
Gacek, Cristina and de Lemos, Rogério (2005) Architectural Description
of Dependable Software Systems. Technical report. UKC

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14238/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14238/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Computer Science at Kent

Architectural Description of
Dependable Software Systems

Cristina Gacek

School of Computing Science
University of Newcastle upon
Tyne, UK

Rogério de Lemos

Computing Laboratory
University of Kent, UK

This paper is a shorter version of the paper to appear in Structure for Dependability: Computer-Based
Systems from an Interdisciplinary Perspective, D. Besnard, C. Gacek, and C. B. Jones (eds), Springer,
ISBN: 1-84628-110-5, 2006, pp. 127-142.

This technical report will also be published by the School of Computing Science at the University of
Newcastle upon Tyne.

Technical Report No. 9-05
October 2005

Copyright © 2005 University of Kent
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent CT2 7NF, UK

Architectural description of dependable software
systems

Cristina Gacek1 and Rogério de Lemos2

1University of Newcastle upon Tyne, 2University of Kent

1 Introduction

The structure of a system is what enables it to generate the system’s behaviour, from
the behaviour of its components (see Chapter 1). The architecture of a software sys-
tem is an abstraction of the actual structure of that system. The identification of the
system structure early in its development process allows abstracting away from de-
tails of the system, thus assisting the understanding of broader system concerns [11].

One of the benefits of a well-structured system is the reduction of its overall
complexity, which in turn should lead to a more dependable system. The process of
system structuring may occur at different stages of the development or at different
levels of abstraction. Reasoning about dependability at the architectural level has
lately grown in importance because of the complexity of emerging applications, and
the trend of building trustworthy systems from existing untrustworthy components.
There has been a drive from these new applications for dependability concerns to be
considered at the architectural level, rather than late in the development process.
From the perspective of software engineering, which strives to build software sys-
tems that are free of faults, the architectural consideration of dependability compels
the acceptance of faults, rather than their avoidance. Thus the need for novel nota-
tions, methods and techniques that provides the necessary support for reasoning
about faults at the architectural level. For example, notations should be able to repre-
sent non-functional properties and failure assumptions, and techniques should be
able to extract from the architectural representations the information that is relevant
for evaluating the system architecture from a certain perspective.

2 Software architectures and ADLs

The software architecture of a program or a software system is the structure or struc-
tures of the system, which comprises software components, their externally visible

properties and their relationships [2]. It is a property of a system, and as such it may
be documented or not. Being the result of some of the first and most important deci-
sions taken about the system under development [3], it is recognised that the soft-
ware architecture is a key point for the satisfaction of dependability related require-
ments. A software architecture is usually described in terms of its components,
connectors and their configuration [9][12]. The way a software architecture is con-
figured defines how various connectors are used to mediate the interactions among
components.

Architecture description languages (ADLs) aim to support architecture-based de-
velopment by providing a (semi) formal notation to represent architectures, with
their abstractions and structures. Some ADLs also provide a corresponding analysis
and/or development environment. The number and variety of ADLs in existence
today is quite considerable, but it should be noted that most have only been used in
research environments and have not really been widely adopted by industry. Many
ADLs only support a specific architectural style.

3 Architecting dependability

Although there is a large body of research in dependability, architectural level rea-
soning about dependability is only just emerging as an important theme in software
engineering. System dependability is measured through its attributes, such as reli-
ability, availability, confidentiality and integrity, and there are several means for
attaining these attributes, which can be grouped into four major categories [1]: rigor-
ous design, verification and validation, fault tolerance, and system evaluation.

Rigorous design, also known as fault prevention, is concerned with all the devel-
opment activities that introduce rigor into the design and implementation of systems
for preventing the introduction of faults or their occurrence during operation. Devel-
opment methodologies and construction techniques for preventing the introduction
and occurrence of faults can be described respectively from the perspective of devel-
opment faults and configuration faults (a type of interaction fault) [1]. In the context
of software development, the architectural representation of a software system plays
a critical role in reducing the number of faults that might be introduced [6]. For the
requirements, architecture allows to determine what can be built and what require-
ments are reasonable. For the design, architecture is a form of high-level system
design that determines the first, and most critical, system decomposition. For the
implementation, architectural components correspond to subsystems with well-
defined interfaces. For the maintenance, architecture clarifies design, which facili-
tates the understanding of the impact of changes. One way of preventing develop-
ment faults from being introduced during the development of software systems is the
usage of formal or rigorous notations for representing and analysing software at key
stages of their development. The starting point of any development should be the
architectural model of a system in which dependability attributes of its components
should be clearly documented, together with the static and dynamic properties of
their interfaces. Also as part of these models, assumptions should be documented
about the required and provided behaviour of the components, including their failure
assumptions. This architectural representation introduces an abstract level for reason-

ing about structure of a software system and the behaviour of its architectural ele-
ments, without getting into lower level details. The role of architecture description
languages (ADLs) is to describe software systems at higher levels of abstraction in
terms of their architectural elements and the relationships among them [4].

