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Solving Large p-Median Problems 
by a Multistage Hybrid Approach 
Using Demand Points Aggregation 
and Variable Neighbourhood 
Search* 

 

Chandra A. Irawan • Said Salhi 

 

Abstract  A hybridisation of a clustering-based technique and of a Variable Neighbourhood 

Search (VNS) is designed to solve large-scale p-median problems. The approach is based on a 

multi-stage methodology where learning from previous stages is taken into account when 

tackling the next stage. Each stage is made up of several subproblems that are solved by a fast 

procedure to produce good feasible solutions. Within each stage, the solutions returned are put 

together to make up a new promising subset of potential facilities. This augmented p-median 

problem is then solved by VNS. As these problems used aggregation, a cost evaluation based on 

the original demand points instead of aggregation is computed for each of the ‘aggregation’-

based solution. The one yielding the least cost is then selected and its chosen facilities included 

into the next stages. This multi-stage process is repeated several times until a certain criterion is 

met. This approach is enhanced by an efficient way to aggregate the data and a neighbourhood 

reduction scheme when allocating demand points to their nearest facilities. The proposed 

approach is tested, using various values of p, on the largest data sets from the literature with up 

to 89,600 demand points with encouraging results.  
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1. Introduction 

The objective of the p-median problem, which is also known as the minisum problem, 

is to find the location of p facilities among n discrete potential sites in such a way to 

minimise the sum of the distances between customers and their associated facilities. In 

certain circumstances, p-median problems may consist of a large number of demand 

points. These problems arise, for example, in urban or regional areas where the demand 

points are individual private residences. Francis et al. [7] stated that it may be 

sometimes impossible and time consuming to solve optimally the location problems 

involving a large number of demand points. It is quite common to aggregate demand 

points when solving large scale location problems. The idea behind the aggregation is to 

reduce the number of demand points to be small enough that an optimiser can be used. 

In this case, the original location problem is partitioned into smaller problems which can 

be solved within a reasonable amount of computing time. However, this aggregation 

may introduce errors in the data used by location models and models output. In the next 

section, we review those researchers that have studied the effects of aggregation on the 

solution of location problems. 

The p-median problem is originally formulated by ReVelle and Swain [16] as follows: 

Minimise   
 Ii Jj

ijiji Ydw  (1) 

Subject to 

IiY
j

ij  1  (2) 





Jj

j pX  (3) 

jiXY jij ,,0   (4) 

jX j  }1,0{  (5) 

jiYij ,}1,0{   (6) 

Where 

(I,J)  : set of customers }),...,1{( nIi  and set of potential sites }),...,1{( MJj   

 (ie : In   and JM  ) respectively 

iw  : demand or weight of customer i; 

ijd  : distance between customer i and potential site j; 

p : number of facilities to locate; 
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ijY  = 1, if customer i is fully served by a facility at site j and = 0 otherwise; 

jX  = 1, if a facility is opened at potential site j and = 0 otherwise; 

The objective function is to minimise the total demand-weighted distance. Constraint 

(2) ensures that each customer i is assigned to one facility only. Constraint (3) 

guarantees that the number of facilities to be located is equal to p facilities. Constraint 

(4) states that the demand at customer i can only be allocated to a facility j (Yij = 1) only 

if a facility is opened at site j (Xj = 1). 

In this paper, we establish a method that dynamically solves the large scale p-median 

problems tested in the literature using a multistage approach. This is based on 

aggregating demand points and using a powerful meta-heuristic such as Variable 

Neighbourhood Search (VNS). The paper is organized as follows. Section 2 describes a 

brief review of the related literature. The proposed methodology is presented in Section 

3. In Section 4, the computational results are given. Our conclusion is summarised with a 

highlight of some suggestions in the last section. 

 

2. Literature Review  

This section provides an overview of aggregation techniques for large scale p-median 

problems, see Francis et al. [7] for an excellent review on this topic. The authors 

described aggregation error measurements and surveyed some of the principal papers 

about aggregation errors. They also classified the review into two main categories, 

namely median problems and centre/covering problems. 

Table 1 describes our notation in location models which are focused on an 

aggregation approach, with BSU and ASU being short for Basic Spatial Unit and 

Aggregate Spatial Unit respectively.  

Aggregation error was first formally defined by Hillsman and Rhoda [11] where three 

types of aggregation errors, namely source A, B, and C errors are proposed. These errors 

are also usually used in many papers to measure the aggregation scheme performance. 

Source A error appears when the distance between an ASU and a facility is used to solve 

a facility location problem, instead of the true average distance between a BSU and a 

facility. Source B error occurs when a facility is located at an ASU whereas source C error 

happens when a BSU is assigned to the wrong facility. 
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Table 1 Notation in location model 

Notation Description 

N = {1,2,3,...,n} 

C = ( ncccc ,...,,, 321 ) 

M = {1,2,3,...,m} 

C’ = ( mcccc  ,...,,, 321 ) 

Nk  

p 

F 

 

F’  

 

),( jid  

),(ˆ jkd  

 

),(),(
~

kcidkid   

the set of all BSUs 

the list of BSUs (ci = i for simplicity)  

the set of all ASUs 

the list of ASUs ( rc : representative point of the r
th

 ASU) 

the set of BSU in the k
th

 ASU, k = {1,2,3,...,m} with NN
m

k k 
 1

  

the number of facilities to be located 

the optimal locations of the p facilities found with the original model  

(i.e., full model) 

the optimal locations of the p facilities found with the aggregated 

location model  

the distance between the i
th

 BSU and the j
th

 BSU  

the distance between the k
th

 ASU and the j
th

 potential facility 

(in our study, each ASU acts as a potential facility)  

the distance between the i
th

 BSU and the k
th

 ASU 

):( CFf  

):( CFf   

):( CFf   

objective function evaluated using F based on the original problem 

objective function evaluated using F‘ based on the original problem 

objective function evaluated using F‘ based on the aggregated 

problem 

 

