes, their content etc). Some of
the most important ingredients are shown in Figure 2.3. Variables are used
for exchanging values of different data types and are essential for the data
associated with the elementary actions (e.g. parameters) and the events.
Classes that inherit Presentable are the ones that can be “presented” (e.g.
an audio clip). Similarly, classes that inherit from Visible have a visual
representation (e.g. a bitmap) and the ones that inherit from “Interactible”
can interact with the user (e.g. a push button).

The Link class can be considered the most important ingredient because

in collaboration with the Action class lays the foundation for the behaviour

20

Link |—D| Ingredient |
| |
Font | | Presentable | Variable
JAN
| |
Visible | | Audio |-/\>+ Stream
JAN
— Video H
—| Bitmap |
—| LineArt | | Interactible
JAN
—| Button | | EntryField
- KF———

Figure 2.3: MHEG ingredient hierarchy

21

of an MHEG presentation. It contains a link condition (event source, type
and associated data) and a link effect. When an event is emitted, the speci-
fied effects of all the active links with a matching link condition are executed.
The link effect is described by an Action object. The representation of a
simple link with a corresponding action is shown in the previous XML ex-

ample.

2.5 MHEG-5 event model

We have already mentioned that objects may emit events, which in turn may
cause links to “fire” and result in the execution of a sequence of elementary
actions. In this section we will investigate the restrictions set by the standard
and how the actual execution could proceed.

Firstly, we assume a sequential execution queue (e.g. Figure 2.4) which
holds the elementary actions to be executed. When there are no actions, the
engine is said to be idle. When an event is emitted, the MHEG engine must
check all active (i.e. with their RunningStatus = true) links condition in case
it is satisfied. In that case, associated elementary actions can be “pushed”
to the execution queue. The standard does not restrict the order in which
simultaneously fired links should be handled, and all possible permutations
are considered acceptable.

There are two types of events, synchronous and asynchronous. The first
ones occur “synchronously” to the execution and must be handled as soon as
possible. Asynchronous events occur “asynchronously” to the execution by
timers that expire, successful content retrieval et cetera. They should also
be handled in a timely manner but they are not allowed to preempt other
asynchronous events (and they should be queued). However, synchronous
events can preempt the execution of an asynchronous one, and must be
handled immediately. Generally, synchronous events should be handled in

a similar manner to procedure calls, before the execution continues to the

22

next elementary action.
Considering the above, depending on the “code” that is executed and the

event that is generated, there are 6 possible behaviours which are depicted

in Table 2.2.
Event Type
Synchronous Asynchronous
Normal Execution Execute immediately | Execute immediately
Sync. event execution | Execute immediately | Execute immediately
Async. event execution | Execute immediately Queue

Table 2.2: Event and execution types

However, the exact behaviour of a simultaneous “firing” of a synchronous
and an asynchronous event, as well as the exact time that the queued events
are processed is still not clear. We could give priority to asynchronous
events since their timely handling enhances accuracy (in case of timers) and
improves user’s interactive experience (in the case of user input events).
Therefore, if a synchronous event link fires and an asynchronous event link
either fires or is pending (in the queue), we will execute the asynchronous
one first. Figure 2.4 is a simple execution example that illustrates how all
the restrictions we have set can be put into practice.

Finally, we have to point out that there are some elementary actions
that may alter normal execution flow. These are the actions which “change
the context of the current action processing” [14], which are TransitionTo,
Launch, Spawn and Quit. When one these happens, the elementary actions
waiting in the execution queue and the pending event links that do not
correspond to the new context have to be removed. For instance, if an event
for an expired timer is pending and there is a transition to a scene where

this timer is not visible, the event must not be handled.

23

Fired Links

Execution Queue

Async Queue

N 7
U
=12 -
17\ |

v\

N

AN //

=13
/7N

4
s N

RN
[Lifu1d .. (LNt [LejEsp. . ..

L12].. [LANL21. . [L2NE12. ...

N
[LINL21. . [L2NE12. ...

(L3137 .. [LaNL21.. [L2NE1D. . ..

A

2.6 MHEG-5 conformance issues

MHEG-5 defines two types of conformance: Exchanged object conformance
and MHEG engine conformance. The former is achieved when the represen-
tation of the exchanged objects is consistent with the encoding specified by
the application domain. The latter is achieved when this representation is

handled correctly by the MHEG engine with respect to the standards and

the application domain definition.

An application domain definition should specify all the application area

dependent parts that are either left unspecified or are overly abstract in the

standard. Specifically it should define the:

24

-y3i- Async. event Lz% Sync. event L1 Execution pointer

Figure 2.4: MHEG execution example

e object exchange format
e set of supported MHEG classes
e set of optional features that will be implemented

e precise encoding formats and application specific extensions

All of these are explained in detail in section 4 of [14], however, we will give
a brief description below..

The object exchange format specifies which of the three available encod-
ing formats will be used for object exchange and is the basis for exchanged
object conformance. In our study, it will be the XML notation described in
[15].

The set of supported MHEG classes specifies the set of classes that have
to be implemented by conforming engines. All the engines must support
at least the core classes: Root, Group, Application, Scene, Ingredient, Link
and Action. For each implemented class, all its attributes, events, internal
behaviors and elementary actions which affect it should be supported.

The set of optional features specifies which of the optional features of
the classes should be implemented by a conforming engine.

Finally, encoding formats and extensions deal with the specification
of content encoding (e.g. the format of images), transfer protocols (e.g.
HTTP), mapping of “raw” events to user input events and encoding of the

group identifiers.

2.7 Conclusion

In this chapter we presented some aspects of the MHEG-5 standard with
examples of the XML notation specified in MHEG-8. We have described
the most important aspects of the object model, event support and how
conformance is defined. In the next chapter we will investigate the other

integration area, web browsers.

25

Chapter 3

Web browsers — DOM

After describing the ITV and MHEG standards, we will study the other part
of the integration, web browsers. Firstly, we will describe the area of web
browsers and how they relate to the XML and DOM standards. Then, we
will provide a brief overview of XML and DOM, emphasizing on the DOM-2

event model[28] which might prove useful for the integration.

3.1 Web browsers

A web browser can be defined as “an application that provides a way to look
at and interact with all the information on the World Wide Web”.! What

” is not clear, but it should include

is meant by “...all the information ...
the most commonly used web formats (e.g. HTML, XML, image formats
etc).

Web browsers and web content are evolving rapidly since their first
appearance in 1990. Initially, World Wide Web (WWW) contained only
HyperText Markup Language (HTML) files and web browsers supported
only the simplistic first HTML version. However, web community demands
evolved and consequently a number of new formats have been used and new

international standards have been developed. HTML version 4.0 is over-

whelmed with new features because of the desired extended functionality.

'a searchWebManagement definition: searchWebManagement . com.

26

Moreover, the need for more attractive dynamic web pages, led browser
providers to export (incompatible versions) of the browser internal docu-
ment structure and event model.

In order to satisfy the demand for a more generic content language and
a standard way to manipulate document structure, W3C produced (among
others) the XML (eXtensible Markup Language) and DOM (Document Ob-
ject Model) standards. XML and DOM will be our focus for the rest of this

chapter.

3.2 XML overview

XMLI[30] is a standard markup meta-language, part of W3C’s effort to over-
come the problems of HTML and to provide a standard way to store and
exchange information.

Specifically, XML is a subset of the Standard Generalized Markup Lan-
guage (SGML) and supports a wide variety of applications by providing the
means for defining new markup languages. The XML principal goals are
to be a generic, easy to create and process markup language. It is generic
since a new markup language can be defined for each application domain.
It is easy to write since it is a text notation and can be created using a sim-
ple text editor. Finally, XML is easy (relative to SGML) to process since
its syntax is concise and contains only the most important non-redundant
structures of SGML.

An XML document should be well-formed and may be wvalid. “Well-
formed” means that it follows the core syntax rules of the language (e.g.
contains an XML declaration, has proper element nesting et cetera). Va-
lidity is concerned with structural and semantic correctness and relates to
the optional Document Type Declaration(DTD). Valid XML must be well
formed and must conform to the DTD. The latter defines the set of allowed

elements, how they can combined and in general the form of the XML doc-

27

ument. A simple example of a well formed XML document is shown below:
<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE test>
<test attr="value">
<child>Some text</child>
<!-- A comment -->
</test>

XML describes the structure and not the semantics of the data. Conse-
quently, additional information on how to represent and process the data is
needed, and a number of complementary standards have been defined (e.g.
XSL, XLink etc). However, they cannot offer full representation and han-
dling information and usually a dedicated handler is needed for each XML

document type.

3.3 DOM overview

The Document Object Model(DOM) is a W3C recommendation defined as
“a platform- and language- neutral interface that will allow programs and
scripts to dynamically access and update the content, structure and style of
documents” .2

The first DOM recommendation was DOM-1 which defined a platform-
and language- neutral interface for manipulating XML and HTML docu-
ments structure. It was mainly used in the browser — scripting and browser
— parser boundaries. The former provided a standard way of supporting
dynamic web pages while the latter a standard parser interface. The cur-
rent W3C recommendation is DOM-2 which consists of the 5 parts shown
in Table 3.1. We are mostly interested in DOM-2 core and DOM-2 events
because they are widely supported and their combination is essential for en-

abling dynamic document behaviour (an interactive multimedia application

can be considered as a highly dynamic document).

2As defined by W3C at http://www.w3.org/DOM

28

Name Description

DOM-2 Core Dynamic document manipulation
DOM-2 Events Generic event system

DOM-2 Views Dynamic representation manipulation
DOM-2 Style Dynamic style sheets manipulation
DOM-2 Traversal and Range | Traversal and content identification

Table 3.1: DOM-2 recommendations

3.3.1 DOM-2 core description

The DOM-2 core[27] defines an interface for dynamically accessing and up-
dating the content and structure of documents. It represents the document
structure using a tree-like composition of Nodes. Even if there is no restric-
tion on the format of the represented document, the interface is defined in
a way that fits nicely with the HTML and XML languages.

In order to achieve platform and language independence, all DOM inter-
faces are defined using the Interface Definition Language (IDL). This allows
a standard interface for different DOM implementations (using the map-
pings between IDL and implementation languages). An important property
of DOM-2 core is that the defined interfaces provide a rich set of functions
for DOM tree creation and manipulation. Consequently, a typical DOM
application does not need to use proprietary interfaces and will work on any
standards conforming DOM implementation.?

All the nodes of a DOM tree implement an interface that inherits Node
and corresponds to the document element type. An illustration of a partial
Node hierarchy is shown in Figure 3.1. Node contains the generic document-
and tree- node functionality by providing access methods to the type, name,
value, children and parent of the node et cetera. Document is always the root
of the tree and contains convenience and factory methods (for creating other

document tree nodes). Similarly, the other interfaces contain convenience

3In DOM-1, there was no standard way to create the document tree, and applications
had to use proprietary extensions.

29

and special methods that apply to the respective document element. An
example of the document tree and the implemented interfaces for the XML

code of Section 3.2 is shown in Figure 3.2.

—| Element |

Document |

Attr |

Node |<]—

CharacterData |

Comment |

T
T
-]
o
T
T

DocumentFragment |

Figure 3.1: DOM core interfaces

3.3.2 DOM-2 event model description

The DOM-2 events recommendation[28] describes a standard event handling
mechanism by defining the event flow in the document tree, the interfaces
for event manipulation and the standard events for user interactions and
document modification. It began as an effort to provide a standard subset of
the proprietary event models that were used in web browsers for supporting

dynamic document behaviour. The recommendation describes the event

30

< Document >
Element
Test

Attr Text Element Text Comment Text
Attr="value" {whitespace} child {whitespace} A comment {whitespace}

Text
"Some text"

Figure 3.2: DOM tree example

flow procedure and defines a number of interfaces for event manipulation.

Each DOM-2 event has an event target, which is a node of the document
tree. In a DOM implementation that supports events, all DOM tree nodes
implement the FventTarget interface and can be used as event targets. In
order to “handle” an event, an FEwventListener for that event must be reg-
istered for the appropriate event target. The most trivial case is a listener
registered to the actual target of an event. Each Node can have more than
one listeners for the same event simultaneously. In that case they are all
invoked, but the exact execution sequence is not specified. Additionally, a
listener can be registered to an “ancestor” of the event’s target and handle
the event during the capture or the bubbling stage.

A DOM-event can be handled in three different stages of its propagation
through the DOM-tree. As we have already mentioned it can be handled
when it has reached the event target by event listeners registered to that
node. Moreover, event capturing allows handling of events that propagate
from the document root to the event target. Similarly, event bubbling can
be used to handle an event when it propagates upwards from the event

target to the document root. Event capture is considered an event listener

31

property and is defined when the listener is registered to the FuventTarget
(and, consequently, all the events flow from the document root to the event
target in order to activate any capturing listeners). On the contrary, event
bubbling is considered as an event property and is defined as part of the
Event interface (and therefore, an event “bubbles” only if it is declared as
“bubbling”).

An event flow example is illustrated in Figure 3.3. The event is targeted
to the text node and its propagation through the DOM tree is denoted by
the dashed arrows. The diagram shows where and when capturing listeners,
event target listeners and non-capturing ancestor listeners (for a bubbling
event) are activated. This form of hierarchical event flow is especially useful
when document structure corresponds to the spatial representation struc-
ture. In that case, event capture and bubbling simulates the actual graphical
environments event flow. For instance, a “click” on a push-button is also a

“click” in the region of the parent window.

?C Document ><>

?(Element >é - - - 3 Event flow
Test <> Event capturing

O Event target

Element ‘ Event bubbling
? child
Text
"Some text"

Figure 3.3: Event flow example

b TIITT

The DOM event model is extensible since there are no restrictions for the

32

generated event types. However, a special set of events have been defined
to support general graphical applications and HTML. The HTML specific
events are widely used in combination with JavaScript for enhancing HTML

web pages.

3.4 Conclusion

In this chapter we have briefly described the web-browser area, and gave
an overview of XML and DOM-2. These have laid the foundation for our

browser assessment and browser architecture discussion of the next chapter.

33

Chapter 4

Browsers assessment —
X-Smiles

After studying the basic web and ITV technologies, it is important to select
an appropriate browser platform for our experiments. Firstly, we will specify
the browser requirements and study a number of alternatives. Afterwards,
we will explore the architecture of the most promising one and comment on

how it can be extended.

4.1 Browsers assessment

In this section we will describe the assessment process and the selection of
a suitable browser to integrate MHEG with. This is of major importance
because there is no commonly accepted browser architecture and, since we
are interested in browser modification, we cannot rely solely on interna-
tional standards. Consequently, the results of this section will significantly

influence the rest of our study.

4.1.1 Browser requirements

Browser requirements can be divided in two categories: mandatory and
optional ones. Mandatory requirements are those that are fundamental for
integrating the MHEG functionality. Optional requirements are those that

either are of secondary importance or are used as simple indicators of useful

34

Browser Requirements

Available source code
Object oriented implementation language
Process, graphics and networking libraries

Mandatory Extensible user interface and rendering machine
Support for basic media types
XML and DOM support
. Well documented modular object oriented design
Optional

Support of XML related standards

Table 4.1: Summary of browser requirements

features.!

The requirements we have set are shown in Table 4.1. The very first
requirement is the availability of the code. Since we will modify the browser’s
code, we need to have access to it. The second requirement has been set
because the integration of the MHEG object-based architecture will be easier
if the browser is developed in an object oriented (OO) language.

In order to avoid a platform dependent extension, we also require browser
provided generic libraries for process management, graphics and networking.
This requirement applies only when these are not supplied by the implemen-
tation language (e.g. Java).

The fourth mandatory requirement is a prerequisite for allowing an in-
teractive multimedia presentation. The user interface should be highly cus-
tomizable in order to achieve “interactiveness”, and the rendering machine
should be able to incorporate multimedia extensions. Additionally (5th re-
quirement) basic media types (e.g. several image formats, audio etc) should
be supported in order to straightforwardly present multimedia content.

The final mandatory requirement is XML and DOM awareness. XML

awareness is essential since we are interested in MHEG-8 representation

!Since the project time table doesn’t allow full investigation of all the alternatives’
architecture, we use the optional features in order to get a “fast” insight into the browser
properties that cannot be thoroughly investigated

35

which is defined as an XML meta-language. The DOM provides a standard
foundation for dynamic internal document structures and will be of great
help for MHEG support.

As we have already mentioned, web browsers have become fairly complex
and difficult to handle applications. Therefore, it would be helpful if the
selected implementation is well designed and well documented. Moreover,
XML related standards support is a good indication for the extensibility
of the browser. It should be easier to integrate a new XML language to a
browser if it already supports a number of other XML applications and is

designed with extensibility in mind.

4.1.2 Browser alternatives

We have taken into consideration six browsers which have their source code
available: Mozilla[20], X-Smiles[32], Amaya[24], HotJava[22], Arena[l] and
Mosaic[21].

In order to avoid a full investigation of the browsers, we created a “qual-
ification” test in which we study a specific platform until we find that it
does not comply to one of the mandatory requirements. Table 4.2 shows
the results of the test, where only X-Smiles qualifies and also fulfills both of
the optional requirements. Consequently, it seems to be the most appropri-
ate platform for our study. The rest of the chapter will be devoted to the
X-Smiles browser and its architecture. A brief description of the aforemen-
tioned browsers that justifies the results of Table 4.2 is included in Appendix
D.

4.2 X-Smiles overview

In this section we will give an overview of the X-Smiles architecture. We
will firstly describe the top-level design and then provide more information

for each functional layer.

36

| | Mozilla | X-Smiles | Amaya | HotJava | Arena | Mosaic |

Open source Vv Vv Vv X Vv A
Non Obsolete Vv Vv Vv X X
OO Implementation Vv vV x
Networking, process vV Vv
and graphics libraries
Extensible UI Vv v
Media X Vv
XML - DOM aware v
Qualification Line
0O design Vv
XML related stan- Vv
dards

A: Almost open source. It currently has no open source license. However, the
source can be obtained and modified under some restrictions.

