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1 Introduction

The Iowa Gambling Task (IGT) (Bechara et al., 2000a) is an experimental paradigm developed by An-

toine Bechara et al. in the Department of Neurology at the University of Iowa College of Medicine. The

task was originally designed to elucidate some of the particular deficits found in patients with bilateral

ventromedial prefrontal cortex lesions (VMF). The IGT is a reinforcement learning problem, in that

participants must learn from rewards and punishments, to evaluate the choice of action. Our aim is to

find valuation functions, which describe the normative behaviour found in human groups on the IGT,

using models based onε-greedy methods (Sutton and Barto, 1998). The IGT attempts to mimic real

world decision making, where the outcome of choices and strategies have an element of immediate and,

particularly, long-term uncertain consequences. The task contains four decks, two of which are good

(advantageous) and two of which are bad (disadvantageous). Players need to, through selection, learn

which decks are best. Initially, the bad decks are seemingly the best, as they offer higher immediate

reward but higher uncertain losses, which only becomes evident after some selections. But as the task

progresses, normal healthy humans learn that the best decks are those which offer smaller immediate

rewards, but also lower uncertain punishments, whereas VMF patients seem unable to fully use this

distinction.

The paradigm has been used as a method for distinguishing aspects of decision making deficits in

VMF patients compared to normal healthy controls (Bechara et al., 1994, 1997, 1999, 2000a; Fellows

and Farah, 2005), and with various other frontal lesion patient groups (Manes et al., 2002; Fellows and

Farah, 2005; Clark et al., 2003), including patients with unilateral VMF lesions (Tranel et al., 2002).

The IGT has additionally been used to examine differences in performance between healthy controls

and behaviour in substance abusers (Bechara and Damasio, 2002a; Bechara et al., 2002b; Grant et al.,

2000), psychopaths (Schmitt et al., 1999), schizophrenics (Shurman et al., 2005), and patients with other

brain diseases, including Parkinson’s and Huntington’s (Stout et al., 2001).

VMF patients and healthy controls act quite differently on the task, with normal controls developing

an advantageous strategy. Whereas, VMF patients act disadvantageously, and fail to sustain an advanta-

geous strategy. An overall advantageous strategy has been described as having a net score greater than 0

across all 100 trials, or disadvantageous when less than 0 (Bechara et al., 1998). We add the criterion that

the mean score should be significantly different from random. This allows a simple definition of strate-



gies: advantageous, random and disadvantageous. (A disadvantageous strategy is one with a negative

net score (i.e. below zero), and significantly different from the actions of a random agent.) To prevent

confusion, we describe a random strategy as a binomial distribution of net scores. This is possible, be-

cause even though there are usually four choices, net scores only differentiate between advantageous and

disadvantageous choices. The net score is calculated by adding up the number of advantageous choices,

selections from decks C and D, and subtracting the number of disadvantageous choices, from the other

two decks, A and B (net score = (C+D) - (A+B)). Participants’ net scores are often broken down into

5 blocks of 20 selections, to show how they evolve over the course of the task (Bechara et al., 2000a).

This is the format that will be used in this paper. (Further details of the IGT can be found in Section 2).

Additionally, skin conductance responses (SCRs) have been recorded during the task and these have

been considered strong evidence for the somatic marker theory proposed by Damasio (1994). It has been

found that, as the task progresses, during deliberation of the next choice of deck, normal human controls

begin to generate anticipatory SCRs (SCRs taken for the 5 second period before a choice is actioned)

and that they are higher when that deliberation ends with selection of a disadvantageous choice (decks,

A or B), compared to an advantageous selection (decks, C and D). This is considered further in section

2.1.

This is seemingly a classic reinforcement learning problem, which we are examining, using theε-

greedy action-value method (Sutton and Barto, 1998), to see if we can recreate the two data sets, i.e. how

do the parameter settings vary according to the data set we are trying to reproduce? This could help us

infer further possible mechanisms found in normal controls, and how these mechanisms can be altered

to create VMF patient profiles. It should also help us better understand the structure of the underlying

IGT paradigm.

2 Versions of the Iowa Gambling Task (IGT)

In the IGT, a player is initially restricted to four choices, where each choice represents a pick of the top

card from one of the four decks, this card is then discarded. In the original ABCD version of the task,

there are 40 cards per deck, and, because the total number of trials in the task is 100, it is possible for

a deck to run out. When this occurs, selections must be made from the remaining decks. This is said

to rarely occur with real subjects (Damasio, 1994). In the original ABCD version, decks A and B are



Deck A B C D
Mean ($) -25 -25 25 25

Stand. Dev. 134.6 375.0 28.0 75

Table 1: The mean amount won or lost per card selection and the standard deviation of these
amounts for each of the four decks in the original ABCD version of the IGT.

Deck E F G H
Mean ($) 25 -25 25 -25

Stand. Dev. 375.0 29.0 135.6 75

Table 2: The mean amount won or lost per card selection and the standard deviation of these
amounts for each of the four decks in the variant EFGH version of the IGT.

considered disadvantageous, because, although they give larger regular rewards of $100 per card, the

uncertain losses accrued make the decks lose $250 per 10 cards selected. However, on decks C and D,

the regular wins are just $50, but the uncertain losses are also smaller, giving an average win of $250 per

10 cards selected from either deck. Therefore, decks A and B initially seem to be the best, as the decks

are set up so the first losses in decks A and B do not occur until a few cards have been selected. Decks

A and B then become detrimental to the accruement of wealth, with a mean loss of $ -25. (For the exact

contingencies of the task see Bechara et al. (2000a).) It is important to note that decks A and B also have

the largest variance in potential wins and losses per card, making them more ‘risky’ (see table 1).

A more or less reverse version of the ABCD task has also been developed: the EFGH version

(Bechara et al., 2000a). Here, the advantageous decks are E and G, where there is a regular loss of $-100

per card and the uncertain chance of a high reward. This makes, these decks average a $250 win per 10

cards. Whereas, on decks F and H there is only a loss of $-50 per card with smaller average uncertain

wins, providing an overall average loss of $-250 for every ten cards selected in those decks. Therefore,

the EFGH version is different, not only because regular results are losses with infrequent wins, but also

as the best decks, E and G, have the greatest variance from their relevant means. This is compared to

the ABCD version, where the best decks, C and D, have the lowest variance, compared to the bad decks,

A and B. The means and standard deviations for these versions can be found in tables 1 and 2 which

clearly illustrates this difference.

The additional differences in standard deviations between decks, C and F and A and G, are due

to variations in the distributions of the amounts of potential losses and wins. But, it should be noted



that the frequency of uncertain losses and wins were consistent across corresponding decks, where the

corresponding decks are: A and G, B and E, C and F, and D and H.

The details of the computerised variants of the IGT considered, can also be found in Bechara et al.

(2000a). The first is the A’B’C’D’ variant, based on the original ABCD task, where decks A’ and B’

progressively get worse, causing increasing losses when repeatedly selected. Additionally, in this version

C’ and D’ get better, by giving decreasing uncertain losses. More precisely, in deck A’, the frequency

of punishment is increased by 10% every 10 cards. Whereas in deck B’, the magnitude rather than the

frequency of each uncertain punishment was increased by 10% every 10 cards. Parallel decreases in the

punishments were applied to decks C’ and D’: C’ had a 10% decrease in the frequency of punishment

after every 10 cards, and in deck D’ there was a matching decrease in the magnitude of loss.

A fairly similar adjustment was made to the score card for EFGH to produce the E’F’G’H’ variant

of the task. Here, in deck F’, there is a 6% decrease in the frequency of delayed/uncertain reward after

every 10 selected cards from that deck. With a corresponding decrease, in only magnitude, rather than

frequency, in uncertain reward for deck H’. In deck E’ there is a 6% increase in magnitude of reward for

each win and a matching increase in total wins in deck G’, but in G’ it is generated by increasing the

frequency of wins.

These versions were also run on a computer and so wins and losses were more abstract than in the

original ABCD and EFGH versions, where actual cards and facsimile money were used. The effect of

this on participant behaviour is difficult to assess, as no comparisons between the physical card version

and a matching computerized version, with the same contingencies and the same participant groups have

been found in the literature (the original card-based ABCD task vs. computer-based ABCD variant of

the IGT). But the healthy control profiles for the ABCD version verses the A’B’C’D’ version are similar.

Normal controls’ profiles are equally similar for the two EFGH variants, which suggests the effects of

the changing contingencies is ameliorated. A real test of the affect of the computerized abstraction is

actually difficult because normal subjects seem to learn the principles of the paradigm and so cannot

be tested on it more than once. Therefore, it would have to be tested normatively, with large groups.

Another difference in versions A’B’C’D’ and E’F’G’H’ is that there are 60 cards per deck instead of the

40 cards per deck in the ABCD and EFGH versions. This reduces the chance of decks being exhausted

during the task, which could change the number of options in later trials.



2.1 Interpretations of Variance and SCRs

Interestingly, differences in the variance of the good decks compared to the bad decks in the A’B’C’D

and E’F’G’H’ versions of the task, provides evidence against a prominent theory in the literature. An

important part of somatic-marker theory claims that anticipatory SCRs generated by normal subjects

when they are about to select a card, are the result of somatic-markers. Bechara et al. found that

when normals start selecting advantageously, their anticipatory SCRs become higher prior to picking

from bad decks than good decks. Additionally, Bechara et al. claimed that these SCRs drove decision

making, even when normal subjects did not have conscious knowledge of the contingencies of the task

(Bechara et al., 1997). This has been countered in a recent paper (Maia and McClelland, 2004), where

a more comprehensive questionnaire was used to measure the conscious knowledge of the participants.

Maia and McClelland (2004) claim that normal subjects have a fairly good knowledge of the task’s

contingencies quite early on in the game, and that it is unnecessary to claim a non-conscious biasing

of decision making to understand behaviour in the IGT. Actually, an interesting finding is that normal

subjects seemingly have a better knowledge of the task than is reflected in their behaviour: If participants

picked only from the decks they thought were best they would get higher net scores than they do. A

possible interpretation is that they always include some degree of exploration in their actions. It should

be noted that the Maia and McClelland (2004) study was with young college students rather than VMF

patient age matched controls (most VMF lesion patients would be in their 40s or older).

With this explanation, a return can be made to the discussion on differences in variance between

the good and bad decks in the two ABCD and the two EFGH versions. It has been suggested by some

researchers (Maia and McClelland, 2004; Tomb et al., 2002), that the higher anticipatory SCRs seen in

normal human subjects, when they are picking from disadvantageous decks compared to advantageous

decks, is a reflection of the higher variance in the bad decks, A and B, on the ABCD version. However,

results from Bechara et al. (2002b); Bechara and Damasio (2002a) and our explanation of variance

differences across versions, suggest that SCRs are likely to reflect more than variance alone. In the

E’F’G’H’ version (Bechara et al., 2002b), after about card 20, normal controls get higher anticipatory

SCRs for the bad decks, F and H, than for good decks, E and G. This is even though the good decks, E

and G, have the higher variance. However, the profiles for anticipatory SCRs for the good and bad decks,

in the A’B’C’D’ and the E’F’G’H’ versions, are different over time. Bechara and Damasio (2002a) and



Bechara et al. (2002b) show that for decks A’ and B’ there is a tripling in the anticipatory SCRs, after

the first 10 cards, where it remains for the rest of the task. The anticipatory SCRs for decks C’ and D’

are initially similar to those for decks A’ and B’, but remain fairly static across trials. However, in the

E’F’G’H’ version of the task, the bad decks, F’ and G’, have a smaller increase (they nearly double)

in their anticipatory SCRs, compared with those for decks A’ and B’. The increase is also much more

gradual and continues throughout the task. The profile of anticipatory SCRs over trials, for good decks,

E’ and G’, is also different from the good decks, C’ and D’, in the A’B’C’D’ variant. For the good

decks, E’ and G’, the anticipatory SCRs increase (by 50%) by the 11-20th cards, but then drops off quite

substantially (to about half their initial value), making the SCRs less for the good decks than for the bad

decks, F’ and H’. Therefore, overall, even when the good decks have the highest variance, SCRs better

reflect a valuation of which decks are good or bad. This is shown by the higher net scores during the

periods of the task when they have higher SCRs for the bad decks than the good decks. Therefore, even

though the anticipatory SCR profiles between the A’B’C’D’ and the E’F’G’H’ versions are different,

and may contain an element of evaluation of risk, the strong claim that the SCRs only represent relative

riskiness of the good and bad decks is not supported by this evidence.

3 Competing theories about VMF patient deficits

We now move to present four theories from the current literature, as the possible underlying causes for

decision making deficits of bilateral VMF lesion patients in the Iowa Gambling Task (IGT).

3.1 ‘No preferences’ - A. Sloman

In Sloman (2004), Aaron Sloman suggests that Bechara and Damasio et al.’s VMF patients have lost their

preferences and emotions. This view of ‘no preferences’ is supported by anecdotal evidence (Sacks,

1998), where a patient with large bilateral orbitofrontal cortex lesions professed to no longer having

preferences, post injury. If this argument were taken literally then one would expect VMF patient be-

haviour on the IGT, to be random (using a binomial series, with P = 0.5). This is not the case as can be

seen from table 3, where blocks 1, 4 and 5 are found to be non-random (P< 0.05) for the ABCD version

of the IGT.



3.2 Reversal learning - Rolls, Cools and Fellows

In both monkeys and humans, frontal lobe lesions have been found to cause participants to perseverate

in reversal learning tasks (Rolls et al., 1994; Rolls, 2000, 2004) and (Fellows and Farah, 2003, 2005;

Clark et al., 2004; Hornak et al., 2004). Although the patients in the Rolls et al. (1994) study had diffuse

frontal lesions, Fellows and Farah (2003, 2005)’s patients have more localised damage, with a focus

of damage in the ventromedial prefrontal cortex, confirmed by MRI. Therefore, the studies by Fellows

and Farah allow for a better comparison, in terms of lesion location, to the VMF patients described in

Bechara et al.’s studies. However, it should be noted that Bechara et al.’s VMF patients were originally

selected on the basis of their behavioural deficits as well as their lesion locations, whereas Fellows and

Farah’s VMF patients were selected on lesion location alone.

The ventromedial region of the prefrontal cortex includes the medial sub-region of the orbitofrontal

cortex (OFC), where the OFC also includes more lateral areas. The orbitofrontal cortex is strongly

connected with reward and representations of stimulus-reinforcement associations. In monkeys, the

orbitofrontal is important as a secondary olfactory association cortex, which represents the reward value

of stimuli (Rolls, 2004).

3.2.1 Edmund T. Rolls - ‘Emotions’, reversal learning and the OFC

Rolls has related emotions and reversal learning. “For emotional behaviour, rapid learning is clearly

important. For some types of emotional behaviour, rapid relearning of the reinforcement value of a

stimulus may be useful.” (Rolls, 1999).

From his monkey studies, Rolls has learnt from single cell recordings that neurons in inferior tem-

poral cortex only recognise objects, but not there reward value. This he learnt by putting monkeys

through a reversal task, where he found the response in the single neurons did not change with stimulus-

reinforcement associations being reversed. Additionally, neurons in inferior temporal cortex are not

affected by satiety.

