
Computer Science at Kent

A Type Theory with Partially

De�ned Functions

Yong Luo

Technical Report No. 10 - 05
October 2005

Copyright c© 2005 University of Kent
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK



A Type Theory with Partially De�ned Functions

Yong Luo

Computing Laboratory, University of Kent, Canterbury, UK
Email: Y.Luo@kent.ac.uk

Abstract Only can totally de�ned functions be introduced in conven-
tional dependently typed systems and such functions are normally de-
�ned by eliminators. Because of the limitation of the elimination rules,
many (mathematical) functions cannot be de�ned in these systems. This
paper argues that the restriction of totality is unnecessary, and proposes
a type theory that allows partially de�ned functions. In this type theory,
functions can be introduced by means of pattern matching. It is in gen-
eral undecidable in dependently typed systems whether patterns cover
all the canonical objects of a type, and it is one of the big problems
for implementation. Without the restriction of totality, we don't have
such problem of totality checking, and hence we have more �exibility to
introduce functions than we do in conventional type systems.

1 Introduction

In conventional type theories, functions are normally de�ned by eliminators of
inductive data types. Although some systems such as Coq [B+00] and Epigram
[MM04] use techniques to make the de�nitions easier and more readable, the
underline theory is still very similar to the elimination principles and the com-
putation rules. There are tempts to de�ne function in dependently typed systems
by means of pattern matching [Coq92], but full covering is a big problem. It is
in general undecidable in dependently typed systems whether patterns cover all
the canonical objects of a type. One philosophical reason to require full covering
(or totality) is about the understanding of an inductive data type, that is, for
example, under the empty context, if x is of boolean type Bool, then x is either
True or False. Of course, this understanding (called adequacy) is very nature
and the author has no objection to it. In the system proposed in this paper, the
properties such as

∀x : Bool.x =Bool True ∨ x =Bool False

will always hold under the empty context, where =Bool is the Leibniz equality
and ∨ is the usual logic operator �or�. However, such understanding causes many
philosophers to go too far and consequently restrict to totally de�ned functions
only. The normal way to guarantee totality is to de�ne every function by elim-
inator or similar methods, but in this way, lots of interesting functions cannot



be de�ned (examples will be given later). In conventional type theories, the fol-
lowing function not1 is acceptable, but the function not2 is not because it is not
totally de�ned.

not1 : Bool → Bool

not1(Ture) = False

not1(False) = True

not2 : Bool → Bool

not2(True) = False

A question often asked is: what is not2(False) under the empty context? In the
system proposed in this paper, the answer is the following.

not2(False) is of the type Bool. It cannot be computed any further at this
moment and the normal form is itself. It is not a canonical object of the
type Bool, and the value is unknown at this moment , but we may know
its value later . It is always provable that

not2(False) =Bool True ∨ not2(False) =Bool False

Time is employed to explain the informal meaning of the system, in particular,
for partially de�ned functions. Before going to the formal presentation, let's
�rst discuss another question, what can we gain from allowing partially de�ned
functions?

We shall soon give examples to demonstrate what we can gain, but let's ex-
amine our purpose further. The reason we allow partially de�ned functions is
not that we really want functions which have to be partially de�ned. The real
reason is because the full covering of patterns is undecidable in dependently
typed systems as mentioned before. Without the requirement of totality (or
allowing partially de�ned functions), we simply avoid an undecidable problem.
Another important reason is because eliminators cannot de�ne many mathemat-
ical functions, even if they are totally de�ned. The following examples illustrate
the limitation of eliminators.

Example 1. The following functions can easily be de�ned by means of pattern
matching, but very di�cult to be done by eliminators if possible.

1. Majority function:

maj : Bool → Bool → Bool → Bool

maj(True, True, True) = True

maj(True, False, b) = b

maj(False, b, T rue) = b

maj(b, T rue, False) = b

maj(False, False, False) = False
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This function cannot be de�ned in conventional type theories unless we
change it to a di�erent function maj′ which has eight cases (details are
omitted here). For maj, the terms maj(True, False, b) and b are com-
putationally (or intensionally) equal to one another. However, for maj′,
maj′(True, False, b) is only extensionally equal to b.

2. Ackermann function:

ack : Nat → Nat → Nat

ack(zero, y) = succ(y)
ack(succ(x), zero) = ack(x, succ(zero))

ack(succ(x), succ(y)) = ack(x, ack(succ(x), y))

where Nat is the type of natural numbers.
This is a nested function, the function symbol ack appears in its arguments
in the last equation. This sort of functions cannot be de�ned in conventional
type theories.

3. even and odd number:

even : Nat → Bool

odd : Nat → Bool

even(zero) = True

even(succ(x)) = odd(x)
odd(zero) = False

odd(succ(x)) = even(x)

These are two mutually de�ned functions. The eliminator of Nat cannot
handle such functions.

4. Predecessor:

pred : Nat → Nat

pred(succ(x)) = x

This is a partially de�ned function. In conventional type theories, we have
to give an arbitrary value to pred(zero) even it doesn't make any sense. In
the type theory proposed in this paper, we don't have to give a value to
pred(zero), but we have the following understanding of it.
pred(zero) is of the type Nat, and we can prove that it is either (extension-
ally) equal to zero or succ(x) for some x. pred(zero) cannot be computed
any further at this moment and the normal form is itself. It is not a canon-
ical object of the type Nat, and the value is unknown at this moment ,
but we may know its value later , or we may never know.
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The above examples illustrate the limitation of the elimination principle for
inductive data types. From the viewpoint of programming, the limitation of
eliminator means less �exibility of programming. For example, how do we de�ne
the Ackermann function? We may design a new function which can be de�ned
by eliminators and is (extensionally) equivalent to the Ackermann function. But
this would loss all the beauty of the function and most programmers would feel
very uncomfortable.