Table 4.2: Browser qualification information

4.2.1 Architecture overview

X-Smiles is composed out of three layers as shown in Figure 4.1. The “XML
processing” layer is concerned with XML file processing, the “Browser core”
ties everything together and contains core components like the event and
MLFC (Markup Language Functionality Component) manager. The “User
interface and interaction” layer consists of the browser user interface and
the MLFCs.

In order to display a document, X-Smiles has to locate and activate the
primary MLFC. The latter is the MLFC that handles this type of document
(the document type is specified by the XML DOCTYPE declaration). MLFCs
are responsible for the semantics analysis of the document, the presentation
and the user interaction. The primary MLFC may use secondary MLFCs
in order to display additional types of documents.

Before passing document information to the primary MLFC, X-Smiles
parses the document and applies the (optionally) specified XSL transforma-

tion. This process is handled in the two lower layers and is illustrated in

37

User Interface and Interaction

Browser Core

e --1- DOM Interface

XML processing

Figure 4.1: Top level browser architecture (based on [13])

Figure 4.2. The document text is firstly converted to a DOM tree. If there
is an associated extensible stylesheet language(XSL) file, it is retrieved, con-
verted to a DOM tree and combined with the document tree. The result is
passed to the primary MLFC.

The most important components of X-Smiles are the MLFC manager
and the event manager. The former, handles MLFCs while the later is re-
sponsible for dispatching internal events to all the interested parties. Events
are, among others, used to inform browser components about the browser
state. X-Smiles is always in one of 6 distinct states which are illustrated
in Figure 4.3. Solid arrows show the usual transitions, while dashed arrows

represent error conditions.

4.2.2 XML processing layer

The XML processing layer is responsible for the XML document parsing,
DOM tree construction and XSL - Transformations (XSL-T)[26] applica-
tion. X-Smiles can adapt to different external parsers, and currently Xerces?
and Docuverse XML parsers are supported. The XSL-T engine can be cus-

tomized in a similar way. The selection of the actual engines for parsing and

2Xerces parser belongs to the XML Apache project: http://xml.apache.org

38

User interface and interaction

_______ I

Combined DOM tree

XSL text file °

AR \se B

: A*{Oo Oo?,“//} ; Doc. text file

@ff 00,?/. " [

T TN @A o n

: « XSL-T processor, :
kT 4~ Legend
! Vo Parser o)
. : V1| |--= Document informatio
XML processing ---=> XSL information
X-Smiles browser --> Combined informatio

Figure 4.2: X-Smiles document flow example

XSL-T are chosen by the browser core and are determined by the X-Smiles

configuration file.

4.2.3 Browser core layer

The browser core layer ties the browser components together and is respon-
sible for the event mechanism, MLFC management and browser-wide shared
information (e.g. the browser state).

The MLFC handling is based on the MLFC manager, which activates,
deactivates and keeps track of MLFCs, attaches them to the event manager,
throws MLFC specific events and handles the MLFC loader. There are
two types of MLFCs: active and passive. Active are the ones used for the
presented document and receive browser events while passive are the ones
that are not used for that type of document.

The X-Smiles event model is based on a simple broadcasting object,

39

-~
e
e
7

Ve
Initializing

Load home page

CRetm'em'ng DocumenD
Ve
Ve

e

Document retrieved P 7

s

CRetm'em'ng C’omponenD

New document

—

—
-~ Initialization

failed

Faile/d -

—

Ve

/ .
~ Faile
/s

v MLFC available

e

dCRetm'em'ng Content DatD

R C

Shutdown

Ready

Retrieved—Displayed

- e

e

Initialized

_
(Initializing C’omponent>

Request Secondary MLFC

Figure 4.3: X-Smiles state model (based on the state model figure in [13])

40

the “event broker”. When an event is sent, it is broadcasted to all the
components that have registered to the event broker. Events are generated
by event-specific functions which are part of the event broker and the event
listener interface. The event model is overly simplistic and not extensible
(because events are hard-coded) and we will therefore avoid using it for the

MHEG integration process.

4.2.4 User interface and interaction layer

The upper layer of X-Smiles contains the MLFCs and the generic user inter-
face functionality. We will not discuss the latter since we are only interested
in the document contents representation, and not in the browser appearance.

MLFCs are responsible for the semantic analysis of the document DOM
tree and the presentation of the information. The primary MLFC is given
full control over the browser content window, so it is possible to represent
the content and interact with the user independently of the other browser
components.

There is a specific MLFC for each document type and two generic ones
for the source and tree document views. The content specific MLFCs are
independently designed according to the requirements of the corresponding
document type. However, there is a generic shared MLFC functionality
which is described below.

Firstly, there is the initialization phase in which the MLFC has to al-
locate required resources and initialize its internal variables. This happens
immediately after the MLFC loader locates the MLFC. At this point the
source document is not known to the MLFC. Next, we have the analysis
of the document which might be combined with resource allocation and re-
trieval of content data. The MLFC examines the document source tree and
builds the required internal structures for the presentation of the document.

After the completion of this stage, the document is presented to the user

41

and the MLFC handles the possible user interaction. Finally (whenever
the component has to be removed), the MLFC must free all the allocated
resources and revert to its initial state.

MHEG functionality should normally be included in an additional MLFC
which will be associated with the document type “mheg5”. Therefore, MHEG
functionality will be a part of the user interface and interaction layer (sim-
ilarly to all other MLFCs). When X-Smiles encounters an MHEG-8 file, it
would pass the document DOM tree to the MHEG MLFC which in turn will

render the presentation.

4.3 Conclusion

In the first part of this chapter, we described the browser requirements for
our research and selected the most promising browser platform among six
alternatives. The second part consisted of the description of X-Smiles and
its architecture.

Based on the established foundation of the previous chapters and the
results of this one we can now proceed to describe the actual integration

part of the project.

42

Chapter 5

ITV — web browsers
integration

Having established the required information on web browsers and ITV we
will proceed to the integration of these two areas. Specifically, we will inves-
tigate the design and implementation of an MHEG extension for X-Smiles.

Section 5.1 describes the incremental process of the integration. Subse-
quent sections are devoted to the design, implementation and evaluation of

the integration steps.

5.1 The integration process

Even if MHEG-5 is designed with simplicity in mind, a full featured en-
gine implementation would be too time consuming for the available project
time. Consequently, we will divide the integration process into a number of
incremental steps. In the first one, we will lay the foundation for further re-
search by focusing on a simple design and implementation of the core MHEG
aspects. Further steps will build upon it in order to either illustrate an in-
tegration concept or to improve the engine functionality. We have designed
and implemented the first two steps.

The first one is the “minimal conforming MHEG engine”. Our goal will

be to investigate how the core functionality of an MHEG engine can be

43

integrated in a web browser. In order to accomplish this, we will define
a restrictive application domain containing only the absolutely necessary
elements for a working MHEG engine. We will not consider any presentables
or optional MHEG features (e.g. caching, connections etc) and we will
focus on the core aspects such as events, actions, fundamental classes et
cetera. At this stage we will be able to study the integration of basic MHEG
functionality, the MHEG event model and the processing and applicability
of the MHEG-8 notation.

The second step is the “event models integration”. The MHEG event
model is based on the generated events, the links and the MHEG objects
(as event sources). DOM-2 event model is based on implementation emitted
events which are targeted to document nodes. Even if the two models are
different, MHEG events and event handling concepts can be mapped to
the DOM-2 event model. We will study this mapping, how it might be
implemented and what are the benefits of such an implementation. Since
the DOM-2 event model is a standard which is supported by most browsers
(including X-Smiles) we expect to end up with an easier and more effective
way to implement the MHEG event model using existing browser features.

The following sections are devoted to these two steps and their in-depth
analysis. Further integration and functionality extensions will be described

in the next chapter.

5.2 First step: minimal conforming engine

This section describes the first step of the integration, the “minimal conform-
ing engine” which is based on an engine that supports only the mandatory
MHEG features. We will study what has to be implemented, an implemen-

tation example and its evaluation.

44

5.2.1 Design

As we have already mentioned in Section 2.6, conformance is always defined
in relation to an application domain. We have defined a minimal application
domain that contains only the mandatory MHEG features and is described
in Appendix C (page 93). According to this, in order to achieve conformance,

the following functionality must be implemented:
e An internal object model representing the MHEG classes
e The object referencing mechanism
e The execution queue and the event handling

e The parsing of MHEG-8 documents and construction of the respective

MHEG objects.

As far as the internal object model is concerned, we do not have to
implement all the classes’ functionality since some of the class features are
optional[14]. Table 5.1 summarizes what has to be implemented for each of

the minimal engine MHEG classes.

Class name Comments
Root Everything
Group Everything except caching.
Ingredient Content hook and original content are ignored.
Application Defaults and locking are ignored.
Scene Free moving cursor and next scenes are ignored
Link Everything
Action Everything
Variable Everything
Variable sub-classes | Everything

Table 5.1: Minimal application domain classes features

Based on the above description, we can identify the elementary actions

that have to be supported. The resulting set contains twenty four elementary

45

actions which affect the implemented MHEG classes and do not relate to

the specified optional features.
Internal object model

MHEG-5 applications are based on a collection of objects which interoperate
in order to create a multimedia presentation and are described in terms of
attributes, events, behaviours and the elementary actions that affect them
(Section 2.4). An object’s state consists of the values of internal and external
attributes which must be stored. A straightforward approach is to represent
MHEG objects as actual engine objects. The form of these objects and the
way they are combined will be called the “internal object model”. Below,
we will investigate how such a model can be structured.

As far as the inheritance structure and the type of classes are concerned
the mapping is trivial. MHEG classes inheritance will be represented by
implementation classes inheritance and MHEG abstract and concrete classes
will be represented as such in the internal object model. Consequently,
we will have an implementation class hierarchy similar to the MHEG class
hierarchy.

The MHEG attributes represent the object’s state and can be imple-
mented as attributes of the corresponding class. Exchanged attributes are
used for object initialization and may be accessed by other classes. There-
fore they can be implemented either as public attributes or by using member
access functions. Internal MHEG attributes are accessed either internally or
by sub-classes so they might be implemented as “protected” attributes. Sim-
ilarly, internal behaviours manipulate internal attributes and are accessed
the same way, therefore, they can be implemented as “protected” member
functions. The interface of an MHEG class is based on the elementary ac-
tions that affect it. Consequently, we could represent them as public member

functions.

46

The elementary actions interface design depends on the part of the engine
that object dereferencing takes place, which can either be inside or outside
the elementary action functions. In the first case the elementary actions
interface will consist of MHEG references. In the latter case it will con-
tain implementation dependent references. Since, we would like to separate
action functionality from referencing mechanisms and since action’s target
has to be resolved before calling the respective member, we will choose the
second solution.

Based on the arguments presented above we can derive a mapping of the
MHEG object model to object oriented implementation concepts which is
illustrated in Table 5.2. A simple example of this mapping is illustrated in
Figure 5.1 where a partial definition of MHEG classes Group and Application

are mapped to a class diagram.

MHEG term Object oriented term ‘
abstract class abstract class
concrete class concrete class

inheritance relationship | inheritance relationship
exchanged attribute public attribute or protected attribute
+ public utility functions

internal attribute protected attribute
internal behaviour protected member function
elementary action public member function

Table 5.2: MHEG - OO model mapping

Object referencing — handling

MHEG standard defines the notion of Application namespace, which iden-
tifies the set of an application’s accessible objects. Referencing is based on
the object reference which contains a group identifier and an object number.
The group identifier is a string, that helps to locate a group object. The
object number indexes an ingredient within the group (or the group object

itself).

47

Group class Group
Exc':hanged attr_'bmes - objectinformation : String
Objectinformation # groupCachePriority : int

Internal attributes + setObjectinformation(info : String)

groupCachePriority (Integer) } + setCachePriority(newPr : int)
Internal behaviours

Preparation
Actions
SetCachePriority(newPriority)

preparation()

Application class
Base class
Group

Application

Figure 5.1: MHEG - OO mapping example

Object referencing should be implemented by the active application be-
cause the latter defines the application namespace. If the referenced object
is already loaded (e.g. it belongs to the active scene or application) an im-

! can be derived. If the object is not loaded (e.g. a

plementation reference
new scene) the application has to locate it and, if the reference is valid, cre-
ate a new implementation instance. This process will most probably include
the parsing of a new MHEG file.

The MHEG-5 standard[14] states that a reference should be resolved only
when necessary. For instance, for an elementary action, the target object
reference and possible parameter references have to be resolved immediately
before the execution of the elementary action. This ensures correct handling
of indirect references but requires storing of most of the source file informa-
tion (since, reference information cannot be resolved during parsing). This
can be achieved by either processing the source file during execution or by

introducing appropriate structures that represent the required information

(e.g. structures for representing object references, indirect references etc).

! As opposed to an MHEG object reference. For instance, it could be a Java reference
or a C pointer.

48

The MHEG error-ignoring behaviour allows use of both of the solutions.
However we will follow the second one since it allows easier processing of
the actions, better error handling and separation of the parsing and execu-

tion steps.
Execution

MHEG presentation execution is the handling of a sequence of elementary
actions as indicated by fired links and Action class attributes. In order to
describe this process we have to derive a way to store and handle actions
and events.

An Action can be represented as a sequence of elementary actions. Ele-
mentary actions are not specified as MHEG classes (Section 2.4.2) and there
is a lack of guidance within the standard[14] on the most adequate imple-
mentation. Since, we have decided to store elementary actions information
using internal structures, and because we need a simple and consistent way
to call the respective public members of MHEG classes, representing each
elementary action using an internal class is a good solution. For instance,
we can have an abstract root class ElementaryAction and a subclass for each
elementary action. Each subclass will hold information on the parameters
of the action and will be responsible for resolving object references during
execution and for invoking the appropriate method of the target MHEG
object. This approach provides a simple way of handling elementary actions
and separates the concepts of parsing, syntax checking and execution.

Elementary actions are always executed sequentially because of either
a “fired” link or a well specified object condition (e.g. the onStartUp at-
tribute). MHEG-5 does not specify any relation between these two, so the
latter can be executed when the standard—specified condition arise while the
former can be executed as specified by the event model below.

In order to handle MHEG events, an event model like the one described

49

in Section 2.5 is needed. There will be a synchronous and an asynchronous
event queue where corresponding fired events will be inserted. After each
elementary action’s execution, it is checked if there are any fired links that
must be executed, and in that case, the corresponding elementary actions
are inserted in the execution queue.

However, if this design is directly implemented, it is difficult to mark
the asynchronous event boundaries (i.e. when an asynchronous event is ex-
ecuted) and to handle event priority as expected. For instance, lets assume
that a synchronous (S;) and an asynchronous (A;) event fire simultaneously.
If we give priority to asynchronous events, elementary actions of A; will be
pushed to the execution queue. However, after the execution of the first
elementary action, S; will still be pending and therefore executed immedi-
ately. Consequently, we will have an interleaving of link execution where
the synchronous event finishes before the asynchronous one.

A simple solution is to introduce the concept of a stack, where each han-
dled event introduces a new level of execution. Each execution level can con-
tain information on the elementary actions and the pending asynchronous
events as well as information on the state of execution (e.g. asynchronous or
not). This approach can be implemented by using a stack of pairs of queues
(for per level execution and synchronous event queue) and an asynchronous
event queue. Each time an event is handled, a new level will be created.
A simple example of this concept is illustrated in Figure 5.2. We have to
point out that even if the simple model of the previous paragraph could be
used for a conforming engine, the one specified here seems to be closer to
the intentions of the standard.

Finally, as far as “firing” of links is concerned we just have to check all
active links when an event is emitted. If a link “fires”, the corresponding

event is placed in either the asynchronous or the top synchronous queue.

50

Stack sync
Fired Links | Mode| Exec. Queues [Sync. QueuesQueue

| s ff T

[N f\ :
L A (L1l poees|LAN|
N : :
S : [E12 e |EIN]
N 5
%% A iz feeun]
S e} |EIN]
NN 5
A LAl preee|LAN |
Al beun
S e} |EIN]

A
A N .
A oL feeefuan]
S |e2}|EIN]

A
A sy fasn]
A (e feefuang e
S ¢ [Ew2}eEIN|

oA z
TN :

S E12 ----|E1N|
N '

A (et}

S E12 |+ |EIN

A
S |L21 |reefL2N
S ¢ |E12 |+ +|EIN

-y3i- Async. eventL2 S Sync. execution _ _
SN g Execution point
Sync. event LLA Async. executio

Figure 5.2: Stack event model example

o1

Parsing

MHEG-8 representation parsing is handled by the XML parser and the
engine which has to process the resulting DOM tree. Since, MHEG-8 objects
representation corresponds to the MHEG class hierarchy (e.g. subclasses
simply add more elements to the ones of the respective superclass), object
parsing should have a hierarchical form as well. This can be achieved by
a parsing class hierarchy similar to the MHEG one. However, there is no
need to adopt this approach since a more “compact” solution might be
used, which represents each class by a parsing function. Each function
that corresponds to a subclass will always call the superclass function first.
MHEG objects will only be created by functions that correspond to concrete
MHEG classes.

Error checking does not have to be performed during the initial object
construction (because of the error-ignoring behaviour of MHEG, the engine
is not expected to produce error messages). However, the sooner the checks
are performed, the better debugging information and internal object model

consistency we have.

5.2.2 Implementation

The implementation is a straightforward application of the concepts in the
previous section. Since, there is no user interaction (no presentables or
interactibles are implemented) the only browser specific code will relate to
the MHEG MLFC handling and the parser and DOM-tree access. In this
section, we will describe the implementation of the first MHEG extension
to X-Smiles.

The engine functionality is divided into 5 parts as illustrated in Table
5.3; the rest of the implementation section will describe each of those parts.