A method for eliminating source A and source B errors is introduced by Current and 

Schilling [3]. The method emphasized the way to measure the weighted travel distances 

in the p-median problem. To eliminate source A errors, a distance between the kth ASU 

and the jth facility is set as ),(ˆ jkd  =  kNi i jidw ),(  instead of ),(
~

 kjdNk with Nk being the 

set of aggregated BSUs in the kth ASU. The former equation measures the true weighted 

travel distance to the potential facility from all BSUs. This measurement method can also 

eliminate source B errors. Note that this method cannot eliminate source C errors.  

Casillas [2] showed that the A, B, and C errors cause two types of errors, namely the 

cost error )):():'(( CFfCFfce   and the optimality error )):():(( CFfCFfoe  . It 

is found that the optimality error was small for small p, but increased when the values of 

p and m were large. Hodgson and Neuman [13] introduced a Geographical Information 

System (GIS) method for eliminating source C error. The method spatially disaggregates 

data as needed during the solution procedure (“on the fly”) using Voronoi polygon. A 

median row-column aggregation method was given by Francis et al. [6] to find an 

aggregation which gives a small error bound. Hodgson et al. [14] studied the aggregation 

error effects on the discrete-space p-median model and introduced source D error in 

addition to the A, B, and C errors. This new error appears when a BSU is also a potential 

facility location. An earlier review on the issue of aggregation errors for the p-median 
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problem was provided by Erkut and Bozkaya [5]. Data surrogation error in p-median 

models was studied by Hodgson [12]. This error occurs when an inappropriate variable is 

used to stand in for a target population’s demand.  

Hansen et al. [9] developed a primal-dual VNS metaheuristic for solving large p-

median datasets directly without recourse to any type of sampling. The authors used a 

Reduced VNS to get good initial solutions which are then used in their VNS with 

decomposition which is aimed to tackle large problems. Qi and Shen [17] studied the 

worst-case analysis of demand point aggregation for the Euclidean p-median problem 

on the plane. They utilised a “honeycomb heuristic” algorithm introduced by 

Papadimitriou [15] to develop a “multi-pattern tiling” to obtain smaller worst-case 

aggregation error bounds. Garcia et al. [8] investigated large p-median problems using a 

model based on covering formulation which has a small subset of constraints and 

variables. This method is very efficient due to an efficient branch-and-bound framework 

based on dynamic reliability branching within CPLEX. Their experiments showed that the 

method is able to solve large problems especially for large values of p due to the 

formulation reduction they proposed. Very recently, an aggregation heuristic was 

proposed by Avella et al. [1] where they used a heuristic approach based on Lagrangean 

relaxation to deal with large-scale median problems. The core heuristic is defined by a 

subset of the most promising variables found according to the Lagrangean reduced costs 

associated with the open facilities as well as those associated with the allocation 

variables. As this heuristic was failing for small values of p, an aggregation heuristic was 

introduced to solve the original problem with a much larger value of open facilities that 

are then considered as centres for aggregation. Their results were encouraging when 

compared to the ones given in [9]. 

 

3. Solution Approach  

In this section, we propose an adaptive search method to solve the large scale p-

median problems tested in the literature [1]. The method uses a clustering procedure to 

aggregate n BSUs (Basic Spatial Units) into m ASUs (Aggregated Spatial Units), where m 

<< n. This is a multistage approach where in each stage (called batch) a number of 

aggregated sub-problems of m ASUs each is solved using a fast local search which we 

call the “Mini VNS”. This generates a number of ‘promising’ facilities that are put 

together as potential sites. This augmented p-median problem is then solved with VNS 
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using still the aggregated problem. All the obtained solutions are re-evaluated for the 

original problem (i.e. all demand points) by incorporating an efficient reduction scheme. 

The best solution is then fed into the next stage. The process is repeated for future 

stages while adding the location of previously chosen facilities as potential sites. Once 

the process is stabilised (no improvement), a local search using the original problem is 

then carried out. An illustration of our methodology is presented in Fig. 1. The main 

steps of this method are given in Fig. 2 but more details are presented in the subsequent 

subsections. These include the mini VNS, the full VNS, the reduction scheme, and the 

local search. We refer to this method as the Hybrid Multistage Heuristic (HMH).  

 

Fig. 1 An Illustration of the Hybrid Multistage Heuristic (HMH) 

Batch 1 Batch 2 Batch 3 

. . . 
Batch B 

1 

2 

3 

 

. 

. 

. 

 

T 

An aggregated problem (m demand points) 

Solving the aggregated p-median problem using “Mini VNS (m, p)” 

The obtained facilities location ( tF  ) found by “Mini VNS (m, p)”, t=1,…,T 

Allocating all demand points in C to the nearest point in tF   

The objective function ( ):( CFft  ) calculated using tF   based on the original problem 

An aggregated problem made up of all solutions (Lb =
T
t tF

1
 )  

Solving the aggregated p-median problem using a full VNS (|Lb|, p) with |Lb| potential sites 

The obtained facilities location ( bF  ) found by the full VNS (|Lb|, p) 

Allocating all demand points in C to the nearest point in bF   

 
The objective function ( ):( CFfb  ) calculated using bF   based on the original problem 

The selected facilities from the solution  with the smallest ):( CFf   

Feeding the facilities found in to the next batches 
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Fig. 2 The main steps of the Hybrid Multistage Heuristic (HMH)  

 

3.1. Determining the initial parameters (Step 1 of Fig. 2) 

Firstly, we need to determine the number of batches (B). We assume that learning 

from previous batches will enhance the solution quality as extra ‘useful’ information are 

fed into the next batches. However, note that at some point, learning may not be very 

effective as the quality of solution may not necessarily get considerably better any more.  