The above examples also show that more functions can be introduced by
pattern matching. One can also avoid an undecidable problem, totality checking
of patterns, by allowing partially de�ned functions. In other words, functions
don't have to be totally de�ned. Or, we can say, we don't care whether they are
totally de�ned or not. However, we are not trying to include all the functions.
There are principles to obey and restrictions such as decidability to take into
consideration, when we introduce functions.

Principle 1. As a type theory, it must be consistent.

When one introduces a function symbol and give its type (or kind), one must
make sure that it will not potentially cause the system inconsistent. For example,
the following two functions are not allowed.

emp : Nat → Empty

head : (A : Type) → List(A) → A

where Empty is the inductive data type with no canonical object. If these two
functions are allowed, then emp(zero) and head(Empty, nil(Empty)) are objects
of the type Empty (where nil(Empty) represents the empty list of the type
List(Empty) ), and hence the system is inconsistent. However, the following
function headBool should be �ne.

headBool : List(Bool) → Bool

In conventional type theories, functions are de�ned by the eliminators of
inductive data types. So, the principle of consistency is guaranteed by the elim-
ination principles. In the system proposed in this paper, this is also the case if a
function is de�ned in such a way. However, for the functions are not (or cannot
be) de�ned by the eliminators, the principle of consistency has to be guaranteed
by other means.

It is well-known that the inhabitation of dependent types is undecidable in
general. But we do have sub-sets of types in which the inhabitation is decidable
(examples will be given in Section 4). How large such a sub-set can be depends
on the complexity of an inhabitation checking algorithm and sometimes depends
on our needs in practice. The author implemented a decidable sub-set by a sound
algorithm, i.e. if the algorithm says a type is inhabitable, then there is an object
of the type under the empty context. In the implementation, most commonly
used functions (which the author knows of) can be introduced.
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Principle 2. Type checking must be decidable.

This principle is really a matter of choice. In the system NuPRL [C+86], type
checking is undecidable. However, in most of the type systems such as Lego
[LP92] and Coq [B+00], type checking is decidable. The main reason that one
choose decidable systems is because the implementation of an undecidable sys-
tem is much more di�cult than that of a decidable one. And for this same
reason, the author chooses the principle for the system i.e. type checking must
be decidable.

In dependent type systems, type checking goes down to testing the conversion
of two terms, and this is closely related to the properties of Strong Normalisa-
tion and Church-Rosser. The author also chooses these two properties as basic
requirements for the system. It is worth remarking that type checking does not
involve any computation in simply typed systems. This is why partially de-
�ned functions and non-terminating programs are accepted in strongly typed
programming languages such as ML [MTH90] and Haskell [Tho99].

2 Logical Framework

We start from this section to formally present the type theory. This section will
focus on the logical framework.

De�nition 1. (Terms and Kinds)

• Terms

1. a variable is a term,

2. λx : K.M is a term if x is a variable, K is a kind and M is a term,

3. MN is a term if M and N are terms.

• Kinds

1. Type is a kind,

2. El(A) is a kind if A is a term,

3. (x : K1)K2 is a kind if K1 and K2 are kinds,

Remark 1. Terms and kinds are mutually and recursively de�ned.

Notation: We sometimes write f(e) for fe, f(e1, e2) or fe1e2 for (fe1)e2 and
so on. We also write A for El(A) when no confusion may occur, and (K)K ′

or K → K ′ for (x : K)K ′ if x is not free in K ′. [N/x]M stands for the
expression obtained from M by substituting N for the free occurrences of
variable x in M . FV (M) is the set of free variables in M , and FV (x1 :
K1, ..., xn : Kn) = {x1, ..., xn}.
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Judgement Forms

The explanation of the symbols in a judgement form are the following:

• Γ is a sequence of assumptions of the form x1 : K1, ..., xn : Kn. Γ is also
called context if no confusion occurs.

• C is a sequence of constants of the form c1 : K1, ..., cn : Kn. The constants
include the inductive data types and their constructors.

• F is a sequence of functions of the form f1 : (x : K1)K ′
1, ..., fn : (x : Kn)K ′

n.
The functions also include the eliminators of inductive data types.

• R is a sequence of equations of the form

(∆1)p1 = t1 : T1, ..., (∆n)pn = tn : Tn

where Ti is Type or of the form El(Ai), and ∆i is of the form x1 : K1, ..., xm :
Km.

Notation We shall use x, y, z for arbitrary variables, and T for Type or El(A)
for some A, and K for an arbitrary kind.

The judgement forms are the following:

• Γ `C;F
R valid, which means Γ `C;F

R is a valid context. We use � ;� to separate
the sequences of constants and functions (i.e. C and F )

• Γ `C;F
R K kind, which means K is a kind in Γ `C;F

R .

• Γ `C;F
R k : K, which means k is an object of kind K in Γ `C;F

R .

• Γ `C;F
R K = K ′, which means K and K ′ are equal kinds in Γ `C;F

R .

• Γ `C;F
R k = k′ : K, which means k and k′ are equal objects of kind K in

Γ `C;F
R .

Notation We shall write Γ `C;F
R k : K for the sequence of judgements Γ `C;F

R

k1 : K1, Γ `C;F
R k2 : [k1/x1]K2,...,Γ `C;F

R kn : [kn−1/xn−1, ..., k1/x1]Kn, and

Γ `C;F
R k = k′ : K for the sequence Γ `C;F

R k1 = k′1 : K1, Γ `C;F
R k2 =

k′2 : [k1/x1]K2,...,Γ `C;F
R kn = k′n : [kn−1/xn−1, ..., k1/x1]Kn. And [k/x]M

stands for [kn/xn, ..., k1/x1]M .

