Computer Science at Kent

New eta-reduction and Church-Rosser

Yong Luo

Technical Report No. 7 - 05
October 2005

Copyright (©) 2005 University of Kent
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK



New eta-reduction and Church-Rosser

Yong Luo

Computing Laboratory, University of Kent, Canterbury, UK
Email: Y.Luo@kent.ac.uk

Abstract This paper introduces a new eta-reduction rule for A-calculus
with dependent types and prove the property of Church-Rosser.

1 Introduction

For the simple A-calculus, the property of Church-Rosser w.r.t. 3 and 7-
reduction holds, no matter a term is well-typed or not, and the methods
of proving this property vary [Bar84,Tak95,Nip01]. Some systems such
as Edinburgh Logical Framework [HHP87,HHP92| have (3-reduction only,
and the proof method is known as that of Tait and Martin-L&f. However,
for some dependently typed systems such as Martin-Lo6f’s Logical Frame-
work [ML84,NPS90,Luo94], the story becomes very different because ill-
typed terms may not have this property w.r.t. § and n-reduction. The
proofs for such systems are very difficult because one has to prove that
“well-typed terms have the property of Church-Rosser” [Gog94]. In this
paper, a new eta-reduction is introduced in order to give an easy proof of
the property of Church-Rosser, and the property does not rely on whether
terms are well-typed or not. The new eta-reduction is sufficient for our
understanding of eta-reduction in dependent type systems, in the sense
that a property that holds w.r.t. the old one also holds w.r.t. the new one.
In Section 2, we give counter examples to demonstrate the problem
with the property of Church-Rosser w.r.t. the [-reduction and the old
n-reduction. In Section 3, new eta-reduction 7’ and its one-step reduction
are introduced, and the relations between the new and the old (normal)
eta-reduction are discussed. In Section 4, we prove the property of Church-
Rosser w.r.t. 3 and 7r/-reduction, which holds without the condition of
well-typedness. The conclusion is given in the last section.

2 Old reduction rules

In this section, we present a basic definition of terms and knids, and the old
[ and eta-reduction rules. Counter examples are also given to demonstrate
the problem with the property of Church-Rosser.



Definition 1. (Terms and Kinds)

o Term

1. a variable is a term,

2. x : K.M is a term if x is a variable, K is a kind and M is a
term,

3. MN is aterm if M and N are terms.

e Kind

1. Type 1s a kind,
2. El(M) is a kind if M is a term,
3. (x: K1)Ks is a kind if K1 and Ko are kinds.

Remark 1. Terms and kinds are mutually and recursively defined.

Notation: Following the tradition, A denotes the set of all terms and I
the set of all kinds. We shall use M, N, P, ), R for arbitrary terms,
and K for an arbitrary kind, and x, y, z for arbitrary variables. We
also write A for Fl(A) when no confusion may occur.

The old (normal) reduction rules:
(Az: KM)N —p [N/z|M
e KMy —y M g FV(M)

Ezample 1. (Counter examples) The property of Church-Rosser may
not hold for ill-typed terms. The following examples will show the problem.

Ar A (Ay: By)r —pg Ar: Ax
Ax: A.(Ay: Biy)x —y Ay : By

(Az:(y: B)B.Ax: A.zz)(\y : B.y)
—gAx: A (\y: Buy)x
—g AT Ax

(Az:(y: B)B.Ax: A.zzx)(A\y : B.y)
—y (Az: (y: B)B.z)(\y : B.y)
— g Ay : By

where A and B are distinct variables. There is no common reduct for
Ar: Ax and Ay : B.y.



3 New eta-reduction rule

In this section, we introduce a new eta-reduction rule and its one-step
reduction, and discuss the relations between the old and new.

Definition 2. (Base terms)

e a variable is a base term,
e MN is a base term if M is a base term.

Notation: We shall use R for Ry, Ro, ..., R,, for some n > 0, and M R for
(...((MRy)R3)...Ry,), and xR for an arbitrary base term.

Definition 3. (Head of terms)

e head(x) =z,
e head(Az : K.M) =Xz : K.M,
o head(MN) = head(M).

Lemma 1. If a term is not a base term, then the head of the term is of
the form Ax : K.M .

New redex for eta-reduction

There are two different forms of redexes: (Az : K.M)N and Az : K (yN)zx
when x & FV(yN). The reduction rules for these redexes are the following.

Az : K.M)N —g [N/z|M
Mt K.(yN)x —,y yN  z ¢ FV(yN)
The one-step 3 and 7n’-reduction are defined in Figure 1.