An important discovery by Rolls has been in differentiating between ‘wanting a food’ and ‘what

a food is’, which are represented in monkeys’ secondary and primary taste cortices, respectively. The

differences between these taste cortices is that satiety affects the responses of taste neurons in secondary

taste cortex, but not in primary taste cortex. In that, hunger modulates the reward value of taste. This



is similar to reported reductions in pleasantness of odour produced by feeding to satiety, in humans.

Secondary taste cortex is also found in the orbitofrontal cortex.

Rolls has made single cell recordings in the OFC of monkeys, and found that areas associated with

visual inputs of ‘what’, from the ventral stream, change their spiking rate during reversal of a visual im-

age and a primary reinforcer, a sweet or aversive (saline) taste/food. In taste regions, whenS+ changes

to S−, we get a decrease in spiking rate, and, an opposing increase, when a stimulusS− becomesS+.

This creates a positive correlation between firing rates in OFC visual neurons, and behaviour. In contrast,

in an olfactory to taste reversal, whenS+ stimulus goes toS−, the reversal causes an increased spik-

ing rate. There is a negative correlation between spiking rate in olfactory OFC neurons and behaviour.

But the reversal is slower. Rolls has found that in orbitofrontal olfactory regions 35% of neurons, in

non-human primates, represent the reward value of olfactory stimuli (wanting). The other 65% were

not influenced by whether an odour was associated with a glucose or saline taste (what). “An important

principle in the representation of reward in the orbitofrontal cortex is that not only is there a detailed rep-

resentation of different rewarding stimuli (including olfactory, taste, visual and textural stimuli), but also

the reward value of each stimulus is updated continually” Rolls (2000). It has also being found that in

the OFC, visual and taste pathways converge on the same neurons. The amygdala shares some of these

functions, but seems to be slower at responding than the OFC, and is involved in learning associations

between neutral stimuli and primary reinforcers (but not secondary reinforcers, like the OFC).

3.2.2 Lesley Fellows

In some ways Rolls’ work sets the scene for the recent work of Lesley Fellows (Fellows and Farah,

2003, 2005), which provides a good case for reversal learning being the cause of VMF patients IGT

deficit, and their wider real life behavioural problems. Fellows and Farah (2003) tested VMF patients

on a simple reversal learning task, where participants could select from one of two decks. One deck

provided the positive stimulus (S+), which gives $50, the other was the negative stimulus (S−), which

when selected, lost the partcipant $-50. Initially,S+ is allocated randomly to a deck, and the other

deck becomesS−. Learning of the stimuli is considered to have occurred when 8 consecutive selections

(learning criterion) of theS+ have been made. The number of mistakes/errors (an error is whenS− is

selected) made before this initial learning are called the ‘learning errors’. After this initial learning has



taken place then a reversal of the stimuli-reinforcement association occurs, in that, the deck which was

S+ becomesS−, and vice versa for the other deck. The contingencies remain the same until the learning

criterion is achieved again (S+ has been selected 8 times in a row, without mistake), causing another

reversal. The task continues until 50 card selections have been made. This allows for a maximum of 5

reversals.

The results of the study (Fellows and Farah, 2003), found neither patients with dorsolateral prefrontal

(DLPFC) or VMF lesions were significantly affected in their initial stimulus-reinforcement learning.

However, ventromedial prefrontal damage selectively impaired reversal learning. VMF patients made

twice as many errors as normal healthy controls (NHCs) during the reversal phase of the task.

Additionally, Fellows and Farah found reversal learning deficits were negatively correlated with a

measure of day-to-day behavioural deficits, described using the Instrumental Activities of Daily Living

(IADL) scale (Gallo et al., 2000), where scores range from 7 (dependent in all domains) to 21 (fully

independent). However, her study shows that this reversal learning deficit may be restricted to lesions in

the medial area of the orbitofrontal cortex. The patients with the severest reversal learning deficits have

a mean focus of lesions in the ventromedial prefrontal area of their left hemispheres. Whereas, Bechara

et al.’s VMF patients had a slightly greater focus of damage in the right hemisphere; both groups’ VMF

lesions are fairly bilateral, but the damage is probably more extensive in Bechara et al.’s VMF patients.

It must be noted that this is only a qualitative analysis of the lesion overlaps found in the literature. As

a general note, patients with VMF lesions often have damage that may also involve the basal forebrain

and the genu (knee-like bend or curved part) of the corpus callosum, Fellows (2005).

3.2.3 Comparing Fellows and Farah (2005)’s VMF patients and Bechara et al.’s VMF patients

on the IGT

To further elucidate whether VMF patients’ deficits in the IGT are caused by a more fundamental reversal

learning problem, Fellows and Farah (2005) tested 9 VMF patients on the original ABCD version of the

IGT and on a ‘shuffled’ version of the task. The ‘shuffled’ version of the task removes the reversal in

contingencies found in the original ‘unshuffled’ ABCD variant of the task, by rearranging the original

score card (see Bechara et al. (2000a)). In the ‘shuffled’ variant (Fellows and Farah, 2005), cards 1-8

from all decks (A, B, C and D) are placed at the bottom of their respective decks. Then, additionally,



in deck B, cards originally numbered 11 and 14 are swapped. From figure 1, it can be seen that this

creates two big losses ($-1250), within the first three cards of deck B. This compares to there originally

being one of these large losses, the largest possible in the original ABCD version of the IGT, every 10

cards. This makes both deck A and especially deck B seem disadvantageous from the begining of the

‘shuffled’ variant of the task. Therefore, there is no reversal, but the patients would still have to manage

uncertain results against regular results. It also allowed the re-testing of the dissociation of ability to

learn the initial stimulus-reinforcement, compared with reversal learning, in VMF patients (Fellows and

Farah, 2003)

Before we can fully consider Fellows and Farah (2005)’s data, it is important to note some differ-

ences in performance and lesion location between her patients, and those found in the Bechara et al.

studies (Bechara, 2004; Bechara et al., 2000b, 1999). When comparing the VMF profiles in Fellows and

Farah (2005) vs. the amalgamation of data found in table 3, the data points are found to be significantly

different in blocks 1 and 5 (block 1, t = 2.27, P< 0.05; block 5, t =2.36 P = 0.02), on the ‘unshuffled’

original ABCD version. A test of overall significance, comparing total net scores between the two sets

of data, shows they are significantly different (t = 2.08, P< 0.05). Also, possibly most importantly,

Fellows’ VMF patients seem to improve at the task over time, although this is mainly a qualitative

assessment, as only block 1 is significantly different from a random binomial series, and the overall

increase in net score is small (4 points in 5 blocks). When Fellows and Farah’s ‘unshuffled’ ABCD

IGT VMF profiles are compared to those of Bechara et al.’s normals and VMF patients, then we notice

that Fellows and Farah’s VMF patients do not learn the initial stimulus-reinforcement associations, as

well. This is not what one would expect from the results of the simple reversal learning task (Fellows

and Farah, 2003). This is also the case with Fellows and Farah (2005)’s normals, who pick more from

the advantageous decks in block 1 of the task, for some of which decks, A and B, are actually the best

decks (Maia and McClelland, 2004). In Bechara et al.’s studies, normals (also normals in Clark et al.

(2003), net score = -6, in block 1) and VMF patients, select more from decks A and B, than C and D in

block 1 (see table 3, VMF net score = -4.7, in block 1), which is actually the best strategy for the early

selections, until the reversals. Therefore, it seems that the initial stimulus-reinforcement learning ability

shown in the simple reversal learning task (Fellows and Farah, 2003), does not fully follow into the IGT

for Fellows and Farah’s VMF patients, but is present in Bechara et al.’s VMF patients. Although, if all



these results are based on normative comparisons, then Fellows and Farah’s VMF patients do act more

similarly to their normative group of NHCs (Normal Healthy Controls), than to the normative groups

found in Bechara (2004); Bechara et al. (2000b, 1999); Clark et al. (2003). But in block 1, Fellows and

Farah’s normals are significantly different from the normals taken in the Clark et al. (2003) and Bechara

et al.’s studies (P< 0.001, t = 3.92). Fellows and Farah’s VMF patients act randomly, like they have ‘no

preferences’, a deficit present in Sloman (2004)’s description of VMF patient’s problems, and similar

to Sacks (1998)’s case study description of a patient with severe bilateral damage to the orbitofrontal

cortex, who had ‘no preferences’.

When examining the MRI data, differences lie in the main overlap of lesions across patients in

each group. Bechara et al.’s VMF patients seem to have a greater overlap in the right VMF compared

to a greater focus in the left VMF for Fellows and Farah’s patients, although this cannot be stated

conclusively from the literature, as Bechara et al.’s papers only distinguish a maximum overlap as 4 or

more patients. This is unlike Fellows who distinguishes between a complete scale of 1 - 10 possible

patient overlaps, which covers the 7 VMF patients with the worst reversal learning deficits (errors≥ 9).

In imaging studies (Kringelbach et al., 2003; O’Doherty et al., 2000), it has been found that activity

in regions of the caudal OFC reflect current reward value of either a taste or odour, rather than the

unvarying features of the stimulus. Therefore, if this region is damaged one might expect a reduction in

preference.

Performance of Fellows and Farah’s VMF patients in the ‘unshuffled’ (original) ABCD IGT, could

be seen as random (‘no preference’), or slow improvement. This differs from their performance on the

‘shuffled’ ABCD IGT, as their performance is not significantly different from normal healthy controls

(Fellows and Farah, 2005). Again, as in the ‘unshuffled’ ABCD version, Fellows’ VMF patients only

slightly improve their net scores over the five blocks in the ‘shuffled’ version. Although an improvement

in net score is less warranted in the ‘shuffled version’, as the contingencies change less. Therefore,

a possible description of Fellows and Farah’s VMF patients’ performance could be that they, more or

less, stick to their initial stimulus-reinforcement assessment and change it very little, rather than having

‘no preferences’. Overall, Fellows and Farah (2005) do seem to provide strong evidence for reversal

learning being the underlying deficit in VMF patients poor ‘unshuffled’ ABCD IGT performance. Fel-

lows and Farah’s VMF patients have a mean selection of advantageous cards in the high 60s and the



normal controls select on average in the low 70s from decks C and D in the ‘shuffled’ version of the

IGT. However, as mentioned before, performance in the IGT differs both qualitatively and statistically,

between Bechara et al.’s VMF patients and those in Fellows and Farah’s studies. This could be due to

fundamental differences in the patients’ deficits or simply a sampling problem. It has been noted that

researchers often believe, that the probability of successfully repeating experimental results, with differ-

ent samples, especially small ones, is relatively high (Kahneman et al., 1982). This has been described

as the ‘belief in the law of small numbers’ (Kahneman et al., 1982), and is the strongly held belief found

among both lay people and experienced researchers, that even small samples will be representative of

the populations from which they come. This is a statistically weak belief, but is sometimes unavoidable

in specific patient groups, where injuries or diseases are rare.

3.2.4 Lateral differences in lesion location as a cause of differences in VMF behaviour between

study groups (Fellows and Farah vs. Bechara et al.) on the IGT

The lateral effects of damage to the ventromedial prefrontal cortex have been investigated. In a small

study (n = 7) (Tranel et al., 2002), patients with unilateral VMF lesions (left n = 3, right n = 4) were tested

on the IGT. It was found that those with predominantly right hemisphere VMF damage performed more

like those with bilateral VMF damage. Whereas, the patients with predominantly left hemisphere VMF

damage, performed more like normal healthy controls. Deficits in IGT performance, laterality of VMF

damage, emotional processing and personality, and social conduct were all correlated. The patients with

right hemisphere VMF lesions were not gainfully employed and scored the maximum score 3 (worst)

in most dimensions of social conduct and met the criteria for ‘acquired sociopathy’, using the ‘Iowa

Scales’ (Barrash et al., 2000). (A measure of changes to emotional functioning and personality that oc-

cur following brain injury, with specificity to VMF lesions.) The ‘Iowa Scales’ “... identify a core set of

disturbances: (1) general dampening of emotional experience (impoverished emotional expressiveness,

apathy, and inappropriate affect); (2) poorly modulated emotional reactions (poor frustration tolerance,

irritability, lability); (3) disturbances in decision making, especially in the social realm (indecisiveness,

poor judgement, inflexibility, social inappropriateness and insensitivity or lack of empathy); (4) distur-

bances in goal-directed behaviour (problems in planning, initiation, persistence, and behavioural rigidity

or non-spontaneity); (5) a striking lack of insight into these personality changes” (Tranel et al., 2002).



These changes are judged by people who have known the patients for some time prior and post brain

injury.

The patients with predominantly left sided damage scored 1 (scores run from 1 to 3, 1 = no change

or impairment, 2 = moderate change or impairment, 3 = severe change or impairment, since brain in-

jury) for each of the aspects of social conduct tested, all were in gainful employment, were normal in

emotional processing and personality as tested by the ‘Iowa Scales’ and only had a small deficit on the

IGT compared to normals in blocks 4 and 5. Social conduct was tested in the following four domains

(Tranel et al., 2002): social status, which was defined as an alteration in the patient’s financial security

and/or peers’ judgement of social attainment; employment status, i.e. alteration in patients’ occupation;

interpersonal functioning i.e. normal social relationships with significant others, such as friends and

family and clinical rating, which were from multiple sources, e.g. interview data, neuropsychological

test performance, etc. In contrast, those with predominantly right hemisphere damage averaged 3 for all

of the social conduct domains, performed disadvantageously on the IGT, had ‘acquired sociopathy’ and,

as previously mentioned, were not gainfully employed.

Although this is a very small study, it is somewhat supported by a much larger study, which was

less lesion specific, with these frontal patients only showing limited damage to the medial prefrontal and

orbitofrontal cortex (Clark et al., 2003). Clark et al. (2003) found that, across all blocks, frontal patients

with right frontal lesions chose more from the disadvantageous decks, A and B, than decks C and D.

However, left frontal patients selected slightly more from the advantageous decks, C and D. Both profiles

are similar to results for left and right VMF lesions in the Tranel et al. (2002) study. However, lateral

effects were not present when the Clark et al. (2003) patients were tested on the Cambridge Gamble

Task and the Risk Task which are tests that breakdown some of the multiple aspects of the IGT.

Interestingly, the Tranel et al. (2002) data for patients with left hemisphere VMF lesions on the IGT

is somewhat similar to those for bilateral VMF patients in Fellows and Farah (2005) and Clark et al.