Secondly, we also need to choose the number of ASUs (m). The quality of the 

solution is affected by m. The higher the value of m is, the higher is the chance in getting 

a better solution. However, a higher value increases the computing time and requires a 

larger computer memory. 

Step 1. Set the number of batches (B), the number of ASUs (m), and the number of 
samples for each batch (T). Set Lb = Ø, b = (1, …, B), where Lb  denotes a list 
of distinct facilities obtained in batch b. Set S = Ø, where S is a list of 
promising facility locations. 

Step 2. Construct Cells covering all demand points based on m.  

Step 3. For each batch, say b = (1, …, B).  

Step 3a  For each sample, say t = (1, …, T) 

(i). Aggregate BSUs into m ASUs including the already found |S| facility 
locations, construct m clusters, and calculate the distance ),(ˆ jkd , 

k=1,..,m; j=1,…,m.  

(ii). Solve the aggregated p-median problem using a “Mini VNS (m, p)”. Let 
):( CFf t   be the cost and store the obtained facility locations ( tF  ) 

into Lb, where 
T

t tb FL
1

  and ),...,,( 21
t
p

tt
tF  . All duplicate 

locations are obviously discarded when using   

Step 3b Construct |Lb| clusters around the facilities in Lb, and calculate the 
distance ),(ˆ jkd , k=1,.., |Lb|; j=1,…, |Lb|. Solve the p-median problem 

with VNS (|Lb|, p). Let ):( CFfb   be the cost and bF   the obtained 

facility locations.  

Step 3c Add the promising facilities location into S. If ):( CFfb   < 

},...,1),:({ TtCFfMin t   then set bFSS    U  else *  U tFSS   with 

 )) , ( (* CFfMinArgt tt
t

 .  

Step 4. Starting from the obtained solution, solve the original p-median problem 
using a new local search (n, p) to be explained later. 
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Finally, the number of samples (T) per batch also influences the quality of the 

solution. If T is high, the opportunity to get a good solution may increase as well due to 

diversification but at the expense of a longer computing time. 

 

3.2. The construction of the cells (Step 2 of Fig. 2) 

In this section, we describe a procedure to construct cells which will cover all demand 

points. We call this the Basic Cell Approach (BCA). The information of these cells will be 

used for determining m ASUs. The BCA is adopted from Salhi and Gamal [18]. The aim of 

constructing these cells is to overcome the weakness of the random process in dealing 

with clustered demand points. Here, we enhance their method in the following three 

ways. Firstly, BCA constructs cL x cW square cells that cover the entire study area and 

records the cumulative probability distribution of the number of demand points in the 

cells. In [18], c0 x c0 rectangular cells are constructed and the number of cells in column 

and row are the same. In our method, we construct cL x cW square cells and the number 

of cells in column and row are not necessary the same. Secondly, we pseudo randomly 

choose m cells based on the cumulative probability distribution. Thirdly, in each of the 

selected cell, we choose randomly a demand point as an ASU. The following are the 

main steps of the BCA: 

 Construct cL x cW square cells of length  and determine the number of cells (we aim 

to have more or less m cells).  The following formula is used to compute . 






















minmax

minmax

minmax

yy

xx
m

xx
  (7) 

Proof: 

As 
WL c

yy

c

xx minmaxminmax 



   (8) 

and  our aim is to have m  cells, therefore   m = cL . cW   cW = m / cL  

Hence, 
m

cyy

c

xx L

L

)( minmaxminmax 



  



















minmax

minmax

yy

xx
mcL    (9) 

Substituting (9) into (8) leads to (7).   

The cL and  cW can be obtained by /)( minmax yycW   and /)( minmax xxcL  .    

A cell is defined by its bottom-left corner. Let (Xz, Yz), z = 1,…,(cL.cW), denote the 

coordinates of the bottom-left corner of the zth cell. The cells are recorded as 
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follows: cell 1 has its bottom-left corner    minmin11 ,, yxYX   and successive cells, 

say cell z as follow: 

   )mod( , )mod(, minmin WLzz czyczxYX    

 Record the number of demand points in each cell, (say cell z) as Nz and determine 

its corresponding probability distribution, say Pz = Nz / n, z = 1,…,(cL.cW). 

 Generate randomly   (0,1) and choose )(~   ~ 1
)(  zFzstz  with  


z
tz ztPF

1)( )( . 

 

3.3. The location of the ASUs and the aggregation of the demand points 

(Step 3a(i) of Fig. 2) 

This section will explain how the m ASUs are determined and the way the distance 

),(ˆ jkd  k=1,..,m; j=1,…,m, is calculated. The following steps summarise this mechanism. 

 Store all the elements of S in C’. Note that in the first batch, |S| = 0. 

 Repeat until there are m points in C’. 

(a) Choose a random number between 0 and 1, and then determine the 

corresponding cell z based on the cumulative probability distribution. Note that 

cell z is not the cell that has a point in S as its member.  

(b) Choose randomly a demand point in the cell z and store this point in C’. 

Duplicated points in C’ are removed. 

 Construct m clusters by allocating all demand points (C) to the nearest points in C’. 

Record the number of demand points in each cluster, ok , k = 1, …, m, where 

no
k k  .   