The Object model contains a class for each supported MHEG class (as

defined in Section 5.2.1), where internal behaviours, internal and exchanged

52

‘ Component ‘ Description ‘

Object model Class hierarchy for the representation of the inter-
nal object model.
Elementary actions | Implementation of the concrete subclasses for ele-
mentary actions.

Execution handling | Event and execution handling.

Referencing Representation of MHEG object references and in-
direct reference types.
Core Core functionality of the engine (includes parser,

engine manager, error handler etc).

Table 5.3: MHEG engine components

attributes and the elementary actions interface are implemented. Class hi-
erarchy is similar to the MHEG standard hierarchy and and a partial illus-
tration (excluding the variable classes) is shown in Figure 5.3. The imple-
mentation follows the guidelines of Section 5.2.1.

The elementary actions part contains the subclasses of the abstract
MHEGElementaryAction class. They contain all the parameter information
specified in the source file (e.g. target object, parameters etc) and provide
a run() function which is responsible for resolving all the references and
calling the appropriate member function of the target MHEG object. The
source file information is kept using variables of the referencing classes which
represent object references, indirect references, generic objects et cetera. Re-
solving is performed in cooperation with the active application at the time
the action is run.

Execution handling consists of the event handling and the execution of
actions specified as class attributes. The latter functionality is provided
by the run function of the elementary actions. The former is controlled
by the MHEGProcessor class which implements the model described and
illustrated in Section 5.2.1 (and in Figure 5.2, page 51).

The stack and queues handling is internal to the MHEG Processor. The

latter provides public functions for generating events and “running” the

93

| MHEGRoot |

| 0.# |
| MHEGGroww 1 MHEGIngredient |

MHEGApplication | | MHEGScene | | MHE&;Link |

Y

MHEGElementraryAction | " MHEGAction |
1.

Figure 5.3: Engine MHEG class hierarchy

application. When the MHEGProcessor is “run”, it terminates only when
the presentation is over. We have to point out that since asynchronous events
handling requires a multi-threaded architecture, MHEGProcessor must be
carefully designed in order to be thread safe. The overall model is shown in
Figure 5.4.

The object referencing part of the implementation contains structures
for representing every kind of object reference or generic object type (e.g. a
generic integer which can either be a hard coded integer or a reference to an
integer variable). A partial class diagram is shown in Figure 5.5. RefInter-
face provides the functionality of the MHEG-5 “generic object reference”.
The “generic” classes correspond to the respective MHEG-5 entities which
are mainly used for storing elementary actions’ parameter information. The
ObjRef class is used in every MHEG object for identification, and hash-code
functions are provided for efficient indexing of object references.

Finally, the core component contains the link processor, the parser, the

error handler, and the engine manager. Engine manager (class MHEGMan-

54

"’ MHEGProcessor I‘—

0.*
| ExecutionQueue |_.|’ ExecutionStack |‘_| EventQueue
¢ ¢
0.* 0.*
| MHEGElementaryAction Event

Figure 5.4: Engine execution hierarchy

<<Interface>> H‘ GenericBoolean |

Refinterface 0.1
0..1

/N 0.1
|
<<realizey>
, —‘} GenericOctetString |

| ObjRef

Genericlnteger |

IndirectRef

Figure 5.5: Engine reference class hierarchy

95

LinkManager | | ErrorHandler

MHEGManager
Parser | | MHEGProcessor
0.1
0.1
MHEGScene | | MHEGApplication

Figure 5.6: Engine manager class

ager) is responsible for linking and managing all the other engine parts and
for initialization and destruction of the engine. Inter-part communication
occurs through the engine manager and all engine components contain a
reference to the manager. Figure 5.6 illustrates its relationship to the other
components.

The link processor keeps track of the active links and handles fired links.
It provides functions for event emission which notify the MHEG Processor
for any fired links. The parser is used for processing the DOM tree of the
source file and build the internal object model. It works with a hierarchy of
functions as described in Section 5.2.1. Finally, the error handler is mainly
used for debugging purposes (since an MHEG engine simply ignores any

errors occurred) and is responsible for the message output.

5.2.3 Ewvaluation

In this section we will evaluate the first step of the integration by studying

a simple execution example and commenting on the implementation.

o6

Since there are no presentables, the engine’s function can only be mon-
itored using the output debug messages. The implementation offers two
interfaces: one that outputs all debug information to the console and one
that uses an X-Smiles window to produce a more structured presentation of
the execution trace. We will use the first variant which is more appropriate
for our description.

A simple example consists of an application and a scene XML file. We
will construct an MHEG application which, when activated, makes a tran-
sition to the specified scene. At this point, the scene will set the value of an
integer variable to 10000, wait for this long (in milliseconds) and then quit.
This simple example allows illustration of the basic MHEG objects, syn-
chronous and asynchronous events and several forms of elementary action
execution. The XML sources of the two examples are included in Appendix
E.

The processing of these files by our implementation works as expected.
Firstly, the application definition and the internal object model is con-
structed. The latter, precisely represents the specified application in ad-
dition to the default values specified by the MHEG-5 standard. Then, the
application starts and the application object is activated (as well as its in-
gredients). The isRunning event is generated, and the corresponding link
“fires”. The link’s action contains the transition To elementary actions which
is successfully executed by parsing the scene file, and activating the scene.
The first scene’s link fires, the MHEG variable is set to “10000”, and a
timer is set for that amount of time. The timer fires after exactly 10 sec-
onds, which means that the variable was set successfully, and executes a Quit
elementary action which leads to the destruction of all the MHEG objects
and to application termination. The detailed output of the MHEG engine
that illustrates all these steps is included in Appendix E.

Even if our example shows that the engine works as expected, there

o7

are some outstanding issues. Firstly, the application object is not designed
to load referenced objects which are not already loaded. As consequence
the TransitionTo elementary action cannot be executed as specified by the
standard, since, we would have to call a method of an unloaded object. As a
consequence, “transitional” actions, are provided by the active application.
However, the external interface to the engine remains the same, but there
is no strict conformance.

Moreover, the parser design didn’t prove to be the best solution. For each
new parsed entity the same kind of checks and translation must be repeated.
Probably, if we could find an association among the XML representation and
the process of object creation we could provide a generic, better designed
parser functionality.

Similar problems were introduced by the elementary actions design deci-
sion. Even if representing each elementary action as a separate class seems
like a good design paradigm, it proves problematic during the implementa-
tion because of the number of the elementary actions. Probably a simpler
approach (similar to the parser) should have been followed.

Finally, the code for this simple core engine proved to be lengthier than
expected. Therefore, in the next section we will investigate how we can
integrate MHEG and DOM event models in order to provide an easier and

more compact solution for the event handling component of the engine.

5.3 Second step: Event model integration

After implementing the core MHEG engine, we can experiment on how to
use additional existing browser features to support the MHEG functionality.
The second part of the integration is concerned with the DOM and MHEG
event models integration. Specifically, we will try to map MHEG events
functionality to the DOM event model in order to achieve a more compact

implementation.

o8

5.3.1 Event models comparison

Firstly, it is important to compare the two models in order identify which
MHEG event features are directly supported (by the DOM event model)
and which are not. Below, we will describe how similar concepts are defined
and handled for each model.

An MHEG event is generated by an MHEG object (either because of
an internal behaviour or an elementary action) and has a source object, a
type and an optional associated value. The source object is the MHEG
object that emits the event; the type is one of the predefined MHEG event
types, and the associated value might be an integer, a boolean or a string
(depending on the type of the event). A DOM event is generated by the
implementation and has a target, a type and might include additional infor-
mation. The target is a DOM node, the type is a string and the additional
information can be stored in attributes of the event object.

Event flow is different between the two models. Specifically, in MHEG
there is no event flow. When an event is generated by the source object it
simply causes the corresponding active links to fire. Further processing is
specified by the actions of the links. On the other hand, DOM has a well
defined event flow, where an event “flows” from the document root to the
specified event target and might (if it is a bubbling event) flow upwards
to the root again. Therefore, event handlers might be activated by events
targeted to nodes lower in the DOM tree hierarchy.

MHEG events are handled by active link objects while DOM events are
handled by registered event listeners. An MHEG link is associated to an
event in terms of the event source, the event type and the optional event
information. When an event is generated and there is an “associated” active
link, it “fires” and the specified action is executed. The DOM event listeners
are associated to events in terms of the event target and the event type.

When an event’s flow meets a corresponding event listener (listeners are

99

attached to DOM tree nodes), the listener action is executed. A listener has
to be specifically registered to an event target, and in order to unregister it
we have to keep track of the listener object reference and its parameters.

An event may cause several handlers to execute in both models. For
both the MHEG links and DOM listeners of the same node, simultaneous
“firing” leads to the execution of all the handlers in sequence (however, the
order is not specified). A significant difference is that in case of transitional
MHEG elementary actions, further elementary actions and fired links, that
are out of the new context, should not be handled. However, DOM event
listeners are always executed.

MHEG events can either be synchronous or asynchronous, however, both
are handled synchronously (i.e. there is no parallel execution). Generally,
fired links must be handled as fast as possible (before the execution of the
next elementary action). Since asynchronous events are not allowed to pre-
empt other asynchronous events, they must be queued for later synchronous
execution. A DOM event generated by an event handler is handled syn-
chronously (similarly to MHEG). However, the DOM does not make a dis-
tinction between synchronous and asynchronous events, and there is no event
pre-emption. If an event is generated while another one is executing, they
will be handled in parallel.

Table 5.4 summarizes the comparison of the different event model prop-
erties. Based on this information, in the next section we will investigate how
to map the MHEG to the DOM event model. We will also propose a design

for an implementation that implements this mapping.

5.3.2 Design

Firstly, we will study how MHEG event model concepts map to DOM event
model functionality. This will allow an implementation refinement featuring

a more compact MHEG event model implementation that takes advantage

60

Property | MHEG | DOM

Event generation MHEG objects DOM implementation
Event parameters
Source: MHEG Target: DOM tree node
object Type: String
Type:tyl\g[leG event Additional information:
Event class mem-
Optional value: bers
Integer, boolean
or string
Event flow N/A Event capturing and bub-
bling
Event handling Link objects Event listeners
Handler activa- Activation/deactivation | Register /unregister lis-
tion/deactivation of MHEG link tener
Multiple handlers Synchronous execution | Synchronous execution in
in unspecified order unspecified order
Event recursion Synchronous execution | Synchronous execution
Parallel handling All events are handled | Parallel execution for dif-
in sequence ferent execution threads
Transitional behaviour | Specific transitional ac- N/A
tions cause removal of
some fired links

Table 5.4: Event models comparison

of the DOM events functionality.

An MHEG event is generated by an MHEG object, because of either
an internal behaviour or an elementary action (which is implemented as
a member of the MHEG classes). A DOM event can be generated by
the dispatchEvent () method of an EventTarget. Since, both internal be-
haviours and elementary actions are implemented using Java code, a DOM
event generation is a matter of calling the dispatchEvent () method.

An MHEG event is associated to an event source, a type, and an optional
variable. The event source can be mapped to the DOM node that corre-
sponds to the source MHEG object. For instance, an event emitted by an

application object, could be dispatched to the DOM node that corresponds

61

to the “<application>” tag. We have to point out that even if MHEG has
an event source while DOM has event target we could use them interchange-
ably. The DOM event handlers correspond to events targeted to a specific
EventTarget while the MHEG links handle events from a specified source.
It is simply a different use of the terminology.

The event type and information mapping is trivial. A DOM event is
identified according to its name which can be any string,? and an MHEG
event type can be mapped to a corresponding string (e.g. map the “Is-
Running” event to an “MHEG:IsRunning” DOM event string). An MHEG
event can have an associated boolean, integer or string value. This can
be included as an attribute of the DOM event class (we have to subclass
org.w3c.dom.Event in order to provide an event implementation). Sum-
marizing, event types are mapped to DOM event type strings, and associated
event data can be included in the event class.

The “Event flow” difference will not introduce any problems, since the
DOM event model functionality is more generic than that of MHEG. Specif-
ically, if we disable event capturing and event bubbling, events will only trig-
ger handlers registered for the specified event targets. “Disabling” implies
that there will be no “capturing” listeners and the events will not bubble.

The DOM Event handling is performed by event listeners which are reg-
istered to event targets. Therefore, it would be useful to map MHEG links
functionality to DOM event listeners. A DOM event listener is registered
to a DOM tree node, and thereafter is activated each time a correspond-
ing event flows to that node. As we have already mentioned, the event
listener should be registered to the node that is associated to the event’s
source MHEG object, and the event type will be a string that corresponds
to the event name. The principal purpose of the event handler would be

to execute the associated elementary actions in sequence. This could be

2Except reserved strings which start with “DOM”.

62

achieved by holding a reference to the associated MHEG link object, where
the elementary actions are stored.

An MHEG link, can fire only if it is active, and can be activated or deac-
tivated by either elementary actions or internal behaviours. This behaviour
can be implemented using DOM handlers by either registering/unregistering
them or by checking the link status in the handler code. The latter approach
offers a simpler implementation (a simple check for each execution) and there
is no need to keep track of the object handler references (they are needed in
order to remove an event listener). However, the former solution offers bet-
ter resource usage, since, “inactive” handlers will not be attached to event
targets and will not have to be checked for each event. Therefore, we will
follow the first approach.

“Multiple handlers” and “Event recursion” properties of the two models
are handled identically. If there are more than one listeners activated by
the same event they will be handled in sequence, and events generated by
event handlers will be processed synchronously. However, if a DOM event
is generated while another one is being handled in its own execution thread,
they will be handled in parallel. Nevertheless, assuming that the basic
engine functionality runs on a single thread, and that only asynchronous
events occur in parallel, we simply have to control the asynchronous event
handling.

When an asynchronous event handler is activated, it must not preempt
handling of another asynchronous event and must be queued. A simple way
to implement this is by launching a different thread that waits for other
asynchronous events to finish. Consequently, the asynchronous event queue
will be implemented as a queue of waiting threads of execution.

Finally, when an MHEG transitional elementary action is successfully
executed, pending fired links that are out of the new context should be

removed. Moreover, any queued elementary actions must not be handled as

63

well. This behaviour can be a part of the event handler functionality, where
there could be checks if the handled link is in “scope” and where elementary
actions after transitional ones will be ignored.

Summarizing, we have described a mapping of the MHEG to DOM event
model concepts which is illustrated in Table 5.5. An implementation of this
mapping would allow MHEG events (and in general, the execution model)

handling using DOM event functionality and is described in the next section.

| MHEG — DOM |
Event generation — DOM event dispatching
Event source — DOM event target node that corresponds to the
source MHEG object
Event type > A string describing the event
Event data — Event class attributes
Link objects — DOM event handler registered at the respective

node. Attribute values will be checked during han-
dler execution.
Activation/Deactivation — register/unregister event handlers
Multiple links — Multiple handlers
Event recursion — Event recursion
Parallel handling — Queue of threads for asynchronous event
Transitional actions +—— Checks of scope in event handler functionality

Table 5.5: Event models mapping

5.3.3 Implementation

In order to implement the mapping described previously, we have to provide
a DOM event class which will represent MHEG events and a DOM event
listener which will handle them. Moreover, we have to connect the new
event model to the engine.

Firstly, since it is useful to be able to use both the old and this event
model we will convert the old LinkProcessor class to an interface. There will
be two implementations, LinkProcessorSimple and LinkProcessorDOM for

the old and the new event model respectively. The interface will provide the

64

shared functionality for event emission, and Link registration and removal.

The new link processor hierarchy is illustrated in Figure 5.7.

<<Interface>>
LinkProcessor

<<realize>>

—— = = = - _— e = = = =y

<<realize>>

1 1
LinkProcessorSimple | |LinkProcessorDOM

Figure 5.7: New link processor hierarchy

The LinkProcessorSimple encapsulates the old event model functionality,
while the LinkProcessorDOM is based on the DOM event model. Specif-
ically, the addLink() member function “activates” a link by adding the
appropriate DOM event listener to the event target that corresponds to the
event’s source object. The listener is created by the MHEGLink object, as
we will describe below. However, in order to find the “appropriate” target
for the listener, there has to be an association between internal MHEG ob-
jects and the DOM tree elements. Therefore, we have to add an attribute to
MHEGRoot that refers to the corresponding DOM node. In order to imple-
ment the removeLink () behaviour we have to keep a reference to the event
handler for each link. Since, MHEGLink creates the event handler, it will
also be responsible for keeping that reference. Finally, there are four varia-
tions of throwEvent () that corresponds to the four types of associated data.
The throwEvent () function creates an event object and dispatches it to the
event source’s DOM tree node. Moreover, LinkProcessorDOM manages ex-
ecution state information (synchronous or asynchronous) and contains the
synchronization variable which is used for suspending and waking up asyn-

chronous event handling threads.

65

We also have to provide a DOM event class that encapsulates the MHEG
events functionality. It has to inherit org.w3c.dom.events.Event in order
to be a DOM event and should contain information about the type and the
associated data of the event. The latter is stored in a general Object and
the type is stored using an integer value (similarly to the previous model).
However, there is a static function which converts and integer type to a DOM
event name in order to achieve consistent type translation. The MHEG
DOM event class inherits a parser specific event implementation class that
provides the basic event functionality. An illustration of the hierarchy for

the defined event class, MHEGFEventDOM, is shown in Figure 5.8.

<<Interface>>
org.w3c.dom.events.Event

AN

O
<<reaI|zef>
L

org.apache.xereces.dom.events.Eventimpl

MHEGEventDOM

Figure 5.8: DOM event hierarchy

The MHEGFEventListenerDOM class associates to event handling infor-
mation by holding a reference to the respective link object. Its core func-
tionality is the event handling and it depends on the type of the associated
event. If the latter is synchronous, the listener simply executes the ele-
mentary actions in sequence. If it is asynchronous, it first checks if another
asynchronous event is handled. In that case, a new thread is launched which
waits until notified, otherwise the asynchronous event actions are immedi-

ately executed. When, the execution of an asynchronous event ends, one

66

of the waiting threads (if any) is notified. This allows timely execution of
asynchronous events, and gives them higher priority than the asynchronous
ones (since all waiting threads will be executed before the execution returns
to the pending elementary actions). An illustration of the event listener

hierarchy is shown in Figure 5.9.

