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Abstract This paper introduces a new eta-reduction rule for λ-calculus
with dependent types and prove the property of Church-Rosser.

1 Introduction

For the simple λ-calculus, the property of Church-Rosser w.r.t. β and η-
reduction holds, no matter a term is well-typed or not, and the methods
of proving this property vary [Bar84,Tak95,Nip01]. Some systems such
as Edinburgh Logical Framework [HHP87,HHP92] have β-reduction only,
and the proof method is known as that of Tait and Martin-Löf. However,
for some dependently typed systems such as Martin-Löf's Logical Frame-
work [ML84,NPS90,Luo94], the story becomes very di�erent because ill-
typed terms may not have this property w.r.t. β and η-reduction. The
proofs for such systems are very di�cult because one has to prove that
�well-typed terms have the property of Church-Rosser� [Gog94]. In this
paper, a new eta-reduction is introduced in order to give an easy proof of
the property of Church-Rosser, and the property does not rely on whether
terms are well-typed or not. The new eta-reduction is su�cient for our
understanding of eta-reduction in dependent type systems, in the sense
that a property that holds w.r.t. the old one also holds w.r.t. the new one.

In Section 2, we give counter examples to demonstrate the problem
with the property of Church-Rosser w.r.t. the β-reduction and the old
η-reduction. In Section 3, new eta-reduction η′ and its one-step reduction
are introduced, and the relations between the new and the old (normal)
eta-reduction are discussed. In Section 4, we prove the property of Church-
Rosser w.r.t. β and η′-reduction, which holds without the condition of
well-typedness. The conclusion is given in the last section.

2 Old reduction rules

In this section, we present a basic de�nition of terms and knids, and the old
β and eta-reduction rules. Counter examples are also given to demonstrate
the problem with the property of Church-Rosser.



De�nition 1. (Terms and Kinds)

• Term

1. a variable is a term,
2. λx : K.M is a term if x is a variable, K is a kind and M is a

term,
3. MN is a term if M and N are terms.

• Kind

1. Type is a kind,
2. El(M) is a kind if M is a term,
3. (x : K1)K2 is a kind if K1 and K2 are kinds.

Remark 1. Terms and kinds are mutually and recursively de�ned.

Notation: Following the tradition, Λ denotes the set of all terms and Π
the set of all kinds. We shall use M , N , P , Q, R for arbitrary terms,
and K for an arbitrary kind, and x, y, z for arbitrary variables. We
also write A for El(A) when no confusion may occur.

The old (normal) reduction rules:

(λx : K.M)N −→β [N/x]M

λx : K.Mx −→η M x 6∈ FV (M)

Example 1. (Counter examples) The property of Church-Rosser may
not hold for ill-typed terms. The following examples will show the problem.

λx : A.(λy : B.y)x −→β λx : A.x

λx : A.(λy : B.y)x −→η λy : B.y

(λz : (y : B)B.λx : A.zx)(λy : B.y)
−→β λx : A.(λy : B.y)x
−→β λx : A.x

(λz : (y : B)B.λx : A.zx)(λy : B.y)
−→η (λz : (y : B)B.z)(λy : B.y)
−→β λy : B.y

where A and B are distinct variables. There is no common reduct for
λx : A.x and λy : B.y.
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3 New eta-reduction rule

In this section, we introduce a new eta-reduction rule and its one-step
reduction, and discuss the relations between the old and new.

De�nition 2. (Base terms)

• a variable is a base term,
• MN is a base term if M is a base term.

Notation: We shall use R for R1, R2, ..., Rn for some n ≥ 0, and MR for
(...((MR1)R2)...Rn), and xR for an arbitrary base term.

De�nition 3. (Head of terms)

• head(x) = x,
• head(λx : K.M) = λx : K.M ,
• head(MN) = head(M).

Lemma 1. If a term is not a base term, then the head of the term is of
the form λx : K.M .

New redex for eta-reduction

There are two di�erent forms of redexes: (λx : K.M)N and λx : K.(yN)x
when x 6∈ FV (yN). The reduction rules for these redexes are the following.