(2003)’s left frontal patients. Initial stimulus-reinforcement learning in the IGT is well preserved in

Tranel et al. (2002) study (net score = -5, in block 1), but less so in the Fellows and Farah (2005) (net

score = -2, in block 1) and Clark et al. (2003) (net score = -2, in block 1) studies. In that, as suggested

by Maia and McClelland (2004) and Fellows and Farah (2005), in the initial part of the original ABCD

IGT, from what is known, the best cards to select are A and B and not C and D. This can be seen in



figure 5. When only a few cards have been selected from each deck (probably block 1) then decks, A

and B, are the most rational choice. It only remains advantageous (in terms of mean result) to select

from deck A for the first 3 cards, then becomes disadvantageous for the 4th selection and advantageous

again for selection 5 in that deck, but after that, it is no longer better than either decks C or D. However,

for deck B, being the best deck (in terms of mean result) continues until the 9th selection from that deck,

after which it is never on average best to select from deck B again (see figure 5). Therefore, both VMF

patients in Fellows and Farah (2005) (Block 1 net score = -2) and those with left hemispheric VMF

damage in Tranel et al. (2002) (block 1 net score = -5), both begin (block 1) with a negative net score,

which is initially rational, but steadily improve their performance across the proceeding blocks, ending

up with a positive net score (Tranel et al. study, block 5 net score = 4, and in Fellows and Farah study,

block 5 net score = 2). Both left unilateral VMF and bilateral VMF patients, although much slower than

normal controls, improve their performance.

This is unlike the profiles of the bilateral VMF patients shown in Bechara et al.’s papers, who start

by learning the initial stimulus-reinforcement normatively (net score block 1 = -4.7), then improve until

block 3 (net score = 2), but then decline in performance, ending block 5 with a negative net score

of -4.2 (see table 5). This is one of the most interesting points in Bechara et al.’s VMF data, after

seemingly having learned that decks A and B are not the best decks (block 3), bilateral VMF patients

(with most lesion overlap in the right hemisphere) reverse their behaviour, without another change in the

contingencies. (The reversal in contingencies is very likely to have occurred by block 3, card selection

40-60.) Although, they do not seem to have an obvious short-term problem with rapid reversal, which

has been described as an important function of the OFC by Edmund T. Rolls, in that, Bechara et al.’s

VMF patients rapidly stop selecting from a deck if they get a large loss, but return to these decks more

rapidly than normal healthy controls (Bechara et al., 2005).

This post block 3 reversal in net scores (net scores become negative) does not occur in the VMF

patients in Fellows and Farah (2005) (greater overlap in the left hemisphere) or for the left VMF patients

in Tranel et al. (2002). They slowly improve, or at least have a tendency to follow their initial stimulus-

reinforcement associations throughout the task, rather than improve and then get worse, as Bechara et

al.’s VMF patients do.

Therefore, the left hemisphere VMF lesion patients from Tranel et al. (2002) and Fellows and Farah



(2005)’s bilateral VMF patients seem to be most similar in overlapping focus of lesion location and

IGT performance. However, it is not so clear how personal and social behaviour correspond across these

groups. None of Tranel et al. (2002)’s left VMF patients had registered social or emotional deficits based

on the measures used in that paper, and neither did Fellows and Farah (2005)’s VMF patients as a whole

group. There is a strong correlation though with Instrumental Activities of Daily Living (IADL) and

deficits in reversal learning in Fellows and Farah (2003)’s VMF group (Spearmanρ = 0.84,P = 0.0003).

Additionally, there is a correlation between improvement in performance on the ‘shuffled’ ABCD IGT

compared to the original ‘unshuffled’ ABCD variant, and impairment in reversal learning (r = 0.53,P <

0.05).

This is good evidence that the removal of the reversal in the IGT improves performance mostly for

people with a reversal deficit, and that the reversal in the IGT is possibly their major cause of detrimental

decision making on the original ABCD IGT. The next empirical test to perform would be to test Bechara

et al.’s population on Fellows and Farah (2003)’s reversal learning task and the ‘shuffled’ version of

the IGT, to compare results. Fellows and Farah (2005) do acknowledge differences between their VMF

study group and those studied by Bechara et al.. Firstly, Fellows and Farah’s VMF patients have less

extensive lesions and have only been selected on lesion location, compared to Bechara’s VMF patients,

who’s selection was based on lesion location and impaired real life decision making. Reversal learning

in a simplistic sense, as mentioned above, is not Bechara et al.’s VMF patients’ problem with the IGT,

as they avoid punishment in the short term and do not perseverate more than normals, but return more

rapidly than normals to those punishing choices (Bechara et al., 2005). This is also the case with Fellows

and Farah’s VMF patients who also do not perseverate on the large loss in deck B, as 8 out of 9 patients

stop selecting from that deck after the $1250 loss. They also return to deck B faster than NHCs (Normal

Healthy Controls), where the mean number of selections before returning to deck B after the card 9 loss

are 10 and 4 respectively. It should also be noted, overall, Fellows and Farah’s VMF patients’ profiles on

the ‘unshuffled’ ABCD IGT only just fulfil the measure of disadvantageous behaviour with an overall

net score of -1. However, Bechara et al.’s VMF patients’ average an overall net score of -9.2.

In Fellows and Farah (2003)’s study, the VMF patients had reversal learning deficits, but not an

initial stimulus-reinforcement learning impairment. This is in line with other results which have shown

a dissociation between reversal learning and initial acquisition of a visual discrimination task. Patients



with temporal lesions have impairments in initial learning and perform as well as controls on reversals,

whereas frontal patients suffer from a reversal, and not an initial association, learning deficit (Daum

et al., 1991). The lesion location of this reversal deficit has been further linked to the ventral prefrontal

cortex. Rolls et al. (1994) found that patients with frontal damage including ventral areas were more

impaired on reversals and extinction than those frontal patients without damage in the ventral prefrontal

cortex. In the same paper, Rolls et al. found a correlation between socially inappropriate behaviour and

reversal learning deficits.

It is of interest to note that a double dissociation between reversal learning and higher-level atten-

tional set shifting has been shown in marmosets using the Intra-dimensional/Extra-dimensional (ID/ED)

shift test (Dias et al., 1996), a task designed to breakdown the component elements of the Wiscon-

sin Card Sorting Task (WCST) (Downes et al., 1989). This double dissociation is also supported by

evidence from withdrawal of L-DOPA medication from Parkinson’s suffers. It has been found that

withdrawal of medication significantly impaired performance on a task of attentional set-shifting, but

ameliorated deficits in a probabilistic reversal learning task (Cools et al., 2001). Therefore, the finding

that Bechara et al.’s VMF patients are not significantly worse than healthy controls on the WCST, does

not prove they do not have a more basic reversal learning deficit.

Evidence from single cell recordings in animals and functional neuro-imaging in humans implicates

ventral fronto-striatal circuitry in reversal learning (Clark et al., 2004). In a PET study on an analogue

of the ID/ED shift task, with separate blocks for reversal learning and attentional set-shifts, significant

changes were found in DLPFC during attentional set-shifting, and in the ventral caudate nucleus during

reversal learning (Rogers et al., 2000)

To further investigate the role of the VMF in reversal learning, there have been a couple of studies

examining probabilistic reversal learning paradigms, an event-related fMRI study on normal healthy

individuals (Cools et al., 2002) and an orbitofrontal and DLPFC lesion study (Hornak et al., 2004).

In Cools et al. (2002)’s study, significant activation changes in the right ventrolateral prefrontal cortex

(VLPFC) and the ventral striatum (VS) were found, when comparing the final reversal error, the incorrect

choice before a participant adjusts to the reversal and selects correctly again, and correct responses.

There was also significant signal change in the right VLPFC between the final reversal error, preceding

errors and probabilistic errors (those errors when a participant is told they have responded incorrectly,



when they have selected correctly, i.e. it is not a real reversal, but an event used to increase the task

complexity and introduce errors which are to be ignored). From these results it has also been suggested

that signal change in right VLPFC on the final reversal error is not dependent on the number of preceding

errors. This suggests that the signal change is due to a realization that the errors signify a reversal, not

just a probabilistic error.

citetCools2002’s suggests that “... shifting of lower-level stimulus-reward associations, as opposed

to shifting of a higher-level attentional set, is sufficient to activate the VLPFC [ventrolateral prefrontal

cortex].” A further probabilistic reversal learning study, using a paradigm which had indicated signif-

icant use of the OFC (O’Doherty et al., 2001) has been tested on patients with a variety of surgically

circumscribed prefrontal lesions. The study by Hornak et al. (2004) found patients with surgically cir-

cumscribed bilateral OFC lesions were severely impaired on the task, in that they accumulated less

money than controls. The bilateral OFC patients also perseverated (they often failed to switch choices

after a large loss), and, in contrast, often switched choices although they had just received a reward. The

study found that unilateral OFC (or medial prefrontal cortex) lesions did not cause impairments, neither

did DLPFC patients when they paid attention to all the available feedback provided in this reversal learn-

ing paradigm. Again, Hornak et al. (2004) found that initial stimulus-association was not affected by

any of the lesions presented in this study, providing more evidence for the dissociation between initial

stimulus-association learning and reversal learning.

3.3 Risk-seeking (Sanfey et al., 2003), Cambridge Gamble Task (Rogers et al., 1999)

It has been commented that the IGT has too many components to easily understand the deficit(s) present

in poor compared to good performance, where good performance is defined by normative results. There-

fore, at least two groups have attempted to further break down the IGT into simpler tests, which test more

definable abilities. The two considered here are Rogers et al. (1999) and Sanfey et al. (2003).

In Rogers et al. (1999)’s study, which introduces the Cambridge Gamble Task (which requires no

online learning, just probabilistic judgements and tests impulsivity), OFC lesion patients did not, as

often as normals and DLPFC patients, make the probabilistically most rational gamble. This suggests

risk-seeking in patients with OFC lesions, but in contrast, OFCs and DLPFCs bet at a reduced rate

compared to normal controls. Also, unlike VMF performance on the IGT, Rogers et al. (1999)’s OFC



patients improved their decision quality on their second attempt of the Cambridge Gamble Task, in that,

they picked more often from the most likely gamble when they attempted the task a second time (81%

first attempt vs. 89% second attempt).

Sanfey et al. (2003) devised a test in between the Cambridge Gamble Task and the IGT. In this test

there is no pre-set reversal, but on-line learning is required in the task, each trial is independent, and the

main aim of the task is to test attitudes towards risk (Sanfey et al. define risk as variance in returns over

time). In the Sanfey et al. (2003) task, there were five deck distributions (deck 1 = lowest risk, to deck 5

= highest risk), but on each turn only two decks were presented and picked from. This simplifies the task

in terms of less multi-tasking, a deficit evident in frontal patients (Shallice and Burgess, 1991) on the

Multiple Errands Test (Alderman et al., 2003). (Multi-tasking in this context would be to compare and

update more competing valuation functions, see models later.) The participant only had to select from

the pair on display, and then a result was shown from the 25 possible outcomes for each deck, taken

from their distributions (Sanfey et al., 2003). The 25 possible results were randomly cycled through, so

that all other possible outcomes were shown before a value could be repeated.

The two decks only differed in the variance and probability of potential results, ranging from the

NoLoss deck, where participants could not lose a point (but only won a maximum of 20 points), to the

Long-Shot deck, where there was a small probability of winning 150 points, but also a reasonable chance

of losing (up to 50 points). Overall, each deck had the same pay off over many trials. All decks had

identical expected values, in that they all on average gave 10 points per card. An example of this kind

of equivalence is: win 60 points (with 0.25 chance) or lose 20 (with 0.75 chance), giving an average pay

off of (60 x 0.25) + (0.75 x -20) = 15 - 15 = 0; or, win 150 points (with 0.2 chance) or lose 37.5 (with 0.8

chance), giving an average pay off of (150 x 0.2) + (0.8 x -37.5) = 30 - 30 = 0. However, in a single trial,

the second bet would be considered to be the most ‘risky’ in terms of potential variance in results. In their

initial analysis, Sanfey et al. (2003) found VMF patients (n=9) had no overall preference for any deck and

selected from each deck 0.5 of the time. This would support Aaron Sloman’s ‘no preference’ theory, and

is supported if the Fellows and Farah’s VMF patients’ ‘unshuffled’ decks profiles are considered alone.

Sanfey et al. (2003)’s VMF patients seemed to act randomly, whereas normals showed a preference for

lower ‘risk’ decks, with a negative correlation between selection preference and the ‘riskiness’ of the

deck. However, on further analysis, two sub-groups among the VMF patients were found. One sub-



group selected more from the risky decks, risky-VMF (n = 5) and another group, safe-VMF (n = 4),

had a preference for low risk decks (decks 1 and 2) and a dislike of the high risk decks (decks 4 and 5).

All three other groups, age matched healthy controls (n = 17), psychology students (n = 63) and frontal

patients with lesions not including the VMF (n = 4), acted similarly in their preferences to the different

decks.

Sanfey et al. (2003) have suggested that the behaviour in Bechara et al.’s VMF patients on the IGT

is due to a preference for risk. This does not seem to be the case when considering Bechara et al.’s

VMF patients across studies, because, in the EFGH variant of the IGT, VMF patients select more or

less randomly (Bechara et al., 2000a), with a net score equal to 1. One would expect the net score to

be higher as the best decks are also the ‘riskiest’. Results from the E’F’G’H’ variant (Bechara et al.,

2000a, 2002b) provides further evidence against a ‘risk-seeking’ only hypothesis, as VMF patients have

a preference for disadvantageous decks, which have lower variances than the advantageous decks. The

behaviour of these patients on the IGT is more subtle than just risk-seeking. However, the suggestion

that “... different mixtures of sub-types of VMPFC [VMF] patients were sampled in different studies”

(Sanfey et al., 2003) is possible.

The two sub-groups defined by Sanfey et al. (risky-VMF and safe-VMF), have different behaviour

profiles, but not obvious lesion location or volume differences in their VMF damage. However, the

risky-VMF group did seem to have more damage to areas in the DLPFC, particularly the left DLPFC,

compared to the safe-VMF group. However, contrary to this frontal patients in Sanfey et al. (2003) with

lesions not including the VMF, but damage in the left DLPFC (left Brodmann area 46, (BA46)), do not

show risky behaviour. This is suggestive of an interaction between VMF-DLPFC in normal ‘non-risky’

decision making, and is supported by Manes et al. (2002). In Sanfey et al. (2003)’s study they also found

apparently more bilateral damage to the frontal pole in the risky-VMF group, however one member of

the safe-VMF group also had damage in this region, making the evidence inconclusive. Another point

to mention from Sanfey et al. (2003)’s study is that some members of control groups were also risk

orientated, suggesting that this could be a phenomena influenced by the distribution of heterogenous

risk-attitudes in the general healthy population.



3.4 Myopia for future consequences - Bechara

Bechara et al. (2000a) have described the decision making behaviour of their patients, with VMF dam-

age, as displaying a ’myopia’ for future consequences. This is a view which the group have kept over the

past few years. They have found that their VMF patients act in the short term and often make decisions

which are detrimental in the long run.

4 ε-Greedy Action-Value Method

In this paper, we have tried to simulate the human and patient data from Bechara et al. (1999, 2000a);

Clark et al. (2003); Bechara and Damasio (2002a); Bechara et al. (2002b), using basic reinforcement

learning algorithms, based onε-greedy action-value methods (See p27, Sutton and Barto (1998)). The

ε in theε-greedy method signifies the probability of exploration, on each trial, whereε can take values

from 0 to 1. If ε = 0, then the algorithm is purely exploitive, and will select the choice with the highest

estimated value. Ifε = 1, then every trial is explorative, where in this set-up, each action is equiprobable.