<<Interface>>
org.w3c.dom.events.Event

AN

1
<<reaI|zef>
1
org.apache.xereces.dom.events.Eventimpl

MHEGEventDOM

Figure 5.9: Event listener hierarchy

Finally, as we have already mentioned, we have to modify the MHEG Link
class in order to keep a reference to and construct the associated MHFE G EventLis-
tenerDOM object. All objects that might emit events need to be associated
to the corresponding DOM-tree nodes. Since only subclasses of MHEGRoot
may dispatch events, we simply have to add a reference to MHEGRoot that
points to the corresponding Node of the DOM tree. The new event model

design is summarized in Figure 5.10.

5.3.4 Evaluation

In order to test the functionality of the engine with the new event model,
we will use the application example of Section 5.2.3 and compare the result
to that of the previous engine implementation.

The new implementation behaves exactly as the previous one. The appli-

cation transition is successful and the asynchronous timer event is handled

67

MHEGManager

<<Interface>>
LinkProcessor

<<realize>> /'\

r——=-=-=-- L--=--- A

| <<realize>> |

1 1
|LinkProcessorSimpIe | |LinkProcessorDOM |

Ggnerates
- | MHEGEventDOM |
|MHEGEventL|stenerDOM_ |
6 is dipatched to
| MHEGLink | | <<Interface>> <<Interface>>

€7 EventTarget Node

| MHEGIngrdient | /\ /AN

<<realizer> <<realizer>

1 1
%7 0.1 | DOMNode |

| MHEGRoot K>

Figure 5.10: New event model design

properly. All the event handling debug output has been replaced by dis-
patching of events and activation and deactivation of listeners messages. In
general the functional part of the new implementation seems correct. The
detailed output of engine is included in Appendix E.

Our initial goal was to handle MHEG events using the DOM event model.
However, we achieved more than that, since the whole execution model has
been replaced by the new implementation. The latter, in addition to the old
LinkProcessor, does not use the MHEGProcessor, the execution queues and

stacks, the Fvent class and the event queues. Moreover there is an overall

68

implementation code reduction since the old event handling and execution
mechanism was about 700 lines long while the new one is only 350 lines. Even
if this is not an objective measure of the overall complexity reduction, we
could safely say that the DOM implementation is simpler than the previous
one because of the MHEG — DOM event models similarities.

However there are still some problems to be resolved. The handler code
might introduce parallel handling of events (which should normally be ex-
ecuted sequentially). This might happen when an asynchronous event link
fires while another one is being handled. Nevertheless, this could be solved
by additional checking and synchronization code in the handler.

Moreover, transitional elementary actions special behaviour is not cor-
rectly handled since out of scope fired links (which are not still processed) are
not removed, and the execution continues normally. The behaviour could be
corrected by including additional checks into the event handler implementa-
tion. Both this and the previous problem can be easily addressed, however,

we will not consider them due to lack of available time.

5.4 Conclusion

In this chapter we studied how MHEG functionality can be integrated to a
browser in general and to X-Smiles in particular. The integration process
was divided in two steps. The first one was the implementation of a core
MHEG engine that allowed an in depth study of the MHEG engine imple-
mentation, design and its integration with a browser. The second part was
mostly focused on the use of a standard browser feature (the DOM event
model) in order to provide an easier and more compact engine implemen-
tation. Since, we achieved an easier implementation of the MHEG event
model using DOM event functionality we could say that we have met our
goal.

Of course, there are many more steps the might be taken in order to

69

achieve further integration. However, we were not able to investigate more
approaches because the available time for the project was limited.
In the next chapter we will provide a more “high level” evaluation of our

work and proposals for further research.

70

Chapter 6

Evaluation — further research

After describing our work on the integration of web browsers and interactive
TV, we will evaluate our achievements, comment on the standards and tools
used and provide thoughts for further research on the subject. Moreover, we
will compare our work to the initial project plan and justify any identified

deviation.

6.1 Integration evaluation

Our principal intention was to study the ITV and web browser domains and
investigate the convergence of the two technologies. For the ITV domain we
focused on the MHEG-5 standard, while for the browsers domain we focused
on the X-Smiles browser and the DOM standard.

We have managed to implement a functional MHEG extension for X-
Smiles which uses the MHEG-8 notation. Moreover, we studied how the
MHEG event model can be implemented using DOM events functionality.
These two steps allowed an in depth study of the MHEG and DOM standards
and the X-Smiles architecture.

However, we cannot claim that our study is complete, since there still
are some outstanding issues which could have been studied if there was more

available time. These will be described below.

71

6.1.1 Minimal conforming engine

The first part of the integration (Section 5.2) consists of the design and
implementation of a minimal conforming MHEG extension to X-Smiles. The
implementation is functional, however, it can be argued “how much of an
integration” it is. X-Smiles features are used only for connecting the MHEG
engine to the browser and the DOM is only used for parsing the XML
definitions. Nevertheless, it is a necessary step that provides the foundation
for further investigation.

As far as the implementation is concerned, the first part provides all the
core aspects of an MHEG engine. However, there are neither presentable
nor interactible objects and consequently there is no explicit multimedia
presentation or user interaction. The original intention was to implement
these in the second part of the implementation if there was available time.
However, because of the project time constraints, we chose to proceed to the
events model integration which is of more interest as far as the integration
is concerned.

Moreover, the implementation has some conformance problems relating
to the transitional elementary actions. Firstly, TranstionTo is implemented
as part of the application class because there is no automatic loading of
referenced objects. Secondly, after the completion of a transitional action,
further queued actions and fired links that are out of context are not re-
moved. Again, the reason for these was the lack of time to implement the
additional support.

Our basic decisions for the first part were the browser requirements, the
minimal application domain definition, the internal object and referencing
model, the queue-stack event model implementation, the separate handling
of attribute actions and events, and the overall parser design.

The requirements for browser selection still seem reasonable and the se-

lection of X-Smiles was adequate, since the integration of MHEG functional-

72

ity was relatively easy. However, we probably should stress more the impor-
tance of Internet standards support, since, using international standards for
the integration is more important than using browser specific functionality.

The minimal application domain definition proved optimal for the project
timetable. Even for this very restrictive core, the implementation was quite
time consuming and if we had included presentables and interactibles we
would have run out of time.

Concerning the internal object model, the mapping of MHEG classes to
implementation classes was satisfactory. It resulted to a consistent (with the
standard), easy to handle and understand model. The elementary actions
class hierarchy provided a clear internal model, however, the required repe-
tition of similar code was quite time consuming. Nevertheless, the adopted
referencing model was quite useful and allowed a higher level implementa-
tion of the elementary actions and the whole engine in general. Finally,
dereferencing handling outside the elementary actions implementations of
the MHEG classes successfully separated the concepts of dereferencing and
action handling, and consequently contributed to a better overall design.

As we have already mentioned the event model of the first implementa-
tion step (using stacks of queues) reflects the intentions of the standard and
it functions as expected. However, since a simpler implementation (similar
to the description in Section 2.5) would also result to a conforming engine,
we could have avoided such a complex approach. The decision to handle
the attribute actions independently resulted to a simpler execution model
implementation but might introduce parallelism in some occasions, which is
probably not the intention of the standard; it might be more appropriate to
let the execution queue handle this as well.

Finally, parser design successfully follows the hierarchical form the MHEG-
8 syntax. However, it might be useful to allow a further investigation of a

simpler implementation (probably relying on the properties of the input

73

syntax, and the validation of the XML parser).

6.1.2 Event models integration

The second part of the integration (Section 5.3) focuses on an implemen-
tation of the MHEG event model using the DOM events functionality. We
have managed to provide a mapping of the event model concepts and to
substitute the first part’s event model with a new one that uses the DOM
events.

The principal achievement of this part is that the final implementa-
tion proved easier and more compact than the old one. Therefore, at least
this part of the engine, can be implemented more efficiently using existing
browser features. Moreover, the integration is based on an international
standard rather on a browser specific model. Consequently, this implemen-
tation can be used for any browser that supports DOM events and is not
X-Smiles specific.

Concerning the implementation, the core functionality works as expected.
Synchronous and asynchronous events are handled similarly to the initial
implementation. However, there are some outstanding issues concerning
event preemption and transitional elementary actions. Specifically, if a syn-
chronous event is being executed and an asynchronous event is generated,
instead of pre-empting the execution or waiting in a queue, the asynchronous
event will be handled in parallel. However, when there is a collision of two
asynchronous events the queuing is handled properly. Moreover, similarly to
the old model, transitional elementary actions are not handled as specified
by the standard because pending elementary actions and fired links might
still be executed.

Finally, we have to point out that a full study of the event models in-
tegration was not possible because of the lack of the engine support for

presentables and interactibles. This prohibited the investigation a mapping

74

from DOM UlFEvents to MHEG user interface events. There would also be
an association with the Views[29] part of the DOM standard. However,
even if there was adequate support from the core engine, there would be
additional problems since current X-Smiles version does not support neither

UIEvents nor Views.

6.1.3 General comments

Generally, we could say that the main obstacle for the integration process
was the project time constraints, and the need to implement the core MHEG
engine in order to gain the required understanding of the standards and to
support further study. The implementation of the core engine proved quite
time consuming and therefore we managed to investigate only one case of
further integration (the event models). Based on this we can argue that the
incremental design and implementation approach was a good decision since
otherwise we might have ended up with a non working implementation or
incomplete design.

The decision to use MHEG-8 for MHEG representation proved useful
since the integration process was made easier. XML validation in addition
to the DOM functionality provided by the browser reduced the complexity
of the parser and made the event models integration feasible. Therefore
we could safely argue that the MHEG-8 standard contributes towards the
convergence of ITV and web technologies.

DOM events support allowed event models integration mainly because
DOM model is more generic than the MHEG one. However, since there
is no distinction between synchronous and asynchronous events, we had to
incorporate the respective MHEG functionality using Java features (threads,
synchronization et cetera).

The X-Smiles specific features were not extensively used for the inte-

gration because X-Smiles is not restrictive and gives much freedom to the

75

MLFC implementation. Therefore, most of the engine can be implemented
almost independently of X-Smiles. However, if we had included presentables
and interactibles we might have had more X-Smiles - MHEG interaction (at
least for the user interface support).

Finally, we have to say that our study was focused on the MHEG-5
integration into a web browser. We have not studied how the MHEG content
will reach the browser (e.g. through a web server or an STB). Several
problems were solved with this approach since otherwise we would have to
additionally consider different transfer protocols, caching schemes, content

handling et cetera.

6.2 Comments on the standards used and X-Smiles

After implementing the MHEG engine we have concluded that MHEG-5 is
quite powerful for representing interactive multimedia. It allows develop-
ment of versatile applications and the event model is designed in such a way
that can be handled by low resource target platforms. Moreover, the concept
of the application domain is very useful for adapting the model into a wide
variety of domains. However, the standard has some relatively vague parts
which need further specification in order to assist the engine and application
developer. For instance, the event model could benefit by a more detailed
explanation.

Since XML is supported by most of the current browsers, MHEG XML
notation is of great use because it allows use of standard XML features which
make the process of input processing much easier. Moreover MHEG-8 syntax
allows hierarchical processing of input in a way that corresponds to the
MHEG class hierarchy. However, the resulting DOM tree represents MHEG
objects containment and not the object hierarchy or the presentation spatial
containment. If that was the case, we could make use of event bubbling

and capturing event handling in order to map MHEG classes behaviour

76

to DOM events concepts. Moreover, the MHEG-8 standardization might
enforce general purpose use of MHEG for other areas in addition to ITV.
Nevertheless, even if XML languages are easy to write by hand (since XML
is a textual notation), in order to develop a useful MHEG application, an
authoring tool has to be used. This is a consequence of the amount of XML
code that has to be written and of the object referencing scheme (which uses

numerical indexing instead of naming).

6.3 Comparison to the original project plan

The original project plan (included in Appendix B) was to integrate MHEG
functionality to the Mozilla web browser. Our main goal was to identify
which parts of the MHEG engine can be implemented using existing browser
features and to modify Mozilla in order to make it MHEG aware. More-
over, our implicit intention was to straightforwardly implement the MHEG
functionality using browser features without first implementing a restrictive
core which uses only the absolutely necessary browser components.

Firstly, we have used X-Smiles instead of Mozilla. The latter was ini-
tially chosen because it is a full featured and more mainstream browser.
However, the complex design and the lack of adequate documentation lead
us to reconsider the target platform for our research. Consequently, we have
introduced the browser assessment chapter where our main goal was to iden-
tify the appropriate platform for our study. X-Smiles proved to be the best
solution among the alternatives we have set.

The initial plan was to implement MHEG functionality using browser
features and the W3C’s XML, DOM and XSL standards. We finally used
the XML (for document processing) and DOM (for document processing and
event models integration). However, we have not extensively used browser
features, as explained above, and we did not investigate how other W3C

standards, like XSL, might be of use because of the time constraints.

7

Finally, we originally intended to proceed to the integration in a single
step and to provide an MHEG engine with at least some basic support for
presentables. However, the inherent complexity of the whole process lead
us to separate the process into a number of steps of which only the first two

were investigated.

6.4 Further research

After evaluating our study we will examine possible further research in dif-

ferent levels of abstraction.

6.4.1 Implementation corrections — extensions

At first, the MHEG execution model for both parts of the integration re-
quires some further consideration. Probably, the attribute actions (e.g. on-
Activation) execution should be integrated with the events execution. For
the first part’s engine we simply have to modify the processor in order to han-
dle them. For the second part the solution might be to emulate them using
DOM events. Moreover, transitional actions behaviour should be corrected.
Pending fired links that are out of the new context should be removed and
further elementary actions should not be executed.

The object loading mechanism should be integrated into the general
referencing functionality of the application object. This way there will be no
need to explicitly load objects when needed (e.g. at a transitionTo action).
When an object that is visible by the application namespace is referenced, it
should be loaded automatically. This will also allow a standard conforming
implementation of the transitional elementary actions which are currently
implemented as functions of the currently active application.

Moreover, the execution of asynchronous and synchronous events for the
second part of the integration should be synchronized in a way that there

is no parallel execution. This would require suspending synchronous events

78

execution when an asynchronous one is handled. However, synchronous
events which are launched as part of the asynchronous event handler should
be handled normally.

It would also be interesting to investigate how event models integration
could be achieved without the use of threads. The MHEG-5 standard is
designed for light weight platforms and using threads to emulate the event
queue might be quite resource consuming.

Finally, we should include handling of presentable and interactible MHEG
objects in order to have a full-featured engine. This approach should focus
on using the least possible X-Smiles specific features so that the engine could
be ported to another browser platform in order to check the above concepts

in different architectures.

6.4.2 Further integration

A basic step for further integration would be to study how MHEG user
events can be mapped to DOM Events concepts. That would require the
implementation of presentables and interactibles and a DOM implementa-
tion that supports UIEvents and DOM Views[29]. For instance, an associa-
tion between the DOM objects and their screen representation could allow
generation of DOM UIFEvents. This could then be mapped to MHEG user
events and used for supporting user interaction.

The integration of other MHEG components (except the event model)
could also be studied. For instance, elementary actions internal representa-
tion might be substituted by the respective DOM one. This would require
an elementary action execution design which will use DOM information in
order to process elementary actions. Moreover, the whole internal object
model could be substituted by a DOM object model. In that case internal
behaviour execution could be emulated using event bubbling and capturing.

This would also require a DOM tree transformation in order to create a

79

placeholder for internal class attributes and for creating a more adequate
tree structure. This transformation could be achieved by the use of the
XSL-T[26] functionality.

It would also be interesting to use other supported standards for the
integration process. For instance some MHEG interactibles (like a push
button or a text area) could be implemented using the corresponding HTML

elements.

6.4.3 Related research ideas

As we have already mentioned, we have studied a restricted case of the ITV
domain were a personal computer was used for browser execution and sim-
ple HTTP transmission of MHEG information and content was assumed.
The whole concept could be studied in a wide variety of configurations. For
instance, the browser might be running on an STB. In that case the trans-
mission protocols might be different and there will be additional caching
issues (for instance, if the transmission is a based on an object carousel).
Moreover, the use of MHEG-8 should be re-examined if significantly different
transmission protocols are to be used.

In the case were the browser is run on an STB, we could have both ITV
and web support by an MHEG aware browser. However, in such a resource
scarce environment several additional constraints must be taken into account
(e.g. memory and processor usage, available bandwidth etc)

As far as the transmission of content is concerned, depending on the
target platform, different approaches can be investigated. For instance, the
“XML protocol”[31] is a W3C working draft that could be used for MHEG
objects information. Also the transport protocol for real time applications
(RTP)[10] could be used for content transmission. However, the protocols
to be used should always be studied in relation to the target platform. For

instance, HTTP transmission might be a good solution for a web browser

80

on a desktop computer, however it might not be adequate for a STB or a
mobile phone.

An interesting investigation would be the comparison of the MHEG-5
and SMIL[25] standards for web based multimedia applications. MHEG-5
was not originally intended as a web application, but since the publication
of the MHEG-8 standard, it has become an attractive way for supporting
interactive multimedia for the web. Moreover, SMIL is considered one of
the dominant current web multimedia standards. A comparison of the two
standards would be useful for testing the applicability of both for modern
multimedia applications and for identifying the advantages and disadvan-
tages of each.