Commands

We also have four commands; �Assume x : K� adds a new assumption in Γ ;
�Inductive sch� speci�es an inductive data type by adding constants in C and
eliminator in F and computation rules in R; �Function f : K� introduces a new
function symbol; and �Equation (∆)p = t : T � adds a new equation rule for a
function.
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Contexts and assumptions:

<>`<>;<>
<> valid

Γ `C;F
R valid x : K ∈ Γ ∪ C ∪ F

Γ `C;F
R x : K

Γ `C;F
R K kind Assume x : K x 6∈ FV (Γ ∪ C ∪ F )

Γ, x : K `C;F
R valid

The kind Type:

Γ `C;F
R valid

Γ `C;F
R Type kind

Γ `C;F
R A : Type

Γ `C;F
R El(A) kind

Dependent product kinds:

Γ `C;F
R K kind Γ, x : K `C;F

R K′ kind

Γ `C;F
R (x : K)K′ kind

Γ, x1 : K1, ..., xn : Kn `C;F
R M : T

Γ `C;F
R λx1 : K1...λxn : Kn.M : (x1 : K1)...(xn : Kn)T

Γ `C;F
R M : (x1 : K1)...(xn : Kn)T Γ `C;F

R k : K

Γ `C;F
R Mk1...kn : [k/x]T

Figure 1. Inference rules for logical framework

Inference rules

The inference rules for Logical Framework (LF) are presented in Figure 1, 2, 3
and 4.

Remark 2. We have the following remarks.

• The Logical Framework (LF) presented here is very much similar to the
Martin-löf's Logical Framework (MLF) [ML84,NPS90,Luo94] and the Ed-
inburgh Logical Framework (ELF) [HHP87,HHP92] and PAL+ [Luo03], al-
though the judgement forms are obviously di�erent from all of them. In the
logical framework (LF), for Γ `C;F

R , only Γ changes. The others, C, F and
R, keep as empty sequences, but they will increase later when new rules are
added.
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Substitution rules:

Γ, x : K, Γ ′ `C;F
R valid Γ `C;F

R k : K

Γ, [k/x]Γ ′ `C;F
R valid

Γ, x : K, Γ ′ `C;F
R K′ kind Γ `C;F

R k : K

Γ, [k/x]Γ ′ `C;F
R [k/x]K′ kind

Γ, x : K, Γ `C;F
R K′ kind Γ `C;F

R k = k′ : K

Γ, [k/x]Γ ′ `C;F
R [k/x]K′ = [k′/x]K′

Γ, x : K, Γ ′ `C;F
R k′ : K′ Γ `C;F

R k : K

Γ, [k/x]Γ ′ `C;F
R [k/x]k′ : [k/x]K′

Γ, x : K, Γ ′ `C;F
R k′ : K′ Γ `C;F

R k1 = k2 : K

Γ, [k1/x]Γ ′ `C;F
R [k1/x]k′ = [k2/x]k′ : [k1/x]K′

Γ, x : K, Γ ′ `C;F
R K′ = K′′ Γ `C;F

R k : K

Γ, [k/x]Γ ′ `C;F
R [k/x]K′ = [k/x]K′′

Γ, x : K, Γ ′ `C;F
R k′ = k′′ : K′ Γ `C;F

R k : K

Γ, [k/x]Γ ′ `C;F
R [k/x]k′ = [k/x]k′′ : [k/x]K′

Figure 2. Inference rules for logical framework�substitution

• The well-typed terms in LF are di�erent from those in MLF and ELF, but
similar to the let-expressions in PAL+. In LF, if the term λx : K.y is well-
typed, then y must not be a function. And if a function is applied, it must
be fully applied.

• The η equation rule, which looks like

λx1 : K1...λxn : Kn.yx1...xn = y

where y is a variable, is di�erent from the normal one. There are three reasons
why this rule is correct and su�cient. First of all, we must be able to prove
that, if yx1...xn is well-typed then y 6= xi for any i. Secondly, if y is changed
to an application, η equation rule will not be applicable. For example,

λx1 : K1...λxn : Kn.(yz)x1...xn 6= yz

because yz is not fully applied. Thirdly, if y is changed to a λ-abstraction,
then β equation rule will be enough.
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General equation rules:

Γ `C;F
R K kind

Γ `C;F
R K = K

Γ `C;F
R A = B : Type

Γ `C;F
R El(A) = El(B)