(λx : K.M)N −→β [N/x]M

λx : K.(yN)x −→η′ yN x 6∈ FV (yN)

The one-step β and η′-reduction are de�ned in Figure 1.

Remark 2. We have the following remarks.

• The one-step β-reduction is the same as usual, but the redex for the
new eta-reduction rule (η′) has a more restricted form (i.e. yN is a
base term). For the term λx : A.(λy : B.y)x in Example 1, the new
eta-reduction rule (η′) cannot be applied because λy : B.y is not a
base term.

• It is not the case that one has to do all the β-reductions �rst, then do
η′-reductions when reducing a term. For example, we have

x(λy : B.zy)((λx : A.x)a) −→η′ xz((λx : A.x)a) −→β xza
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One-step β-reduction:

(λx : K.M)N −→β [N/x]M

M −→β M ′

MN −→β M ′N

N −→β N ′

MN −→β MN ′

M −→β M ′

λx : K.M −→β λx : K.M ′
K −→β K′

λx : K.M −→β λx : K′.M

M −→β M ′

El(M) −→β El(M ′)

K1 −→β K′
1

(x : K1)K2 −→β (x : K′
1)K2

K2 −→β K′
2

(x : K1)K2 −→β (x : K1)K′
2

One-step η′-reduction:

x 6∈ FV (yN)

λx : K.(yN)x −→η′ yN

Mi −→η′ M ′
i n ≥ 1

xM1...Mi...Mn −→η′ xM1...M ′
i ...Mn

M −→η′ M ′

λx : K.M −→η′ λx : K.M ′
K −→η′ K′

λx : K.M −→η′ λx : K′.M

M −→η′ M ′

El(M) −→η′ El(M ′)

K1 −→η′ K′
1

(x : K1)K2 −→η′ (x : K′
1)K2

K2 −→η′ K′
2

(x : K1)K2 −→η′ (x : K1)K′
2

Figure 1. One-step reduction
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Notations: Let −→R be one-step R-reduction. We denote −→=
R as the

re�exive closure of−→R, and �R as the the re�exive, transitive closure
of −→R, and =R as the R-convertibility.

Lemma 2. If x 6∈ FV (M) and M �βη′ N , then x 6∈ FV (N).

In some cases, although there is a η′-redex inside a term, this term may
not have one-step η′-reduction. For instance, (λx : A.yx)z only has β-
reduction although λx : A.yx is a η′-redex. However, we have the following
lemma.

Lemma 3. If there is a η′-redex inside M , then M has a one-step reduc-
tion ( i.e. either β or η′-reduction).

Proof. By induction on M .

• If M itself is a η′-redex, then the statement is true.

• If M ≡ xN1...Nn and the redex is inside Ni, then by induction hy-
pothesis, Ni has either β or η′-reduction. By the one-step reduction
rules in Figure 1, M has a one-step reduction.

• If M ≡ λx : K.N and the redex is inside K or N , then by induction
hypothesis, K or N has either β or η′-reduction. By the one-step
reduction rules, M has a one-step reduction.

• If M ≡ (λx : K.P )N1...Nn (n ≥ 1), then M has at least a one-step
β-reduction.

• Other cases for kinds are trivial.

Relations between the old and new

Theorem 1. A normal form w.r.t. βη′ is also a normal form w.r.t. βη,
and vice versa.

Proof. We proceed the proof by contradiction. An interesting case is to
prove that, a η-redex contains a β or η′-redex. Then by Lemma 3, the
whole term has a one-step reduction.

Suppose λx : K.Mx is a η-redex, i.e. x 6∈ FV (M). If M is a base term,
then λx : K.Mx is a η′-redex. If M is not a base term, then by Lemma
1, the head of M must be of the form λx : K ′.N . So, Mx must contain a
β-redex. ut

Lemma 4. A normal form (w.r.t. βη or βη′) is either of the form λy :
K ′.N or of the form yN (a base term).
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Conjecture 1. If x 6∈ FV (M) and λx : K.Mx is well-typed, then λx :
K.Mx =βη′ M .