Verification and validation, also known as fault removal, is concerned with all
development and post-deployment activities that aim at reducing the number or the
severity of faults [1]. The role of architectural representations in the removal of
faults during development is twofold: first, it allows faults to be identified and re-
moved early in the development process; and second, it also provides the basis for
removing faults late in the process. The early removal of faults entails checking
whether the architectural description adheres to given properties associated with a
particular architectural style, and whether the architectural description is an accurate
representation of the requirements specifications. The late removal of faults entails
checking whether the implementation fulfils the architectural specification. While
early fault removal is essentially obtained through static analysis, late fault removal
is gained through dynamic analysis. Examples of techniques for the static analysis of
architectural representations are inspections and theorem proving, while model
checking and simulation could be given as examples of dynamic analysis techniques.
Testing is a dynamic analysis technique that has been mostly applied to uncover
faults late in the development process. The role of architectural representation in the
removal of faults after system deployment includes both corrective and preventative
maintenance [1]. The software architecture, in terms of components and connectors,
provides a good starting point for revealing the areas a prospective change will affect
[4].

Fault tolerance aims to avoid system failure via error detection and system re-
covery [1]. Error detection at the architectural level relies on monitoring mecha-
nisms, or probes, for observing the system states to detect those that are erroneous at
the components interfaces or in the interactions between these components. On the
other hand, the aim of system recovery is twofold. First, eliminate errors that might
exist at the architectural state of the system. Second, remove from the system archi-
tecture those elements or configurations that might be the cause of erroneous states.
From the perspective of fault tolerance, system structuring should ensure that the
extra software involved in error detection and system recovery provides effective
means for error confinement, does not add to the complexity of the system, and im-
proves the overall system dependability [10]. To leverage the dependability proper-
ties of systems, solutions are needed at the architectural level that are able to guide
the structuring of undependable components into a fault tolerant architecture. Hence
from the dependability perspective, one of the key issues in system structuring is the
ability to limit the flow of errors. Architectural abstractions offer a number of fea-
tures that are suitable for the provision of fault tolerance. They provide a global
perspective of the system, enabling high-level interpretation of system faults, thus
facilitating their identification. The separation between computation and communica-
tion enforces modularisation and information hiding, which facilitates error con-
finement, detection and system recovery. Moreover, architectural configuration is an
explicit constraint that helps to detect any anomalies in the system structure. The role
of software architectures in error confinement needs to be approached from two

distinct angles. On the one hand is the support for fostering the creation of architec-
tural structures that provide error confinement, and on the other hand is the represen-
tation and analysis of error confinement mechanisms. Explicit system structuring
facilitates the introduction of mechanisms such as program assertions, pre- and post-
conditions, and invariants that enable the detection of potential erroneous states in
the various components. Thus, having a highly cohesive system with self-checking
components is essential for error confinement. However, software architectures are
not only composed of a set of components, connectors are also first class entities and
as such also require error confinement mechanisms. For error handling during sys-
tem recovery, exception handling has shown to be an effective mechanism if prop-
erly incorporated into the structure of the system. Architectural changes, for support-
ing fault handling during system recovery, can include the addition, removal, or
replacement of components and connectors, modifications to the configuration or
parameters of components and connectors, and alterations in the compo-
nent/connector network’s topology [8]. A good example of such an approach is the
architectural mechanisms that allow a system to adapt at run-time to varying re-
sources, system errors and changing requirements [7]. Another repair solution of run-
time software, which is architecturally-based, relies on events and connectors to
achieve required structural flexibility to reconfigure the system on the fly, which is
performed atomically [10].

