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Abstract— Sensor networks in environmental monitoring 

applications aim to provide scientists with a useful spatio-
temporal representation of the observed phenomena. This helps 
to deepen their understanding of the environmental signals that 
cover large geographic areas. In this paper, the spatial aspect of 
this data handling requirement is met by creating clusters in a 
sensor network based on the rate of change of an oceanographic 
signal with respect to space. Inspiration was drawn from 
quorum sensing, a biological process that is carried out within 
communities of bacterial cells.  In this system, global behaviour 
emerges from small-scale local events and this is an ideal 
characteristic of sensor networks. A spatial data model that 
showed the variation of water height as waves flow from the sea 
to the shore was used with real temporal data to test the 
algorithm. The paper demonstrates the control the user has over 
the sensitivity of the algorithm to the data variation and the 
energy consumption of the nodes while they run the algorithm.  
 

Index Terms— biological algorithms, clustering, spatial data 
dependency, sensor networks 
 

I. INTRODUCTION 
LUSTERING is a useful technique to adopt in sensor 
networks when collecting the data measured at a 

central base station. As opposd to communicating directly 
with the base station, the nodes can form clusters to 
facilitate the aggregation of their data into representations 
collected in that area. This approach is energy efficient 
due to the fact that the sensor nodes are prevented from 
using a lot of energy to transmit their data over large 
distances. Forming clusters of sensor nodes has the 
additional advantage of robustness to device failure 
caused by hostile environments and energy depletion [1]. 
The clusters reduce the data dependency on individual 
nodes by encouraging collaboration between sensor nodes 
and by distributing the work load amongst the members 
of the clusters as fairly as possible. 

Realising these benefits of clustering involves deciding 
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the number of clusters the nodes must be divided into, a 
question that has been tackled by wide variety of research 
efforts in different applications [20]. This paper is 
concerned with the development of an algorithm that 
attempts to solve the problem in two ways. Firstly, the 
algorithm establishes the spatial variation of certain 
parameters extracted from the data collected. The 
clustering algorithm is applied to the Self-Organising 
Collegiate Sensor Network (SECOAS), [2] a project 
which involves the continuous collection of 
oceanographic data from a sensor network placed on a 
sand bank to monitor the coastal effects of wind-farming. 
Secondly, the algorithm incorporates concepts from self-
organising biological systems that use distributed 
mechanisms amongst low level entities to achieve a global 
goal. The algorithm was inspired mostly by quorum 
sensing (QS), a biological process used by bacterial cells 
to monitor when the cell density in their vicinity exceeds a 
certain threshold causing a change in their behaviour. The 
development of the algorithm was combined with 
previous work on the firefly/gossip protocol since this 
provided a good communication mechanism for the 
sensor nodes [3]. The parameters from the SECOAS data 
collected serve as a guide for the cluster formation, while 
the biological concepts allowed the clusters to be formed 
in a distributed fashion. The overall outcome is the 
emergence of clusters from the network without any user 
pre-determination or central management. 

II. BACKGROUND 

A. Parameter Extraction from SECOAS data 
The key objective of the SECOAS project is to prove 

that a network of self-organising microcontrollers can be 
used by environmental scientists to tackle challenging 
sensing and monitoring applications. The sensor network 
needs to provide raw data containing oceanographic 
measurements of physical quantities such as pressure, 
tilts, temperature, sediment concentration and 
conductivity.  In addition to producing this raw data, the 
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data handling techniques used in the project need to allow 
the nodes to carry out the processing needed to yield 
useful information from the data that may give the users a 
better understanding of the environment [4]. Currently, 
costly and immobile sea-bed landers that reside in one 
location for long periods of time are used in 
oceanographic monitoring but these are unable to provide 
the type of spatial and temporal information that coastal 
scientists are looking for. Sensor networks can overcome 
these disadvantages through the deployment of many 
inexpensive sensor nodes that are each given limited 
memory, power and communication abilities. The sensor 
nodes can then be operated with distributed algorithms 
that encourage collaboration between nodes and give the 
network the autonomy to respond to different 
environmental and technical events. These algorithms are 
supported on each node by an operating system called 
kOS, a lightweight and stateless system [25]. The QS 
algorithm is one of these algorithms designed to split the 
sensor network in SECOAS into clusters in a similar way 
to the diagram shown in Figure 1. 