Remark 2. We have the following remarks.

e The one-step (-reduction is the same as usual, but the redex for the
new eta-reduction rule (1) has a more restricted form (i.e. yN is a
base term). For the term Az : A.(A\y : B.y)x in Example 1, the new
eta-reduction rule (1) cannot be applied because \y : B.y is not a
base term.

e [t is not the case that one has to do all the B-reductions first, then do
n’-reductions when reducing a term. For example, we have

z(Ay : B.zy)(A\r : Ax)a) —y z2((A\r : Ax)a) —p z20



One-step (-reduction:

(A\z: K.M)N —4 [N/z]M

M —z M’ N —p3 N’
MN —g M'N MN —g MN'

M —z M’ K —g K’
Ax: KM —pg Ax: K.M' A : KM —g v : K'.M

M —g M’
El(M) —g EI(M")

K1 —p K1 Ky —p K
($:K1)K2 —p3 (x:Ki)Kg (ZE:K1)K2 —p (x:Kl)K§

One-step 7n'-reduction:

x & FV(yN)
Az K.(yN)x —, yN

M; —y Mll n > 1
ZCMlMZMn 4)77' leM,:Mn

M *)"7, M/ K ‘)n/ K/
Ar: KM — Az : K.M' A KM — 0 Az K''M

M *),,]/ M/
EI(M) —,, EI(M")

Ky —y K Ky —,y K}
(:L' : K1)K2 —>,]/ (a: . K{)KQ (:L' : K1)K2 —>,]I (m : Kl)Ké

Figure 1. One-step reduction



Notations: Let — g be one-step R-reduction. We denote —7% as the
reflexive closure of — g, and —» p as the the reflexive, transitive closure
of — R, and =g as the R-convertibility.

Lemma 2. Ifx ¢ FV(M) and M —g,y N, then x ¢ FV(N).

In some cases, although there is a n’-redex inside a term, this term may
not have one-step 7n’-reduction. For instance, (Az : A.yz)z only has (-
reduction although Az : A.yx is a r’-redex. However, we have the following
lemma.

Lemma 3. If there is a n'-redex inside M, then M has a one-step reduc-
tion (i.e. either 3 or n'-reduction).

Proof. By induction on M.

o If M itself is a r/-redex, then the statement is true.

o If M = xN;...N,, and the redex is inside N;, then by induction hy-
pothesis, N; has either 8 or n/-reduction. By the one-step reduction
rules in Figure 1, M has a one-step reduction.

o If M = Az : K.N and the redex is inside K or N, then by induction
hypothesis, K or N has either 3 or n'-reduction. By the one-step
reduction rules, M has a one-step reduction.

o If M = (Az : K.P)N;...N,, (n > 1), then M has at least a one-step
(B-reduction.

e Other cases for kinds are trivial.

Relations between the old and new

Theorem 1. A normal form w.r.t. 81 is also a normal form w.r.t. (B,
and vice versa.

Proof. We proceed the proof by contradiction. An interesting case is to
prove that, a n-redex contains a (3 or 1’-redex. Then by Lemma 3, the
whole term has a one-step reduction.

Suppose Az : K.Mz is a n-redex, i.e. x ¢ FV(M). If M is a base term,
then Az : K.Mz is a n/-redex. If M is not a base term, then by Lemma
1, the head of M must be of the form Az : K'.N. So, Mx must contain a
[G-redex. O

Lemma 4. A normal form (w.r.t. Bn or Bn') is either of the form Ay :
K'.N or of the form yN (a base term).



Conjecture 1. If x ¢ FV(M) and Az : K.Mz is well-typed, then Az :
K.Mzx =pn’ M.

Proof. We only give an informal proof here since the well-typedness has
not been defined yet. We are going to prove that the property of Church-
Rosser w.r.t. 8n'-reduction holds for any term, no matter it is well-typed
or not. So well-typedness is out of scope of the paper, but the typing
inference rules can be found in Appendix. We assume that well-typed
terms have good properties such as strong normalisation.

Since A\x : K.Mx is well-typed, it is strongly normalising, and so is
M. We first reduce M to a normal form M’. By Lemma 4, M’ is either of
the form Ay : K'.N or of the form yN.

If M’ = yN, then we have

Ar i KMz =g,y Ax : K.M'zx
= \r: K.(yN)z
:77/ yﬁ

Note that z € FV (yN) by Lemma 2.
If M = Xy : K'.N, because Az : K.(A\y : K'.N)x is well-typed, we
have K =g, K'. Then we have

Av: KMz =g,y Az K.M'z
= \:K.(\y: K .N)x
=gy Az : K'.(\y: K'.N)x
=5 Mx: K'[z/y|N
=4 \y: K'.N

4 Proof of Church-Rosser

In this section, we give some important definitions such as Parallel Reduc-

tion and Complete Development for g-reduction, and prove the property
of Church-Rosser.