System evaluation, also known as fault forecasting, is conducted by evaluating
systems’ behaviour with respect to fault occurrence or activation [1]. For the archi-
tectural evaluation of a system, instead of having as a primary goal the precise char-
acterisation of a dependability attribute, the goal should be to analyse at the system
level what is the impact upon a dependability attribute of an architectural decision
[5]. The reason is that, at such early stage of development the actual parameters that
are able to characterise an attribute are not yet known, since they are often imple-
mentation dependent. Nevertheless, the architectural evaluation of a system can
either be done qualitatively or quantitatively. Qualitative architectural evaluation
aims to provide evidence as to whether the architecture is suitable with respect to
some goals and problematic towards other goals. In particular, the architectural
evaluation of system dependability should be performed in terms of the system fail-
ure modes, and the combination of component and/or connector failures that would
lead to system failure. Qualitative evaluation is usually based on questionnaires,
checklists and scenarios to investigate the way an architecture addresses its depend-
ability requirements in the presence of failures [5]. Quantitative architectural evalua-
tion aims to estimate in terms of probabilities whether the dependability attributes
are satisfied. The two main approaches for probabilities estimation are modelling and
testing. For the modelling approach, two techniques could be used: architectural
simulation, and metrics extracted from the architectural representation. Examples of
such metrics are, coupling and cohesion metrics for evaluating the degree of archi-
tectural flexibility for supporting change, and data-flow metrics for evaluating per-
formance. However, in terms of dependability, most of the approaches rely on the
construction of stochastic processes for modelling system components and their
interactions, in terms of their failures and repairs.

4 Conclusions

From the perspective of dependability, effective structuring should aim to build
fault-free systems (fault avoidance) and systems that cope with faults (fault accep-
tance) [1]. At the architecture level, fault avoidance is achieved by describing the
behaviour and structure of systems rigorously or formally (rigorous design), and by
checking system correctness and the absence of faults (verification and validation).
Fault acceptance is related to the provision of architectural redundancies that allow
the continued delivery of service despite the presence of faults (fault tolerance), and
the assessment whether the specified system dependability can be achieved from its
architectural representation (system evaluation). There are no ADLs that are able to
deal with a wide range of criteria for representing and analysing the dependability
concerns of software systems. Architectural views or aspects might be a promising
way forward for dealing with dependability concerns when providing the ability of a
system to deliver the service that can be trusted, and obtaining confidence in this
ability.

5 References

[1] Avizienis A, Laprie JC, Randell B, Landwehr C (2004) Basic Concepts and Taxonomy
of Dependable and Secure Computing. IEEE Transactions on Dependable and Secure
Computing 1(1): 11-33

[2] Bass L, Clements P, Kazman R (1998) Software Architecture in Practice. Addison
Wesley

[3] Boehm B (1996) Anchoring the Software Process. IEEE Software 13(4): 73-82
[4] Clements P, et al (2003) Documenting Software Architectures: Views and Beyond.

Addison-Wesley
[5] Clements P, Kazman R, Klein M (2002) Evaluating Software Architectures: Methods

and Case Studies. Addison-Wesley
[6] Garlan D (2003) Formal Modeling and Analysis of Software Architectures. In: Bernado

M, Inverardi P (eds). Formal Methods for Software Architectures.. Lecture Notes in
Computer Science 2804. Springer. Berlin, Germany. pp 1-24

[7] Garlan D, Cheng SW, Schmerl B (2003) Increasing System Dependability through
Architecture-based Self-Repair. In: de Lemos R, Gacek C, Romanovsky A (eds).
Architecting Dependable Systems. Lecture Notes in Computer Science 2677. Springer.
Berlin, Germany. pp 61-89

[8] Oriezy P, et. al (1999) An Architecture-Based Approach to Self-Adaptive Software.
IEEE Intelligent Systems 14(3): 54-62

[9] Perry DE, Wolf AL (1992) Foundations for the Study of Software Architectures.
SIGSOFT Software Engineering Notes 17(4): 40-52

[10] Randell B (1975) System Structure for Software Fault Tolerance. IEEE Transactions on
Software Engineering SE 1(2): 220-232

[11] Shaw M (1998) Moving from Qualities to Architecture: Architecture Styles. Software
Architecture in Practice. L. Bass, P. Clements, R. Kazman (eds). Addison-Wesley. pp
93-122

[12] Shaw M, Garlan D (1996) Software Architectures: Perspectives on an Emerging
Discipline. Prentice-Hall, Inc. Upper Saddle River, NJ