~1km 4-8m

shore

sea

base station

~1km

 
Figure 1: A model of the clustering in SECOAS; the 
cluster-heads are shown by the darker circles that 
forward data to the base station. All nodes are 1km apart 
and placed on the water surface 4-8m high. 

An example of the data that the sensors will be 
collecting can be taken from WaveNet [5], a project that 
collects real-time wave data from areas at risk from 
flooding. One of these areas is at Scroby Sands in Great 
Yarmouth which is the planned location for the SECOAS 
trials. The data was collected in three locations in that 
area between April and June 2003 and taken in bursts of 
1024 samples at 1Hz every hour to ensure that a wide 
spectrum of frequencies was observed [6]. A parameter 

called the Physical Phenomenon of Interest (PPI) can be 
extracted from the raw data by a node-level compression 
agent being developed in SECOAS [2]. The PPI is a 
metric that can correspond to any one of a broad range of 
physical quantities in the environment at a specific time 
and can be used by the QS algorithm to give a useful 
meaning to the clusters. In this paper, the PPI represents 
the mean value of pressure per hour, which is 
proportional to the wave height measured by a node 
[7].The temporal variation of this PPI over a period of 
100 hours extracted from the WaveNet data is shown in 
Figure 2 and used for simulations in Section V.  

 
Figure 2: The PPI extracted from the WaveNet data; in 
this case it is the mean pressure per hour 

B. Spatial Clustering 
Cluster analysis is a branch of data mining or 

knowledge discovery in databases (KDD) which involves 
discovering patterns and interesting knowledge that may 
be hidden in data [8]. The application of data mining to 
spatial databases is relevant to the subject of this paper 
[9], since these types of databases can be used to 
represent the information collected from a sensor 
network. If classical statistical analysis were applied, the 
spatial attributes would be regarded as a complication 
and as a result would be discarded, but in this scenario 
the data collected has a high degree of spatial dependence 
and requires spatial variables to explain or predict the 
phenomenon under investigation [10]. Spatial data 
analysis is more appropriate since the objects can be 
stored in the database with topological/distance 
information as shown by the matrix Z, where z1- zk refers 
to one of k variables or attributes at the location s at the 
same sensor. The assumption is that the data values refer 
to the same point in time making it possible to suppress t 
in the following equation [11]: 

nik tistiztiztizZ ,...,121 }),(),(...,),,(),,({ ==  

The patterns from spatial data mining techniques can 
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take one of several forms such as clusters. Spatial 
clustering forms groups between data objects with a high 
degree of spatial similarity between each other, in 
comparison to objects in other clusters. If spatial 
clustering is applied to a database to extract patterns 
from the data collected in a sensor network then the same 
technique could be used during the operation of the sensor 
network. For example, Figure 3 shows the sensor nodes 
in two regions around the centre of the network observing 
large spatial changes in the environmental signal 
compared to the rest of the network. In SECOAS, the 
remote user has the option of sending policies into the 
network that instruct the sensor nodes to change their 
behaviour; in this case the user may want the clusters in 
the two central regions to sample more frequently. The 
increase in the amount of data collected from those 
regions may help the user further their understanding of 
the signal activity in that area. One way of making this 
scenario possible is to form clusters based on finding 
spatial similarity in the change of signal on-the-fly. 

 
environmental

signal

sensor
network

Distance  
Figure 3: A sensor network observing an environmental 
signal and forming clusters in areas of similar gradient. 
Sensor nodes with the same pattern belong to the same 
cluster. Smaller clusters form around the centre due to the 
large changes in the signal. 