Definition 4. (Parallel reduction for [3) The parallel reduction, de-
noted by =>g, is defined inductively as follows.



T =g,

e KM =g e: K''M' if K =3 K'and M =3 M’,
MN =5 M'N' if M =5 M’ and N =5 N',

(A : K.M)N =5 [N'/2]M’ if M =5 M and N =4 N',
Type =g Type,

EUM) =5 EI(M') if M =5 M,

(z: K1)Ky =35 (x: K)Ky if K1 =3 K| and Ky =3 K.

NS G o~

Based on the inductive definition of =3, we have the following lemma.

Lemma 5. We have the following properties, where M and M’ represent
arbitrary terms or kinds, and N and N' are arbitrary terms.

1. M =3 M.

2. If M —p5 M’ then M =3 M'.

3. If M =5 M’ then M —5 M.

4. If M =3 M'" and N =3 N’ then [N/z|M =5 [N'/z]|M'".

Proof. For (1), (3) and (4), by induction on M; for (2), by induction on
the context of the redex. We only prove the most difficult case (4) here.

1. If M =z, then © =3 x = M’ and hence
[N/z]M = N =3 N' = [N'/z|M’

2. If M =y # x, then y =3 y = M’ and hence
IN/z)M =y =5y = [N'/z]M’

3. M =My: K.P,then \y: KP=3\y: K''P'=M and K =3 K’
and P =3 P'. By induction hypothesis, we have [N/z]K =3 [N'/z]K’
and [N/z|P =g [N'/x]P’'. Hence

[N/z]M = Xy : [N/z]K.[N/z]P =3 [N'/z]M’

4. If M = PQ), then there are two sub-cases.

(a) PQ =3 P'Q'=M'"and P =3 P’ and Q =3 Q'. By induction hy-
pothesis, we have [N/z|P =3 [N'/z]P’ and [N/z]Q =3 [N'/z]|Q".
Hence [N/z|M =3 [N'/z]M'.

(b) PQ = (\y: K.R)Q =3 [Q'/y]R' = M' and R =3 R’ and Q =3
Q'. By induction hypothesis, we have [N/z]R =3 [N'/z]R’ and
[N/z]Q =5 [N'/z]Q'. Hence

[N/z]M =5 [([N'"/2]Q)/y)(IN"/2]R) = [N' /x| M’



5. If M = Type, then Type =3 Type = M’ and hence [N/z]M =4
[N'/z|M'.

6. If M = EI(P), then EI(P) =4 El(
tion hypothesis, we have [N/z]P
[N'/x]M'.

7. M = (y: K1)Ka, then (y: K1)Ky =5 (y: K)Ky = M’ and K| =3
K| and Ky =3 K}. By induction hypothesis, we have [N/z]K; =3
[N'/z]K| and [N/z]Ks =3 [N'/z]K). Hence [N/z]|M =3 [N'/z]|M'.

O

M' and P =3 P'. By induc-

P =
=3 [N'/z]P'. Hence [N/z|M =3

From Lemma 5 (1), (2) and (3), we know that —g is the reflexive, tran-
sitive closure of = 3. Therefore, to prove the property of Church-Rosser
w.r.t. f-reduction, it suffices to show the “diamond property” of =3, i.e.
if M =3 N1 and M =3 N3 then there is a N3 such that N1 =3 N3 and
N> =3 N3. But we will prove a stronger statement in Lemma 6.

Definition 5. (Complete development for 3) We define a map
cd:: AUl — AUII.

1. cd(z) =x
xed(N) ifM=x
2. cd(MN)={ cd(PQ)cd(N) if M = PQ
[cd(N)/x]cd(R) if M =Xz : K.R
I cd(Ax : K.M) = Xz : cd(K).cd(M)
4. cd(T'ype) = Type
5. cd(El(M)) = El(cd(M))
6. cd((z: K1)K3) = (2 : cd(K7))cd(K3)

Having defined parallel reduction =3 and complete development cd, we
prove the following lemma.

Lemma 6. If M =3 N then N =3 cd(M).

Proof. By induction on M.