 Calculate the approximate distance between all the ASUs using ),(
~

 ),(ˆ kjdojkd k  

with j denoting the facility representing the jth ASU acting as a potential site and k 

refers to the kth ASU (k, j=1,…,m). To reduce the computing time, we use such 

approximate distance measure instead of the real distance as proposed by Current 

and Schilling [3]. 

 

3.4. The allocation of demand points 

We propose an efficient procedure to allocate all demand points (n points) to the 

nearest points in C’ (m points).  The following two steps constitute our fast procedure: 
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(a) An efficient recording of the Euclidian distance 

The way to calculate the Euclidian distance is based on Zoubi and Rawi [20] where 

they developed an efficient way for computing silhouette coefficients when 

identifying ‘good’ clusters. Note that, the Euclidian distance, 

222 )()(),( jiji yyxxjid  , can also be rewritten as 

jijijjii yyxxyxyx 222222  . The terms 22
iii yx   and 22

jjj yx   

are based on i or j but not both. The authors observe that for each i (i=1,…,n), i  

can be computed only once at the outset. It means that when we calculate the 

distance, the formulation jijiji yyxxjid 22),(2    is used instead, 

yielding a saving in computing time as O(n2) operations are reduced to O(n) only. 

However, there is a small fixed cost to compute the i  which is negligible 

especially when a large number of calls to the distance matrix is needed.  

(b) An efficient allocation of points to ASU 

Firstly, we need to find the nearest ASU from the kth ASU. Instead of searching for 

all points, we limit our search to a smaller subset only. We define the covering 

radius as )(kd


, where mkmjjkjkdMinkd ,...,1},,...,1,),,(ˆ{ *5.0)( 


. We 

allocate all demand points in C to the nearest ASU in C’ using the following rule. If 

)(),(
~

kdkid


  then the demand point i is allocated to ASU k, otherwise the point i 

will be assigned to its nearest ASU using the classical allocation method. This 

reduction scheme will avoid the need for checking all the remaining ASUs. This rule 

also guarantees that a wrong allocation of the demand points is not possible. 

 

An Illustrative Example 

Fig. 3 illustrates the method of our efficient allocation method where there are 20 

BSUs which will be aggregated into 3 ASUs by allocating each BSU to the nearest 

ASU. For example, when finding the nearest ASU, BSU 1, 2, …, 5 can be allocated to 

(aggregated into) ASU 1 directly without the need for checking all the remaining 

ASUs. This is because those BSUs are within the covering area of ASU 1 

( 5,...,2,1),1()1,(
~

 idid


). On the other hand, BSU 6, 7, 11, 12, 18, 19, and 20 need 

the checking of all ASUs as these BSUs are outside the covering area of all ASUs. It 

means that those BSUs are allocated to their nearest ASU by the classical allocation 
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method. In other words, we avoided checking 13 out of the 20 BSUs when assigning 

them to their nearest ASUs (i.e. a 65% time reduction). 

 

Fig. 3 Illustration of our efficient allocation method 

 

A Small Experiment 

We conducted a small experiment to test the performance of our allocation 

algorithm. In this experiment, m clusters are built by allocating n demand points to the 

nearest ASU location (there are m ASUs). The BIRCH instances, varying in size from n = 

25,000 to 89,600, are used. The details of these instances will be given in the 

Computational Study section. The results show that our allocation algorithm is much 

faster than the traditional one, requiring around 40% (with at most 50%) of the original 

time. The summary results are given in Table 2. Bold refers to the solution with the 

highest deviation value. These show that our algorithm is more than twice faster than 

the traditional one with an average of 111.8%. This saving in computing time is made 

significant as our method is an iterative-based approach which avoids to re-compute 

already computed parts of the distance function namely the i , i=1,…,n. The % 

deviation is defined as: 








 


EM

EMTM
Deviation 100(%)  where TM and EM refer to the Traditional and the 

Enhancement methods respectively. 

ASU 

1 

ASU 

2 

ASU 

3 

BSU 

1 BSU 

2 

BSU 

3 

BSU 

4 

BSU 

5 

BSU 

6 

BSU 

7 

BSU8 

BSU 

9 
BSU 

10 

BSU 

11 BSU 

12 

BSU 

13 

BSU 

14 

BSU 

15 

BSU 

16 

BSU 

17 

BSU 

18 

BSU 

19 

BSU 

20 

The nearest ASU 

from the k
th

 ASU 

The covering 

radius ( )(kd


) 

The covering 

area 
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Table 2 Comparison between the Traditional and the Enhancement Methods 

Case of BIRCH instances of type 1 Case of BIRCH instances of type 3

TM EM TM EM

25,000  2,500 2,744   1,372   100.00      25,000  2,500 2,811   1,366   105.78      

36,000  3,600 6,191   2,979   107.82      36,000  3,600 6,450   3,062   110.65      

49,000  4,900 11,748 5,509   113.25      49,000  4,900 12,541 5,770   117.35      

64,000  6,400 20,657 9,684   113.31      64,000  6,400 21,494 10,081 113.21      

30,000  3,000 4,115   1,996   106.16      30,000  3,000 4,230   1,941   117.93      

43,200  4,320 9,125   4,282   113.10      43,200  4,320 9,438   4,393   114.84      

58,800  5,880 17,284 8,064   114.34      58,800  5,880 18,092 8,352   116.62      

76,800  7,680 29,889 14,269 109.47      76,800  7,680 32,003 14,519 120.42    

35,000  3,500 5,753   2,752   109.05      35,000  3,500 6,107   2,881   111.98      

50,400  5,040 12,640 5,826   116.96    50,400  5,040 13,464 6,134   119.50      

68,600  6,860 22,888 11,015 107.79      68,600  6,860 25,108 11,512 118.10      

89,600  8,960 43,883 21,474 104.35      89,600  8,960 44,103 21,941 101.01      

TM : Traditional Method

EM : Enhancement Method

Allocating Time 

(millisecond)
Deviation 

(%)