The development of the QS algorithm required 
experimentation with test data that showed not only the 
temporal data in Figure 2 but also the concurrent spatial 
variation at multiple locations to fully represent the data 
that a sensor network will have to handle. As a result, the 
temporal data from Figure 2 was applied to a wave model 
constructed on the assumption that the wave height 
decreases from the sea to the shore as the tide comes in 
[12]. The height profile is divided into four components: 
xcor, ycor, t and noise.  xcor and ycor are arbitrary, the t 
component is derived from the real data and Xt is the time 
series. The following equations were used to generate the 

spatial data: 
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The temporal and noise aspect of the data were 
incorporated into the model to produce the tempo-spatial 
model using the following equations 
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Figure 4 gives a pictorial representation of this spatial 

variation. The QS algorithm assesses the change in the 
PPI over space by calculating the gradient of the 
observed signal between nodes. 

 
Figure 4: (a) the spatial components and (b) the spatial 
components with temporal data and noise 

C. Biological Concepts 
The biological process of quorum sensing was the 

foundation of the protocol design. It is the process by 
which a community of bacterial cells with no global 
awareness can co-ordinate themselves for several 
applications, such as bioluminescence, which is the 
emission of visible light from a living organism [13, 14]. 
An example of this is Vibrio fischeri, a bacterium which 
resides in the light organ of a squid. The bacterial cells 
send out signalling molecules called autoinducers which 
diffuse through the permeable cell membrane into the 
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surrounding areas of the organ and build up in 
concentration. Autoinducers allow the cells to introduce 
themselves to each other and to determine if there are 
other cells present in the environment. As the 
concentration of Vibrio fisceri increases, the autoinducer 
accumulates to a threshold value of around 10µg/ml 
which allows the transcription of the luminescent proteins 
a necessary action for light production. Figure 5 gives a 
pictorial view of the process.  

 

LuxI
LuxR

LuxR
luxICDABEluxR

HSL autoinducers

structural generegulatory gene

LuxI
LuxR

LuxR
luxICDABEluxR

LuxI
LuxRLuxR

LuxRLuxR
luxICDABEluxR

HSL autoinducers

structural generegulatory gene

   

 
Figure 5: A bacterial cell transmits autoinducers from the 
Lux I gene and receives autoinducers when their 
concentration exceeds a threshold. Lux R combines with 
the autoinducer to produce more Lux I, the proteins for 
bioluminescence – positive feedback. 

In this context, a quorum is the minimum population of 
bacterial cells required to perform light production. The 
cells sense when they have a quorum by measuring the 
autoinducer concentration with their response regulators. 
This is applicable to the clustering process in SECOAS 
where the sensor nodes, like bacterial cells, are simple 
agents that interact on a local scale and cause global 
patterns to emerge, a common attribute of complex 
systems [15]. In a similar way to bacterial cells using 
quorum sensing, the sensor nodes need to determine when 
there are enough of them to form a cluster that monitors a 
change in the observed signal. Hence, the concepts of the 
process of quorum sensing were incorporated in the 
design of the QS algorithm. This, in conjunction with a 
variation of gossip called the firefly-gossip protocol [3], 
provides a way of encouraging peer-to-peer 
communication and the self-organization of the network 
around spatial attributes. 

III. RELATED WORK 
Clustering can be separated into partitioning, 

hierarchy, density-based, and grid-based methods [16] 
and is usually treated as a centralized problem. However, 
this is not a valid approach for sensor networks since the 
nodes make their own decisions about the clusters they 

want to be a part of, a similar situation to other large 
multi-agent systems [17]. The iterative process of the QS 
algorithm makes it similar to other partitioning clustering 
methods nodes. The difference is that the nodes do not 
make use of a cost function to decide on the best 
clustering and instead update their measurements of the 
environment. The algorithm operates in a decentralized 
fashion, thus making the sensor network work like the 
biological processes discussed. No limits are placed on 
the algorithm concerning the cluster size like other 
partitioning algorithms thus allowing the formation of 
clusters of arbitary shape that are possibly more 
representative of the selected features in the data. 