Γ `C;F
R K = K′

Γ `C;F
R K′ = K

Γ `C;F
R K = K′ Γ `C;F

R K′ = K′′

Γ `C;F
R K = K′′

Γ `C;F
R k : K

Γ `C;F
R k = k : K

Γ `C;F
R k = k′ : K

Γ `C;F
R k′ = k : K

Γ `C;F
R k = k′ : K Γ `C;F

R k′ = k′′ : K

Γ `C;F
R k = k′′ : K

Γ `C;F
R k : K Γ `C;F

R K = K′

Γ `C;F
R k : K′

Γ `C;F
R k = k′ : K Γ `C;F

R ` K = K′

Γ `C;F
R k = k′ : K′

Γ `C;F
R K1 = K2 Γ, x : K1 `C;F

R K′
1 = K′

2

Γ `C;F
R ` (x : K1)K′

1 = (x : K2)K′
2

Γ, x1 : K1, ..., xn : Kn `C;F
R M = M ′ : T

Γ `C;F
R K1 = K′

1 ... ... Γ, x1 : K1, ..., xn−1 : Kn−1 `C;F
R Kn = K′

n

Γ `C;F
R λx1 : K1...λxn : Kn.M = λx1 : K′

1...λxn : K′
n.M ′ : (x1 : K1)...(xn : Kn)T

Γ `C;F
R M = M ′ : (x1 : K1)...(xn : Kn)T Γ `C;F

R k = k′ : K

Γ `C;F
R Mk1...kn = M ′k′1...k

′
n : [k/x]T

Figure 3. Inference rules for logical framework

• We assume that the good properties such as strong normalisation, Church-
Rosser and subject reduction hold for LF. The author has proved strong
normalisation for the terms which have correct arities [Luo05b], and proved
Church-Rosser by introducing a new η-reduction [Luo05a]. The proof meth-
ods can be applied here.

Example 2. In this example, we give a derivation to demonstrate how to use the
last equation rule in Figure 4. Suppose (x : Nat)pred(succ(x)) = x : Nat ∈ R
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Core equation rules:

(β)
Γ, x1 : K1, ..., xn : Kn `C;F

R M : T Γ `C;F
R k : K

Γ `C;F
R (λx1 : K1...λxn : Kn.M)k1...kn = [k/x]M : [k/x]T

(η)
Γ `C;F

R y : (x1 : K1)...(xn : Kn)T

Γ `C;F
R λx1 : K1...λxn : Kn.yx1...xn = y : (x1 : K1)...(xn : Kn)T

Γ `C;F
R valid (∆)p = t : T ∈ R

(∆)p = t : T =α (∆′)p′ = t′ : T ′

FV (∆′ ∩ Γ ∩ C ∩ F ) = ∅
Γ, ∆′ `C;F

R p′ = t′ : T ′

Figure 4. Inference rules for logical framework

and x is fresh. Then we have the following derivation.

(x : Nat)pred(succ(x)) = x : Nat ∈ R

x : Nat `C;F
R pred(succ(x)) = x : Nat

zero : Nat ∈ C

`C;F
R zero : Nat

`C;F
R pred(succ(zero)) = zero : Nat

3 Inductive data types

Now, we start to specify type theory in LF. In this section, we brie�y demonstrate
how to specify inductive data types by inductive schemata. Logic and universes
are omitted here.

The details of inductive schemata can be found in [Luo94,Luo04]. When the
inductive schemata are given for an inductive data type, we have algorithms
to add new constants, eliminator and computation rules. We shall call these
algorithms algC, algF and algR respectively.

Example 3. Now, we give some examples to show how the algorithms work.

1. The Empty type:

sch1 =df (Empty, <>, <>, <>)

We normally have

Empty : Type

EEmpty : (C : (Empty)Type)(z : Empty)C(z)
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So,

algC(sch1) = < Empty : Type >

algF (sch1) = < EEmpty : (C : (Empty)Type)(z : Empty)C(z) >

algR(sch1) = <>

2. The boolean type:

sch2 = (Bool, <>, <>, < (True, X), (False,X) >)

We normally have

Bool : Type

True : Bool

False : Bool

EBool : (C : (Bool)Type)(f1 : C(True))
(f2 : C(False))(z : Bool)C(z)

EBool(C, f1, f2, T rue) = f1 : C(Ture)
EBool(C, f1, f2, False) = f2 : C(False)

So,

algC(sch2) = < Bool : Type, True : Bool, False : Bool >

algF (sch2) = < EBool : (C : (Bool)Type)(f1 : C(True))
(f2 : C(False))(z : Bool)C(z) >

algR(sch2) = < ((∆)EBool(C, f1, f2, T rue) = f1 : C(True),
(∆)EBool(C, f1, f2, False) = f2 : C(False) >

where ∆ ≡< C : (Bool)Type, f1 : C(True), f2 : C(False) >
3. The type of natural numbers:

sch3 = (Nat, <>, <>, < (zero, X), (succ, (X)X) >)

We have

Nat : Type

zero : Nat

succ : (Nat)Nat

ENat : (C : (Nat)Type)(c : C(zero))
(f : (n : Nat)(C(n))C(S(n)))
(z : Nat)C(z)
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ENat(C, c, f, zero) = c : C(zero)
ENat(C, c, f, succ(n)) = f(n, EN (C, c, f, n)) : C(succ(n))

The results of algC(sch3) and algF (sch3) can be given accordingly.

algR(sch3) = < (∆)ENat(C, c, f, zero) = c : C(zero),
(∆, n : Nat)ENat(C, c, f, succ(n)) =
f(n, EN (C, c, f, n)) : C(succ(n)) >

where

∆ ≡ < C : (Nat)Type, c : C(zero),
f : (n : Nat)(C(n))C(S(n)) >

4. The type of lists:

sch4 = (List,< A : Type >,<>,< (nil,X), (cons, (A)(X)X) >)

We have

List : (A : Type)Type

nil : (A : Type)List(A)
cons : (A : Type)(a : A)(l : List(A))List(A)

EList : (A : Type)(C : (List(A))Type)(C(nil(A)))
((a : A)(l : List(A))(C(l))C(cons(A, a, l)))
(z : List(A))C(z)

EList(A,C, c, f, nil(A)) = c : C(nil(A))
EList(A,C, c, f, cons(A, a, l)) = f(a, l, EList(A,C, c, f, l))

: C(cons(A, a, l))

The results of algC(sch4), algF (sch4) and algR(sch4) can be given accord-
ingly.