Proof. We only give an informal proof here since the well-typedness has
not been de�ned yet. We are going to prove that the property of Church-
Rosser w.r.t. βη′-reduction holds for any term, no matter it is well-typed
or not. So well-typedness is out of scope of the paper, but the typing
inference rules can be found in Appendix. We assume that well-typed
terms have good properties such as strong normalisation.

Since λx : K.Mx is well-typed, it is strongly normalising, and so is
M . We �rst reduce M to a normal form M ′. By Lemma 4, M ′ is either of
the form λy : K ′.N or of the form yN .

If M ′ ≡ yN , then we have

λx : K.Mx =βη′ λx : K.M ′x

≡ λx : K.(yN)x
=η′ yN

=βη′ M

Note that x 6∈ FV (yN) by Lemma 2.
If M ′ ≡ λy : K ′.N , because λx : K.(λy : K ′.N)x is well-typed, we

have K =βη′ K ′. Then we have

λx : K.Mx =βη′ λx : K.M ′x

≡ λx : K.(λy : K ′.N)x
=βη′ λx : K ′.(λy : K ′.N)x
=β λx : K ′.[x/y]N
=α λy : K ′.N

=βη′ M

ut

4 Proof of Church-Rosser

In this section, we give some important de�nitions such as Parallel Reduc-
tion and Complete Development for β-reduction, and prove the property
of Church-Rosser.

De�nition 4. (Parallel reduction for β) The parallel reduction, de-
noted by ⇒β, is de�ned inductively as follows.
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1. x ⇒β x,
2. λx : K.M ⇒β λx : K ′.M ′ if K ⇒β K ′and M ⇒β M ′,
3. MN ⇒β M ′N ′ if M ⇒β M ′ and N ⇒β N ′,
4. (λx : K.M)N ⇒β [N ′/x]M ′ if M ⇒β M ′ and N ⇒β N ′,
5. Type ⇒β Type,
6. El(M) ⇒β El(M ′) if M ⇒β M ′,
7. (x : K1)K2 ⇒β (x : K ′

1)K
′
2 if K1 ⇒β K ′

1 and K2 ⇒β K ′
2.

Based on the inductive de�nition of ⇒β , we have the following lemma.

Lemma 5. We have the following properties, where M and M ′ represent
arbitrary terms or kinds, and N and N ′ are arbitrary terms.

1. M ⇒β M .
2. If M −→β M ′ then M ⇒β M ′.
3. If M ⇒β M ′ then M �β M ′.
4. If M ⇒β M ′ and N ⇒β N ′ then [N/x]M ⇒β [N ′/x]M ′.

Proof. For (1), (3) and (4), by induction on M ; for (2), by induction on
the context of the redex. We only prove the most di�cult case (4) here.

1. If M ≡ x, then x ⇒β x ≡ M ′ and hence

[N/x]M ≡ N ⇒β N ′ ≡ [N ′/x]M ′

2. If M ≡ y 6≡ x, then y ⇒β y ≡ M ′ and hence

[N/x]M ≡ y ⇒β y ≡ [N ′/x]M ′

3. If M ≡ λy : K.P , then λy : K.P ⇒β λy : K ′.P ′ ≡ M ′ and K ⇒β K ′

and P ⇒β P ′. By induction hypothesis, we have [N/x]K ⇒β [N ′/x]K ′

and [N/x]P ⇒β [N ′/x]P ′. Hence

[N/x]M ≡ λy : [N/x]K.[N/x]P ⇒β [N ′/x]M ′

4. If M ≡ PQ, then there are two sub-cases.

(a) PQ ⇒β P ′Q′ ≡ M ′ and P ⇒β P ′ and Q ⇒β Q′. By induction hy-
pothesis, we have [N/x]P ⇒β [N ′/x]P ′ and [N/x]Q ⇒β [N ′/x]Q′.
Hence [N/x]M ⇒β [N ′/x]M ′.

(b) PQ ≡ (λy : K.R)Q ⇒β [Q′/y]R′ ≡ M ′ and R ⇒β R′ and Q ⇒β

Q′. By induction hypothesis, we have [N/x]R ⇒β [N ′/x]R′ and
[N/x]Q ⇒β [N ′/x]Q′. Hence

[N/x]M ⇒β [([N ′/x]Q′)/y]([N ′/x]R′) ≡ [N ′/x]M ′
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5. If M ≡ Type, then Type ⇒β Type ≡ M ′ and hence [N/x]M ⇒β

[N ′/x]M ′.