There are several applications that apply clustering to 
sensor networks. The Low-Energy Adaptive Clustering 
Hierarchy (LEACH) protocol, is a well-documented 
cluster-based protocol that uses randomized clusterhead 
election to distribute the workload within localized 
clusters [18]. Recent research has involved extending 
LEACH to make the clustering hierarchical and providing 
methods of analytically determining the number of 
optimal clusters at each level a priori [19]. Another 
approach is the Hybrid Energy-Efficient Distributed 
(HEED) protocol which uses a combination of residual 
energy and a secondary parameter to select the 
clusterheads without making assumptions about their 
energy consumption, or distribution of nodes [20]. The 
effectiveness of the protocols is shown by the prolonged 
system lifetime and energy savings they offer, an 
imperative aspect of sensor network design. However, the 
QS algorithm concentrates on mining spatial patterns 
from the environment while trying to be energy efficient. 
The value of this kind of algorithm can be demonstrated 
with comparison to other techniques that also have a data 
driven motives for forming clusters in the sensor network.  

The Distributed Custering Agorithm (DCA) was 
designed for quasi-static peer-to-peer networks [21]. A 
modified version of this protocol is the Distributed and 
Mobility-Adaptive Clustering algorithm (DMAC) which 
is designed for networks that have mobile nodes. The 
choice of clusterhead depends on a generic weight of the 
nodes which is a mobility-related parameter that must be 
a real positive number. The bigger the weight, the more 
likely the node will take on the role of a clusterhead. The 
DMAC protocol reacts locally to any variation in 
topology by allowing the nodes to change their roles from 
clusterheads to ordinary cluster members or vice versa. 
The algorithm is continually executed to fulfil a set of 
clustering objectives: 
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• Each node has at least one clusterhead as a neighbour 
• Each node joins the cluster of a neighbouring 

clusterhead with the highest weight 
• Two clusterheads cannot be side-by-side 

The way the weights are allocated are left up to the 
user thus for the purpose of the comparison in Section V, 
the weights were given values that were data dependent 
rather than mobility dependent. 

IV. THE QS ALGORITHM 

A. Algorithm Details 
1) Assumptions 

The QS algorithm [22] makes the following 
assumptions about the nodes in a sensor network: 
• They spend most of the time asleep and wake up 

periodically to transmit packets to their neighbours 
and to forward data to the base station. They also 
have control over their variable duty cycle. 

• They must be deployed in such a way that they have at 
least one neighbour and no two nodes occupy the same 
position. 

• They are quasi-stationary, have a fixed transmission 
radius and can communicate with any neighbour 
within that radius. 

• They are location aware as they are supplied with co-
ordinates from the auto-location algorithm that runs 
concurrently on the nodes [23]. 

• They are identical and have equal capabilities with no 
awareness of global scale event 

 
2) Measuring the Signal Spatial Changes 

The algorithm aims to allow the network to establish 
clusters based on the spatial changes in the observed 
signal by measuring the gradient of the signal between 
nodes. If the gradient of the observed phenomena does not 
stay constant over the whole area then the nodes have to 
decide how to group the gradients measured. This is 
measured with a parameter called the gradient range and, 
like the gradients, is measured in signal units per unit 
distance. At first, the nodes have different ideas about 
what this gradient range of a cluster should be since they 
initialize this parameter with the minimum difference 
between any pair of gradients measured between them 
and their neighbours. During the execution of the 
algorithm, the nodes converge to a common, or if not 
similar, value for the gradient range through averaging so 
that when the clusters eventually do form the nodes can 
calculate boundaries of gradients allowed in a cluster 

without having to consult a cluster-head. Thus, the nodes 
can work in a fully distributed manner by deciding for 
themselves which neighbours can join their cluster and 
the boundaries can prevent an overlap in spatial changes 
observed by the clusters. 