5. The type of vectors:

sch5 = (V ec,< A : Type >,< n : Nat >,

< (vnil, X(zero)), (vcons, (n : Nat)(A)(X(n))X(succ(n))) >)

We have

V ec : (A : Type)(n : Nat)Type

vnil : (A : Type)V ec(A, zero)
vcons : (A : Type)(n : Nat)(a : A)(l : V ec(A,n))V ec(A, succ(n))
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EV ec : (A : Type)(C : (n : Nat)(V ec(A,n))Type)
(C(zero, vnil(A)))
((n : Nat)(a : A)(l : V ec(A,n))
(C(n, l))C(succ(n), vcons(A,n, a, l)))
(n : Nat)(l : V ec(A,n))C(n, l)

EV ec(A,C, c, f, zero, vnil(A)) = c : C(zero, vnil(A))
EV ec(A,C, c, f, succ(n), vcons(A,n, a, l)) = f(n, a, l, EV ec(A,C, c, f, n, l))

: C(succ(n), vcons(A,n, a, l))

The results of algC(sch5), algF (sch5) and algR(sch5) can be given accord-
ingly.

In general, the rule for specifying inductive data types is the following.

Rule for inductive data types:

Γ `C;F
R valid Inductive sch

Γ `C∪algC(sch);F∪algF (sch)

R∪algR(sch) valid

Figure 5. Inference rule for inductive data types

Remark 3. We have the following remarks.

• There are obvious restrictions for inductive data types, for example, the
names of types and constructors must be all fresh.

• The type theory presented up to now is intuitively equivalent to UTT [Luo94]
except the logic and universes, which can be presented here in the same
manner. Since the purpose of this paper is about partially de�ned functions,
we omit the details of the logic and universes.

• We assume that the good properties such as strong normalisation and Church-
Rosser and subject reduction still hold after introducing inductive data
types. In Goguen's thesis [Gog94], he proved such properties for the sys-
tem UTT, but the author has doubt whether the proof of Lemma 4.9.19 in
the thesis is convincing when the computation rules for inductive data types
are applied.

Many functions can be de�ned by the eliminators of inductive data types. For
example, one can de�ne addition (+) : (Nat)(Nat)Nat as follows.

(+) =df λm : Nat.λn : Nat.

ENat(λx : Nat.Nat, m, λx : Nat.λy : Nat.succ(y), n)

14



However, many functions is not easy, if possible, to be de�ned in this way (see
Example 1). In the following two sections, we shall introduce functions in a more
�exible and powerful way.

4 Function symbols

As mentioned in the introduction section, functions are de�ned by existing sym-
bols, mostly eliminators, in conventional type theories. In this section, we intro-
duce new function symbols which will not simply be de�nitions.

Inhabitable kinds

De�nition 2. (Inhabitable kinds) If `C;F
R K kind is derivable and there is

at least one k such that `C;F
R k : K is derivable, then we say K is inhabitable in

`C;F
R . If I is a set of kinds and every kind in the set is inhabitable in `C;F

R , then

we say I is an inhabitable set in `C;F
R .

The kind (A : Type)(A)A is inhabitable in any valid context, in fact, we have

`C;F
R λA : Type.λx : A.x : (A : Type)(A)A. So, an inhabitable set I exists for

any valid context.

Example 4. We give some inhabitable and non-inhabitable kinds.

• (Empty)Empty is inhabitable.
• (Empty)Nat is inhabitable.
• (Nat)Empty is non-inhabitable.
• (A : Type)(List(A))A is problematic. If a function f is of this kind, then
there is an element of the type Empty (see Introduction for details).

The purpose of inhabitable sets is to guarantee the consistency of the type theory.
We need an algorithm to check the inhabitability of a kind when we introduce a
new function symbol. If the algorithm says it is inhabitable, then it is allowed.
If it says no or uncertain, the function is not allowed. Although inhabitability is
undecidable in general, we can have algorithms to decide some sub-sets of kinds.
How big these sub-sets will be often depends on the complexity of the algorithms
and user's needs. The author has implemented an algorithm which can decide
most commonly used kinds.

The rule for introducing new function symbols is in Figure 6.

5 Pattern matching

In this section, we introduce new equations by means of pattern matching.

De�nition 3. (Patterns)

• A variable is a pattern.
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Rule for function symbols:

Γ `C;F
R valid `C;F

R (x : K)K′ kind Function f : (x : K)K′

f 6∈ FV (Γ ∪ C ∪ F ) (x : K)K′ ∈ I
Γ `C;F,f :(x:K)K′

R valid

where I is an inhabitable set in `C;F
R .

Figure 6. Inference rule for function symbols

• c(p1, ...pn) is a pattern if c is a constructor and p1,..., pn are patterns and c
is fully applied.

Example 5. zero and succ(x) are patterns but succ is not.

Remark 4. This is a simple de�nition of patterns. Some de�nitions include more
patterns, for example, 'a closed term is a pattern'. Since the idea of partially
de�ned functions and the implication in practice may be very new for those
who study dependent types, we shall concentrate on presenting the main idea
through this simple de�nition.

Notation We shall write p for arbitrary patterns.

De�nition 4. Free variables of a pattern is de�ned as follows.

• FV (x) = {x};
• FV (c(p1, ..., pn)) = FV (p1) ∪ ... ∪ FV (pn).

Let < p1, ..., pn > be a sequence of patterns. If all the free variables only appear
once in the sequence, then we say that < p1, ..., pn > is a sequence of linear
patterns. In this paper, we only consider linear patterns. Non-linear patterns
are useful but we use linear patterns to demonstrate the main idea.