6. If M ≡ El(P ), then El(P ) ⇒β El(P ′) ≡ M ′ and P ⇒β P ′. By induc-
tion hypothesis, we have [N/x]P ⇒β [N ′/x]P ′. Hence [N/x]M ⇒β

[N ′/x]M ′.

7. If M ≡ (y : K1)K2, then (y : K1)K2 ⇒β (y : K ′
1)K

′
2 ≡ M ′ and K1 ⇒β

K ′
1 and K2 ⇒β K ′

2. By induction hypothesis, we have [N/x]K1 ⇒β

[N ′/x]K ′
1 and [N/x]K2 ⇒β [N ′/x]K ′

2. Hence [N/x]M ⇒β [N ′/x]M ′.
ut

From Lemma 5 (1), (2) and (3), we know that �β is the re�exive, tran-
sitive closure of ⇒β . Therefore, to prove the property of Church-Rosser
w.r.t. β-reduction, it su�ces to show the �diamond property� of ⇒β , i.e.
if M ⇒β N1 and M ⇒β N2 then there is a N3 such that N1 ⇒β N3 and
N2 ⇒β N3. But we will prove a stronger statement in Lemma 6.

De�nition 5. (Complete development for β) We de�ne a map
cd :: Λ ∪Π → Λ ∪Π.

1. cd(x) = x

2. cd(MN) =


xcd(N) if M ≡ x

cd(PQ)cd(N) if M ≡ PQ
[cd(N)/x]cd(R) if M ≡ λx : K.R

3.
cd(λx : K.M) = λx : cd(K).cd(M)

4. cd(Type) = Type

5. cd(El(M)) = El(cd(M))
6. cd((x : K1)K2) = (x : cd(K1))cd(K2)

Having de�ned parallel reduction ⇒β and complete development cd, we
prove the following lemma.

Lemma 6. If M ⇒β N then N ⇒β cd(M).

Proof. By induction on M .

1. If M ≡ x, then x ⇒β x ≡ N = cd(M).
2. If M ≡ λx : K.P , then λx : K.P ⇒β λx : K ′.P ′ ≡ N and K ⇒β K ′

and P ⇒β P ′. By induction hypothesis, we have K ′ ⇒β cd(K) and
P ′ ⇒β cd(P ). Hence

N ⇒β λx : cd(K).cd(P ) = cd(M)
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3. If M ≡ xP , then xP ⇒β xQ ≡ N and P ⇒β Q. By induction
hypothesis, we have Q ⇒β cd(P ). Hence

N ⇒β xcd(P ) = cd(M)

4. If M ≡ (PQ)R, then (PQ)R ⇒β M ′R′ ≡ N and PQ ⇒β M ′ and
R ⇒β R′. By induction hypothesis, we have M ′ ⇒β cd(PQ) and
R′ ⇒β cd(R). Hence

N ⇒β cd(PQ)cd(R) = cd(M)

5. If M ≡ (λx : K.P )Q, then there are two sub-cases.

(a) (λx : K.P )Q ⇒β (λx : K ′.P ′)Q′ ≡ N and K ⇒β K ′, P ⇒β P ′

and Q ⇒β Q′. By induction hypothesis, we have P ′ ⇒β cd(P ) and
Q′ ⇒β cd(Q). Hence

N ≡ (λx : K ′.P ′)Q′ ⇒ [cd(Q)/x]cd(P ) = cd(M)

(b) (λx : K.P )Q ⇒β [Q′/x]P ′ ≡ N and P ⇒β P ′ and Q ⇒β Q′. By
induction hypothesis, we have P ′ ⇒β cd(P ) and Q′ ⇒β cd(Q).
By Lemma 5 (4), we have [Q′/x]P ′ ⇒β [cd(Q)/x]cd(P ). Hence
N ⇒β cd(M).