For example, if a network reaches a decision to set the 
gradient range to 10 signal units per unit distance then the 
clusters will be formed every time the gradient of 
spatially varying environmental signal changes by 10 
signal units per unit distance. If a node is in a cluster has 
this gradient range and monitors gradient changes 
between 20 and 30 signal units per unit distance then it 
will only leave the cluster to join another or to reset and 
become ungrouped if the gradients measured with any of 
its cluster neighbours does not fall within those 
boundaries. 

 
3) Algorithm Control Packets 

The nodes can transmit and receive two types of 
packet. The first is the Node Synchronization (NS) 
packet which is used to transmit information between 
nodes concerning their identification number and sample 
measurement. These packets allow the nodes to calculate 
the gradient of the observed phenomena between them 
and each of their neighbours. The nodes store the 
gradients measured to allow them to determine the 
gradient range they think a cluster should have by finding 
the minimum difference between any pair of gradients. 
The packets also transfer the gradient ranges of 
surrounding neighbours. Once the nodes make a record of 
this, they can adjust their gradient range by taking the 
average of these values. 

The second is the Group Synchronisation (GS) packet 
which is only transmitted alternately with the NS packets 
by potential clusterheads and cluster members. A node 
can determine whether it is a clusterhead by using the 
pair of gradients that gave the initial gradient range to 
calculate the boundaries of a cluster. If both those 
gradients fall within the boundaries then the node can 
form a cluster with the two neighbours that gave the 
gradients. 

The GS packets allow the clusters to be flexible enough 
to change with the environmental signal in terms of the 
membership of the nodes. It does this by allowing inter-
cluster communication to take place between 
neighbouring nodes in differing clusters. This allows the 
nodes to decide when to leave clusters and join others if in 
an area of overlap between clusters. The GS packets also 
allow intra-cluster communication by carrying any 
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changes to the cluster parameters or any user policies 
between cluster members. 

When NS and GS packets are passed between nodes of 
the same cluster during intra-cluster communication, they 
act like autoinducers by allowing the nodes to extend the 
period before their next broadcast. When the period 
reaches a maximum the nodes know they are in a quorum 
cluster, the minimum number of sensors required to 
monitor a particular change in the environmental signal 
and transmit the cluster information to the base station. 
Until a cluster has nodes that reach this quorum status, it 
is known as temporary cluster that may only exist due to 
changes in the environmental signal that do not last very 
long.  

 
4) Packet Transmission and Reception 

The frequency of packet transmission, which is carried 
out by allowing sensor nodes to broadcast information to 
their neighbours, is varied according to the algorithm 
which reflects the activity of the environmental signal. 
The adjustment of gradient range of the nodes, the 
resetting of a node due to the breakdown of a temporary 
or quorum cluster and the lack of contact that a cluster 
member receives from its cluster neighbours all result in 
the node broadcasting at a high rate. If the nodes end up 
in clusters then the broadcasting frequency will be 
reduced. The algorithm does not require all the nodes to 
be up-to-date. As the algorithm is iteratively executed, it 
eventually converges to the right solution 

In SECOAS, the sensor network is likely to encounter 
storms where the amount of activity in the sea will 
prevent effective communication between the nodes. 
Sending and receiving NS and GS packets under these 
conditions will not be possible and since the 
environmental signal will be changing rapidly between the 
nodes, they would be unable to form clusters anyway. In 
this case, it would be more beneficial for the nodes to log 
data and forward them to the base station at a more 
convenient time 

B. Algorithm Pseudocode 
A sensor network can be modelled as a collection of N 

sensor nodes at points within a set of vertices called V, 
where V = {v1, v2…vN }. The links that exist between the 
nodes can be represented by a set of edges labelled E, 
where E = {e1, e2…eN}. Initially, these links represent the 
communication channels between neighbouring sensor 
nodes and after the execution of the algorithm some these 
links will chosen to represent the connections within any 
clusters that are formed. The vertices can be identified 

with a unique id or by the co-ordinates [x, y], while the 
edges are defined by their endpoints (u, z) where u and z 
are both members of V. Hence, the complete network can 
be represented by the graph G = (V, E) which after the 
execution of the QS algorithm will lead to the formation 
of a new graph G’ = (V, E’) where the nodes connected 
by links in E will represent clusters of V. 