De�nition 5. (Disjointness) Let p and q be patterns. If disjoint(p, q) = true,
then we say p and q are disjoint. Let < p1, ..., pn > and < q1, ..., qn > be two se-
quences of patterns. If one pair of pi and qi are disjoint, then these two sequences
are disjoint.

disjoint(x,−) = false

disjoint(c(p1, ..., pn), x) = false

disjoint(c(p1, ..., pn), c′(q1, ..., qn)) = true if c 6= c′

disjoint(c(p1, ..., pn), c(q1, ..., qn)) = disjoint(p1, q1) ∨ ... ∨
disjoint(pn, qn)

where ∨ is the usual logic operator �or�.
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Example 6. succ(x) and zero are disjoint but succ(x) and succ(succ(y)) are not.

Remark 5. The purpose of disjointness is to prevent us from giving di�erent
value to the same arguement. It is one of the ways to guarantee the property of
Church-Rosser.

De�nition 6. (Structural smallness) Let p ≡ c(r1, ..., rn) be a pattern and
q a term. We say that q is structurally smaller than p if

• q is one of r1,..., rn; or
• q is structurally smaller than one of r1,..., rn.

Example 7. x is structurally smaller than succ(succ(x)) but succ(zero) is not
structurally smaller than succ(x).

Remark 6. The purpose of structural smallness is to prevent us from de�ning
non-terminating functions. It is one of the ways to guarantee the property of
strong normalisation.

It is worth remarking that we sometimes don't directly compare the argu-
ments. For example, in the following equation, the arguement of f in both sides
are c(g) and g(x), but we compare c(g) with g, and g is structurally smaller than
c(g). One may regard that g is equivalent to λx : A.g(x).

f(c(g)) = c′(λx : A.f(g(x)))

Structural smallness does not involve any computation, but only syntactical
comparison. For example, (λy : Nat.y)x is not structurally smaller than succ(x)
although x is.

De�nition 7. (Absolute smallness) Let < p1, ..., pn > be a sequence of pat-
terns and < q1, ..., qn > a sequence of terms. If there is at least one pair pi

and qi such that qi is structurally smaller than pi, and for all other pairs such
that qi is structurally smaller than pi or qi ≡ pi, then we say that the sequence
< q1, ..., qn > is absolutely smaller than the sequence < p1, ..., pn >.

Example 8. < x, succ(y) > and < succ(x), y > are absolutely smaller than <
succ(x), succ(y) >.

Remark 7. Although the concept of structural smallness is a sort of common
sense, the concept of absolute smallness is not well-understood or clearly de�ned
in literature. For example, the following equation is not allowed in [Coq92], but
it is allowed in this paper.

f(succ(x), succ(y)) = f(x, succ(y)) + f(succ(x), y)

And the following de�nition makes it precise.

De�nition 8. Let P ≡< p1, ..., pn > be a sequence of patterns and q ≡<
q1, ...qn > a sequence of terms, and Q a set of sequences of terms as follows.

Q ≡

 < q11, ..., q1n >
... ...

< qm1, ..., qmn >


17



• Q is structurally smaller than P , notation Q <i P if there is one i (i ≤ n)
such that q1i, q2i,..., qmi are structurally smaller than pi.

• Q ∪ {q} <i P if Q <i P and q is absolutely smaller than P .

Example 9. We give two examples to help us to understand the above de�nition.
Suppose we have an equation as follows.

f(succ(x), succ(y), succ(z)) = f(x, succ(succ(y)), z) +
f(succ(succ(x)), y, z) +
f(x, succ(y), succ(z)) +
f(x, y, succ(z))

There are four recursive calls in the right hand side. The �rst two have the third
term z which is structurally smaller than the third pattern in the left hand side
(succ(z)). The last two sequences in the right hand side are absolutely smaller
than the sequence in the left hand side.

For the last equation of the Ackermann function in Example 1,

ack(succ(x), succ(y)) = ack(x, ack(succ(x), y))

there are two recursive calls in the right hand side. So, we should compare <
succ(x), succ(y) >≡ P with < x, ack(succ(x), y) >≡ q1 and < succ(x), y >≡ q2.
The second, q2, is absolutely smaller than P , and for the �rst, we have q1 <1 P .
So, we have {q1, q2} <1 P .

When we introduce a new equation for a function, we should also take all other
existing equations for the function into consideration. Firstly, the pattern in the
left hand side of the new equation must be disjoint with all the patterns in the
left hand side of the existing equations. Secondly, structural smallness has to be
considered carefully. We shall not consider the mutually de�ned functions at the
moment in order to keep the presentation simple and concentrate on the main
point � partially de�ned functions.

De�nition 9. (Legal equation) Let (P1, Q1),..., (Pn, Qn) are the patterns and
terms got from the existing equations, where P1,..., Pn got from the left hand side
and Q1,..., Qn got from the right hand side. Let (Pn+1, Qn+1) are the patterns
and terms got from the new equation which we want to introduce. Then, we say
the new equation is legal if the following four conditions are satis�ed.

1. There is no mutual calls for other functions, and the de�ned function must
be always fully applied, and Pn+1 is a sequence of linear patterns.

2. P1,..., Pn are all disjoint with Pn+1.
3. There is a i such that Q1 <i P1,..., Qn <i Pn and Qn+1 <i Pn+1.
4. Not all of the patterns in Pn+1 are variables.