Allocating Time 

(millisecond)n m
Deviation 

(%)
n m

 

 

3.5. Solving the aggregated problem by the Mini VNS (Step 3a(ii) of Fig. 2) 

We solve the aggregated p-median problem with the following local search which we 

call “Mini VNS (m, p)”. Here, we reduce the demand points and the potential facility 

locations from n points to m points. In this step, we do not use the full VNS procedure to 

solve the aggregated problem as there is no guarantee that the solution with a good 

objective function in the aggregated problem will also provide a good objective function 

value in the disaggregated (original) problem. Moreover, finding the best solution with a 

full VNS in the aggregated problem for all samples t = 1,…,T and all batches b = 1,…,B will 

be too time consuming. In this study, we adopted a mini VNS made up of one 

neighbourhood only. This could obviously be considered as a perturbation enhanced by 

a local search. The full VNS will be presented later as it will be used in Step 3b of Fig. 2. 

In the Mini VNS, our local search is based on the fast interchange heuristic proposed 

by Whitaker [19]. We adapted the algorithm to reduce the computing time further at 

the expense of a small loss in quality. Here, when finding the best demand point to be 

inserted and to replace facility j, we just look for the demand point served by facility j. In 

other words, we restrict the search to the allocated demand points to j only. Moreover, 

when calculating the saving from this swapping process, we just include the demand 

points served by the neighbouring facilities which we consider to be the α nearest 
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facilities from facility j. In this case, we use α  = max{0.1p, 10} which was found 

empirically using a small sample. In other words, we opt for such a neighbourhood 

reduction as we assume that it is not necessarily worthwhile to swap facility j with a 

demand point which is far from facility j. The procedure to find the best demand point 

to be swapped with facility j is given in Fig. 4 which we refer to as “FindBestCustomer”.  

 

Fig. 4 The local search procedure “FindBestCustomer”  

 

The Mini VNS algorithm is given in Fig. 5. The shaking is performed by swapping a 

randomly chosen facility (say facility j) with a demand point served by facility j which is 

obtained by the procedure “FindBestCustomer”. In this mini VNS, for the first batch, p 

points from C’ (m demand points) are chosen randomly as the initial solution, but for the 

second batch and onward, we use the best solution from the previous batches. The 

open facilities ( tF  ) are obtained from the tth sample problem, where 

),...,,( 21
t
p

tt
tF  . The objective function, ):( CFft  , is calculated using tF   on the 

original problem and then tF   is stored into Lb. All duplicate locations are discarded. This 

set of ‘potential’ facility locations can be defined as T
t tb FL 1

 . 

Procedure FindBestCustomer (IndexFout, xnow, α, call, a1, a2, loss, BestIndex, BestFins)  

 Find the α nearest facilities from facility IndexFout in xnow (do not include facility 
IndexFout) and store those facilities in xnear.  

 Determine the demand points in call served by xnear and store them into cnear. 
Determine the customers served by facility IndexFout, and then store them into 
cfacj.  

 Find the customer in cnear to be swapped by using the following procedure.  
For each demand point i in cfacj do the following: 

If (i  xnow[IndexFout]) then 
Set w = 0 and g = 0 (loss due to the swapping process; negative value = 
saving) 
For each demand point z in cfacj do the following: 

If (d(z,i) < d(z, a1(z))) Set w = w + d(z,i) - d(z, a1(z)) 
Else 

If (d(z,i) < d(z, a2(z))) Set g = g + d(z,i) - d(z, a1(z)) 
Else g = g + d(z, a2(z)) - d(z, a1(z)) 

End If 
End for z 
For each demand point z in cnear  

If (d(z,i) < d(z, a1(z))) Set w = w + d(z,i) - d(z, a2(z)) 
w = w + g 
If (w < loss) Set loss = w, BestFins = i, and BestIndex = IndexFout 

End If 
End for i  

 Return loss, BestIndex, BestFins.  
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Fig. 5 The “Mini VNS” (Step 3a(ii) of Fig. 2) 

 

3.6. Solving the aggregated p-median problem with the full VNS (Step 3b 

of Fig. 2) 

At the end of each batch made up of T samples (T solutions/problems), we take all 

obtained facilities from all solutions (Lb). Note that at the beginning of each batch, the 

list is empty (i.e. Lb = {Ø}). Each point in Lb acts as an ASU totalling |Lb| ASUs. We then 

construct |Lb| clusters by allocating all demand points in C to the nearest points in Lb. 

We calculate the distance between each point in Lb using Current and Schilling [3]. 

The corresponding p-median problem is solved by VNS (|Lb|, p) introduced by 

Hansen and Mladenovic [10]. We can afford to use a full VNS here as, in total, we will be 

Step 1 Initialization  
(a) For the first batch, p points from C’ are chosen randomly as the initial solution. 

For the second batch and onward, we use the best solution from the previous 
batches. The initial solution is set as xbest.  

(b) Calculate the objective function fbest using the aggregated data and find arrays a1 
(the nearest facility in xbest from each demand point in C’) and a2 (the second 
nearest facility) by allocating all demand points in C’ to the nearest facility in 
xbest. 

(c) Set xnow = xbest ,  a1now = a1 , a2now = a2 , fnow = fbest , and α  = max{0.1p, 10}. 
 