The following representations also apply to this model: 
• S = {s1, s2…sN } is the data matrix of the nodes in V 

represented by a set of sample measurements made by 
the nodes. 

• M = {mu1, mu2…muN”} is the set of gradients formed 
between sensor node u and each of the neighbours, 
where  u ∈ V and N” = no. of neighbours.  

• ru is the gradient range of sensor node u and r = {r1, 
r2…rN”} is the gradient ranges of the neighbours of u. 

• BLu and BHu are the lower and higher boundaries of 
gradients allowed in a cluster respectively. 

• CPu shows whether u can become a cluster-head 
• tb is the period before the next broadcast of u and tbmax 

to the maximum value allowed for tb. 
Given these symbols, the algorithm pseudocode is 

shown below: 
 

I. INITIALIZATION 
ru = CPu = 0, Cu = BLu = BHu = null,  
r = M = {}, tb = 5 epochs, tbmax = 60 epochs 

 
II. ANALYSIS OF RECEIVED NS PACKETS 

for each received NS packet, 
u calculates muz, the gradient between the itself and 
sender of the NS packet, z, which is duz distance 

units away using: 
uz

zu
uv d

ss
m

−
= . This is stored in 

set M; u also deletes entries in M that have not been 
updated for a long time. 

end for 
 

III. GRADIENT RANGE ADJUSTMENT 
If N” > 2, 

a. Let the standard deviation of r be rσ . If the 

coefficient of variation 05.0<
mean

r

r
σ

, then ru = 

rmax, the maximum value of r. Otherwise, 

"

"

1

N

r
rr

N

n
n

meanu

∑
=== . 



> Paper ID no.: 1568945144 < 
 

7

b. Set the smallest difference between any pair of 
gradients in M using 

[ ][ ] "

1

"
1min min

N

z

N
yuyuzu mmrr

==
−==  where 

y < z. 
c. The pair of gradients used to calculate rmin are 

mh and ml where mh > ml. Let Ζ∈
minr
ml . 

Check whether the following condition is true: 











+








<≤








minmin

min
min

min

** rr
r
m

mr
r
m l

h
l  

d. If the condition is not satisfied, then repeat   
rmin = 0.25 * rmin until it is. 

 
IV. CLUSTER-HEAD PROPOSAL 

Carry out step III, part (c) but substitute ru for rmin. If 
the condition is true, then u is a potential cluster-head. 

Thus CPu = 1, 
u

l
Lu r

m
B =  and uLHu rBB += . u can 

send out GS packets alternately with NS packets. 
V. ANALYSIS OF GS PACKETS 

for each received GS packet, 
- Cluster Formation and Expansion 

Find muz, where muz is the gradient between sensor 
node u and the sender of the GS packet, z, from 
the set M.  
if CPu = 0 or (CPu = 1 and BLu =  BLz), BLz ≤ muz< 
BHz and ru = rz, 

u copies the cluster information (Cz, BLz, BHz) 
from the sender z  
add link to E* 

   end if 
 

- Intra-cluster Communication and Quorum Sensing 
if u and z are in the same cluster, i.e. Cu = Cz, and 
ru = rz, 

messages passed between cluster members 
and tb increasesd; if tb >= tbmax then u knows it is 
in a quorum 

end if 
 

- Inter-cluster communication 
if u and z are in different clusters, i.e. Cu ≠ Cz,  

if BLu = BLz, 
u copies the cluster information from the 
sender z 

else, 
messages can be passed between clusters 

    endif 

end if 
end for 
 
VI. RESET 

if the condition BLu ≤ mn < BHu not satisfied for all 
entries in M or there is little or no contact with other 
cluster members 

u erases its’ cluster information and broadcasts only 
NS packets 
remove link from E* 

end if 
 

V. PERFORMANCE EVALUATION 

The algorithm was performed using Netlogo [26] on an 
evenly spaced grid of nodes that each observed the 
temporal data shown in Figure 2. This data was scaled 
according to the position of each node in the spatial 
model shown in Figure 4. The effects of varying the 
parameters of the algorithm were individually assessed in 
a network of 63 nodes by observing number of temporary 
clusters, the number of quorum clusters, the amount of 
communication between the nodes and the energy 
consumed by the network while running the algorithm.  