Whether to explore or exploit is an important issue in reinforcement learning. Also, importantly, the

methods for how to explore the action space are varied and can require consideration in their own right.

Methods for exploration include random searches, explore the second best option, e.t.c.. This extends

to methods for exploitation which are usually based on predicting which action leads to the most valued

result. Prediction methods might attempt to answer questions like, which previous action among a

sequence of actions should be causally linked, with a temporally separated reward?

In the simulations considered here, either one of two simple methods are used to estimate the value

of an action. If we use the original ABCD variant of the IGT as an example to explain the methods used

in the simulation, then the possible actions are a selection of a card from one of the four decks, A,B,C or

D. The value of an action is the mean result gained when that action has been selected. This method for

valuing a possible action is calledsample-averagingand is simply the mean result gained from executing

a particular action. Therefore, through sufficient exploration, and the law of large numbers, this method,

for problems like the IGT, should achieve a level of optimal behaviour, minus the cost of exploration.

This means that, if the contingencies of the game do not change and the exploration rate is low, over

many trials, this method will become asymptotic to an optimal policy of actions for each state.



The other valuation method considered uses anerror-drivenvaluation function and is explained in

more detail in section 4.2.

If the exploration rate is high then the method should rapidly find its optimal strategy (i.e. arrive at

the correct valuation of the choices/options), as it would more often investigate the current non-optimal

strategy. Therefore, it will more rapidly discover the contingencies across all actions. The method

would also be more able to manage on-going changes, in the reward/punishment schedules of the task.

However, if the contingencies are slow to change, or do not change, then a high exploration rate will

generally be less optimal than a low exploration rate. This is because the chance of acting optimally on

an exploration trial is (no. of optimal choices) / (no. of choices available).

Using the standard notation in Sutton and Barto (1998), we can set out the method mathematically.

We denote the true value of an actiona asQ∗(a). This is the value that our method will approach over

time and will guide the method towards the optimal strategy for the task/problem. The estimated value

of actiona, which is used by the simulator to decide on the best action among the set of possible actions,

is, on thetth play, denoted byQt(a). Using this notation to model behaviour in the IGT, we can assume

that every time stept is equivalent to each trial in the task. On each trial the player of the IGT has four

possible choices/potential actions (unless decks have been exhausted). Players can select a card from

each of the decks, A,B,C or D. Each deck will have an estimation of the expected value gained from

selecting that particular deck. Taking the first selection, we have four action values:-

Q1(A) = 0,

Q1(B) = 0,

Q1(C) = 0

andQ1(D) = 0.

where, whena = A, the action is to select a card from deck A and, ifa = B, then that is equivalent to

picking from deck B and so on. All the estimations would begin at zero, unless there is a wish to force

an initial exploration of the choice space, by setting the estimations very high, so, until new information

specifies otherwise, untested actions have a high valence and so will be picked early in the task. In the

simulations shown later in this paper, each action has an initial value of 0, which is overcome by the



relatively high levels of exploration used to reproduce the human data. The very first selection on the

task is always random.

If we continue our example at the beginning oft = 2, and deck A was selected first, att = 1, then

as the player would have won $100 with no loss (see figure 1), this would give the following updated

estimations:-

Q2(A) = 100,

Q2(B) = 0,

Q2(C) = 0

andQ2(D) = 0.

This would make deck A the next choice as it has the highest estimated value, unless the next trial

is an exploration trial. Firstly, to decide whether it is an exploration trial, a random number is generated

between 0 and 1 and, if it is less than or equal to the exploration rate, an exploration trial is undertaken,

and each of the four choices will have an equal chance of being selected.

To reiterate, the true value of an action is the mean reward received when that action is selected.

Therefore, by averaging across trials when a particular deck is selected, we will eventually achieve this.

If, on the tth play, actiona has been chosenka times prior tot, yielding rewardsr1,r2,...,rka , then its

value is estimated using the equation in figure 2.

So, forka = 0, as stated above, we can setQt(a) to some default value, such asQ0(a) = 0. Again,

aska →∞, by the law of large numbers,Qt(a) converges toQ∗(a).

We use the simplest action selection rule (greedy, as described by the method name) on exploitation

trials, which is to select the action (or one of the actions) with the highest estimated action value, that

is, to select on playt, one of the greedy actionsa∗, for which Qt(a∗) = maxaQt(a) = max{Qt(a) |
a ∈ {A, B,C, D}}. So, if exploration is low, then it may take longer to learn the contingencies, but it

will be better at exploiting them once they are learnt. Therefore, by increasing the exploration, we get

a more rapid view of the value of all the possible actions. Without some level of exploration, we only

get the greedy exploitation, which can be ineffective, if the contingencies are not known. This kind of

over exploitation has been a problem for our previous models, where the exploration was not sufficient



Figure 1:Score-cards from the original and variant versions of the gambling task (Bechara et al.,
2000a). This paper particularly explores the original ABCD task. Please note that $125 losses for
deck B is a misprint and should actually be, -$1250 as stated in the article.

Qt(a) =
r1 + r2 + ... + rka

ka

Figure 2:Estimated action-value equation for theε-greedy method usingsample-averaging



to override highly valued options/actions in the E(’)G(’)F(’)H(’) versions of the IGT (Kalidindi et al.,

2005b,a).

4.1 Sample-averagingvaluation functions

The ε-greedymethod usingsample-averagingconverges to a probability greater than 1-ε of selecting

the optimal action aska → ∞. This is because the chance of selecting the optimal action is 1-ε,

the probability of exploitation during a trial, plus the chance of selecting the optimal action during an

exploration trial. In the IGT, for the ABCD version, picking from C or D is optimal, therefore optimal

action occurs 50% of the time during an exploration trial. So using these methods in the IGT, the

probability of taking the optimal action, which is whenQt(a) converges toQ∗(a), is:-

P(optimal) = ε
2 + 1-ε

= 1 - ε
2

Therefore, using an exploration rate of 0.58, the potential probability of optimal action, given that

none of the decks have been exhausted, is 1-0.58/2 = 0.71. This means that, after sufficient trials, on

average, 71% of the time, an advantageous card will be selected.

In the following simulations, it was found that an exploration rate of 0.58 gave a good match to

behaviour in normal human subjects across the different versions of the IGT. This exploration rate does

not provide the best match for each individual version of the IGT, which may be due to the normal

control groups being different each time the experiment was run. Alternatively, this could be due to

the variation in the contingencies in the four versions, i.e. people adjust their exploration due to the

‘difficulty’ of the task. This is difficult to glean because normal subjects have too high a learning effect.

Once they have participated in any version of the task they learn other versions of the task very quickly.

Therefore, it is impossible to use the same normal human test group again, and so there will inherently

be group differences. Also, the results within study are not very robust, as can be seen from the large

SEMs found in all studies, suggesting that group differences might be reasonably large, especially with



the sample sizes used.

This data lends itself to the conclusion that normal humans fit in a continuum of ability to exploit

the IGT. Based on the work set out so far, a way to consider this continuum might be as a range of

exploitation rates. This range could be quite broad, and it may be quite arbitrary, as from the literature

it is clear that even persons considered normal and healthy can fall into many sub-categories based

on their performance, and sometimes other criteria. Evans et al. (2004) have found that when they

tested university educated students vs. subjects educated till 16 years on the ABCD version of that

IGT, there were significant differences between the groups in blocks 4 (61-80 cards) and 5 (81-100

cards). Interestingly, those with less formal education performed superiorly, suggesting education as

an influencing factor on performance. Other studies have sub-grouped normals by performance (Crone

et al., 2004; Bechara et al., 2002b). As a corollary to group differences, some have commented on

the variation in individuals (Suzuki et al., 2003). Therefore, where this range lies would depend on

the criteria used to judge normal status. Bechara and Damasio (2002a) have described advantageous

behaviour as getting an overall net score greater than 0 across all 100 trials.

4.2 Error-driven valuation function

In the model set out above, there are a few areas where different parts of the method can be modified.

These include how a choice is selected on an exploration trial (currently randomly), and how information

from trials is used to calculate the expected result of a choice (so far, sample-averaging has been con-

sidered). Another possible way to calculate the estimated value of a choice, is byerror-driven learning.

This is a method heavily used in supervised learning in neural networks, with back propagation being

an example (?).

The basis of error-driven learning in this context is that an estimation is made for each potential

choice from a particular state. The estimations at the beginning of the task can be set to zero for each

choice or based on predefined knowledge about the task. In theerror-drivenε-greedy method, set out in

this paper, the initial values for all choices are set to zero. Also, in this case, there is generally only one

state, which does not even change on the last trial, as the participant does not know that there are 100

trials (See IGT participant instructions in the methods section Bechara et al. (1999)). Therefore, in the

normal state there are four possible choices.



Qt(a) = Qt−1(a) + γ(Rt(a)−Qt−1(a))

Figure 3:Error-driven valuation function. Where γ denotes the learning rate andRt(a) denotes
the reward at time t, for action a.

Overall,error-driven ε-greedy differs fromsample-averagingε-greedy only in the valuation func-

tion. The evaluation function for error-driven learning can be found in figure 3. The main difference

betweensample-averaginganderror-drivenvaluation functions is thaterror-drivenlearning has the full

Markov property. The full Markov property requires only information about the current state, with-

out the necessity for knowledge about how many times a certain choice has been made, as used in the

sample-averagingvaluation function (i.e. the value ofka, see figure 2).Sample-averagingcreates a par-

tial Markov decision process in that the number of times a choice has been made is required rather than

the exact path. Additionally, insample-averagingthe influence of new information is dependent on the

amount of information previously presented for that choice. Therefore, if new information comes after

many iterations, even if the information is very different from previous estimations, its influence will be

limited. However, with the error-driven valuation function, the number of times a particular selection

is made is irrelevant to the way the valuation of that choice is updated. This means, dependent on the

value ofγ, error-driven learning can still be responsive to individual changes in contingencies, especially

later in a long task. In addition, whereaserror-drivenvaluation functions will continue to value new in-

formation the same throughout a task, ifγ is constant,sample-averagingwill value early information

more than later data. Therefore,sample-averagingis more influenced by initial stimulus-reinforcement

associations.

For example, this means a reversal task usingsample-averagingwould result in progressively more

perseveration at each reversal as the task continued. However, it would probably be rapid at making the

initial stimulus-reward associations. In contrast, anerror-drivenvaluation function with a high learning

rate would learn the initial stimulus-reward associations at a similar rate to any reversals (i.e. with

limited perseveration). Therefore,ε-greedymethods usingerror-drivenwould not get worse at the task.

In the case of a probabilistic reversal task (Cools et al., 2002),sample-averagingwould be less

influenced by the false errors (when the participant is told they have made an error when their response



is actually correct, false errors are presented to increase task complexity), than a high learning rate

error-driven ε-greedy set-up. However, with a low learning rate, anerror-driven valuation would be

less influenced by singular false errors and correctly adjust to genuine reversals, though, with some

perseveration. The level of perseveration would not however grow as withsample-averaging.

4.3 Problems with Non-Linear Neural Decision Network (N-LNDN)

Ideas about valuations of a potential choice, and exploration, can help us understand some of the prob-

lems our previous model (Kalidindi et al., 2005b,a)(N-LNDN) had in recreating the human net scores in

the E(’)F(’)G(’)H(’) versions of the IGT. In the N-LNDN, the chance of exploration was based on adding

an element of random noise into each unit in the Response Layer, before it entered a highest activation

selection procedure. This random noise came from a normal distribution and was kept constant across

the 100 trials in the IGT. This makes the chance of exploration dependent on the differences between the

activation valuations for each deck. For example, if the estimated deck valuation for E is much greater

than the other deck’s estimated valuations, then the chance of an exploration trial is lowered. Also, an

exploration trial is most likely to be an exploration of the next highest ‘valued’ deck. More explicitly, if,

Qt(E) > Qt(G) >> Qt(F ) > Qt(H),

then deck E is most likely to be chosen and there is a smaller chance of G being chosen. However,

dependent upon the settings for the probability distribution of the random noise, the chances of F or

H being selected is slim. If the random noise is allowed to be too large, then there is insufficient

exploitation, and behaviour tends towards random.

When using the N-LNDN for the EFGH versions, this problem arises. During the task, decks E and

G become much more highly valued than decks F and H, resulting in the initial, effective, setting for

the random noise being no longer sufficient to generate exploration. Therefore, we get greedy action

on almost every trial, which does not reflect the normal human data (Bechara et al., 2000a). So, unlike

the ε-greedymethod, the likelihood of an exploration trial occurring in the N-LNDN is dependent on

the relative activations of the units in the Memory Layer (Kalidindi et al., 2005b), as well as the amount

of random noise added to the system. This contrasts with theε-greedymethod, where exploration trials

are dependent on a pre-set exploration rate,ε, and are not dynamically influenced by the particular

contingencies encountered.



Figure 4:Graph of the changing value functions for two options over a number of selections of that
choice, where Option 2 becomes more highly valued than Option 1 after many selections.

Even if an exploration trial does occur, there are again, differences in how the deck for that trial is

selected. In theε-greedymethod, each deck/choice has an equal chance of happening, including the

choice with the highest estimated value. However, in the N-LNDN, an exploration trial is best described

as when the estimated optimal choice is not selected. Additionally, in the N-LNDN, the chance of a deck

being chosen in an exploration trial, is weighted against currently low valued choices. Due to this, the

N-LNDN may get trapped in local maxima, and not always converge to the global solution. For example,

once theτ in the N-LNDN has risen sufficiently that the task contingencies become established in the

network, then, unless the value of the current best choice is or becomes close to the worst choice, the

worst choice is not likely to be selected. A graphical representation of this type of contingency set is

shown in figure 4. It is evident that these contingencies pose a problem for the N-LNDN, as the network

would mainly select from option 1, and possibly never discover that option 2 is actually the superior

choice in the long run.

Returning to the IGT, the N-LNDN can manage certain reversal problems, like that found in the

ABCD versions. This is where the initially higher valued choices, A and B, (see Figure 5) after a

number of selections, are found to actually be worth less than the other options, C and D. Specifically,

in the ABCD task, deck A and, particularly, deck B, using mean return per selection, are initially more



highly valued than C and D, but, if selections continue, even if dominated by decks A and B, then, A

and B’s values fall below the ‘resting’ valuation (the value the network decays to if no selections of that

option are made for some time) of C and D. Therefore, by selecting what initially seems optimal, even

with limited exploration, it is possible to discover the true contingencies of the ABCD task using the

N-LNDN. This is because the ‘resting’ valuation of any deck or option using the N-LNDN is zero. What

is meant by ‘resting’ value, is the value that all options start with and eventually decay back to, if not

selected.

In the ABCD version of the IGT, after sufficient selections of decks A and B, after card 9 in each

deck, their mean returns per selection fall below zero (see Figure 5). This makes the likelihood of C and

D being selected greater than A and B, because C and D’s valuations are near zero or have fallen to zero.