Step 2 Shaking 
(a) Randomly remove a facility from xnow  facility xnow[IndexFout] 
(b) Set loss = a big positive number (current best loss; negative value = saving) 
(c) Find a facility to be inserted (BestFins) by using the procedure 

“FindBestCustomer (IndexFout, xnow, α, C’, a1now, a2now, loss, BestIndex, BestFins)” 
which is described in Fig. 4. 

(d) Set xnow[IndexFout] = BestFins 
(e) Calculate the objective function fnow and find arrays a1now (the nearest facility in 

xnow from each demand point) and a2now (the second nearest facility) by 
allocating all demand points in C’ to the nearest facility in xnow. 

 
Step 3 Local Search 

Do the following steps until Imp=false (i.e. No Improvement) 

(a) Set Imp = false and loss = big number 
(b) For j=1 to p, remove facility j from xnow (facility xnow[j]) and find facility to be 

inserted (BestFins) by using the procedure “FindBestCustomer (j, xnow, α, C’, 
a1now, a2now, loss, BestIndex, BestFins)”. 

(c) Select BestIndex and BestFins as the swapped facilities (i.e. xnow[BestIndex] = 
BestFins) 

(d) Calculate fnow and find arrays a1now and a2now as in Step 2(e). 
(e) If (fnow < fbest) then set Imp = true, xbest = xnow ,  a1 = a1now , a2 = a2now , fbest = fnow. 

End Loop Do 
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needing B runs of VNS only, with |Lb| varying from one batch to another due to 

duplications. We use the simple VNS version as the size of the p-median problem (|Lb|, 

p) is relatively small. Let bF   be the obtained facility locations and ):( CFfb   the 

objective function evaluated using bF   on the original problem. In those experiments, 

we limit the computing time for solving the problem by VNS to Tvns seconds which we 

found empirically to be 1000/20 5.05.025.0 mpnTvns  . In this study, we use kmax = p.  

In Hansen and Mladenovic [10], the set of neighbourhood structures (Nk), k = 1, 2, …, 

kmax is induced by swapping k times a randomly chosen facility with the one in the 

current solution obtained by the move procedure of the interchange heuristic 

introduced by Whitaker [19]. In local search, the interchange heuristic was applied. Note 

that, in [10], they used a best improvement strategy instead of a first improvement as 

suggested in [19].  

 

3.7. Local Search for the original problem (Step 4 of Fig. 2) 

This step acts as an additional post optimisation to solve the disaggregated problem 

(original problem) starting from the best solution found in the previous batches. This 

local search is similar to the one in Step 3a(ii) of HMH, except that we do not construct 

the distance matrix for all demand points, but those points used in the 

“FindBestCustomer” procedure only. In other words, we do not require a large amount 

of memory capacity. The procedure of our local search for the disaggregated problem is 

given in Fig. 6. 

 

Fig. 6 The Local Search Procedure for Solving the Original Problem 

Initialization  
 Take the best solution from the previous batches as the initial solution, and store it as 

xbest.  
 Calculate the objective function fbest and find arrays a1 (the nearest facility in xbest from 

each demand point) and a2 (the second nearest facility) by allocating all demand points 
(C) to the nearest facility in xbest. 

 Set  xnow = xbest ,  a1now = a1 , a2now = a2 , fnow = fbest , and α  = max{0.1p, 10} . 

Local Search 
Apply the local search of Step 3 in Fig. 4, but using C (original demand points) instead of C’ 
(aggregated demand points). 
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4. Computational Study  

A computational study to assess our solution method was conducted. The project 

developed to solve the problems is written in C++ .Net 2010.  The specification of the 

computer used to execute all problems is a PC Intel Core i5 CPU 650@ 3.20GHz of 

processor, 4.00 GB of RAM and under Windows 7(32bit). In our computational study, we 

use m = 0.1n, B = 5, and T = 10. Those parameters were chosen based on a small 

preliminary study. The value of m is found to be large enough to represent the original 

problem while being small enough to be solved. This choice provides an acceptable 

performance for both the quality of the solution and the computational effort. The value 

of B and T are also chosen to produce a reasonable number of runs and batches. Also, in 

our preliminary study it was observed that the improvement of the solution was getting 

relatively small from the 5th batch onward. For instance, on the 2nd batch onward, the 

rate of improvement of the solution starts to reduce. A larger value of T (T ≥ 10) though 

may increase the chance in obtaining a better solution in each batch but requires an 

increase in the computing time while making the use of the full VNS less attractive due 

to the excessive time required. An extensive testing using a statistical analysis could be 

conducted to provide better estimates for m, B, and T if necessary. In this study, to be 

consistent when repeating the experiments, the seed for the random generator is set to 

a constant, here we set it to m.  

Two types of instances are used in our computational experiments. The first set 

consists of the BIRCH instances kindly provided by Avella et al. [1] in 

http://iv.icc.ru/Papers.hatml (n ranges from 25,000 to 89,600). According to [1], these 

instances are the largest instances tested in the literature. The second set contains the 

TSP instances from http://www.tsp.gatech.edu/world/countries.html. The instances of 

Italy, Sweden, Burma, and China (n ranges from 16,862 to 71,009) are used in our 

testing. The results in both cases are summarised in Tables 3 and 4 respectively. For 

completeness, we also report the solution with and without Step 4 of Fig. 2.  