Remark 8. Mutually de�ned functions are not speci�ed here, not because the
structural smallness is conceptually di�erent but because a formal de�nition
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would be a notational nightmare. For example, when the last equation for odd
is introduced in Example 1, we start to know that odd and even are mutually
de�ned. Then whether odd(succ(x)) = even(x) is legal depends on whether the
following two equations are legal.

odd(succ(zero)) = true

odd(succ(succ(x))) = odd(x)

Let's also explain more about the forth condition. This condition can only be
applied to the case that there is no existing equations. Otherwise the second con-
dition would fail. The property of Church-Rosser may fail without the forth con-
dition. For example, if the �rst equation for the function f : (Nat)(Nat)Nat is
f(x, y) = zero, which means that, for any natural numbers k1 and k2, f(k1, k2) =
zero. For the term λx : Nat.λy : Nat.f(x, y), there are two di�erent normal form
λx : Nat.λy : Nat.zero and f .

Now, we are ready to introduce a new rule for equations.

Rule for equations:

Γ `C;F
R valid f : (x1 : K1)...(xn : Kn)T ∈ F

∆ `C;F
R f(p1, ..., pn) : T ′ ∆ `C;F

R t : T ′

FV (∆) ≡ FV (p1) ∪ ... ∪ FV (pn) f(p1, ..., pn) = t is legal
Equation (∆)f(p1, ..., pn) = t : T ′

Γ `C;F
R,(∆)f(p1,...,pn)=t:T ′ valid

Figure 7. Inference rule for equations

6 Meta-theoretic Properties

As mentioned in the introduction section, when the author designs the system,
there are two principles which are always in his mind. So, we also expect the
system has the following nice meta-theoretic properties after it is presented.

• Strong normalisation.
• Church-Rosser.
• Decidability of type-checking.
• Consistency, e.g. Empty type is not inhabitable, 6`C;F

R M : Empty for any
C, F , R and M .

Proving these properties is not an easy matter at all. There are a lot of papers and
theses about the meta-theoretic properties [Bar92,Luo90,Alt93][MW96,Gog94]
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[Geu93,Wer92][Bar84,Tak95,Nip01]. Goguen employed �typed operational seman-
tics� in his thesis [Gog94] to prove the meta-theoretic properties for the system
UTT. Since the system here is close to UTT, the techniques for UTT might also
be applied here. Studying meta-theoretic properties is a very important part of
future work for the system.

Reductions

The one-step reduction rules for β and η are the same with many other systems.
We give only two rules for η-reduction and omit others.

λx1 : K1...λxn : Kn.yx1...xn −→η y

M −→η M ′ M is the �nal body

λx1 : K1...λxn : Kn.M −→η λx1 : K1...λxn : Kn.M ′

where y is a variable, and M is the �nal body of λ-abstractions, that is, M itself
cannot be of the form λx : K.N .

The pattern matching and one-step reduction rules for functions are also the
same with our common understanding. We omit the details here.

βη Weak Head Normal Form and Normal Form

Now, we present a new de�nition of weak head normal form which is very dif-
ferent from the conventional one in literature. One of the purposes of weak head
normal form is to have an e�cient algorithm to test conversion of two terms. The
de�nitions here for weak head normal form and normal form are only suitable
for logical framework and βη-reduction when we test conversion of two terms. If
we add new computation rules, the de�nitions should be modi�ed accordingly.
Details are omitted here.

De�nition 10. (βη Weak Head Normal Form) A term M is in βη Weak
Head Normal Form (whnf) if and only if

• M ≡ xe1...en where x is a variable; or
• M ≡ λx1 : K1...λxn : Kn.ye1...em where n 6= 0 and y is a variable and,

· n 6= m; or
· n = m and e1, ..., em are in whnf and [e1, ..., em] 6≡ [x1, ..., xn].

Remark 9. The conventional de�nition of whnf does not take η-reduction into
consideration and any λ-abstraction (λx : K.M) is in whnf.

De�nition 11. (Normal Form) A term or kind M is in Normal Form (nf),
notation M ∈ NF , if and only if

• M ≡ xe1...en where x is a variable and ei ∈ NF ; or
• M ≡ λx1 : K1...λxn : Kn.ye1...em where n 6= 0 and y is a variable and

Ki ∈ NF and ej ∈ NF , and [e1, ..., em] 6≡ [x1, ..., xn];
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• or M ≡ Type; or
• M ≡ El(A) where A ∈ NF ; or
• M ≡ (x : K1)K2 where Ki ∈ NF .

Lemma 1. If a term or kind M is in normal form, then there is no one-step β
or η-reduction can be applied to M and vice versa.

Proof. This property can be veri�ed by induction on the de�nition of normal
form.

Lemma 2. If the normal form of M (nf(M)) is of the form xe1...en then the
βη weak head normal form of M (whnf(M)) is of the same form. Similarly,
if nf(M) is of the form λx1 : K1...λxn : Kn.ye1...em then whnf(M) is of the
same form.

Proof. Suppose whnf(M) is of the form λx1 : K1...λxn : Kn.ye1...em. By the
de�nition of whnf, no matter how we reduce this term, the λ-abstraction will
never be wiped o�.

Conversion testing algorithm The following is a core algorithm of testing
conversion of two terms and two kinds. If M and N are convertible, we denote
M ' N , otherwise M 6' N .

1. Given two terms M and N . Compute M to a whnf M ′ and N to a whnf N ′.

(a) M ′ ≡ xa1...an and N ′ ≡ yb1...bm

if x 6= y then M 6' N
else if m = n and ai ' bi then M ' N else M 6' N ;

(b) M ′ ≡ λx : K1.M
′′ and N ′ ≡ λx : K2.N

′′

if K1 ' K2 and M ′′ ' N ′′ then M ' N else M 6' N ;
(Note that if the bound variables are di�erent, they ought to be changed
to the same)

(c) Any other case, M 6' N .