6. If M ≡ Type, then Type ⇒β Type ≡ N = cd(M).
7. If M ≡ El(P ), then El(P ) ⇒β El(P ′) ≡ N and P ⇒β P ′. By induc-

tion hypothesis, we have P ′ ⇒β cd(P ). Hence

N ⇒β El(cd(P )) = cd(M)

8. If M ≡ (x : K1)K2, then (x : K1)K2 ⇒β (x : K ′
1)K

′
2 ≡ N and K1 ⇒β

K ′
1 and K2 ⇒β K ′

2. By induction hypothesis, we have K ′
1 ⇒β cd(K1)

and K ′
2 ⇒β cd(K2). Hence

N ⇒β (x : cd(K1))cd(K2) = cd(M)

ut

Theorem 2. (Church-Rosser for β) For an arbitrary term or kind M ,
if M �β N1 and M �β N2 then there is a N3 such that N1 �β N3 and
N2 �β N3.

Proof. By Lemma 6 and the fact that �β is the transitive closure of ⇒β .

Lemma 7. For an arbitrary term or kind M , if M −→η′ N1 and M −→η′

N2 then there is a N3 such that N1 −→=
η′ N3 and N2 −→=

η′ N3.
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Proof. By induction on M and analysing di�erent cases of one-step η′-
reduction. One interesting case is the following.

M ≡ λx : K.(yQ)x −→η′ yQ ≡ N1 and M −→η′ λx : K ′.(yQ)x ≡ N2.
Then, let N3 ≡ N1 and we have N1 −→=

η′ N3 and N2 −→=
η′ N3.

Corollary 1. For an arbitrary term or kind M , if M −→=
η′ N1 and

M −→=
η′ N2 then there is a N3 such that N1 −→=

η′ N3 and N2 −→=
η′ N3.

Theorem 3. (Church-Rosser for η′) For an arbitrary term or kind
M , if M �η′ N1 and M �η′ N2 then there is a N3 such that N1 �η′ N3

and N2 �η′ N3.

Proof. By Corollary 1 and the fact that �η is the transitive closure of
−→=

η′ .

Lemma 8. For an arbitrary term or kind M , if M −→β N1 and M −→η′

N2 then there is a N3 such that N1 −→η′ N3 and N2 −→=
β N3.

Proof. By induction on M and analysing di�erent cases of one-step η′ and
β-reduction. One interesting case is the following.

M ≡ λx : K.(yQ)x −→η′ yQ ≡ N2 and M −→β λx : K ′.(yQ)x ≡ N1.
Then, let N3 ≡ N2 and we have N1 −→η′ N3 and N2 −→=

β N3.

Theorem 4. (Commutation for βη′) For an arbitrary term or kind
M , if M �β N1 and M �η′ N2 then there is a N3 such that N1 �η′ N3

and N2 �β N3.

Proof. By Lemma 8.

Theorem 5. (Church-Rosser for βη′) For an arbitrary term or kind
M , if M �βη′ N1 and M �βη′ N2 then there is a N3 such that N1 �βη′

N3 and N2 �βη′ N3.

Proof. By Theorem 2, 3 and 4.

5 Conclusion

For the λ-calculus de�ned in De�nition 1, the property of Church-Rosser
w.r.t. β and η-reduction is not an easy matter, unlike the systems with
β-reduction only or the simple λ-calculus with β and η-reduction. In this
paper, we introduce a new eta-reduction η′ and its one-step reduction.
The property of Church-Rosser holds for β and η′-reduction, without the
condition of well-typedness.
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Appendix

Inference rules for a dependently typed logical framework

<> valid

Γ ` K kind x /∈ FV (Γ )
Γ, x : K valid

Γ valid

Γ ` Type kind

Γ ` A : Type

Γ ` El(A) kind

Γ ` K kind Γ, x : K ` K ′ kind

Γ ` (x : K)K ′ kind

Γ, x : K, Γ ′ valid

Γ, x : K, Γ ′ ` x : K

Γ, x : K ` k : K ′

Γ ` λx : K.k : (x : K)K ′

Γ ` k : K Γ ` K ′ kind

Γ ` k : K ′ (K =βη′ K ′)

Γ ` f : (x : K)K ′ Γ ` k : K

Γ ` f(k) : [k/x]K ′
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