 

Case 1: BIRCH instances 

The performance of our method is compared with the one of AH short for Avella et 

al. [1] and the VNSH short for the VNS of Hansen et al. [9]. The computational results of 

both AH and VNSH methods are taken from [1]. Computational experiments for AH and 

VNSH were carried out by Avella et al. on an Intel Core 2Quad CPU 2.6 GHz, 4.00 GB of 

http://iv.icc.ru/Papers.hatml
http://www.tsp.gatech.edu/world/countries.html
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RAM and under Windows XP64. To provide a fair comparison in terms of CPU, we use 

the following transformation as given by Dongarra [4] with 
2

1
12

Nf

Nf
TT  , where T1 

represents the reported time in Machine 1 and T2 the estimated time in Machine 2. Nf1 

and Nf2 denote the number of Mflops in Machines 1 and 2 respectively. The software 

used to record the values of Nf1 and Nf2 can be downloaded from 

http://www.roylongbottom.org.uk. As we could not obtain precisely the number of 

Mflops of the computer used by Avella et al. [1], we provide an approximation based on 

a slightly slower but similar computer available to us namely a PC Intel Core 2Duo 

2.6GHz, 4 GB of RAM.   

Table 3 shows the computational results for our method (HMH) on the BIRCH 

instances. The first three columns refer to the problem name, the number of demand 

points, and the number of medians. The next three blocks of 4 columns each refer to the 

objective function value (Z), the CPU time in seconds and the deviation (in %). The latter 

measure is defined as: 













 


b

bc

Z

ZZ
Deviation 100 , where Zc and Zb correspond to the Z value for the 

corresponding method ‘c’ and the best Z value respectively.  

Method ‘c’ refers to VNSH, AH, HMH, and HMH- (i.e. HMH without the post 

optimisation, Step 4 of Fig. 2). ‘Bold’ shows the new best solutions. The results 

demonstrate that HMH provides better solutions compared to AH on all these instances. 

HMH and VNSH produce similar objective function values on the BIRCH instances of type 

1, but HMH yields a slightly better deviation (0.0113%). The proposed approach also 

produces 22 out of 24 new best solutions in these BIRCH instances. Note that our 

heuristic still outperforms the others even without the post optimisation step (Step 4 of 

Fig. 2, i.e. HMH-).  

In Avella et al. [1] the upper bound of VNSH on the BIRCH instances of type 3 are not 

reported. On these instances, our method (with and without using the post 

optimisation) is better than AH. The post optimisation in HMH only improves slightly on 

the solution quality (0.0028%) while requiring a lot of extra computing time 

(100(827.15-740.52)/740.52 = 11.7%).  

http://www.roylongbottom.org.uk/
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Table 3 Computational Results for the HMH method on BIRCH instances 

VNSH AH HMH HMH
_

VNSH AH HMH HMH
_

VNSH AH HMH HMH
_

BIRCH instances of type 1

1 25,000   25 31,363.6      31,282.6      31,229.3    31,229.4       206           447           157             147               0.430 0.171 0.000 0.000

2 36,000   36 45,115.6    45,226.3      45,115.6    45,115.6     590           780           373             366               0.000 0.245 0.000 0.000

3 49,000   49 61,384.1    61,569.7      61,384.1    61,385.7       818           1,216        612             582               0.000 0.302 0.000 0.003

4 64,000   64 79,987.3    80,337.4      80,053.9      80,054.1       1,527        2,258        1,110          1,078            0.000 0.438 0.083 0.083

5 30,000   25 37,564.1      37,617.1      37,563.6    37,563.6     321           559           223             215               0.001 0.142 0.000 0.000

6 43,200   36 54,191.4    54,305.8      54,191.4    54,192.5       767           1,003        434             403               0.000 0.211 0.000 0.002

7 58,800   49 73,626.8    73,854.7      73,626.8    73,627.4       1,454        1,691        792             748               0.000 0.310 0.000 0.001

8 76,800   64 95,989.1    96,393.4      96,039.4      96,040.1       2,931        2,834        1,510          1,414            0.000 0.421 0.052 0.053

9 35,000   25 43,902.1    43,972.1      43,902.1    43,902.1     569           768           353             342               0.000 0.159 0.000 0.000

10 50,400   36 63,169.2    63,329.2      63,169.2    63,169.2     1,185        1,472        645             629               0.000 0.253 0.000 0.000

11 68,600   49 85,833.6      86,082.0      85,833.5    85,833.6       1,787        2,441        1,149          1,083            0.000 0.289 0.000 0.000

12 89,600   64 112,059.2 112,485.2    112,059.2 112,059.2  3,678        4,501        2,069          2,002            0.000 0.380 0.000 0.000

9 0 10 5 Average 1,319.42   1,664.17   785.62      750.87        0.0360 0.2769 0.0113 0.0119

BIRCH instances of type 3

21 25,000   25 17,718.6      17,696.2    17,696.2     527           125             120               0.127 0.000 0.000

22 36,000   36 27,476.1      27,423.0    27,423.1       913           365             350               0.193 0.000 0.000

23 49,000   49 44,282.5      44,202.3    44,202.4       1,760        526             496               0.181 0.000 0.000

24 64,000   64 58,991.5      58,902.3    58,903.0       2,624        1,049          919               0.151 0.000 0.001

25 30,000   25 21,865.1      21,829.9    21,829.9     832           454             447               0.161 0.000 0.000

26 43,200   36 32,391.6      32,339.4    32,339.8       1,873        492             428               0.161 0.000 0.001

27 58,800   49 50,985.1      50,857.9    50,857.9     2,692        899             885               0.250 0.000 0.000

28 76,800   64 66,944.7      66,741.8    66,759.0       4,393        1,892          1,441            0.304 0.000 0.026

29 35,000   25 24,833.7      24,811.0    24,811.5       972           288             257               0.091 0.000 0.002