Finally, our study could be extended in order to investigate a generic
way to support XML content. XML is able to represent virtually everything
because it is only concerned with the structure of the information. How-
ever, the semantics information is lost as well as the information on how
to handle the content. In order to avoid incompatible browser extensions
for the support of specific document types, a generic semantics language
may be developed. The latter will provide additional semantics information
in a way similar to XSL. However, it will be concerned with the “seman-
tics” of the tags and on how they should be processed and presented. This
effort could benefit from the shared required functionality for different con-
tent types (e.g. parsing, internal object model, rendering machine etc). A
superset of this functionality could be provided by the browser core and
the additional semantics information will simply “customize” the existing

browser components in order to handle a specific content type.

81

Chapter 7

Concluding remarks

Our main concern throughout this project was to investigate the integra-
tion of the Interactive TV (ITV) and web browsers. As we have already
mentioned, the study of the integration is important because both areas will
benefit since it will help towards enhanced services for both of the domains.
Web browsing will include interactive multimedia services while interactive
TV would benefit from the ability to access the vast amount of existing
interactible web information.

Our approach was based on the modification of the X-Smiles browser in
order to introduce MHEG functionality. X-Smiles was selected as the target
web browser platform after a browser assessment process in which we studied
six browser alternatives for the most adequate one for our research. The
MHEG-5 standard was selected as representative for the ITV because it is
accepted as part of the DAVIC ITV specification and as the U.K. terrestrial
ITV platform. Moreover, the recent MHEG-8 standard, which defines an
XML representation for MHEG-5 content, was an additional reason for the
use of MHEG, since, most of the current browsers support XML and the
related Internet standards.

We divided the integration process in two steps. The first one was the
implementation of an MHEG extension for X-Smiles which provided the

basic MHEG core functionality. This was achieved by defining a minimal

82

application domain to which the implementation conforms. The core engine
implementation used only the absolutely required X-Smiles features which
included the XML parser and the DOM model. The second step was con-
cerned with the MHEG and DOM event models. Our goal was to implement
the MHEG event model using existing DOM event functionality. Our final
achievement was to provide an event model implementation which was easier
to write and more compact than the initial approach.

Our study can be extended to further integrate the two areas and to use
as many existing standard browser features as possible. Within the con-
straints of the project time limits, we were able to demonstrate the feasibil-
ity of integrating these two models. Further integration should be relatively

straightforward on top of the foundation laid within this work.

83

Appendix A

Abbreviations

API: Application Programming Interface.

ASN.1: The MHEG notation defined in the first part of the standards.
CSS: Cascading Style Sheets standard.

DAVIC: The Digital Audio and Video Council.

DOM: The Document Object Model standard.

DOM Events: The DOM-2 Events standard which specifies the DOM-2
event model.

DTD: Document Type Declaration.

HTML: HyperText Markup Language standard

HTTP: HyperText Transfer Protocol

IDL: Interface Definition Language

ITV: Interactive television

MHEG: Multimedia and Hypermedia information coding Experts Group.
Also, the family of the 8 MHEG standards.

MHEG-5: MHEG part 5, “Support for base-level interactive applications”
standard.

MHEG-8: MHEG part 8, “XML Notation for ISO/IEC 13522-5 (MHEG
XML)” standard.

MLFC: Markup Language Functionality Component.

OO: Object Oriented.

84

STB: Set-top box.

W3C: The World Wide Web Consortium

WWW: World Wide Web

Web client: The application used to present web content.
X-Smiles: The browser platform used for the integration process.
XSL: The eXtensible Stylesheet Language standard.

XSL-T: The XSL Transformations standard.

85

Appendix B

Initial project description

This appendix contains a copy of the original project description with slight

modifications in order to fit the new document layout.

B.1 Introduction

The project is concerned with the integration of two technologies that used
to be distinct and evolve almost independently: web and Interactive TV.

Most of the web browsers were only capable of displaying simple HTML
hyperlinked text, transferred using HTTP protocol. However, due to the
evolution of networks and computer architectures, different requirements
came into play. One of them is interactive multimedia, which is inherent in
the field of interactive TV. Therefore, the integration of the two technologies
seems beneficial and it will allow users to seamlessly move between web and
interactive multimedia content.

What we are going to investigate, is the integration of MHEG function-
ality into web browsers. We have chosen MHEG because it is the accepted
standard for providing interactive multimedia content for UK terrestrial dig-
ital TV. MHEG-8 is an XML representation of MHEG objects, which makes
it even more applicable for processing by an XML-aware web browser.

As far as the browser is concerned, we are going to use Mozilla, an

open source browser that incorporates most of the latest web technologies.

86

We expect to extend the above investigation to the integration of MHEG

functionality into Mozilla.

B.2 The problem area

The project will involve two basic challenges. Firstly, to manage to find the
commonalties among different web technologies and the MHEG standard.
Secondly, the modification of Mozilla, which, due to lack of documentation,
can be considered a research effort by itself. Below, we will give a brief
overview of the different technologies that are expected to be involved, some

example relationships among them, and a brief overview of Mozilla.

B.2.1 The standards
MHEG

MHEG provides a standard way of representing and transferring interactive
multimedia objects. The objects and the relationships between them de-
scribe the structure of an interactive multimedia application. Actually, the
top-level object is the “Application” object. It may contain scene objects,
which in turn may contain, among others, media objects. Each object has
an interface, which is the set of functions that can be performed on it. The
MHEG event model is able to represent object and user interactions and
reactions to special internal events. When an event is fired (e.g by the expi-
ration of a timer, a user interaction or the end of a video clip), the actions
to be taken are described by links. These actions are in form of sequential
elementary actions, which are performed on objects (similarly to member
calls in object oriented programming languages).

When we say “transferring interactive multimedia objects”, we mean
that a standard way to encode and transfer object, structure and event
handling information. This is based on ASN.1 (abstract syntax notation 1)

which can take textual or binary form.

87

MHEG-8 extends MHEG by providing an XML representation for de-
scribing and transferring objects. Since, web and Internet users are more
used to these kind of mark-up languages, it is most probably that the adop-
tion of MHEG-8 will speed up the integration of Interactive TV and web.

MHEG content is processed and presented by an MHEG engine. What
we are interested in, is to incorporate the functionality of an MHEG engine
into web browsers (specifically Mozilla). We have to investigate if we can
reuse existing components of Mozilla in order to construct the MHEG engine.
For instance, use the XML parser to parse the MHEG specification, or use

DOM-2 functionality to internally represent MHEG objects and events.
XML

XML will certainly be of involved because it is used for MHEG representa-
tion. As far as core XML is concerned, we are only interested in the parsing
of the MHEG information. This is expected to be the easiest of the rela-

tionships to be implemented because it doesn’t require any modifications.
DOM

DOM-1 is a W3C recommendation that emerged as a way to retrieve doc-
uments and to describe document structure. Most of the XML parsers use
a DOM tree to represent the parsed information. DOM-2 is an extension of
DOM-1, which allows many different kinds of information to be represented.
We are mostly interested in the event model of DOM-2. We will investigate

if it is possible to use it for the representation of MHEG events.

XSL and CSS

XSL and CSS are W3C recommendations as well. We are not interested
in a direct relation between them and MHEG. However, the functionality
that a browser must offer in order to support the display of documents using

extended display information (mostly for CSS) can be useful in representing

88

MHEG content. For instance, CSS allows dynamic modification of mark-up
properties. There might be a way to use this functionality in order to allow

elementary actions to alter the attributes of MHEG objects.
Other Standards

The set of standards that will be involved is not clear at the moment, be-
cause further studying and investigation of the core technologies (MHEG

and Mozilla) is required.

B.2.2 Mozilla

We have chosen Mozilla as the browser paradigm for our analysis and imple-
mentation. Mozilla is an open source project, co-ordinated by “mozila.org”.

Mozilla is cross platform and easily extendable. Most of the code is in
a subset of C++, which is defined by specific cross-platform constraints.
The architecture is based on the core XPCOM functionality and modules
plugged into it. XPCOM is a cross-platform equivalent to Microsoft’s COM.
The modules communicate through interfaces, which are defined in XPIDL
(the Mozilla alternative to IDL). That means that it is “easy” to extend
Mozilla, even by using a language other than C++4-. It currently supports,
among others, XML, XSL, DOM, DOM-2 (partly), CSS and Java. Most
of these are implemented as independent modules communicating through
XPCOM.

We are mostly interested in identifying the modules which are related to
the theoretical analysis and extend them to incorporate MHEG functional-
ity. We will most probably develop some new modules for MHEG parts that
cannot be integrated by extending existing code. The involved modules and
the required extensions are still quite unclear since their identification is one
of the core parts of our research.

The main disadvantage of Mozilla is the lack of complete up to date

documentation (for development). Therefore, extending Mozilla involves in-

89

vestigation of the code (more than 1 million of lines - 250 Mbytes source) in
order to identify how everything fits together. However, there is a sophis-
ticated source-cross-referencing mechanism, which eases navigation through

the code and makes the “quest for comments” easier.

B.2.3 Project schedule

The figure below is an overview of the project schedule divided into 16 weeks.

11 2 3] 4] 5| 6] 7/ 8 9 0 11 12 13 {14 115

Study MHEG

Study Mozilla architecture

Study relevant W3C Standards

Understand Mozilla code

Identify relations and extension$

Implementation

Document writting

Testing

Firstly, we will start by studying MHEG standards. At the same time,
we begin the exploration of Mozilla code, which will almost last until the
end of the project. Initially the focus would be on the core aspects, like
XPCOM interface. Gradually, we will proceed to more specific parts of the
code, according to our research. Understanding Mozilla code will be an
on-demand based process.

On week 3, after gaining a basic understanding of MHEG, we will start
investigating W3C standards and parts of Mozilla architecture that seem
more relevant. At the same time, we will focus on understanding the specifics
of Mozilla implementation related to these standards (for the “Understand-
ing Mozilla code” part).

After finishing the study of MHEG and having a brief idea about relevant
W3C standards and Mozilla architecture, we can begin investigating the
relations that can be achieved among them. At that point (week 6), a

report describing MHEG should be ready.

90

During this period, basic extensions and integration of code in Mozilla
should have already started. This contains probably the core of MHEG
engine, handling of XML files and the incorporation of the new file format
in Moxzilla.

After finishing and reporting the investigation of the relations, the main
part of the implementation begins, which aims in realising the specified
relations and extensions. The implementation phase must be finished by
the end of week 14. At this point, basic tests and debugging on individual
parts of the implementation should have been finished as well (testing phase
begins one week after the start of the implementation). In week 15, our
main concern will be debugging the final compilation of modules, testing
the implementation on different platforms and reporting about this process.

Throughout the project, we will produce different reports (“Document
writing”), that will constitute parts of the final dissertation. The compila-
tion of these reports and the production of additional material must take
place before week 16. In that week we will overview, correct and finalise the
dissertation.

We must point out, that this schedule is based on the current knowledge
and intuition about the whole process. Probably, after studying the relevant
material, our schedule may change significantly. Additionally, there is the

)

highly unpredictable part called “Mozilla”! Since, understanding Mozilla
involves considerable searching through the code (for comments and inter-
faces), and since there is no complete up to date overview of its architecture,

it is difficult to plan our time.

B.3 Conclusion

Our main objective for this project is to hand in a detailed overview of the
standards, ways to combine them, and have a working version of an MHEG-

aware version of Mozilla. We do not intend to implement the whole MHEG

91

standard. We will only consider the parts that demonstrate out theoretical

analysis.

92

Appendix C

Minimal application domain
definition

e Exchanged representation: The representation defined by the MHEG
part 8 standard ([15]).

e Group Identifier encoding: Relative or absolute URIs as specified
by IETF’s RFC 2396 ([17]). They should point to the file that describe

the corresponding group object.

e Set of classes: The minimal set of classes defined by the standard are
Application, Scene, Link and Action. We have to include the super-
classes of these, the Variable and its sub-classes which are needed
for support of the necessary elementary actions. The resulting set of

classes is illustrated in Table C.1.

e Set of features: Features are defined as optional or mandatory (in
order for an engine to conform to the application domain). In our case,
all optional features will not be implemented. Since, none of them is
needed for the illustration of the core engine functionality we specify

all of them as optional (Table C.2).

e Content data encoding: Since we do not support any presentables,

there is no content to describe.

93

Supported MHEG classes
Root
Group

Ingredient

Application

Scene
Link
Action
Variable
BooleanVariable
IntegerVariable
OctetStringVariable
ObjetRefVariable
ContentRefVariable

Table C.1: Minimal application domain classes

Feature Requirement
Ancillary connections Optional
Caching Optional
Cloning Optional
Free moving cursor Optional
Scaling Optional
Stacking of applications | Optional
Trick modes Optional

Table C.2: Minimal application domain features

e Userlnput registers: There will be no UserInput events. However,
since the specification of a UserInput register is mandatory for the
scene encoding, we have to define a value for a null register. We will

use the integer value “1”.

e Semantic constraints: Since there are not presentables, semantic
constraints are covered by the “set of features”. However, we will

provide the required table (Table C.3).

e Engine Events: There will be no engine events.

94

Feature Constraint
FreeMovingCursor Optional
ApplicationStacking Optional

Scaling N/A
SceneCoordinateSystem(X,Y) No combination is supported
SceneAspectRatio(W,H) No combination is supported
AncillaryConnections Optional

TrickModes Optional

MultipleRT GraphicsStreams(0) | Zero

Multiple AudioStreams(0) Zero

Multiple VideoStreams(0) Zero

Overlapping Visibles Not supported

Cloning Optional

Table C.3: Minimal application domain constraints

95

e GetEngineSupport: No additional GetEngineSupport strings.

Appendix D

Browser alternatives

This appendix is devoted to the 6 different browser platforms that we have
tested in order to identify the most appropriate for the integration. There
is a brief description for each browser, which justifies the results shown in

Table 4.2 (page 37).

D.1 Mozilla browser

Mozilla is an open source web browser “designed for standards compliance,
performance and portability”[20]. Moxzilla is derived from Netscape Com-
municator, which was released as open source. The original version had
many problems because it was an early release and some of the proprietary
Communicator components were removed. Mozilla organization leads the
development of Mozilla browser, and the main goal is to make it a fully
functional, standards compliant browser.

Mozilla is implemented mainly in C++, and its architecture is based
on an XPCOM core. XPCOM is an open source alternative to Microsoft’s
COM. It allows different components (possibly implemented in different lan-
guages) to interoperate in a language independent manner. Component
interfaces are defined in XPIDL which is an alternative to IDL.

There are different support libraries for many aspects of the browser

functionality. For instance, there is a layout engine, a network library, a

96

user interface library and many others. Most of them are highly customiz-
able, since the development of Mozilla components produces general purpose
software that can be used even outside the scope of a browser.

As far as the supported media types are concerned, only basic image
formats are supported. This lack of media support is probably a result of
Mozilla’s platform neutral design and of the fact that is difficult to find open
source, portable libraries for the more “advanced” media types. However,
since basic graphics and user interaction are supported, it is possible to build
the basic MHEG functionality on top of them.

Mozilla event model seems® to be hierarchical. When an event is gener-
ated or caught by a Mozilla component, it is propagated to all other com-
ponents that might be interested (not in a broadcast, but in a recursive
manner). We have to point out that in parallel with the browser’s internal
event model, DOM events are also propagated and handled.

There is support for most of the Internet standards like HTML, XHTML,
CSS (1,2,3), XML, DOM and others. However, the support for most of
them is not yet complete, and there are still many bugs to be corrected (the
development team is trying hard to produce the stable 1.0 release).

In general we can say that Mozilla is a rather complete browser, with
a well designed modular architecture. However, the lack of good documen-
tation and the very primitive media support might prove problematic for
our research. Moreover, its complexity may not be adequate for the time

constraints of the project.

!The problem with Mozilla is that it is not easy to find up-to-date documentation —
except for the comments in the source code — that describes in detail the architecture and
how everything fits together. Therefore, at this stage we can only make assumptions for
the internal architecture.

97

D.2 X-Smiles browser

X-Smiles is an open source, Java based, XML browser, which is “a non-
profit project started by the Telecommunications Software and Multimedia
Laboratory at Helsinki University of Technology”[32]. The basic difference
from the other alternatives is that it doesn’t support HTML. As a part of
a research project, it is not (yet) aimed to provide a wide-range of services
to the end-user. However, it supports XML, so all XML languages might
as well be supported (actually, there might be support for XHTML in the
future). The latest version (0.32) supports XML, XSL-T, XSL-FO, XForms,
ECMAScript, SMIL 1.0 and DOM-1. DOM-2 is also partially supported.
As far as media types are concerned there is support for GIF and JPEG
image formats, for MPEG and AVI video formats and for WAV audio data.

One of the main goals in X-Smiles development is to provide support
for multimedia services for either desktop or embedded devices. This is in
line with our goals since MHEG describes interactive multimedia content.
Additionally, the ability to run on scarce resource embedded devices, is
advantageous for support of MHEG in set-top boxes.

Moreover, X-Smiles has very good documentation for both the user and
the designer. Its internal architecture is quite simple. Basically, it uses an
“event broker” which dispatches events among browser components. This
architecture is easily extended since other components can be added by
simply registering them to the event broker (allowing them to receive and
handle all the appropriate events).

As a conclusion, we can say that X-Smiles seems quite promising for our
project. However, there are drawbacks. It is still in its very first releases and
inevitably there are problems in the implementation. The Java platform
offers portability and support libraries, but introduces high delays which

make a complex program like a browser to run relatively slow.?

2However, this will not be an issue for a set-top box that implements the Java virtual

98

D.3 Amaya browser

Amaya is a W3C’s open source browser — authoring tool[24]. The principal
goal of Amaya development is to provide a tool for testing new web tech-
nologies. In order to accomplish this, it is designed in a well structured
extensible manner with quite good documentation (for both the end user
and the developer). The basic drawback is that it is implemented in C,
because it is based in a document editing-presentation library called “Thot”
which is also implemented in C.