1. If M =z, then z =g =N = cd(M).

2. If M =Xz : K.P,then A\ : K.P =3 Az : K'.P'" = N and K =3 K’
and P =3 P’. By induction hypothesis, we have K’ =3 cd(K) and
P" =3 cd(P). Hence

N =3 Az : cd(K).cd(P) = cd(M)



3. If M = 2P, then 2P =3 2zQQ = N and P =3 (. By induction
hypothesis, we have Q) =3 cd(P). Hence

N =g zcd(P) = cd(M)

4. If M = (PQ)R, then (PQ)R =3 M'R' = N and PQ =3 M’ and
R =3 R'. By induction hypothesis, we have M’ =3 cd(PQ) and
R' =3 cd(R). Hence

N =3 cd(PQ)cd(R) = cd(M)

5. If M = (Ax : K.P)Q, then there are two sub-cases.
(a) (\z: K.P)Q =3 (A\xz : K'P')Q' = N and K =3 K', P =3 P’
and @ =3 @'. By induction hypothesis, we have P’ =3 c¢d(P) and
Q' =3 cd(Q). Hence

N=(z: K'.PYQ = [cd(Q)/x]cd(P) = cd(M)

(b) (A\z : K.P)Q =3 [Q'/z]P' = N and P =3 P’ and Q =3 Q'. By
induction hypothesis, we have P’ =3 cd(P) and Q' =3 cd(Q).
By Lemma 5 (4), we have [Q'/z]P" =3 [cd(Q)/x]cd(P). Hence
N =3 Cd(M)
6. If M = Type, then Type =5 Type = N = cd(M).
7. If M = El(P), then El(P) =3 El(P') = N and P =3 P'. By induc-
tion hypothesis, we have P’ =3 cd(P). Hence

N =4 El(cd(P)) = cd(M)

8 If M = (x: K1)K>, then (z : K1)Ky =3 (v : K1)Ky = N and K| =4
K and Ky =3 K). By induction hypothesis, we have K{ =3 cd(K1)
and K) =3 cd(K3). Hence

N =3 (z: cd(K1))cd(K2) = cd(M)
g

Theorem 2. (Church-Rosser for (3) For an arbitrary term or kind M,
if M —g N1 and M —g Ny then there is a N3 such that N1 —3 N3 and
N2 B3 Ng.

Proof. By Lemma 6 and the fact that — g is the transitive closure of = g.
Lemma 7. For an arbitrary term or kind M, if M —,» N1 and M —

Ny then there is a N3 such that Ny —>77 N3 and No —>77, Ns.
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Proof. By induction on M and analysing different cases of one-step 7/'-
reduction. One interesting case is the following.

M =Xz : K.(yQ)z —y yQ = Ny and M —y Az : K'.(yQ)z = No.
Then, let N3 = N; and we have Ny —>77, N3 and No —>77 Njs.

Corollary 1. For an arbitrary term or kind M, if M — Ny and
M — Ny then there is a N3 such that Ny — N3 and No — Ns.

Theorem 3. (Church-Rosser for 1n') For an arbitrary term or kind
M, if M —,» N1 and M —»,, N3 then there is a N3 such that N1 —», N3
and Ny —», N3.

Proof. By Corollary 1 and the fact that —, is the transitive closure of
n

Lemma 8. For an arbitrary term or kind M, if M — g N1 and M —y

Ny then there is a N3 such that Ny —,y N3 and N —>; N3.

Proof. By induction on M and analysing different cases of one-step 7’ and
[B-reduction. One interesting case is the following.

M =Xz : K.(yQ)x —y yQ = Ny and M —g Az : K'.(yQ)z = Ni.
Then, let N3 = N2 and we have N; —,» N3 and N» —3 Njs.

Theorem 4. (Commutation for (3n') For an arbitrary term or kind
M, if M —g N1 and M —,, Na then there is a N3 such that N1 —», N3
and Ny —3 N3.

Proof. By Lemma 8.

Theorem 5. (Church-Rosser for [3n') For an arbitrary term or kind
M, if M — g,y N1 and M —» g,y Na then there is a N3 such that N1 — g,y
N3 and Ny — g, N3.

Proof. By Theorem 2, 3 and 4.

5 Conclusion

For the A-calculus defined in Definition 1, the property of Church-Rosser
w.r.t. 0 and n-reduction is not an easy matter, unlike the systems with
[B-reduction only or the simple A-calculus with § and n-reduction. In this
paper, we introduce a new eta-reduction 7’ and its one-step reduction.
The property of Church-Rosser holds for 3 and 7’-reduction, without the
condition of well-typedness.
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Appendix

Inference rules for a dependently typed logical framework
I'K kind x¢ FV(I)

<> walid I,z : K valid
I' valid '+ A: Type
I'+Type kind I'+ El(A) kind

I K kind Ta:KbFEK kind
I (z: K)K' kind
I'z: K, I'" valid
Nz K, I"+Fz: K
I'e:K+-k:K

I'cXe:Kk:(x: K)K'
I'Hk: K I' K' kind
I'-k: K

'cf:(z:K)K! T'tk:K
't f(k): [k/z]|K'

(K =pn’ K/)
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