Even without decay in the information held about the decks, if A and B’s valuation falls below that of

C and D then C and D will be selected more frequently. Basically, if A and B’s valuations fall below

the initial valuation of C and D through selection of A and B’s, contingencies, or the random factor is

sufficient to create regular exploration throughout the task, then N-LNDN will solve the task. However,

if the contingencies of the task are like those in Figure 4, where the value of Option 1 never falls below

the early valuations for Option 2, then dependent on the variation in the random factor, Option 2 may

never be selected sufficiently for the N-LNDN to discover that Option 2 is the optimal choice over the

long-term.

From this discussion, the following question arises, can we not solve this by correctly setting the

random noise, so C and D are investigated often enough to learn their contingencies? Yes, we can, but

the random noise distribution would have to be set for each new task and require some knowledge of

the expected differences in contingencies. Therefore it does not currently provide a good multi-purpose

learning algorithm. This problem could be solved by having a dynamic addition of random noise, that

was dependant on the relative activations of the units in the Memory Layer. It would then be possible

to always get the chance of exploration on a trial. However, it is probably simpler to model this as two

processes, like in theε-greedymethod.

This leads into a further discussion about what it means to explore. If we define exploration as

‘picking alternatively from the current estimated optimal strategy’, then usingε-greedymethods, the

algorithm will actually pick the optimal strategy on someε trials. Thus, the actual exploration rate is



Figure 5:Mean return per card selection from a particular deck based upon the number of selec-
tions made in a deck (using sample-averaging). For example at the 10th selection from deck B the
mean return is $-25, as the total wins from deck B are $1000, so far, and the total losses are $1250.

lower than the value ofε, as set out in section 4.1.

4.4 What is exploration?

In the currently usedε-greedymethod, the choice of action during an exploration trial is random. This

may not be the case for humans, often, at least at an intuitive level, an explorative action for a human

seems to be, more like trying what is not currently normal behaviour. Alternatively expressed as, a break

from the current strategy; choosing alternatively to what is currently considered optimal or re-testing the

water. This re-testing could be inherent in humans, in an evolutionary sense, for a number of reasons.

(i) The contingencies of the task change.

(ii) The current strategy is not sufficiently effective.

(iii) New options may present themselves.



5 Results and analysis usingsample-Averaging

The colour maps found in figures 6, 7, 10, 13, 8, 9, 14 and 15 show the absolute differences between the

human net score profiles and the simulated data, for each of the 5, 20 card blocks in the 100 trial/card

choice task, with varying exploration rates. The range of exploration rates, from 0-1, are simulated with

steps of 0.01. The exploration rates used in the net score graphs, shown on the right hand side in each

of the aforementioned figures, is the rate that most closely matches the human data across the five data

points. This is calculated as the exploration rate that has the least absolute difference between the human

data and the simulated data across all blocks. This is because the least absolute difference gave the best

qualitative match when compared with least mean square error.

The data used to show the human profiles for comparison against the simulated data, in each of the

right hand graphs in figures 6, 7, 10, 13, 8, 9, 14 and 15, comes from an amalgamation of data from

relevant studies, comprising: Bechara et al. (2000a, 1999); Clark et al. (2003); Bechara and Damasio

(2002a); Bechara et al. (2002b). The net scores can be found in table 3.

5.1 Amalgamation of IGT data across studies

From the studies considered in table 3 it was possible to get the standard error of the mean (SEM). If

the standard deviation (SD) represents the variation in the values of a variable, then the SEM represents

the spread of the means in the samples, were you to keep taking samples. This can be reconsidered as,

the SD providing an idea of the variability in single observations, whereas the SEM gives an idea of the

accuracy of the mean. These two measurements are related by:

SEM = SD√
SampleSize

Therefore,

SD = SEM× √SampleSize

Following this, it was necessary to add the data together from the different studies to get mean net scores

and standard deviations.



Net Score Blocks 1-20 21-40 41-60 61-80 81-100 Total No. of Participants
Task Variant

ABCD-N -5.9 2.3 7.1 8.6 9.7 21.8 54
t -9.6 3.5 11.8 7.2 11.1 26.4 N/A
Sig (P< 0.05) yes yes yes yes yes yes N/A
Sig (P< 0.001) yes yes yes yes yes yes N/A
ABCD-V -4.7 0.7 2.0 -3.0 -4.2 -9.2 15
t -2.4 0.6 1.4 -2.2 -3.0 -2.8 N/A
Sig (P< 0.05) yes no no yes yes yes N/A
Sig (P< 0.001) no no no no no no N/A
EFGH-N 1.0 6.5 10.0 9.0 8.5 35 20
t 1 3.3 6.7 4.5 4.3 6.3 N/A
Sig (P< 0.05) no yes yes yes yes yes N/A
Sig (P< 0.001) no yes yes yes yes yes N/A
EFGH-V -2.0 0.0 0.0 1.0 3.0 2 10
t -1.0 0.0 0.0 0.5 1.0 0.4 N/A
Sig (P< 0.05) no no no no no no N/A
Sig (P< 0.001) no no no no no no N/A
A’B’C’D’-N -4.7 3.7 7.0 7.4 7.7 21.1 66
t -5.2 4.8 7.7 7.5 6.3 21.1 N/A
Sig (P< 0.05) yes yes yes yes yes yes N/A
Sig (P< 0.001) yes yes yes yes yes yes N/A
A’B’C’D’-V -6.1 0.0 -3.4 -3.1 -4.7 -17.3 18
t -4.6 -1.5 -2.8 -2.2 -2.0 -10.1 N/A
Sig (P< 0.05) yes no yes yes yes yes N/A
Sig (P< 0.001) yes no no no no yes N/A
E’F’G’H’-N 1.4 2.3 11.4 10.1 9.6 34.8 36
t 1.0 4.4 11.5 6.7 6.5 8.3 N/A
Sig (P< 0.05) no yes yes yes yes yes N/A
Sig (P< 0.001) no yes yes yes yes yes N/A
E’F’G’H’-V -1.6 -3.9 -3.1 0.0 -5.5 -14.1 16
t -1.0 -1.5 -1.1 0.0 -2.9 -3.2 N/A
Sig (P< 0.05) no no no no yes yes N/A
Sig (P< 0.001) no no no no no no N/A

Table 3: An amalgamation of net score data from relevant studies, comprising, Bechara et al.
(1999, 2000a); Clark et al. (2003); Bechara and Damasio (2002a) and (Bechara et al., 2002b). The
nomenclature used to describe the task variants is their version names with the -N for normals
and -V for VMF net scores. It also includes the results of significance testing (using Student’s
t-test) with a null hypothesis (NH), that the net scores are random. The alternate hypothesis (AH)
is that they have a non-random strategy. The answer of yes or no signifies whether the NH can be
rejected at P< 0.05 and P< 0.001.



The mean net scores were just taken as weighted averages and added together.

mean net score =
∑n

i=1 wi ∗ µi

where w denotes the Number of participants in study / Total number across studies for that IGT variant,

n denotes the number of studies added together.

To calculate the SD across multiple studies, the following definition of the variance is used.

V(X) = E(X2)− µ2

where V(X) denotes the variance in the data set X,

E(X) denotes the expected value for the data set X (the mean),

µ denotes the mean.

So, if we rearrange this and apply the sample corrected sum of squares then,

V(x) = 1
N

∑N
i=1(xi − x)2

where

∑N
i=1(xi − x)2 =

∑N
i=1 x2

i −
(
∑N

i=1
xi)

2

N .

Using the definition of the mean,

µ =
∑N

i=1
xi

N

therefore,



µ2 =
(
∑N

i=1
xi)

2

N2

(
∑N

i=1
xi)

2

N = Nµ2.

Now our definition of the variance becomes,

V(X) = 1
N (

∑N
i=1 x2

i −Nµ2)

= 1
N

∑N
i=1 x2

i − µ2.

By definition

V(X) = (SD)2

1
N

∑N
i=1 x2

i = (SD)2 + µ2

∑N
i=1 x2

i = N((SD)2 + µ2).

Now, as we have the SD and the mean net score for each of our samples, it is possible to calculate
∑N

i=1 x2
i for each data sample. In addition, because adding the samples together is assumed to be the

same as taking a bigger sample, we can just add the
∑N

i=1 x2
i terms across the same IGT versions.

Earlier, a method was set out to show how the mean between two samples can be calculated, and we

have the values for the number of participants. Finally, these values can be plugged into one of our

original definitions of variance and then square rooted to provide the new SD for the group of samples

together.

5.2 Consideration of the Human Data

In table 3, an attempt has been made to see where behaviour is significantly different from a random

binomial series. This is possible because the net scores are based on a binary score, either a selection is



advantageous, 1 (deck C or D), or disadvantageous, -1 (deck A or B). Of particular interest is whether

the VMF patients are acting significantly differently from a random agent. An assumption is made that

the human data is normally distributed and that an agent acting randomly has a mean net score of 0

and can be described with a binomial series with probability, p = 0.5. Then Student’s t-test was used

to measure the likelihood of a type I error occurring in our acceptance that the means of our two data

sets are significantly different. The following equations and procedures were applied to produce the

significance test results found in table 3.

To apply Student’s t-test it is necessary to have three values: (1) t-value; (2) degrees of freedom (d.f.)

and (3)α level.

t-value

Signal
Noise = difference−between−group−means

variability−of−groups

= xH−xB
SE(xH−xB)

= t-value.

WherexH denotes the mean of the data setXH andxB denotes the mean of the data setXB

SE(xH − xB) =
√

V arH
nH

+ V arB
nB

therefore,

t = xH−xB√
V arH

nH
+

V arC
nC

degrees of freedom



d.f. = nH + nB − 2

α -value= probability of finding a Type I error and is equivalent to the acceptable power value (P-value),

where,

xH denotes the mean for the human data,

xB denotes the mean for the binomial distribution data, which is zero,

V arH denotes the variance in the human data,

nB denotes the number of data points in the binomial distribution, as this is actually equivalent

to having an infinite number of data points, this means the whole termV arC
nC

→ 0. Therefore, for

the comparison to a distribution the t-value is reduced to

t = xH−0√
V arH

nH
+0

t = xH√
V arH

nH

It follows from this that the degrees of freedom variable will also have a value which tend to∞ because

nC →∞ so d.f. tends to infinite. The values selected for the power, P, can be found in table 3.

In other cases the standard equation set out above is used, where both the standard deviations and

sample sizes for both groups under consideration are used.

The results of these calculations, which are in table 3, show that the normal control profiles are both

significant and highly significantly different from a random Bernoulli process, apart from in block 1 on

the EFGH and E’F’G’H’ versions. The convention for this paper is that significant reflects a P< 0.05

and highly significant reflects a P< 0.001. However, for the VMF profiles, only the 1st block (cards

1-20) for the A’B’C’D’ version is highly significantly different from random. One would expect that this

would also be the case for the ABCD version, as the contingencies for the first ten cards for each deck

are the same. However, the first block for the ABCD version is only significantly (P< 0.05) different

from random, and not highly significant (P< 0.001). A possible explanation for this might be that VMF



patients actually seem to become worse at the task (in that VMF patients are more influenced by the

regular rewards and punishments than the uncertain results) as a function of repetition over time (see

figure 3, Bechara et al. (2000b)), and, because much of the data for the A’B’C’D’ variant was collected

after testing on the original ABCD version, with often the same VMF patients, this could be the case.

For the VMF patients on the EFGH and E’F’G’H’ versions of the IGT, only the net score on the

5th block on the E’F’G’H’ version is significantly different from random. The differences between the

E’F’G’H’ version and the EFGH version is that E’ and G’ become better and F’ and H’ become worse

per 10 cards in each deck. Therefore, for the E’F’G’H’ version, if the patients were making any kind

of reasonable estimation of the uncertain positive outcomes, then you would expect them to have larger

positive net scores, compared to the EFGH version. This is not the case, as the VMF net scores for the

EFGH versions are more positive than those for the E’F’G’H’ variant. This may be due to the increased

complexity in the changing contingencies in the E’F’G’H’ version, compared to the EFGH version. The

EFGH version net score profile for the VMF patients can actually be well described by theε-greedy

method usingsample-averaging, with ε set to 0.9. However, usingsample-averaging, the closet match

to VMFs on the E’F’G’H’ version uses an exploration rate of 1, which makes it random, and so does not

properly describe the final block or the overall qualitative shape of the curve (getting worse, better and

then worse again, see figure 15). In addition, across all blocks there is an overall significant tendency

for VMF patients to select more from the disadvantageous decks on the E’F’G’H’ version.

The VMF profiles for the ABCD and A’B’C’D’ versions of the IGT are both significantly different

from random, for the first block, and highly significant for the A’B’C’D’ version, as aforementioned.

However, human VMF profiles are not significantly different from the normal human profiles in this

first block (see table 5). Hence, early on in the IGT for the ABCD and A’B’C’D’ versions when decks

A(’) and B(’), on the basis of known results, are the best decks VMF and normal subjects are actually

selecting advantageously. Although, this could be for different reasons in VMF patients than for normal

healthy controls. The VMF patients could be more driven by the consistent $100 and $50 wins, than

by the uncertain losses, as they seem to be later in the task. As discussed earlier, it has also been

suggested that initial stimulus-reinforcement associations are preserved in VMF patients (Fellows and

Farah, 2003). The influence of regular results is shown by the VMF’s, significantly different from

random, disadvantageous net scores gained in blocks 3, 4 and 5 for the A’B’C’D’ version, and those



Net Score Blocks 1-20 21-40 41-60 61-80 81-100 Total No. of Participants
Task Variant

ABCD-N -5.9 2.3 7.1 8.6 9.7 21.8 54
ABCD-V -4.7 0.7 2.0 -3.0 -4.2 -9.2 15
t -0.6 1.3 3.28 5.4 8.5 10.9 N/A
Sig (P< 0.05) no no yes yes yes yes N/A
Sig (P< 0.001) no no no yes yes yes N/A
EFGH-N 1.0 6.5 10.0 9.0 8.5 35 20
EFGH-V -2.0 0.0 0.0 1.0 3.0 2 10
t 1.3 2.3 4.0 2.8 1.5 4.4 N/A
Sig (P< 0.05) no yes yes yes no yes N/A
Sig (P< 0.001) no no yes no no yes N/A
A’B’C’D’-N -4.7 3.7 7.0 7.4 7.7 21.1 66
A’B’C’D’-V -6.1 0.0 -3.4 -3.1 -4.7 -17.3 18
t 0.9 4.0 6.8 6.0 4.8 18.8 N/A
Sig (P< 0.05) no yes yes yes yes yes N/A
Sig (P< 0.001) no yes yes yes yes yes N/A
E’F’G’H’-N 1.4 2.3 11.4 10.1 9.6 34.8 36
E’F’G’H’-V -1.6 -3.9 -3.1 0.0 -5.5 -14.1 16
t 1.4 3.3 5.0 3.1 6.4 8.2 N/A
Sig (P< 0.05) no yes yes yes yes yes N/A
Sig (P< 0.001) no no yes no yes yes N/A

Table 4: Comparison of mean for the normal controls vs. the VMF patients for each version of
the IGT. The nomenclature used to describe the task variants is their version names with the -N
for normals and -V for VMF net scores. It also includes the results of significance testing (using
Student’s t-test) with a null hypothesis (NH), that the net scores have the same mean. The alternate
hypothesis (AH) is that they have different means. The answer of yes or no signifies whether the
NH can be rejected at P< 0.05 and P< 0.001.



found in blocks 4 and 5 for the ABCD version. As discussed earlier, it has been suggested by Fellows

and Farah (2005) that the IGT problem is due to difficulties, found in orbitofrontal patients, with reversal

learning (Rolls, 2000). Although this explanation is consistent with the results gained by, Fellows and

Farah, it does not seem to completely satisfy the ABCD profiles found in Bechara et al.’s data sets, in

that, for blocks 2 and 3, the VMF patients select ‘randomly’ and then return to net scores similar to

block 1 for blocks 4 and 5. If it were solely a simple reversal learning problem, where the VMF patients

perseverate at the point of reversal but after a few errors learn the new contingencies, one might expect

there to be a slow gradual improvement in performance after the reversal. This not what happens though.