In addition to XHTML it also supports CSS, MathML, XML and XLink.
The later two are partially implemented, since only the required features for
supporting XHTML are included. The documents are represented internally
as a tree (similar to DOM tree) which corresponds to the document struc-
ture. However, some important features like JavaScript, animated images
and frames are not supported. This might be a reason to avoid selecting
Amaya since the lack of this support might imply problematic extensibil-
ity to other technologies. Actually, it seems like Amaya is quite extensible
as far as HTML specific extensions are considered, but when totally new
data formats are concerned (like XML or MHEG) it doesn’t seem promising
enough. If we try to make Amaya MHEG aware there will be the danger of

having to re-engineer the whole browser and our research goal might fail.

D.4 HotJava browser

HotJava (TM) browser[22] is a development of Sun microsystems corpora-
tion, and is implemented in Java. Its main aim is to provide a light-weight
browser that can be used for devices like set-top boxes. Since MHEG sup-
port for interactive TV is mainly focused on this resource scarce environ-
ments, HotJava initially looked like a good solution. However, since the

latest release, the source code is no longer available. It seems that it will

machine in hardware.

99

be published soon but for now we cannot use this platform, so we do not

further investigate it.

D.5 Arena and Mosaic browsers

Even though these two browsers are different, we study them in the same
section since they can only be considered as of historic interest. Arenal[l]
was derived from a text-mode browser. As long as it was developed it
managed to keep up to date with most of the Internet standards. However,
the development seems to have stopped since Netscape’s code was made
available to public, and the Mozilla project started.

Mosaic browser[21] was an NCSA (The National Center for Super com-
puting Applications at the University of Illinois at Urbana-Champaign)
project, and was quite famous before some years. However, it was not
an open source project, therefore the architecture and code documentation
is difficult to find. The development seems to have stopped and it is not
supported any more.

These browsers are now considered obsolete. However we mention them
since they were quite famous as alternatives to the dominant commercial

browsers that are widely used now.

100

e

© 0 N O w

10
11
12
13
14

15
16
17
18
19
20
21

Appendix E

Execution examples

This appendix contains the source XML files and the engine output for the

execution examples of Sections 5.2.3 and 5.3.4.

E.1 XML sources

E.1.1 The application file

<?7xml ve
<!'DOCTYP
<mhegb>

rsion="1.0" enc
E mhegb SYSTEM

oding="UTF-8"7>
"mhegh.dtd" >

<application groupid="reportExAp.xml"> <!-- the
application-->
<items>

<1

</
</it

ink objnum="1">
<linkcondition>
<eventsource

objnum="0"/>

<eventtype type="isrunning"/> <!-- fire at
activation-->

</linkcondition
<linkeffect>
<action>

>

<transitionto> <!--activate the scene-->
<objref objnum="0" groupid="reportExSc.

xml"/>

</transitionto>

</action>
</linkeffect>
link>
ems >

</application>

</mhegb5>

Listing E.1:

The example application

101

E.1.2 The scene file

N

~ W

10

11
12
13
14
15
16
17

18

19
20

21
22
23
24
25

26
27

28
29
30
31
32
33

34
35
36
37
38
39

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE mhegb SYSTEM "mhegb.dtd" >

<mhegb>
<scene groupid="reportExSc.xml"> <!-- the scene
object -->
<items>
<integervar objnum="1"> <!--The integer value -->

<integervalue origvalue="2000"/> <!--initial
value-->
</integervar>

<link objnum="2"> <!-- Fires at scene activation
-=>
<linkcondition>
<eventsource objnum="0"/>
<eventtype type="isrunning"/>
</linkcondition>
<linkeffect>
<action>

<setvariable> <!-- Set integer var. to
10000-->
<objref objnum="1"/> <!-- Target variable
-=>
<newgenericinteger>
<integer value="10000"/> <!-- The new

value-->
</newgenericinteger>
</setvariable>

<settimer> <!--Activate the timer-->
<objref objnum="0"/> <!-- Target scene
-=>
<integer value="1"/> <!-- Timer ID -->
<indirectref objnum="1"/> <!-- Timer
value -->

</settimer>
</action>
</linkeffect>
</link>

<link objnum="3"> <!-- Fires when timer expires
-=>
<linkcondition>
<eventsource objnum="0"/>
<eventtype type="timerfired"/>
<eventdata>
<integer value="1"/> <!-- Timer id=1 -->
</eventdata>

102

40
41
42
43
44

45
46
47
48
49
50

51
52

</linkcondition>
<linkeffect>
<action>
<quit> <!-- Quit the application -->
<objref objnum="0" groupid="
reportExAp.xml"/>
</quit>
</action>
</linkeffect>
</1link>
</items>
<inputeventreg num="1"/> <!-- the dummy input
register -->
<scenecs xscene="800" yscene="600"/>
</scene>
</mhegb>

1

© o N ot A W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Listing E.2: The example scene

E.2 Engine output for Section 5.2.3 test

Time: 03:03:18 [DEBUG]: Parsing document: reportExAp.
xml
Time: 03:03:18 [DEBUG]: Parsing document: Using custom
parser
Time: 03:03:21 [DEBUG]: Document parsed:reportExAp.zxml
APPLICATION TREE
x*xx MHEGApplication*x*x*
Ref:(reportExAp.xml:0)
RunStat:false
AvailStatus:false
Info:No info
OnStartup: null
OnCloeDown: null
Items:
*xk MHEGL ink %%
Ref:(reportExAp.xml:1)
RunStat:false
AvailStatus:false
InitActive: true
Shared: false
Type: 4
Source: (reportExAp.xml:0)
Effect:
*xx MHEGAction*x*x*
Elementary actions:
%*TransitionTox*
Target: (reportExSc.xml:0)
TransEffect: null

103

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52
53

54

ConnTag: null

OnSpawnCloseDown: null

OnRestart: null

FINISHED: false

Starting MHEG processor

Time: 03:03:21 [DEBUG]Execution: EXEC_QUEUE: Waiting

Time: 03:03:21 [DEBUG]: APPLICATION: Running

Time: 03:03:21 [DEBUG]Internal behaviour: Group:
activation at (reportExAp.xml:0):starting

Time: 03:03:21 [DEBUG]Internal behaviour: Root:
activation at (reportExAp.xml:0):starting

Time: 03:03:21 [DEBUG]Internal behaviour: Group:
Preparation at (reportExAp.xml:0):starting

Time: 03:03:21 [DEBUG]Internal behaviour: Root:
Preparation at (reportExAp.xml:1):starting

Time: 03:03:21 [DEBUG]Internal behaviour: Ingredient:
content preparation at (reportExAp.xml:1):starting

Time: 03:03:21 [DEBUG]Internal behaviour: Ingredient:
content preparation at (reportExAp.xml:1):finished

Time: 03:03:21 [DEBUG]Internal behaviour: Root:
Preparation at (reportExAp.xml:1):finished

Time: 03:03:21 [DEBUG]Internal behaviour: Root:
Preparation at (reportExAp.xml:0):starting

Time: 03:03:21 [DEBUG]Internal behaviour: Root:Content
Preparation at (reportExAp.xml:0):called

Time: 03:03:21 [DEBUG]Internal behaviour: Root:
Preparation at (reportExAp.xml:0):finished

Time: 03:03:21 [DEBUG]Internal behaviour: Group:
Preparation at (reportExAp.xml:0):finished

Time: 03:03:21 [DEBUG]Internal behaviour: Root:
activation at (reportExAp.xml:0):finished

Time: 03:03:21 [DEBUG]Internal behaviour: Link:
activation at (reportExAp.xml:1):starting

Time: 03:03:21 [DEBUG]Internal behaviour: Root:
activation at (reportExAp.xml:1):starting

Time: 03:03:21 [DEBUG]Internal behaviour: Root:
activation at (reportExAp.xml:1):finished

Time: 03:03:21 [DEBUG]Internal behaviour: Link:
activation at (reportExAp.xml:1):finished

Time: 03:03:21 [DEBUG]Event: Event fired: isrunning

Time: 03:03:21 [DEBUG]Event: Event isrunning is in
queue

Time: 03:03:21 [DEBUG]Execution: EXEC_QUEUE: Restarting

Time: 03:03:21 [DEBUG]Execution: EXEC_QUEUE: Preparing
to execute next action

Time: 03:03:21 [DEBUG]Execution: EXEC_QUEUE: Found
action fi.hut.tml.xsmiles.mlfc.mhegb.objectmodel.
elact.TransitionTo

104

55

56

57

58

59

60

61

62

63

64

65

66

67
68

69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87

Time: 03:03:21 [DEBUG]Elementary Action: Application:
transitionTo at (reportExAp.xml:0):started
Time: 03:03:21 [DEBUG]Elementary Action: Application:

transitionTo at (reportExAp
shared application objects

.xml:0) :deactivating non

Time: 03:03:21 [DEBUG]Internal behaviour: Link:
deactivation at (reportExAp.xml:1):starting
Time: 03:03:21 [DEBUG]Internal behaviour: Root:
deactivation at (reportExAp.xml:1):starting
Time: 03:03:21 [DEBUG]Internal behaviour: Root:
deactivation at (reportExAp.xml:1):finished
Time: 03:03:21 [DEBUG]Internal behaviour: Link:

deactivation at (reportExAp.xml:1):finished

Time: 03:03:21 [DEBUG]Elementary Action: Application:
transitionTo at (reportExAp.xml:0):deactivating
current scene

Time: 03:03:21 [DEBUG]Elementary Action: Application:
transitionTo at (reportExAp.xml:0):parsing new scene

Time: 03:03:21 [DEBUG]: Parsing document: reportExSc.
xml
Time: 03:03:21 [DEBUG]: Parsing document: Using custom

parser

Time: 03:03:21 [DEBUG]Internal behaviour: Group:
activation at (reportExAp.xml:0):finished

Time: 03:03:21 [DEBUG]: APPLICATION: Waiting until
finished

Time: 03:03:22 [DEBUG]: Document parsed:reportExSc.xml

03:03:22 [DEBUG]Elementary Action: Application:
transitionTo at (reportExAp.xml:0):activating new
scene

x*xkxk*xkActive Scene Changed : %k k% kxk*xkx

*xx MHEGS cene***

Ref:(reportExSc.xml:0)

RunStat:false

AvailStatus:false

Info:No info

OnStartup: null

OnCloeDown: null

Items:

Time:

**xx MHEGLink **x
Ref: (reportExSc.xml:3)
RunStat:false
AvailStatus:false
InitActive:
Shared:
Type: 8
Source:
Effect:
x MHEGAction**x*

true
false

(reportExSc.xml:0)

105

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105
106
107
108

109
110
111
112
113
114
115
116
117
118

119

120

121

122

123

124

125

Elementary actions:
*xok Quit *k*
Target: (reportExAp.xml:0)
*%xk MHEGL ink %%
Ref:(reportExSc.xml:2)
RunStat:false
AvailStatus:false
InitActive: true
Shared: false
Type: 4
Source: (reportExSc.xml:0)
Effect:
*xx MHEGAction*x*x*
Elementary actions:
x*xxSetValue**x*
Target: (reportExSc.xml:1)
New value: GenericlInteger
10000
*xxSet Timer **x*
Target: (reportExSc.xml:0)
Tag: GenericlInteger: 1

value: GenericlInteger: Indirect

Ref: (reportExSc.xml:1)
Absolute time: null
**x*x MHEGIntegerVariable*x*x
Ref:(reportExSc.xml:1)
RunStat:false
AvailStatus:false
InitActive: true
Shared: false
Value: 2000
s ok K ok o oK ok K oK ok K oK ok K oK o K ok K ok ok K oK ok K oK K oK K K
Time: 03:03:22 [DEBUG]Internal behaviour: Group:
Preparation at (reportExSc.xml:0):starting
Time: 03:03:22 [DEBUG]Internal behaviour: Root:
Preparation at (reportExSc.xml:3):starting
Time: 03:03:22 [DEBUG]Internal behaviour: Ingredient:
content preparation at (reportExSc.xml:3):starting
Time: 03:03:22 [DEBUG]Internal behaviour: Ingredient:
content preparation at (reportExSc.xml:3):finished
Time: 03:03:22 [DEBUG]Internal behaviour: Root:
Preparation at (reportExSc.xml:3):finished
Time: 03:03:22 [DEBUG]Internal behaviour: Root:
Preparation at (reportExSc.xml:2):starting
Time: 03:03:22 [DEBUG]Internal behaviour: Ingredient:
content preparation at (reportExSc.xml:2):starting
Time: 03:03:22 [DEBUG]Internal behaviour: Ingredient:
content preparation at (reportExSc.xml:2):finished

106

126

127

128

129

130

131

132

133

134

135

136

138

139

140

141

142

143

144

145

146

147

148

149

150

03:03:22
Preparation
Time: 03:03:22
Preparation
Time: 03:03:22 [DEBUG]Internal behaviour:
content preparation at (reportExSc.xml:
Time: 03:03:22 [DEBUG]Internal behaviour:
content preparation at (reportExSc.xml:

Time: [DEBUG] Internal behaviour:

[DEBUG] Internal behaviour:

Root:

at (reportExSc.xml:2):finished

Root:

at (reportExSc.xml:1):starting

Ingredient:
1) :starting
Ingredient:
1) :finished

Time: 03:03:22 [DEBUG]Internal behaviour: Root:
Preparation at (reportExSc.xml:1):finished
Time: 03:03:22 [DEBUG]Internal behaviour: Root:
Preparation at (reportExSc.xml:0):starting
Time: 03:03:22 [DEBUG]Internal behaviour: Root:Content
Preparation at (reportExSc.xml:0):called
Time: 03:03:22 [DEBUG]Internal behaviour: Root:
Preparation at (reportExSc.xml:0):finished
Time: 03:03:22 [DEBUG]Internal behaviour: Group:
Preparation at (reportExSc.xml:0):finished
Time: 03:03:22 [DEBUG]Internal behaviour: Group:
activation at (reportExSc.xml:0):starting
Time: 03:03:22 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:0):starting
Time: 03:03:22 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:0):finished
Time: 03:03:23 [DEBUG]Internal behaviour: Link:
activation at (reportExSc.xml:3):starting
Time: 03:03:23 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:3):starting
Time: 03:03:23 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:3):finished
Time: 03:03:23 [DEBUG]Internal behaviour: Link:
activation at (reportExSc.xml:3):finished
Time: 03:03:23 [DEBUG]Internal behaviour: Link:
activation at (reportExSc.xml:2):starting
Time: 03:03:23 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:2):starting
Time: 03:03:23 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:2):finished
Time: 03:03:23 [DEBUG]Internal behaviour: Link:
activation at (reportExSc.xml:2):finished
Time: 03:03:23 [DEBUG]Internal behaviour: Variable:
activation at (reportExSc.xml:1):starting
Time: 03:03:23 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:1):starting
Time: 03:03:23 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xzml:1):finished
Time: 03:03:23 [DEBUG]Internal behaviour: Variable:
activation at (reportExSc.xml:1):finished
Time: 03:03:23 [DEBUG]Event: Event fired: isrunning

107

151

152

154

155

156

157

158

159

160

161

162

164

165

167

169

170

171

172

Time: 03:03:23 [DEBUG]Event: Event isrunning is in
queue

Time: 03:03:23 [DEBUG]Internal behaviour: Group:
activation at (reportExSc.xml:0):finished

Time: 03:03:23 [DEBUG]Elementary Action: Application:
transitionTo at (reportExAp.xml:0):finished

Time: 03:03:23 [DEBUG]Execution: EXEC_QUEUE: Preparing
to execute next action

Time: 03:03:23 [DEBUG]Execution: EXEC_QUEUE: Found
action fi.hut.tml.xsmiles.mlfc.mhegb.objectmodel.
elact.SetVariable

Time: 03:03:23 [DEBUG]Elementary Action:
IntegerVariable:SetValue at (reportExSc.xml:1):
executing

Time: 03:03:23 [DEBUG]Elementary Action: Variable:
SetValue at (reportExSc.xml:1):executed

Time: 03:03:23 [DEBUG]Execution: EXEC_QUEUE: Preparing
to execute next action

Time: 03:03:23 [DEBUG]Execution: EXEC_QUEUE: Found
action fi.hut.tml.xsmiles.mlfc.mhegb.objectmodel.
elact.SetTimer

Time: 03:03:23 [DEBUG]Elementary Action: Scene:SetTimer
at (reportExSc.xml:0):started with tag:1 val

10000 absTime:false

Time: 03:03:23 [DEBUG]Elementary Action: Scene:SetTimer
at (reportExSc.xml:0):Scheduled

Time: 03:03:23 [DEBUG]Execution: EXEC_QUEUE: Waiting

Time: 03:03:33 [DEBUG]Internal behaviour: Scene.Timerl
at (reportExSc.xml:0):Fired

Time: 03:03:33 [DEBUG]Event: Async event fired:
timerfired

Time: 03:03:33 [DEBUG]Execution: EXEC_QUEUE: Restarting

Time: 03:03:33 [DEBUG]Execution: EXEC_QUEUE: Preparing
to execute next action

Time: 03:03:33 [DEBUG]Execution: EXEC_QUEUE: Found
action fi.hut.tml.xsmiles.mlfc.mhegb.objectmodel.
elact.Quit

Time: 03:03:33 [DEBUG]Elementary Action: Application:
quit at (reportExAp.xml:0):finishing application

Time: 03:03:33 [DEBUG]Elementary Action: Application:
quit at (reportExAp.xml:0):destroying active scene

Time: 03:03:33 [DEBUG]Internal behaviour: Group:
destruction at (reportExSc.xml:0):starting

Time: 03:03:33 [DEBUG]Internal behaviour: Root:
destruction at (reportExSc.xml:1):starting

Time: 03:03:33 [DEBUG]Internal behaviour: Root:
deactivation at (reportExSc.xml:1):starting

Time: 03:03:33 [DEBUG]Internal behaviour: Root:
deactivation at (reportExSc.xml:1):finished

108

174

175

177

178

179

180

181

182

183

184

186

187

188

189

191

192

193

194

196

197

03:03:33
destruction
03:03:33

destruction
Time: 03:03:33

Time: [DEBUG] Internal

Time: [DEBUG] Internal

[DEBUG] Internal

deactivation at (reportExSc.