30 50,400   36 38,162.3      38,102.7    38,102.7     2,297        611             581               0.157 0.000 0.000

31 68,600   49 62,007.4      61,882.4    61,882.5       3,556        1,035          1,015            0.202 0.000 0.000

32 89,600   64 79,245.3      78,777.5    78,779.2       5,779        2,189          1,948            0.594 0.000 0.002

0 12 4 Average 2,351.50   827.15      740.52        0.2145 0.0000 0.0028

T1 2,351.50   827.15        740.52          

CPU (Mflops) 3,545.00   4,415.00     4,415.00       using 32 bit SSE MFLOPS

T2 1,888.12   827.15      740.52        

HMH
_
 : HMH without post optimisation (i.e. solving the diaggreged p-median problem by local search)

Deviation (%)

# best Z

File 

Name
n p

Z Time

# best Z
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Table 3 also shows that HMH is a rather fast hybrid multi-stage heuristic. Based on 

Dongarra's approach, the computer used to execute our method is more or less 25% 

faster than the one used by Avella et al. [1].  Based on the transformed computing time 

(T2 in Table 3), our method is found to be more than twice as fast as the one by Avella 

et. al. [1] while generating relatively better results. 

 

Case 2: TSP instances 

Table 4 shows the computational results for the HMH method on the TSP instances. 

Each instance is solved with p varying from 25 to 100 with an increment of 25, totalling 

16 instances. When p is large, the problem becomes more complex and hence HMH 

needs more time to solve the problem. There is even a more serious handicap when p is 

very large and gets closer to the number of ASU (m). Further research is needed to find 

the best ratio between m and p. Conducting the local search on the original problem 

also improves the objective function value by a tiny fraction of 0.0971% on average at 

the expense of a massive average extra computing time (37.29%). However, this extra 

step seems to produce better solutions on all the 16 instances which can be used for 

further benchmarking if necessary. 

Table 4 Computational Results for the HMH method on TSP instances 

HMH HMH
_ Deviation (%) HMH HMH

_ Deviation (%)

41 Italy Data 16,862 25 7,411,193.07      7,412,970.62     0.0240 96.82      67.36      43.7277

41 Italy Data 16,862 50 5,110,772.87      5,119,564.37     0.1720 119.01    82.97      43.4384

41 Italy Data 16,862 75 4,088,051.12      4,095,381.98     0.1793 233.80    183.17    27.6422

41 Italy Data 16,862 100 3,492,806.69      3,501,633.36     0.2527 350.33    280.84    24.7415

42 Sweden Data 24,978 25 14,098,813.68    14,124,941.97   0.1853 348.43    177.92    95.8308

42 Sweden Data 24,978 50 9,667,897.85      9,674,202.31     0.0652 278.59    197.02    41.4023

42 Sweden Data 24,978 75 7,783,165.38      7,794,498.86     0.1456 450.64    333.29    35.2096

42 Sweden Data 24,978 100 6,677,281.78      6,691,055.51     0.2063 637.66    472.94    34.8287

43 Burma Data 33,708 25 18,227,047.70    18,228,677.34   0.0089 418.36    346.53    20.7278

43 Burma Data 33,708 50 12,603,717.78    12,607,345.85   0.0288 479.49    354.08    35.4174

43 Burma Data 33,708 75 10,205,835.93    10,212,849.31   0.0687 651.47    452.53    43.9639

43 Burma Data 33,708 100 8,748,238.35      8,757,631.56     0.1074 1,107.66 770.33    43.7913

44 China Data 71,009 25 113,812,852.56  113,816,994.15 0.0036 2,227.85 1,942.25 14.7043

44 China Data 71,009 50 78,633,618.28    78,656,979.00   0.0297 2,901.61 1,929.33 50.3948

44 China Data 71,009 75 64,026,411.05    64,056,314.76   0.0467 3,217.66 2,217.52 45.1019

44 China Data 71,009 100 54,870,043.92    54,885,909.63   0.0289 4,030.75 2,975.09 35.4832

Average 26,216,109.25       26,227,309.41   0.0971 1,096.88 798.95    37.2908

HMH
_
 : HMH without post optimisation (i.e. solving the diaggreged p-median problem by local search)

File 

Name
Description n p

Z CPU Time (seconds)
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5. Conclusion  

In this paper, we propose an approach to solve the largest p-median problems from 

the literature based on data aggregation and the use of an efficient implementation of 

VNS. This is a multi-stage hybrid approach that uses sampling based on aggregation, a 

fast procedure to find good solutions, a powerful VNS used on the promising facilities, 

and a learning process that feeds information from one stage to another. The 

computational results show that our approach performs considerably well as it produces 

relatively very good solutions, finds a large number of best solutions (22 out of 24), and 

runs quite fast.  

The proposed approach was tested on the BIRCH instances (n = 25,000 to 89,600) 

and compared to the ones by Avella et al. [1] and Hansen et al. [9]. The results show that 

our method gives better solutions compared to the ones by Avella et al. [1] and 

relatively similar to the ones by Hansen et al. [9]. In addition, we also assess our method 

on several new large TSP instances (n = 16,862 to 71,009) that were not tested before. 

Each instance is solved with p varying from 25 to 100 with an increment of 25 with 

encouraging results. These can be used for benchmarking purposes in the future.  

The proposed methodology of aggregation and optimisation can be extended to 

include, in certain steps, more powerful VNS implementations and exact methods based 

on reduced formulation whenever found possible. This study could be adapted to 

explore other related location problems such as large multisource Weber problems and 

also large p-center problems both in the continuous and in the discrete spaces.   
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