Therefore, raising the question of what might be occurring during blocks 2 and 3 in the ABCD version

and block 2 in the A’B’C’D’. This question one of the main areas of investigation in this paper.

5.3 Normal controls on the original ABCD version (see figure 6)

If we look at the right hand graph (see figure 6), it is clear that the simulated data is a reasonable fit for

the human controls’ net scores, apart from the slightly faster learning/exploitation of the advantageous

decks in blocks 2 and 3. There is also an earlier leveling off in block 3 as the amount of exploitation

of the advantageous decks in the simulated data set, compared to the human data. In the human data, it

seems that there would be increased selection of the good decks, were the task to continue beyond 100

trials. The leveling off of the simulated data is due to the level of exploration. The height at which the net

score curve levels off is inversely proportional to the exploration rate. This is due to a higher exploration

rate reducing the chance of greedy exploitation on any trial. The best match to the human data, using

sample-averaging, was found with an exploration rate of 0.58, i.e. 58% of the time the simulation will

pick a deck at random, rather than selecting the deck with the highest expected return. At an intuitive

level, this seems high, in that, if all information is held and accurately calculated, why would exploration

occur more than half the time. This will be further examined in the discussion, section 7.

5.4 VMF patients on the original ABCD version (see figure 7)

From the human VMF patient net score profile, there is seemingly a stage of learning in blocks 1-3 (0-

60 cards), after which, however, there is a move back to disadvantageous behaviour. Therefore overall,

the VMF patients ‘favour’ the disadvantageous decks. This may be because in the early parts of the



Figure 6:(Left) Colour map showing the differences between the human control net scores on the
ABCD version and those produced by the simulation, with the y-axis representing the varying
exploration rate. (Right) Comparison of normal human control net scores (n = 54) on the ABCD
version of the IGT with the 0.58-greedy action-value algorithm

task, until some losses are encountered, decks A and B have higher average wins than decks C and D.

(The negative net score in both normal controls and VMF patients in the first block is a result of the

contingencies set out in the original ABCD score-card, see figure 1.) Is it also this early evaluation that

is difficult to override and later becomes dominant again (from 60-100 cards)? Alternatively, could it be

VMF patients’ tendency to prefer regular results than uncertain ones.

5.5 Normal controls on the A’B’C’D’ version (see figure 8)

There seems to be a good match between the simulated data and the normal human net scores. A closer

match could be gained by increasing the exploration rate to 0.66. This would reduce the probability of

picking the optimal action, even when a fairly accurate estimation of the true value of each action exists.

The exploration rate controls the level at which the net score curve levels off.

5.6 VMF patients on the A’B’C’D’ version (see figure 9)

The simulated data does not match the VMF patients’ net scores for this version of the IGT. This is

because the worst mean performance possible for this simulation method, as aforementioned, is a net



Figure 7:(Left) Colour map showing the differences between the human VMF patient net scores on
the ABCD version and those produced by the simulation, with the y-axis representing the varying
exploration rate. (Right) Comparison of human VMF patient net scores (n = 15) on the ABCD
version of the IGT with the 0.99-greedy action-value algorithm

Figure 8:(Left) Colour map showing the differences between the human control net scores on the
A’B’C’D’ version and those produced by the simulation, with the y-axis representing the varying
exploration rate. (Right) Comparison of normal human control net scores (n = 66) on the A’B’C’D’
version of the IGT with the 0.58-greedy action-value algorithm



Figure 9: (Left) Colour map showing the differences between the human VMF patient net scores
on the A’B’C’D’ version and those produced by the simulation, with the y-axis representing the
varying exploration rate. (Right) Comparison of human VMF patient net scores (n=18) on the
A’B’C’D’ version of the IGT with the 0.99-greedy action-value algorithm

score of 0 (random behaviour). However,, the VMF patients’ net score profile is regularly negative,

since it contains more bad selections than good ones. There is some improvement in initial performance

for the VMF patients (block 2), this could just be increased exploration, or simply a move away from

deck B after the large reversal. This improvement is then followed by a return to more disadvantageous

selections, as in the original ABCD version.

5.7 Normal controls on the EFGH version (see figure 10)

Here the simulated data is a good match for normal human controls’ net score profiles. It is interesting

to note that in the EFGH version, normals begin the task at random or slightly better. This is probably

due to the score card for deck E, where participants quickly receive a large win $1250, on the 3rd card

in that deck (see figure 1), and so can adjust their evaluation of deck E, to ‘good’, more rapidly. This

is in contrast to the ABCD version where the first large uncertain loss, in magnitiude, in deck B, is not

until the 9th card in that deck. Therefore, it is much longer before the partcipant reveals the true nature

of deck B in the ABCD version compared to deck E in the EFGH version. In the net score profiles, this

difference is probably the cause of normal human controls beginning the ABCD task with an average



Figure 10:(Left) Colour map showing the differences between the human control patient net scores
on the EFGH version and those produced by the simulation, with the y-axis representing the
varying exploration rate. (Right) Comparison of normal human control net scores (n = 20) on the
EFGH version of the IGT with the 0.58-greedy action-value algorithm

score of, approximately, -5 in the first block (1-20 cards).

5.8 VMF patients on the EFGH version (see figure 13)

For this variant of the task there only seems to be one set of data (Bechara et al., 2000a), but what we

find is that the VMF patients are acting more or less randomly throughout this version of the task. This

allows a close match between thesample-averagingε-greedymethod and the human VMF populations’

net scores. Note, after sufficient trials to learn the contingencies, thesample-averagingε-greedymethod

will not perform worse than random while the estimates ofQ∗(a) are based onsample-averaging. How-

ever, as in the early portions (1-20 cards) of the ABCD and A’B’C’D’ versions, when there is limited

sampling, estimates ofQ∗(a) favour the disadvantageous packs, as the samples have yet to reveal their

uncertain punishments. This occurs particularly on one of the decks (B or B’). It actually turns out that

deck B or B’ is the best deck until card 9 in the deck is reached and the player losses $1250.

The net score profile for Bechara et al.’s VMFs on the EFGH variant are similar to Fellows and Farah

(2005) on the original ‘unshuffled’ ABCD variant. Therefore, if we assume that a reversal learning deficit

is the main cause of poor VMF patient performance on the IGT, then, as the reversal comes very early in



Figure 11: Mean return per card selection, EFGH variant, where the x-axis is the number of
selections made from a particular deck. Using sample-averaging the mean return per selection for
a deck is calculated based on, rewards minus punishments gained after x selections from certain
deck (based on the predefined contingencies of the IGT (?)) and then divided by x.

the EFGH variant (see figure 11), by card 3 for deck E and card 2 for deck G, we would expect the VMF

patients to perform better than when the reversal happens later, i.e. when the pre-reversal contingencies

are less established. If we ignore variance, this seems to be the case as VMF patients perform less

disadvantageously on the EFGH version, than on the original ‘unshuffled’ ABCD variant. However,

there still is a reversal, unlike in Fellows and Farah (2005)’s ‘shuffled’ version of the ABCD IGT, where

A and B are never, on average, better than decks C and D (see figure 12). So, it might be reasonable to

expect the VMF patients to perform more closely to normals in this EFGH variant than VMFs do in the

original ‘unshuffled’ ABCD variant. This is the case. But Bechara et al.’s patients on the EFGH variant

act similarly to Fellows and Farah (2005)’s VMF patients on the original ‘unshuffled’ ABCD variant,

and not better than them, which provides more support for the claim that they may be from differently

performing populations. However, when compared to the profiles for the E’F’G’H’ variant, then this

random (or slow learning) profile is not repeated, even though the reversal occurs at the same time as in

the EFGH version. In addition, the EFGH variant is the only study which has not been repeated, whereas

the E’F’G’H’ variant has been repeated, with consistency, and follows a pattern more reminiscent of the

ABCD and A’B’C’D variants.



Figure 12:Mean return per card selection, ‘shuffled’ ABCD variant (Fellows and Farah, 2005),
where the x-axis is the number of selections made from a particular deck. Using sample-averaging
the mean return per selection for a deck is calculated based on, rewards minus punishments gained
after x selections from certain deck (based on the predefined contingencies of the IGT (?)) and then
divided by x.

Figure 13:(Left) Colour map showing the differences between the human VMF patient net scores
on the EFGH version and those produced by the simulation, with the y-axis representing the
varying exploration rate. (Right) Comparison of human VMF patient net scores (n = 10) on the
EFGH version of the IGT with the 0.99-greedy action-value algorithm. (Note: an exploration rate
= 0.9 provides a very good match to the human data)



Figure 14:(Left) Colour map showing the differences between the human control patient net scores
on the E’F’G’H’ version and those produced by the simulation, with the y-axis representing the
varying exploration rate. (Right) Comparison of normal human control net scores (n=36) on the
E’F’G’H’ version of the IGT with the 0.58-greedy action-value algorithm

5.9 Normal controls on the E’F’G’H’ version (see figure 14)

Again, like the EFGH simulations, there is a reasonably good match to the normal human data, but a

better match would be obtained with an exploration rate of 0.65. This variation in the exploration rate,

could be due to the participant groups being different for each version of the task. This is because, once

normal controls have learnt one version of the task, they understand the set-up, and can rapidly learn

other versions of the IGT. Normal subjects become too good at the task.

Variations in the required exploration rate across IGT variants, could also be due to normal subjects

working within a range of exploration rates, which are adjusted to the difficulty of the task. A single

valueε = 0.58 has been used to show that one parameter setting can produce a good replication of all the

normal subject results.

5.10 VMF patients on the E’F’G’H’ version (see figure 15)

The replication of the VMF data for E’F’G’H is not so close, but it is important to note that, as shown

in table 3, only block 5 is significantly different from random selection. However, the net scores are

consistently negative and overall have a probability P< 0.002 of being random. This is impossible to



Figure 15:(Left) Colour map showing the differences between the human VMF patient net scores
on the E’F’G’H’ version and those produced by the simulation, with the y-axis representing the
varying exploration rate. (Right) Comparison of human VMF patient net scores (n=16) on the
E’F’G’H’ version of the IGT with the 0.99-greedy action-value algorithm

obtain withsample-averaging, after the reversals in deck E’ and G’.

6 Results and analysis usingerror-driven learning

In the results forerror-drivenlearning a comparison has been made between the simulated data with two

settings for the learning rate and, the normal control and VMF patient, net score profiles. To recreate

the normal healthy control net scores, the exploration rateε = 0.55, and the learning rateγ = 0.2. To

simulate the VMF data, the learning rate was changed toγ = 0.95, while the exploration remained at

0.55.

6.1 Normal controls on the original ABCD version (see figure 16)

This provides a good match to the human data.



Figure 16:Comparison of normal healthy human controls’ net scores (n=54) on the ABCD version
of the IGT with the 0.55-greedy error-driven valuation (γ = 0.2) algorithm (n = 1,000).



Figure 17:Comparison of VMF patients’ net scores (n=15) on the ABCD version of the IGT with
the 0.55-greedy error-driven valuation (γ = 0.95) algorithm (n = 1,000).

6.2 VMF patients on the original ABCD version (see figure 17)

The simulated profile is similar to the human patient profiles, and interestingly, on some simulated runs,

with n = 100, almost perfect matches between the data sets can be generated in 1 in 4 attempts. However,

a much larger number of simulated runs is used to try and minimize the variation. There will always be

some variation, because of the random elements present in the simulation models.



Figure 18:Comparison of normal healthy controls’ net scores (n=66) on the A’B’C’D’ version of
the IGT with the 0.55-greedy error-driven valuation (γ = 0.2) algorithm (n = 1,000).

6.3 Normal controls on the A’B’C’D’ version (see figure 18)

Again, with the same settings for the normal control simulations, a good match to the human healthy

control data is generated.

6.4 VMF patients on the A’B’C’D’ version (see figure 19)

For A’B’C’D’ VMF profiles, a very good qualitative correlation to the human data has been generated

with 1000 runs of the simulation.



Figure 19:Comparison of VMF patients’ net scores (n=18) on the A’B’C’D’ version of the IGT
with the 0.55-greedy error-driven valuation (γ = 0.95) algorithm (n = 1,000).



Figure 20:Comparison of normal healthy controls’ net scores (n=20) on the EFGH version of the
IGT with the 0.55-greedy error-driven valuation (γ = 0.2) algorithm (n = 1,000).

6.5 Normal controls on the EFGH version (see figure 20)

The simulated data provides a reasonable match to normal controls. Theerror-drivenε-greedy method

is slightly weak in its match to the human data in blocks 1 and 3, but the general trend of the curve is

similar.

6.6 VMF patients on the EFGH version (see figure 21)

The curve shape of the simulated data is very similar to the human data, but to actually fit the data

points accurately, a rotation of about 45 degrees about block 1 would be required. This is the only VMF



Figure 21:Comparison of VMF patients’ net scores (n=10) on the EFGH version of the IGT with
the 0.55-greedy error-driven valuation (γ = 0.95) algorithm (n = 1,000).

example where usingsample-averagingfor the valuation function is more effective than using theerror-

drivenvaluation function. This is because the total net score for VMF patients for the EFGH version is

positive anderror-drivenwith γ = 0.95, favours the regular rewards that are the least detrimental.

6.7 Normal controls on the E’F’G’H’ version (see figure 22)

Here the simulated profile follows the general improvement shown in the human data, but performance

does not dramatically improve in block 2 as it does in healthy humans. Blocks 1-3 are substantially

different from the mean data points for normal humans and the simulated data, but blocks 4 and 5 are



Figure 22:Comparison of normal healthy controls’ net scores (n=66) on the E’F’G’H’ version of
the IGT with the 0.55-greedy error-driven valuation (γ = 0.2) algorithm (n = 1,000).

very similar.

6.8 VMF patients on the E’F’G’H’ version (see figure 23)

In the final comparison, blocks 1, 2 and 5 are very similar, but data points in blocks 3 and 4 are somewhat

dissimilar. The simulation misses the improvement in performance followed by a decline, shown in the

human data (blocks 4 and 5). In the simulation there is a decline, followed by an improvement, so in a

qualitative sense, some similarities are lost.