Time: 03:03:33 [DEBUG]Internal

deactivation at (reportExSc.

03:03:33 [DEBUG] Internal
deactivation at (reportExSc
Time: 03:03:33 [DEBUG] Internal
deactivation at (reportExSc
Time: 03:03:33 [DEBUG]Internal
destruction
Time: 03:03:33
destruction
03:03:33

Time:

[DEBUG] Internal

Time: [DEBUG] Internal

deactivation at (reportExSc.

03:03:33 [DEBUG]Intermnal
deactivation at (reportExSc
Time: 03:03:33 [DEBUG]Internal
deactivation at (reportExSc
Time: 03:03:33 [DEBUG]Internal

Time:

deactivation at (reportExSc.

Time: 03:03:33 [DEBUG]Internal

behaviour: Root:

at (reportExSc.xml:1):finished

behaviour: Root:

at (reportExSc.xml:2):starting

behaviour: Link:
xml:2) :starting
behaviour: Root:
xml:2):starting
behaviour: Root:

.xml:2):finished

behaviour: Link:

.xml:2):finished

behaviour: Root:

at (reportExSc.xml:2):finished

behaviour: Root:

at (reportExSc.xml:3):starting

behaviour: Link:
xml:3):starting
behaviour: Root:

.xml:3):starting

behaviour: Root:

.xml1:3):finished

behaviour: Link:
xml:3):finished
behaviour: Root:

destruction at (reportExSc.xml:3):finished

Time: 03:03:33 [DEBUG]Internal

behaviour: Root:

destruction at (reportExSc.xml:0):starting

03:03:33 [DEBUG]Intermnal
deactivation at (reportExSc
Time: 03:03:33 [DEBUG]Internal
deactivation at (reportExSc
Time: 03:03:33 [DEBUG]Internal

Time:

deactivation at (reportExSc.

Time: 03:03:33 [DEBUG]Internal

deactivation at (reportExSc.

Time: 03:03:33 [DEBUG]Internal

deactivation at (reportExSc.

03:03:33 [DEBUG]Internal
deactivation at (reportExSc
Time: 03:03:33 [DEBUG] Internal

Time:

deactivation at (reportExSc.

Time: 03:03:33 [DEBUG]Internal

deactivation at (reportExSc.

Time: 03:03:33 [DEBUG]Internal

deactivation at (reportExSc.

Time: 03:03:33 [DEBUG]Internal

deactivation at (reportExSc.

109

behaviour:

behaviour: Root:

.xml:1):starting

behaviour: Link:
xml:2) :starting
behaviour: Root:
xml:2):starting
behaviour: Link:
xml:2):finished
behaviour: Link:

.xml:3):starting

behaviour: Root:
xml:3):starting
behaviour: Link:
xml:3):finished
behaviour: Root:
xml:0) :starting
behaviour: Root:
xml:0):finished

Group:
.xml:0):starting

198

199

201

202

203

204

205

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221
222

Time: 03:03:33 [DEBUG]Internal behaviour: Group:
deactivation at (reportExSc.xml:0):finished

Time: 03:03:33 [DEBUG]Internal behaviour: Root:
destruction at (reportExSc.xml:0):finished

Time: 03:03:33 [DEBUG]Internal behaviour: Group:
destruction at (reportExSc.xml:0):finished

03:03:33 [DEBUG]Elementary Action: Application:

quit at (reportExAp.xml:0):destroying active

Time:

application
Time: 03:03:33
destruction
03:03:33
destruction
03:03:33 [DEBUG] Internal
deactivation at (reportExAp
Time: 03:03:33 [DEBUG]Internal
deactivation at (reportExAp
Time: 03:03:33 [DEBUG]Internal

[DEBUG] Internal
Time: [DEBUG] Internal

Time:

deactivation at (reportExAp.

Time: 03:03:33
destruction
03:03:33
destruction
03:03:33 [DEBUG] Internal
deactivation at (reportExAp
Time: 03:03:33 [DEBUG] Internal
deactivation at (reportExAp
Time: 03:03:33 [DEBUG] Internal

[DEBUG] Internal
Time: [DEBUG] Internal

Time:

deactivation at (reportExAp.

Time: 03:03:33 [DEBUG]Internal

deactivation at (reportExAp.

Time: 03:03:33 [DEBUG]Internal

deactivation at (reportExAp.

03:03:33 [DEBUG]Internal
deactivation at (reportExAp
Time: 03:03:33 [DEBUG]Internal
deactivation at (reportExAp
Time: 03:03:33 [DEBUG]Internal

Time:

deactivation at (reportExAp.

Time: 03:03:33 [DEBUG]Internal

deactivation at (reportExAp.

Time: 03:03:33

destruction
03:03:33
destruction
03:03:33

[DEBUG] Internal
Time: [DEBUG] Internal

Time:

03:03:33 [DEBUG]:
Application Finished

Time:

110

behaviour:

behaviour: Root:

at (reportExAp.xml:1):starting

behaviour: Link:

.xml:1):starting

behaviour: Root:

.xml:1):starting

behaviour: Link:
xml:1):finished
behaviour: Root:

at (reportExAp.xml:1):finished

behaviour: Root:

at (reportExAp.xml:0):starting
Application:
.xml:0):starting
Group:
.xml:0):starting

behaviour:
behaviour:

behaviour: Link:
xml:1):starting
behaviour: Root:
xml:1):starting
behaviour: Link:
xml:1):finished
behaviour: Root:

.xml:0):starting

behaviour: Root:

.xml1:0):finished
Group:

behaviour:
xml:0):finished
behaviour:
xml:0):finished
behaviour: Root:

at (reportExAp.xml:0):finished
Group:
at (reportExAp.xml:0):finished
[DEBUG]Elementary Action:
quit at (reportExAp.xml:0):waking up main thread
APPLICATION:

behaviour:

Finished

Group:
at (reportExAp.xml:0):starting

Application:

Application:

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

251
252
253
254

256
257
258
259

261
262
263
264

266
267
268
269

271

APPLICATION TREE
x*xx MHEGApplication*x*x
Ref : (reportExAp.xml:0)
RunStat: false
AvailStatus:false
Info:No info

OnStartup: null
OnCloeDown: null

Items:

%k MHEGLink **x*
Ref:(reportExAp.xml:1)

RunStat:

false

AvailStatus:false

InitActi
Shared:
Type: 4
Source:
Effect:

ve: true
false

(reportExAp.xml:0)

xx MHEGActionx*

Elementary actions:
x*x*TransitionTo**x*

Target:

(reportExSc.xml:0)

TransEffect: null

ConnTag:

OnSpawnCloseDown: null
OnRestart: null
FINISHED: true
SCENE TREE

x MHEGScene***
Ref : (reportExSc.xml:0)
RunStat:false
AvailStatus:false
Info:No info

OnStartup: null
OnCloeDown: null

Items:

**x % MHEGL ink % **
Ref:(reportExSc.xml:3)

RunStat:

false

AvailStatus:false

InitActi
Shared:
Type: 8
Source:
Effect:

ve: true
false

null

(reportExSc.xml:0)

xx MHEGActionx*

Elementary actions:
*xok Quit *k*

Target:

111

(reportExAp.xml:0)

272
273
274
275

277
278
279
280
281
282
283
284
285

286
287

289

290
291
292
293
294
295
296

© 0 N O ot s W

10
11
12
13
14
15
16
17

**x MHEGLink **x*
Ref:(reportExSc.xml:2)
RunStat:false
AvailStatus:false
InitActive: true
Shared: false
Type: 4
Source: (reportExSc.xml:0)
Effect:
xx MHEGActionx*
Elementary actions:
xxxSetValue***

Target: (reportExSc.xml:1)
New value: GenericlInteger

10000
*x*kSet Timer*x*xx*

Target: (reportExSc.xml:0)

Tag: GenericInteger: 1

value: GenericInteger: Indirect
Ref: (reportExSc.xml:1)

Absolute time: null

*xx MHEGIntegerVariable**x*
Ref:(reportExSc.xml:1)
RunStat:false
AvailStatus:false
InitActive: true

Shared: false

Value: 10000

E.3 Engine output for Section 5.3.4 test

Time: 02:34:16 [DEBUG]: Parsing document:
xml

Time: 02:34:16 [DEBUG]: Parsing document:
parser

reportExAp.

Using custom

Time: 02:34:18 [DEBUG]: Document parsed:reportExAp.xml

APPLICATION TREE

*% % MHEGApplication**x*

Ref : (reportExAp.xml:0)

RunStat:false

AvailStatus:false

Info:No info

OnStartup: null

OnCloeDown: null

Items:
**xx MHEGLink ** %
Ref:(reportExAp.xml:1)
RunStat:false
AvailStatus:false
InitActive: true

112

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Shared:
Type: 4
Source:
Effect:

OnSpawnCloseDown:

OnRestart: null
FINISHED: false
Time: 02:34:19
Time:

false

(reportExAp.xml:0)

**%* MHEGAction*xx*
Elementary actions:
x*x*TransitionTo**x*

Target: (reportExSc.xml:0)
TransEffect: null
ConnTag: null
null
[DEBUG]: APPLICATION: Running

02:34:19 [DEBUG]Internal behaviour:

Group:

activation at (reportExAp.xml:0):starting

Time:

02:34:19 [DEBUG]Internal behaviour:

Root:

activation at (reportExAp.xml:0):starting

Time: 02:34:19

[DEBUG] Internal behaviour:

Group:

Preparation at (reportExAp.xml:0):starting

Time: 02:34:19

[DEBUG] Internal behaviour:

Root:

Preparation at (reportExAp.xml:1):starting

Time: 02:34:19

Time:

02:34:19
Preparation
Time: 02:34:19
Preparation
Time: 02:34:19
Preparation
Time: 02:34:19
Preparation
Time: 02:34:19
Preparation
Time: 02:34:19

Time:

[DEBUG] Internal behaviour:
content preparation at (reportExAp.xml:
02:34:19 [DEBUG]Internal behaviour:
content preparation at (reportExAp.xml:
[DEBUG] Internal behaviour:

Ingredient:
1) :starting
Ingredient:
1):finished
Root:

at (reportExAp.xml:1):finished

[DEBUG] Internal behaviour:

Root:

at (reportExAp.xml:0):starting

[DEBUG] Internal behaviour:

Root:Content

at (reportExAp.xml:0):called

[DEBUG] Internal behaviour:

Root:

at (reportExAp.xml:0):finished

[DEBUG] Internal behaviour:

Group:

at (reportExAp.xml:0):finished

[DEBUG] Internal behaviour:

Root:

activation at (reportExAp.xml:0):finished

Time:

02:34:19 [DEBUG]Internal behaviour:

Link:

activation at (reportExAp.xml:1):starting

Time:

02:34:19 [DEBUG]Internal behaviour:

Root:

activation at (reportExAp.xml:1):starting

Time:

02:34:19 [DEBUG]Internal behaviour:

Root:

activation at (reportExAp.xml:1):finished

Time: 02:34:19

[DEBUG] Event:

Added DOM listener to (

reportExAp.xml:0) for event: 4

Time:

02:34:19 [DEBUG]Internal behaviour:

Link:

activation at (reportExAp.xml:1):finished

113

49

50

51

52

53

54

55

56

57

58

59

60

61

62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
e
78
79

Time: 02:34:19 [DEBUG]Event: Link for: MHEG Event: 4(
src: (reportExAp.xml:0) type: 4 data: null) Fired.
Time: 02:34:19 [DEBUG]Event: Link for: MHEG Event: 4(
src: (reportExAp.xml:0) type: 4 data: null)
Executing.
Time: 02:34:19 [DEBUG]Elementary Action: Application:
transitionTo at (reportExAp.xml:0):started
Time: 02:34:19 [DEBUG]Elementary Action: Application:
transitionTo at (reportExAp.xml:0):deactivating non
shared application objects
Time: 02:34:19 [DEBUG]Internal behaviour: Link:
deactivation at (reportExAp.xml:1):starting
Time: 02:34:19 [DEBUG]Event: Removing DOM listener to (
reportExAp.xml:0) for event: 4
Time: 02:34:19 [DEBUG]Internal behaviour: Root:
deactivation at (reportExAp.xml:1):starting
Time: 02:34:19 [DEBUG]Internal behaviour: Root:
deactivation at (reportExAp.xml:1):finished
Time: 02:34:19 [DEBUG]Internal behaviour: Link:
deactivation at (reportExAp.xml:1):finished
Time: 02:34:19 [DEBUG]Elementary Action: Application:
transitionTo at (reportExAp.xml:0):deactivating
current scene
Time: 02:34:19 [DEBUG]Elementary Action: Application:
transitionTo at (reportExAp.xml:0):parsing new scene
Time: 02:34:19 [DEBUG]: Parsing document: reportExSc.
xml
Time: 02:34:19 [DEBUG]: Parsing document: Using custom
parser
Time: 02:34:20 [DEBUG]: Document parsed:reportExSc.zxml
Time: 02:34:20 [DEBUG]Elementary Action: Application:
transitionTo at (reportExAp.xml:0):activating new
scene
xxkk*x*xkActive Scene Changed : kkkkkxx k%%
*xx MHEGScene***
Ref: (reportExSc.xml:0)
RunStat:false
AvailStatus:false
Info:No info
OnStartup: null
OnCloeDown: null
Items:
x MHEGLink***
Ref:(reportExSc.xml:3)
RunStat:false
AvailStatus:false
InitActive: true
Shared: false
Type: 8

114

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103

104

106

107

108

109

110

111

112

113

114

115

116

117

118

119

Source: (reportExSc.xml:0)

Effect:
*xx MHEGAction**x*
Elementary actions:
*xok Quit *k*
Target: (reportExAp.xml:0)
**x MHEGLink **x*

Ref: (reportExSc.xml:2)
RunStat:false
AvailStatus:false
InitActive: true
Shared: false
Type: 4
Source: (reportExSc.xml:0)
Effect:
*xx MHEGAction*x*x*
Elementary actions:
xxxSetValue***
Target: (reportExSc.xml:1)
New value: GenericlInteger
10000
x*xxSet Timer ***
Target: (reportExSc.xml:0)
Tag: GenericlInteger: 1
value: GenericInteger: Indirect
Ref: (reportExSc.xml:1)
Absolute time: null
*xx MHEGIntegerVariable**x*
Ref:(reportExSc.xml:1)
RunStat:false
AvailStatus:false
InitActive: true
Shared: false
Value: 2000
ok ok ok K K ok K K ok K oK kK ok K ok K K ok K K kK K kK K K K
Time: 02:34:20 [DEBUG]Internal behaviour: Group:
Preparation at (reportExSc.xml:0):starting
Time: 02:34:20 [DEBUG]Internal behaviour: Root:
Preparation at (reportExSc.xml:3):starting
Time: 02:34:20 [DEBUG]Internal behaviour: Ingredient:
content preparation at (reportExSc.xml:3):starting
Time: 02:34:20 [DEBUG]Internal behaviour: Ingredient:
content preparation at (reportExSc.xml:3):finished
Time: 02:34:20 [DEBUG]Internal behaviour: Root:
Preparation at (reportExSc.xml:3):finished
Time: 02:34:20 [DEBUG]Internal behaviour: Root:
Preparation at (reportExSc.xml:2):starting
Time: 02:34:20 [DEBUG]Internal behaviour: Ingredient:
content preparation at (reportExSc.xml:2):starting

115

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

137

138

139

140

141

142

143

Time: 02:34:20 [DEBUG]Internal behaviour: Ingredient:
content preparation at (reportExSc.xml:2):finished

Time: 02:34:20 [DEBUG]Internal behaviour: Root:
Preparation at (reportExSc.xml:2):finished

Time: 02:34:20 [DEBUG]Internal behaviour: Root:
Preparation at (reportExSc.xml:1):starting

Time: 02:34:20 [DEBUG]Internal behaviour: Ingredient:
content preparation at (reportExSc.xml:1):starting

Time: 02:34:20 [DEBUG]Internal behaviour: Ingredient:
content preparation at (reportExSc.xml:1):finished

Time: 02:34:20 [DEBUG]Internal behaviour: Root:
Preparation at (reportExSc.xml:1):finished

Time: 02:34:20 [DEBUG]Internal behaviour: Root:
Preparation at (reportExSc.xml:0):starting

Time: 02:34:20 [DEBUG]Internal behaviour: Root:Content
Preparation at (reportExSc.xml:0):called

Time: 02:34:20 [DEBUG]Internal behaviour: Root:
Preparation at (reportExSc.xml:0):finished

Time: 02:34:20 [DEBUG]Internal behaviour: Group:
Preparation at (reportExSc.xml:0):finished

Time: 02:34:20 [DEBUG]Internal behaviour: Group:
activation at (reportExSc.xml:0):starting

Time: 02:34:20 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:0):starting

Time: 02:34:20 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:0):finished

Time: 02:34:20 [DEBUG]Internal behaviour: Link:
activation at (reportExSc.xml:3):starting

Time: 02:34:20 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:3):starting

Time: 02:34:20 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:3):finished

Time: 02:34:20 [DEBUG]Event: Added DOM listener to (
reportExSc.xml:0) for event: 8

Time: 02:34:20 [DEBUG]Internal behaviour: Link:
activation at (reportExSc.xml:3):finished

Time: 02:34:20 [DEBUG]Internal behaviour: Link:
activation at (reportExSc.xml:2):starting

Time: 02:34:20 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:2):starting

Time: 02:34:20 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:2):finished

Time: 02:34:20 [DEBUG]Event: Added DOM listener to (
reportExSc.xml:0) for event: 4

Time: 02:34:20 [DEBUG]Internal behaviour: Link:
activation at (reportExSc.xml:2):finished

Time: 02:34:20 [DEBUG]Internal behaviour: Variable:
activation at (reportExSc.xml:1):starting

116

144

145

146

147

148

149

150

151

152

153

154

155

157

158

159

160

161

162

163

164

165

Time: 02:34:20 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:1):starting

Time: 02:34:20 [DEBUG]Internal behaviour: Root:
activation at (reportExSc.xml:1):finished

Time: 02:34:20 [DEBUG]Internal behaviour: Variable:
activation at (reportExSc.xml:1):finished

Time: 02:34:20 [DEBUG]Event: Link for: MHEG Event: 4(
src: (reportExSc.xml:0) type: 4 data: null) Fired.