2. Given two kinds K1 and K2.

(a) K1 ≡ Type and K2 ≡ Type
then K1 ' K2;

(b) K1 ≡ El(A) and K2 ≡ El(B)
if A ' B then K1 ' K2 else K1 6' K2;

(c) K1 ≡ (x : K11)K12 and K2 ≡ (x : K21)K22

if K11 ' K21 and K12 ' K22 then K1 ' K2 else K1 6' K2;
(Note that if the bound variables are di�erent, they ought to be changed
to the same)

(d) Any other case, K1 6' K2.

Remark 10. The conventional de�nition of whnf is based on β-reduction only.
When a system has β and η-reductions, an algorithm of testing conversion of
two terms is quite complicate and involves η-expansion, if one takes the con-
ventional de�nition. The signi�cance of this new de�nition (i.e. βη weak head
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normal form) is that an algorithm of testing conversion of two terms can be very
straightforward and easier. As for the complexity, the author believes that the
algorithm based on the new de�nition is not slower than the one based on the
old if not faster. This topic is out of the scope of the paper.

Theorem 1. (Soundness and Completeness) The above algorithm is sound
and complete if the logical framework has the properties of strong normalisation
and Church-Rosser.

Proof. Since the logical framework has the properties of strong normalisation
and Church-Rosser, if Γ ` M = N : K or Γ ` M = N where M and N
are kinds, is derivable, then M and N have the same normal form. The proof
proceeds by Lemma 2 and by analysing the cases of normal forms.

7 Discussion and conclusion

7.1 More patterns

As mentioned before, we employed a simple version of patterns to convey the
main idea of the paper, partially de�ned functions in a type theory and the
implication in practice. In the following, we give examples to illustrate some
more �exible ways of introducing functions. Many questions may arise for the
examples in this section. A more detailed and formal presentation will be in a
forthcoming paper.

For example, we want to introduce the following function.

f(x) =

1 if x = 100

0 otherwise

It is very tedious indeed to introduce this function in type theories, since we have
to list 102 di�erent cases. However, we can introduce the function as follows.

f(100) = succ(zero)
f(x) = zero

where 100 ≡ succ(...succ(zero)...) and there are 100 succ. Although the pat-
terns 100 and x are not disjoint, the last equation is still allowed. But it cannot
stand alone, and it must be bound with other equations of the function. The
pattern matching algorithm now not only give �yes� or �no�, but has three an-
swers: �matching�, �uncertain� and �impossible�. For example, if the algorithm is
pma(t, p) where t is a term and p is a pattern, then

pma(100, 100) = matching

pma(succ(x), zero) = impossible

pma(x, 100) = uncertain

pma(succ(x), 100) = uncertain

pma(zero, 100) = impossible
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So, we can compute f(100) to succ(zero) because of pma(100, 100) = matching,
f(zero) to zero because of pma(zero, 100) = impossible, and f(succ(x)) cannot
be computed further because of pma(succ(x), 100) = uncertain.

In many programming languages such as Haskell [Tho99], the requirement of
disjointness is not needed because the patterns for a function have orders. If a
closed term matches the �rst pattern, the algorithm will not try to match other
patterns. This makes sense because Haskell only computes closed terms.

Non-linear patterns Since the properties of strong normalisation and Church-
Rosser are taken as basic requirements, we may also allow the following examples.

f : Nat → Nat → Bool

f(x, x) = True

h : (Nat → Nat) → (Nat → Nat) → Bool

h(g, g) = True

The way of computing for this sort of functions is that, for example, for the
term h(g1, g2), if g1 is computationally equal to g2, then it is computed to True,
otherwise, it cannot be computed further.

Another example often found in mathematics and physics has non-linear
pattern.

−→⊕ : (n : Nat)(V ec(Nat, n))(V ec(Nat, n))V ec(Nat, n)

−→⊕(zero, vnil(Nat), vnil(Nat)) = vnil(Nat)

−→⊕(succ(m), vcons(Nat, m, x, xs), vcons(Nat, m, y, ys))
= vcons(Nat, m, x + y,−→⊕(m,xs, ys))

Closed terms can also be patterns For example, λx : Nat.x can be a pattern
because it is a closed term. Let's examine the following example.

f : (Nat → Nat) → Bool

f(λx : Nat.x) = True

For the term f(g), if g is computationally equal to λx : Nat.x, then it is computed
to True, otherwise it cannot be computed further.

7.2 A comparison

Here is a brief comparison with Coquand's paper on his home page.

• This paper allows partially de�ned functions, while his paper doesn't. As
mentioned before, totality checking is undecidable in general and this is a
very big problem.
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• This paper treat pattern matching as an extra power to de�ne functions.
Many other aspects such as logic, universes, equality rules, inductive data
types are introduced in the same way as in normal type theories.

• In Coquand's paper, g(t) is structurally smaller than c(g) for any term t.
This is neither natural nor necessary. In this paper, g is structurally smaller
than c(g) as discussed in Remark 6.

• In this paper, the concept of absolute smallness is presented in De�nition 7.
More functions can be introduced as remarked in Remark 7.

7.3 Conclusion

The purpose of the paper is to present a type theory which can introduce more
functions by allowing partially de�ned functions. This paper crosses the limita-
tion of the elimination rules, which only are primitive recursions. By allowing
partially de�ned functions, we avoid an undecidable problem in dependent type
theories, totality checking of patterns. The implication of the idea in practice
is signi�cant, for example, a non-primitive function, Ackermann function, can
be de�ned easily. This paper also challenges a conventional philosophical un-
derstanding, functions must be totally de�ned in type theories. And the author
believes this paper will make a big impact in the community of theoreticians and
philosophers of type theories.
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