Figure 23:Comparison of VMF patients’ net scores (n=16) on the E’F’G’H’ version of the IGT
with the 0.55-greedy error-driven valuation (γ = 0.95) algorithm (n = 1,000).



Total Square error sim to human/human VMF to Norm

Sim ABCD (γ = 0.2) - Human ABCD Norm 20 6

Sim ABCD (γ = 0.95) - Human ABCD VMF 21 6

Human ABCD Norm - Human ABCD VMF 354 N/A

Sim A’B’C’D’ ( γ = 0.2) - Human A’B’C’D’ Norm 12 3

Sim A’B’C’D’ ( γ = 0.95) - Human A’B’C’D’ VMF 20 5

Human A’B’C’D’ Norm - Human A’B’C’D’ VMF 405 N/A

Sim EFGH (γ = 0.2) - Human EFGH Norm 57 23

Sim EFGH (γ = 0.2) - Human EFGH VMF 110 45

Human EFGH Norm - Human EFGH VMF 245 N/A

Sim E’F’G’H’ ( γ = 0.2) - Human E’F’G’H’ Norm 28 4

Sim E’F’G’H’( γ = 0.95) - Human E’F’G’H’ VMF 22 3

Human E’F’G’H’ Norm - Human E’F’G’H’ VMF 649 N/A

Table 5: This table compares the total square error (second column) between the relevant sim-
ulated data and the human data, and between the two human groups, to show how much more
similar the relevant simulated data is to its target, than the human data sets are to one-another.
The comparison is then shown as percentage ratio in the third column.

6.9 Analysis of theerror-driven ε-greedy methods and results

In the table 5, we present comparison of the total sum square errors between our simulated data sets and

different human data sets. In addition, the table 5 shows the ratio of difference between the total sum

square errors for normal human controls profiles and VMF profiles verses the simulated data and the

human data the simulation is trying to replicate to provide another measure of the quality of fit. Table

5 shows that, in terms of square error, the simulated data is around 20 times closer to its’ target data

set, than the VMF human patient and NHC (Normal Healthy Controls) sets are from one-another. This

suggests a fairly good match, but this is a relative measure, and is dependent on the differences between

the two human data sets.



Overall, theerror-driven ε-greedy model (γ = 0.95) suggests that, if there is a rapid update of in-

formation, a fairly consistent replication of the VMF human IGT data can be generated. This idea of

VMF patients having a more rapid information update than healthy controls, is in conflict with the re-

versal learning literature, in that our model suggests normal human controls update their information

less rapidly than VMF patients on the IGT. A simplistic deduction from our model is that VMF patients

would be better at reversal learning tasks than healthy controls. This is generally disconfirmed in the

literature, therefore suggesting that our model may be incorrect or not easily extendable to these simpler

reversal learning paradigms. However, a simple reversal learning deficit does not seem to well describe

the behaviour of Bechara et al.’s bilateral VMF patients, on the IGT, because they quickly change choice

when they incur a loss (Bechara et al., 2005). Their problem is that they go back to the source of the

loss (decks A and B) more rapidly than healthy controls. A quicker return to sources of loss compared

to NHCs is replicated in Fellows and Farah (2005), where after the big loss in deck B (card 9) 8 out of

9 VMF patients stop selecting from deck B, and have a mean return to deck B after only 4 selections,

compared to 10 selections for NHCs. This is more in line with the behaviour of theerror-drivenε-greedy

model (γ = 0.95) than a simple reversal learning deficit, based on perseveration, which would result in,

immediate, repeated selection of the previously positive but now negative stimulus. It should be noted

that theerror-driven ε-greedy model with VMF patient settings (γ = 0.95) will not return to deck B,

on average, any quicker than with normal controls settings (γ = 0.2), but would be more inclined to

continue selecting from deck B once they had returned to that deck. This is because the speed of return

to a deck that does not have the highest expectation of reward is only dictated by the exploration rate,

which in the current set-up is the same for both the VMF patients and normal controls simulations.

The results of Fellows and Farah (2003, 2005)’s studies do suggest strongly that the main cause of

deficits for Fellows and Farah’s VMF patients on the IGT, are due to underlying reversal learning errors.

On the simple reversal task the VMF patients deficit is perseverative, in that they continue to select from

the previously rewarded stimulus for a few trials after the reversal. This suggests that the more complex

IGT reveals a different type of deficit in VMF patients than straight forward perseveration. Below is a

synopsis of the evidence Fellows and Farah present to support their reversal learning deficits theory.

1. During initial stimulus-reinforcement learning, VMFs make nearly twice as many errors as normal

healthy controls in a simple reversal learning task (but this is not significant), and VMFs make



twice as many reversal errors as normal human controls (which is significant) (Fellows and Farah,

2003).

2. The number of reversal errors increases with lesion volume in the OFC, but not with total lesion

volume (Fellows and Farah, 2003).

3. Improvement in performance on the ‘shuffled’ ABCD variant of the IGT, is correlated to severity

of deficit in the reversal learning task. This is mainly due to a large improvement by 3 VMF

patients. Two of which are among the lowest performers on the ‘unshuffled’ version, who then

fall among the joint best performers (along with a 3rd participant originally, a good ‘unshuffled’

IGT performer, total net score≈ 30) on the ‘shuffled’ version (Fellows and Farah, 2005).

4. Interestingly, reversal learning performance is correlated with day-to-day functional ability (IADL

score). The worse their reversal learning performance, the greater their problems with day-to-day

living (Fellows and Farah, 2003).

The currenterror-drivenε-greedy model presented here, does not seem to easily extend to the simple

reversal learning task (Fellows and Farah, 2003). Interestingly, ourerror-driven ε-greedy model with

the VMF settings, (ε = 0.55 andγ = 0.95) gives similar overall results to Fellows and Farah (2003) on

the reversal task, but the errors do not necessarily occur at points of reversal as most errors do in the

human VMF data. It also does not perform precisely like Fellows and Farah (2005)’s VMF patients in

the original ‘unshuffled’ IGT, in that, the models performance is more dynamic, since net scores vary

much more over the 5 blocks of the task. Although the simulation does match Fellows and Farah’s VMF

patient data for blocks 3 and 4, and sits between Bechara et al’s VMF profiles and Fellows and Farah’s

VMF profiles on blocks 4 and 5, theerror-driven ε-greedy model more closely matches the data it

originally tries to simulate, from Bechara et al.’s VMF patients performance on the original ‘unshuffled’

IGT. Fellows and Farah (2005)’s VMF patients, in both the ‘shuffled’ and ‘unshuffled’ versions of the

ABCD IGT, barely change their behaviour from block 1. There is a slight gradual improvement in net

scores over trials, from -2 in block 1 to +2 in block 5. Whereas in Bechara et al.’s studies, the VMF

patients begin with a negative net score ( -4.7) in block 1, rising to +2 in block 3, and then falling to -4.2

in block 5.

The model cannot replicate both Bechara et al.’s and Fellows and Farah’s, VMF patients’ net scores



precisely on the original ‘unshuffled’ ABCD, which both groups have been tested on. This is because

both groups act differently, under the same contingencies.

Interestingly, the normal controls in the Fellows and Farah (2005) study act differently from normals

shown the in other studies (Bechara et al., 2000a,b, 1999; Clark et al., 2003; Bechara and Damasio,

2002a; Bechara et al., 2002b). They start with a positive, not a negative net score in block 1 (Fellows and

Farah (2005) net score = 2 and Bechara et al. (2000a,b, 1999); Clark et al. (2003); Bechara and Damasio

(2002a); Bechara et al. (2002b) net score = -5.9), where a negative score is actually advantageous (Maia

and McClelland, 2004). In addition, in both the ‘shuffled’ and ‘unshuffled’ variants of the task, Fellows

and Farah’s normal controls do not change their performance over blocks, apart from in block 5, on

the ‘unshuffled’ version. However, in Bechara et al. (2000a,b, 1999); Clark et al. (2003); Bechara and

Damasio (2002a); Bechara et al. (2002b) the normal controls increase their net scores over time, with

the sharpest gradients between, blocks 1 and 2 and blocks 2 and 3, with the gradient attenuating across

the final blocks. The reason for this difference, apart from simply sample variation, is not known, but

the difference in performance in block 1, between normals across many studies (n=54) compared to the

Fellows and Farah (2005)’s normals (n = 14) is highly significant (P< 0.001, t = 3.92), but is not across

other blocks. In addition, only in block 5 on the ‘unshuffled’ version are the normals from Fellows

and Farah (2005) significantly different from a random agent (P< 0.05, t = 2.25). The net scores of

the normal controls also improves, when the reversal is removed in the ‘shuffled’ version, but not as

much as the VMF patients. Although, if the 3 best improvers on the ‘shuffled’ version are excluded, the

improvement in normal controls and the other VMF patients is similar.

When theerror-driven ε-greedy model (ε = 0.55 andγ = 0.95) is applied to the ‘shuffled’ version

of the ABCD IGT, then it does not act as Fellows and Farah (2005)’s VMF patients did. It begins with

a positive net score (+4) in block 1, but is quickly influenced into selecting from the disadvantageous

decks. The model is most strongly influenced by the regular wins or losses, rather than uncertain events,

as these are quickly overridden by new results. This is consistent with rodent OFC lesions studies,

where lesions cause increased preference for small immediate rewards over larger delayed rewards,

and increased preference for small certain reinforcers over larger uncertain ones (Mobini et al., 2002).

Therefore,error-driven ε-greedy model (ε = 0.55 andγ = 0.95) does not replicate Fellows and Farah

(2005)’s VMF profiles, on either the ‘shuffled’ or ‘unshuffled’ variants of the ABCD IGT. The reasons



are not completely evident, although, as suggested earlier, Fellows and Farah’s patients with the worst

reversal learning deficits, have a focus of lesions in the left posteromedial orbitofrontal cortex. This is

in contrast with Bechara et al.’s patients who have a slightly greater focus on the right hand side of the

orbitofrontal cortex. The authors suggest that these two groups of VMF patients are, possibly, different

in their focus of lesions and, certainly, in their IGT performance. In both the ‘shuffled’ and ‘unshuffled’

versions, Fellows and Farah (2005)’s VMFs seem to follow their initial ‘inclination’ (block 1 net score)

throughout the task, with a slight increase in their net scores (increase of 4 across all blocks in the

‘unshuffled’ version and between 4 and 5 in the ‘shuffled’ version). Bechara et al.’s VMF patients have

a more dynamic profile, during the first 3 blocks they have profiles similar to normals and then begin to

select disadvantageously again in block 4, with block 1 and block 5, and block 2 and block 4 being more

or less symmetrical with one-another in terms of net scores.

7 Discussion

7.1 Comparing the two valuation functions:error-drivenand sample-averaging

Sample-averaginggives a slightly better match than theerror-drivenvaluation function does for normal

healthy controls’ profiles on the IGT. This is, especially, evident for the EFGH variant, and less so for

the E’F’G’H’ variant of the task. But apart from the EFGH variant, where it is superior to theerror-

driven learning,sample-averagingis poor at reproducing Bechara et al.’s VMF patients’ profiles, as it

cannot, regularly, select disadvantageously. In contrast, theerror-drivenvaluation function gives a fairly

good match for all Bechara et al.’s IGT variants, for both normals and VMFs, apart from on the EFGH

variant. This shows that normal controls can be described using a number of different possible valuation

functions, and VMFs can be well described using a strongly updatingerror-drivenvaluation function.

The error-driven learningε-greedy model seems to describe VMF behaviour well on the IGT, across

a number of studies, and could suggest reasons for their more general behaviour deficits, where VMF

patients are often whimsical, and lack the ability to pursue long and medium term goals through coherent

strategy. VMF patients are easily distracted from on-going tasks, and can need prompting to perform

basic maintenance tasks like cleaning themselves. Ourerror-drivenε-greedy model would predict this

sort of behaviour, in that, unless new information is provided, the task is continued, but current strategies



are easily influenced or ignored due to new information. Unlike normals, who are less influenced by new

information, and take more previous data into account when making decisions about future action, VMF

patients, we propose, are strongly biased by recent information. These ideas could extend to higher level

goals, as seems to be evident in real life VMF behaviour, where VMFs often have many ideas or plans

that never come to fruition (old ideas have limited influence on current decision making). Theerror-

driven ε-greedy model would also suggest that multi-tasking is difficult for VMF patients, as external

influences are likely to override intentions to perform the different on-line tasks, as high lighted in a case

study (Wood and N.A., 2004). Following on from this, patients would be expected to perform better in

situations where the contingencies are not rapidly changing, otherwise they would be too influenced by

each new piece of information, rather than the general trend. It may be a cause of their social deficits, as

information is rapidly being updated in social situations, and so may pose a serious processing problem

for VMFs, since they would overly react to small information changes.

7.2 Discussions of Hypotheses

Four hypotheses have been set out in this paper.

1. VMF patients have ‘no preferences’ (Sloman, 2004).

2. VMF patients are ‘risk-seeking’ (Sanfey et al., 2003).

3. VMF patients have a reversal learning deficit (Fellows and Farah, 2003, 2005).

4. VMF patients have a ‘myopia’ for future consequences (Bechara et al., 2000a)

7.2.1 VMF patients have no preferences

The ‘no preference’ theory is supported by Fellows and Farah (2005)’s VMF patients on the ‘unshuffled’

ABCD IGT, as they do not act significantly differently from a random agent, apart from in block 1.

However, on examining Fellows and Farah’s VMF patients on the ‘shuffled’ ABCD version it seems

they are acting with a preference for the advantageous decks, but this is not significantly different from

a random agent, due to the small sample (n = 9) and the large standard errors of the mean. However, this

‘preference’ for the advantageous cards on the ‘shuffled’ ABCD version is not significantly different

from the normal controls in this study (Fellows and Farah, 2005). Thus, although not significantly



different from random, it seems that, on a qualitative and normative level, these VMF patients have some

preference, which seems dependent on their initial estimations (block 1), as they improve very little after

block 1. If only the statistical interpretation of not being significantly different from random is used,

then the ‘no preference’ theory has validity for Fellows and Farah’s VMF patients. However, from the

normative approach, Fellows and Farah’s VMF patients are not significantly different from their normal

healthy controls on the ‘shuffled’ ABCD IGT. In addition, the data from Bechara et al.’s VMF patients

is different, in that, selections in blocks 1, 4 and 5 are significantly different from a random agent, and

significantly different from Fellows and Farah (2005) VMF patients in block 5. Therefore, Bechara et

al.’s data weakens the ‘no preference’ theory, both statistically and qualitatively. When one inspects the

changes in the curve, over the blocks in the ‘unshuffled’ ABCD IGT, there is a fairly consistent pattern

over studies, with a distinctive non-random curve. This original ‘no preference’ hypothesis presented in

Sloman (2004), probably comes from anecdotal evidence, where bilateral orbitofrontal lesions patients

have stated they have “no preferences” (Sacks, 1998). As this study is particularly interested in Bechara

et al.’s VMF patients, which have featured more heavily in the literature of the last decade, the ‘no

preference’ theory does not seem to hold with these patients (apart from on the EFGH variant (Bechara

et al., 2000a)), but it seems to have some validity with the patients in Fellows and Farah (2005).