Time: 02:34:20 [DEBUG]Event: Link for: MHEG Event: 4(
src: (reportExSc.xml:0) type: 4 data: null)
Executing.

Time: 02:34:20 [DEBUG]Elementary Action:
IntegerVariable:SetValue at (reportExSc.xml:1):
executing

Time: 02:34:20 [DEBUG]Elementary Action: Variable:
SetValue at (reportExSc.xml:1):executed

Time: 02:34:20 [DEBUG]Elementary Action: Scene:SetTimer

at (reportExSc.xml:0):started with tag:1 val
10000 absTime:false

Time: 02:34:20 [DEBUG]Elementary Action: Scene:SetTimer

at (reportExSc.xml:0):Scheduled

Time: 02:34:20 [DEBUG]Internal behaviour: Group:
activation at (reportExSc.xml:0):finished

Time: 02:34:20 [DEBUG]Elementary Action: Application:
transitionTo at (reportExAp.xml:0):finished

Time: 02:34:20 [DEBUG]Internal behaviour: Group:
activation at (reportExAp.xml:0):finished

Time: 02:34:20 [DEBUG]: APPLICATION: Waiting until
finished

Time: 02:34:30 [DEBUG]Internal behaviour: Scene.Timerl
at (reportExSc.xml:0):Fired

Time: 02:34:30 [DEBUG]Event: Link for: MHEG Event: 8(
src: (reportExSc.xml:0) type: 8 data: 1) Fired.

Time: 02:34:30 [DEBUG]Event: Link for: MHEG Event: 8(
src: (reportExSc.xml:0) type: 8 data: 1) Executing.

Time: 02:34:30 [DEBUG]Elementary Action: Application:
quit at (reportExAp.xml:0):finishing application

Time: 02:34:30 [DEBUG]Elementary Action: Application:
quit at (reportExAp.xml:0):destroying active scene

Time: 02:34:30 [DEBUG]Internal behaviour: Group:
destruction at (reportExSc.xml:0):starting

Time: 02:34:30 [DEBUG]Internal behaviour: Root:
destruction at (reportExSc.xml:1):starting

Time: 02:34:30 [DEBUG]Internal behaviour: Root:
deactivation at (reportExSc.xml:1):starting

Time: 02:34:30 [DEBUG]Internal behaviour: Root:
deactivation at (reportExSc.xml:1):finished

Time: 02:34:30 [DEBUG]Internal behaviour: Root:
destruction at (reportExSc.xml:1):finished

117

167

168

170

171

172

173

174

175

176

177

179

180

181

182

Time: 02:34:30 [DEBUG]Internal

behaviour: Root:

destruction at (reportExSc.xml:2):starting

02:34:30 [DEBUG]Internal
deactivation at (reportExSc
Time: 02:34:30 [DEBUG]Event:

Time:

Time:

deactivation at (reportExSc.

Time:
deactivation at (reportExSc
Time: 02:34:30 [DEBUG]Internal
deactivation at (reportExSc

behaviour: Link:

.xml:2):starting
Removing DOM listener to (
reportExSc.xml:0) for event:

4
02:34:30 [DEBUG]Internal behaviour: Root:
xml:2):starting
02:34:30 [DEBUG]Internal behaviour: Root:

.xml:2):finished

behaviour: Link:

.xml:2):finished

behaviour: Root:

behaviour: Root:

Time: 02:34:30 [DEBUG]Internal

destruction at (reportExSc.xml:2):finished
Time: 02:34:30 [DEBUG]Internal

destruction at (reportExSc.xml:3):starting
Time: 02:34:30 [DEBUG]Internal

deactivation at (reportExSc
Time: 02:34:30 [DEBUG]Event:

02:34:30 [DEBUG]Internal
deactivation at (reportExSc
Time: 02:34:30 [DEBUG]Internal
deactivation at (reportExSc

Time:

behaviour: Link:

.xml:3):starting
Removing DOM listener to (
reportExSc.xml:0) for event:

8

behaviour: Root:

.xml:3):starting

behaviour: Root:

.xml:3):finished

Time: 02:34:30 [DEBUG]Internal behaviour: Link:
deactivation at (reportExSc.xml:3):finished
Time: 02:34:30 [DEBUG]Internal behaviour: Root:
destruction at (reportExSc.xml:3):finished
Time: 02:34:30 [DEBUG]Internal behaviour: Root:
destruction at (reportExSc.xml:0):starting
Time: 02:34:30 [DEBUG]Internal behaviour: Group:

184

185

186

187

189

190

deactivation at (reportExSc
Time: 02:34:30 [DEBUG]Internal
deactivation at (reportExSc
Time: 02:34:30 [DEBUG]Internal

deactivation at (reportExSc.

Time: 02:34:30 [DEBUG]Event:
02:34:30 [DEBUG]Internal
deactivation at (reportExSc
Time: 02:34:30 [DEBUG]Internal
deactivation at (reportExSc
Time: 02:34:30 [DEBUG]Internal
deactivation at (reportExSc
Time: 02:34:30 [DEBUG]Event:

Time:

Time: 02:34:30 [DEBUG]Internal

deactivation at (reportExSc.

118

.xml:0):starting

behaviour: Root:

.xml:1):starting

behaviour: Link:
xml:2):starting

Removing DOM listener to (
reportExSc.xml:0) for event:

4

behaviour: Root:

.xml:2):starting

behaviour: Link:

.xml:2):finished

behaviour: Link:

.xml:3):starting
Removing DOM listener to (
reportExSc.xml:0) for event:

8
behaviour: Root:
xml:3):starting

191

192

194

195

196

197

02:34:30 [DEBUG]Internal
deactivation at (reportExSc
Time: 02:34:30 [DEBUG]Internal
deactivation at (reportExSc
Time: 02:34:30 [DEBUG]Internal
deactivation at (reportExSc

Time:

behaviour: Link:

.xml1:3):finished

behaviour: Root:

.xml:0):starting

behaviour: Root:

.xml1:0):finished

Time: 02:34:30 [DEBUG]Internal behaviour: Group:
deactivation at (reportExSc.xml:0):finished

Time: 02:34:30 [DEBUG]Internal behaviour: Root:
destruction at (reportExSc.xml:0):finished

Time: 02:34:30 [DEBUG]Internal behaviour: Group:
destruction at (reportExSc.xml:0):finished

Time: 02:34:30 [DEBUG]Elementary Action: Application:

quit at (reportExAp.xml:0):destroying active

198

200

201

202

203

204

205

206

207

208

210

211

212

213

214

application
Time: 02:34:30
destruction
Time: 02:34:30
destruction

[DEBUG] Internal behaviour: Group:
at (reportExAp.xml:0):starting
[DEBUG] Internal behaviour: Root:
at (reportExAp.xml:1):starting

Time: 02:34:30 [DEBUG]Internal
deactivation at (reportExAp
Time: 02:34:30 [DEBUG]Event:
Time: 02:34:30 [DEBUG]Internal
deactivation at (reportExAp
Time: 02:34:30 [DEBUG]Internal
deactivation at (reportExAp

behaviour: Link:

.xml:1):starting
Removing DOM listener to (
reportExAp.xml:0) for event:

4

behaviour: Root:

.xml:1):starting

behaviour: Link:

.xml:1):finished

behaviour: Root:

behaviour: Root:

Time: 02:34:30 [DEBUG]Internal

destruction at (reportExAp.xml:1):finished
Time: 02:34:30 [DEBUG]Internal

destruction at (reportExAp.xml:0):starting
Time: 02:34:30 [DEBUG]Internal

deactivation at (reportExAp.

02:34:30 [DEBUG]Internal
deactivation at (reportExAp
Time: 02:34:30 [DEBUG]Internal
deactivation at (reportExAp
Time: 02:34:30 [DEBUG]Event:

Time:

Time:

deactivation at (reportExAp.

Time:

deactivation at (reportExAp.

Time:
deactivation at (reportExAp
Time: 02:34:30 [DEBUG]Internal
deactivation at (reportExAp
Time: 02:34:30 [DEBUG]Internal
deactivation at (reportExAp

119

behaviour:
xml:0):starting

behaviour: Group:

.xml:0):starting

behaviour: Link:

.xml:1):starting
Removing DOM listener to (
reportExAp.xml:0) for event:

4
02:34:30 [DEBUG]Internal behaviour: Root:
xml:1):starting
02:34:30 [DEBUG]Internal behaviour: Link:
xml:1):finished
02:34:30 [DEBUG]Internal behaviour: Root:

.xml:0):starting

behaviour: Root:

.xml1:0):finished

behaviour: Group:

.xml1:0):finished

Application:

215

216

217

218

219
220
221
222
223
224
225
226
227
228
229
230
231
232

234
235
236
237

239
240
241
242
243
244
245
246
247
248
249
250
251
252

254
255
256
257

259

Time: 02:34:30 [DEBUG]Internal behaviour:
deactivation at (reportExAp.xml:0):finished
Time: 02:34:30 [DEBUG]Internal behaviour:
destruction at (reportExAp.xml:0):finished
Time: 02:34:30 [DEBUG]Internal behaviour:
destruction at (reportExAp.xml:0):finished
Time: 02:34:30 [DEBUG]Elementary Action:
quit at (reportExAp.xml:0):waking up main thread
APPLICATION:

Time: 02:34:30 [DEBUG]:
Application Finished
APPLICATION TREE
x*xx MHEGApplication*x*x*
Ref : (reportExAp.xml:0)
RunStat:false
AvailStatus:false
Info:No info
OnStartup: null
OnCloeDown: null
Items:
**x MHEGLink **x
Ref:(reportExAp.
RunStat:false

xml:1)

AvailStatus:false

InitActive: true
Shared: false
Type: 4

Source: (reportExAp.xml:0)

Effect:

xx MHEGActionx*

Elementary actions:
*xx TransitionTo**x*
(reportExSc.xml:0)

OnSpawnCloseDown: null
OnRestart: null
FINISHED: true
SCENE TREE
x* MHEGScene*
Ref : (reportExSc.xml:0)
RunStat:false
AvailStatus:false
Info:No info
OnStartup: null
OnCloeDown: null
Items:
**x MHEGLink **x
Ref:(reportExSc.
RunStat:false

Target:
TransEffect:
ConnTag: null
xml:3)

120

Fini

null

Application:

Root:

Group:
Application:

shed

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283

284
285

287

288
289

291
292
293
294

296

AvailStatus:false
InitActive: true
Shared: false
Type: 8
Source: (reportExSc.xml:0)
Effect:
**xx MHEGAction*x*x*
Elementary actions:
*okok Qu it % okok
Target: (reportExAp.xml:0)
**x MHEGLink **x*
Ref:(reportExSc.xml:2)
RunStat:false
AvailStatus:false
InitActive: true
Shared: false
Type: 4
Source: (reportExSc.xml:0)
Effect:
*xx MHEGAction*x*x*
Elementary actions:
xxxSetValue***
Target: (reportExSc.xml:1)
New value: GenericlInteger
10000
*xxSet Timer **x*
Target: (reportExSc.xml:0)
Tag: GenericInteger: 1
value: GenericInteger: Indirect
Ref: (reportExSc.xml:1)
Absolute time: null
*xkx MHEGIntegerVariable**x*
Ref:(reportExSc.xml:1)
RunStat:false
AvailStatus:false
InitActive: true
Shared: false
Value: 10000

02:34:30 [DEBUG]Event: Link for: MHEG Event: 8(

(reportExSc.xml:0) type: 8 data: 1) Finished

and notifing next thread

121

Bibliography

[1]

The Arena Web Browser. Accessed at May 2001.

Available via web: http://www.yggdrasil.com/Products/Arena/.

Michael Baentsch and Peter Rosch. Weaving interactive media into
the web: The www-glass gateway. In Third international World-Wide
Web Conference, Workshop D: Interactive and Distributed Multi-Media
System on Highspeed Networks, April 1995.

R. A. Bissell and A. Eales. The set-top box for interactive purposes.
BT Technol J, 13(4):66-77, October 1995.

Dr. Thomas J. Casey. MHEG-5 technical guide. BSI, for final review

prior to publication edition, January 1998.

C. Dobbyn, D. Shrimpton, and T. Casey. Models of convergence be-
tween the world wide web and interactive television using mheg-5,

March 1999.

Marica Ehiffre, Claudio Marchisio, Pietro Marchisio, Paolo Panicciari,
and Silvia Del Rossi. Mheg-5 — aims, concepts, and implementation

issues. IEEE Multimedia, pages 84-91, January—March 1998.

Marica Ehiffre and Pietro Marchisio. A multimedia presentation sys-
tem for mheg-5 applications. Computer Standards € Interfaces, 20(4—
5):375-287, Februrary 1999.

122

8]

[9]

[10]

[11]

[15]

L. Geyer, M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and
P. Sturm. Mheg in java - integrating a multimedia standard into the
web. In Poster Proceedings 6th International World-Wide Web Con-
ference, April 1997.

Mark Grand. Patterns in Java: A Catalog of Reusable Design Patterns
HNlustrated with UML, volume first. Wiley, 1998.

Audio-Video Transport Working Group. RFC 1889: RTP: A transport
protocol for real-time applications. IETF organisation, January 1996.

Available via web: http://www.ietf.org/rfc/rfc1889.txt.

Akemi Hatayama, Katsuya Shinohara, Takao Omachi, and Sachiko
Kitawaki. A converter between mheg-5 and html 4.0. IEEE Trans-
actions on Consumer Electronics, 45(3):732-744, August 1999.

H.M.Deitel, P.J.Deitel, T.R.Nieto, T.M.Lin, and P.Sadhu. XML How
to Program. Prentice Hall Inc., 2001.

Mikko Honkala. X-Smiles 0.32: Tehnical Specification, version 1.7. X-
Smiles.org. Last document update: April 2001. Available via web:
http://www.xsmiles.org/TechSpec/TechSpecStyled.htm.

International Organisation for Standardization and International Elec-
trotechnical Commision (ISO/IEC). ISO/IEC IS 13522-5: Coding of
multimedia and hypermedia information — Part 5: Support for base-

level interactive applications, first edition, April 1997.

International Organisation for Standardization and International Elec-
trotechnical Commision (ISO/IEC). ISO/IEC CD 13522-8: Coding
of multimedia and hypermedia information — Part 8: XML Notation
of ISO/IEC 13522-5 (MHEG XML), working draft edition, December
1999.

123

[16]

[18]

[21]

[22]

23]

[24]

Eckhart Kppen and Gustaf Neumann. A practical approach towards
active hyperlinked documents. Computer Networks and ISDN Systems,
30(1-7):251-258, April 1998.

T. Berners Lee, R. Fielding, U.C. Irvine, and L. Masinter. RFC 2396:
Uniform Resource Identifiers (URI): Generic Syntaz. TETF organisa-
tion, August 1998. Available via web:
http://www.ietf.org/rfc/rfc2396.txt.

Mark McManus. Dynamic navigation with dom. taking advantage of
the document object model. Web techniques magazine, 3(3), March

1998.

The mnemonic project. Accessed at May 2001.

Available via web: http://www.mnemonic.org/.

The mozilla organization. Mozilla browser. Accessed at May 2001.

Available via web: http://www.mozilla.org/.

NCSA. NCSA Mosaic. Accessed at: May 2001. Accessed at May 2001.
Available via web: http://archive.ncsa.uiuc.edu/SDG /Software/Mosaic.

SUN microsystems. HotJava TM Browser Product Family. Accessed at
May 2001.

Available via web: http://java.sun.com/products/hotjava/index.html.

Vedhagiri Valliappan, David Shrimpton, Chris Dobbyn, and Tom
Casey. Transforming web pages for interactive tv using xsl. In ICMFE
2001, IEEE International conference on Multimedia and Expo, Tokyo,
August 2001.

W3C (MIT, INRIA, Keio). Amaya W3C’s editor/browser. Accessed at
May 2001.

Available via web: http://www.w3.org/Amaya/.

124

[25]

[26]

[29]

[31]

[32]

W3C (MIT, INRIA, Keio). REC-smil-19980615: Synchronized Multi-
media Integration Language (SMIL) 1.0 Specification, first edition, June
1998. Available via web: http://www.w3.org/TR/REC-smil/.

W3C (MIT, INRIA, Keio). XSL Transformations (XSLT) Ver-
sion 1.0 Recommendation, November 1999. Available via web:

http://www.w3.org/TR/xslt/.

W3C (MIT, INRIA, Keio). Document Object Model (DOM)
Level 2 Core Specification, November 2000. Available via web:
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/.

W3C (MIT, INRIA, Keio). Document Object Model (DOM) Level 2
Events Specification, first edition, November 2000.
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/.

W3C (MIT, INRIA, Keio). Document Object Model (DOM)
Level 2 Views Specification, first edition, November 2000.
http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113/.

W3C (MIT, INRIA, Keio). Extensible Markup Language (XML) 1.0
recommendation, second edition, October 2000. Available via web:

http://www.w3.org/TR/2000/ REC-xml-20001006.

W3C (MIT, INRIA, Keio). XML Protocol Abstract Model working draft,
July 2001. Available via web: http://www.w3.org/TR/2001/WD-
xmlp-am-20010709/.

X-Smiles.org. X-Smiles, an open XML browser for exotic devices. Ac-
cessed at May 2001.

Available via web: http://www.xsmiles.org/.

125