7.2.2 VMF patients are risk-seeking

If VMF patients’ main deficit were risk-seeking, one would expect them to select more from the advanta-

geous decks in the E(’)F(’)G(’)H(’) variants than normals. This is not supported by human VMF patient

data, where their selections are considerably more disadvantageous than normals human controls. In a

weak sense, if risk-seeking were a small factor in VMF patients’ IGT deficit, then one would expect them

to select more from the advantageous decks in the E(’)F(’)G(’)H(’) variants than normals compared to

their corresponding A(’)B(’)C(’)D versions. This is because, in the E(’)F(’)G(’)H(’) versions, E(’) and

G(’) are the best decks, and have higher variances than the bad decks, F(’) and H(’). However, in the

A(’)B(’)C(’)D versions, the bad decks A(’) and B(’) have the highest variance. This weak argument is

supported by VMF patients’ profiles as for the EFGH variant (total net score = 2) they have a higher

overall net score than on the ABCD version (total net score = -9.2), and again for E’F’G’H’ version

(total net score = -14.1), compared to the A’B’C’D’ version (total net score = -17.3).



A corollary of this, is that, the net scores on the computerised version, E’F’G’H’, should be higher,

than for the non-computerised versions, EFGH, because the variance in the good decks, E’ and G’,

increases over trials, but is constant for, E and G. In comparison, one would expect the net scores to be

lower for VMF patients on the A’B’C’D’ version than on the ABCD version, as the variance in A’ and

B’ increases, and decreases in C’ and D’, but is constant for the ABCD versions. This is the case for the

A(’)B(’)C(’)D versions, but not for the E(’)F(’)G(’)H(’) versions, where EFGH has a higher total net

score than for the E’F’G’H’ version. A reason for this discrepancy could be due to the E’F’G’H’ variant

being more complex than the EFGH version, as the contingencies change throughout the task. However,

this confound of task complexity does not effect the predictions for the A(’)B(’)C(’)D versions, where

increasing variance in A’ and B’, increases their overall selection, and so, is not consistent with the

data from these two versions. Unless, we assume an increased cognitive load, caused by changing

contingencies, which leads to a greater influence of regular rewards. If this assumption is accepted, then

the human data supports a cognitive load theory.

Therefore, when considering the profiles of VMF patients on the different IGT variants the evidence

supporting a risk-seeking theory is weak, and even with the addition of a task complexity proviso the

theory is only slightly strengthened. This theory in terms of the IGT, is only well supported if the

A(’)B(’)C(’)D(’) versions are considered alone, as VMF patients in these versions pick more from the

high variance decks, A(’) and B(’), than normal human controls.

The evidence better supports other theories, like VMF patients being more influenced by the regular

rewards and punishments, than the uncertain ones (’myopia’ for future consequences theory). Under

this theory patients would select more from, A(’) and B(’), in the A(’)B(’)C(’)D(’) versions, and more

from, G(’) and H(’), in the E(’)F(’)G(’)H(’) versions. The ’myopia’ for future consequences theory is

therefore supported by most of Bechara et al.’s data, except, the data produced using the EFGH variant.

Overall, there is little supporting evidence for the risk-seeking being the main cause of VMF patients

IGT defict.

Sanfey et al. (2003) found that their were two subgroups within their VMF population, one risk-

VMF and safe-VMF, this could be the case in Bechara et al’s VMF population, but this is not obvious

from the data. Therefore, with the present data, this interpretation does not seem to be the main cause

for Bechara et al’s VMF patients’ deficits on the IGT.



7.2.3 VMF patients have a reversal deficit as the cause of VMF IGT deficits

Fellows and Farah (2005)’s VMF patients suggest that reversal learning deficits are the main cause of

their disadvantageous behaviour in the IGT, at least for 3 of them. However, neither set of VMF patients

on the IGT have the same type of deficit evident in the simple reversal task (Fellows and Farah, 2003),

in that, on the IGT they do not perseverate after the large reversal, which happens early in the task. It

is actually their rapid return to the bad decks that is their deficit (Bechara et al., 2005), not immediate

perseveration. In addition, one might suspect that the earlier the occurrence of the reversal, the less

influential it would be on future behaviour, since initial contingencies are less established. The data

suggests that an earlier reversal is less detrimental to net scores, that is, Bechara et al.’s VMF patients

act less disadvantageously on the E’F’G’H’ version (total net score = -14.1), than on the A’B’C’D’

version (total net score = -17.3) of the task. The EFGH version (total net score = 2) results are also

supportive of the reversal learning deficit theory, as VMF patients perform better on this task than on

the ABCD task (total net score = -9.2). There are some problems with this interpretation, as it could

be confounded by risk-seeking behaviour, because, as mentioned in the risk-seeking section, E and

G are the best decks and the most risky (highest variance). However, overall, the earlier reversal in

the E(’)F(’)G(’)H(’) versions clearly correlates with increases in net scores compared to corresponding

A(’)B(’)C(’)D(’) versions. The only problem with this interpretation is that there is not an obvious

reason why, in the E’F’G’H’ version, VMF patients perform much worse than on the EFGH variant,

when the positions of the reversals are the same in both IGT versions. To account for net scores being

much lower in the E’F’G’H’ version compared to the EFGH version, one might look to an increased

cognitive load argument. E’F’G’H’ might be considered to be more complex, and so, create more

cognitive load, due to the continually shifting contingencies. Therefore, one might argue that reversal

learning has a very high cognitive load as stimulus-reinforcement associations change considerably, and

that reduced contingency changes would have a lesser affect on performance. This seems to be the case

as VMF patients are worse at the computerised versions ((’) where the contingencies change throughout

the task), than they are at the card based versions (see table 5). Reasons for the better performance

by VMFs in the E(’)F(’)G(’)H(’) variants, compared to the A(’)B(’)C(’)D(’) versions, are not so easily

definable and could be due to influence from risk-seeking, an earlier reversal, or just a high learning rate

in an error-driven system working with different contingencies.



It should be made clear that 3 of the 9 VMF patients in Fellows and Farah (2005)’s study substantially

improved their performance when tested on the ‘shuffled’ ABCD IGT, so much so that, if removed from

the study, improvements in normals and VMF patients is about the same. This might be problematic in

a statistical sense, as these patients probably drive Fellows and Farah (2003)’s correlation between OFC

lesion size and reversal errors, and the further correlation between reversal errors and improvement in

the ‘shuffled’ version compared to the ‘unshuffled’ version (Fellows and Farah, 2005). This all seems to

follow a stimulus-reinforcement associations argument for the role of the OFC, with damage reducing

that ability. On the simple reversal task (Fellows and Farah, 2003), VMF patients perseverate and could

be described as slow to adjust to the changing contingencies. However, on the IGT, VMF patients are

as quick as NHCs to stop selection from deck B after a large loss, 8 out of 9 VMF patients in Fellows

and Farah (2005). Therefore, in the IGT, a large loss is sufficient to alter behaviour, but the reversal in

the simple reversal task is often not sufficient to quickly shift behaviour. This suggests that if theerror-

drivenε-greedy model were used to simulate humans on the simple reversal learning task (Fellows and

Farah, 2003), the VMF patient model would have a lower learning rate than the version of the model

used to describe normal controls.

Another theory is that initial stimulus associations have a special place and are less dependent on the

OFC than the management of changing associations. This might help clarify the large improvement in

the three good VMF patient performers on the ‘shuffled’ version of the IGT. Usingsample-averaging,

with ε = 0.9, provides a good simulation of the VMF patient data for the ‘unshuffled’ ABCD version,

while settingε = 0.7, gives a good match to the ‘shuffled’ version VMF data. Importantly, for Fellows

and Farah (2005)’s VMF patients’ profiles,sample-averagingemphasizes the value of initial stimulus-

reinforcement associations more thanerror-driven learning. This is because it accurately evaluates

the actually value of the first item. This is similar toerror-driven learning with a high learning rate,

although then information would be quickly overwritten. However, in the first few selections,sample-

averagingcan be quite different fromerror-drivenwith a low learning rate, whereas initial stimulus will

not be learnt unless it is repeatedly received. Therefore, one needs to examine the differences between

these models. It is evident that removing the reversal in the IGT improves performance in both NHCs

and VMF patients, particularly those with larger OFC lesions. We suggest that those with larger OFC

lesions are more likely to be influenced by initial stimulus-reinforcement associations, as well as having



the equivalent of a high learning rate, due to their reduced ventromedial prefrontal cortex capacity. Initial

stimulus-reinforcement is preserved, as it is mediated, at least to a degree, by a different neural substrate,

in the temporal cortex (Daum et al., 1991). Although asample-averagingvaluation function better

matches Fellows and Farah’s data, the increased influence of initial stimulus-reinforcement associations

is not sufficient to explain why two different exploration rates are required to model the ‘shuffled’ and

‘unshuffled’ version of the IGT Fellows and Farah (2005). Therefore, the moving of the reversal in the

‘shuffled’ version, must have a greater affect on behaviour than described bysample-averaging

One of the important aspects we take from ourerror-drivenlearning valuation function, is that VMF

patients can only utilise a limited set of past information, as we have previously suggested in another

model (Kalidindi et al., 2005b). A further note to be considered about Fellows and Farah (2005)’s

data to be considered is that only 3 of her VMF patients actually fall into the category of selecting

disadvantageously (total net score< 0) in the ‘unshuffled’ ABCD IGT, only one of which is among the

3 big improvers. This is unlike Bechara et al.’s VMF patients who all selected disadvantageously. In

terms of our models, we would suggest that a number of Fellows and Farah’s VMF patients have a lower

learning rate than modelled in this paper. It is difficult to take these ideas further without individual data

sets, which would certainly be useful in further simulations and analysis.

Reversal learning deficits could be influential on IGT performance, particularly with certain VMF

patient groups (Fellows and Farah, 2005), but it does not in its simple interpretation help us decipher the

actual behaviour displayed by Bechara et al.’s VMF patients on the IGT.

7.2.4 VMF patients have a ‘myopia’ for future consequences

This hypothesis, suggested by Bechara et al. (2000a), is based directly on the VMF patient group who are

the main focus of consideration in this paper. A ‘myopia’ for future consequences theory would predict

that patients would select more from the decks which give the best regular returns. Decks A(’) and

B(’) give the best regular returns for the A(’)B(’)C(’)D(’) versions, while decks F(’) and H(’) provide

the least losses (best regular returns) on the E(’)F(’)G(’)H(’) variants. The IGT is set up so that the

decks with the best regular returns are actually the worst decks. Bechara et al.’s VMF patients do

generally follow this pattern of selecting more from disadvantageous decks, apart from on the EFGH

version (total net score = 2). In addition, with this theory, using theerror-driven ε-greedy model with



set learning parameters for all IGT versions, one would expect VMFs on the ABCD and EFGH versions

to have similar or lower net scores than on the corresponding A’B’C’D’ and E’F’G’H’ versions. The

differences in net scores would be especially evident in later blocks, when good decks get better and

bad decks get worse. The human data does not support this prediction, with net scores being worse in

the A’B’C’D’ and E’F’G’H’ versions. One would expect normal healthy controls (NHC) to perform

better on the A’B’C’D’ and E’F’G’H’ versions than on the corresponding ABCD and EFGH versions,

as differences between good and bad decks are made wider in the A’B’C’D’ and E’F’G’H’ versions. But

NHCs perform very similarly on the corresponding computerised vs. the original card based, versions

of the task. Therefore, we suggest normals can manage the increased task complexity from changing

contingencies, and the decreased task complexity provided by increased separation of mean rewards,

between advantageous and disadvantageous decks. Interestingly, even more accurate human profiles

can be simulated by increasing the learning rates (from the presented learning rates) for the normal

subject simulations on the computerized versions, and by reducing the learning rate for the card based

versions. This is also the case for simulations of the VMF patient profiles, which is suggestive of changes

in cognitive load.

However, in VMF patients, the increased complexity of the computerised versions, A’B’C’D’ (total

net score = -17.3) and E’F’G’H’ (total net score = -14.1), is not managed so well, as they have reduced

net scores for these versions compared to the ABCD (total net score = -9.2) and EFGH (total net score

= 2) versions. We suggest the increased complexity in changing contingencies raises the cognitive load

on VMF patients, pushing their cognitive limits. This limitation in cognitive ability would correlate

with an increase in the learning parameter, reducing the influence of temporally distant information on

current decision making. This might suggest that the EFGH variant is actually easier than the other

versions of the IGT, requiring less cognitive resources, reflected by a lower learning rate to reproduce

the VMF patient data. This is supported by the EFGH version having, a positive risk-seeking orientation

(best decks have the highest variance) in terms of net scores; an early reversal compared to the two

A(’)B(’)C(’)D(’) versions and a lower cognitive load than the E’F’G’H’ variant.

In general the ‘myopia’ for future consequences hypothesis is supported by much of the data. The

error-drivenε-greedy model with fixed parameters for the two patient groups recreates nearly all the data

from the different IGT versions. However, when slightly different learning rates are used for the different



versions of the task, an even more accurate set of profile replications can be produced. This does reduce

some of the simplicity of the model presented so far, which gave a very parsimonious account of the

differences between normal controls and bilateral VMF patients. Such simple models are rarely devoid

of inaccuracies in the details, but can still prove to be useful accounts of complex real world behaviour.

8 Conclusion

Of the four theories, the ‘myopia’ for future consequences best describes the behaviour of Bechara et al’s

VMF patients on the IGT, compared to normals. Our simpleerror-drivenε-greedy model also supports

the ‘myopia’ hypothesis, as increasing the learning rate fromγ = 0.2 (normals) toγ = 0.95 (VMFs)

increases the influence of recent information. We suggest that ‘myopia’ for future consequences is

caused by the limited use of past information in present decision making. Therefore, the contribution

of this work is in presenting more support for a present theory, but also an extension to the causes of

‘myopia’ for future consequences, in both a quantitative and qualitative sense. In the quantitative sense,

the work offers a simple numerical model, which can easily be tested on the IGT and possibly other

paradigms, and produces a good approximation to the human data sets, giving us insight into how the

information in the task might be processed. In the qualitative sense, as mentioned earlier, it extends

the ‘myopia’ for future consequences theory, by suggesting that it is caused by VMF patients being too

influenced by recent and current information, and not giving enough credence to, older, past events.

Currently, based on the evidence and models presented in this paper, Bechara et al.’s patients suffer

from an over-zealous learning rate in their adjustment to rewards and punishment, particularly on the

Iowa Gambling Task, but this may be extendable to a much wider set of behavioural deficits observed in

VMF patients. An interesting final thought is that our model and interpretation would suggest that VMF

patients would probably benefit from routine, as then unexpected events would be less likely, and so less

influential on behaviour. This would also be the treatment suggested by a reversal learning deficit theory,

as routine would reduce the requirement for reversals in stimulus-reinforcement associations. Perhaps,

a theory of cognitive load could incorporates both of these ideas, without contradiction.
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