The QS algorithm reacts to changes in the observed 
phenomena by allowing nodes to update each other on 
any changes in their sample measurements that will 
invariably alter the gradient of the signal measured 
between them. The sensitivity of the algorithm to these 
environmental changes can be controlled by varying the 
number of broadcasts the nodes need to make before an 
carrying out an update. The graph in Figure 8 shows the 
algorithm with the highest sensitivity setting; the nodes 
continuously update the gradients every time there is a 
change in the sample measurement regardless of the 
number of broadcasts.  

 
Figure 6: The number of clusters and data standard 
deviation over time 

The graph in Figure 8 also shows the standard 
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deviation of the samples of the environmental signal from 
all the nodes and the number of clusters formed by the 
sensor network measured each minute. The fast fourier 
transform was computed for both factors in Figure 8 to 
observe the frequency of the variation. The power 
spectrum indicated that the variation of both factors 
reached a maximum value every 750 minutes, thus the 
number of clusters formed varies at the same rate as the 
environmental signal. After the initialization of the 
algorithm, every time the standard deviation reached a 
maximum value, the number of clusters took around 180 
minutes to respond by increasing to a maximum of 12 to 
14 clusters. When the standard deviation was at its lowest 
value, all the nodes formed a single cluster.  

The sensitivity of the algorithm was decreased by 
increasing the period before which a node would allow a 
neighbour to update the gradient. This period was 
measured by the number of broadcasts made by the node. 
Figure 9 shows the graph for the effect of this on the 
maximum number of clusters that represents the point 
where the standard deviation of the data by all the nodes 
is the largest is shown in Figure 9(a). 

Figure 8 also shows that many of the temporary 
clusters formed do not exist long enough to accumulate 
NS and GS packets to form quorum clusters. It was 
stated in the previous section that the NS and GS packet 
exchange between the members of the same cluster result 
in the increase of the period before the node’s next 
broadcast, tb. Thus the sensitivity of the algorithm is not 
only indicated by the number of temporary clusters made 
but also the proportion of temporary clusters that become 
quorum clusters. Figure 9(b) shows how the increase in tb 
affects this proportion of quorum clusters to temporary 
clusters while keeping the number of broadcasts before a 
gradient update at a constant value of 1. 

 
Figure 7: (a) The effect of the number of broadcasts of any 
node before a gradient update on the temporary and (b) 
the effect of the tb increase on the number of quorum 
clusters 

As the number of broadcasts before a gradient update 

increases, the maximum number of clusters decreases 
showing that not every change in the observed phenomena 
results in the formation of a cluster. Only the changes 
that have an impact are those that occur when the nodes 
are ready to update the gradients. However, the 
oscillation of the number of clusters still occurs in a 
similar way to the variation in Figure 8. Figure 9 also 
shows that the increase in tb due to a NS/GS packet 
between cluster members is proportional to the 
percentage of temporary clusters that become quorum 
clusters. Large increases in tb make cluster members 
assume quorum cluster status quickly and since they 
broadcast less often they do not reset for a long time.  

The user of the sensor network should be given control 
over how sensitive the algorithm is to the observed 
phenomena; if every change in the environment is to be 
observed then the number of broadcasts before a gradient 
update should be kept low and the tb increase should be 
kept high. 

As stated in Section III, the QS algorithm is concerned 
with mining spatial patterns as efficiently as possible. It 
does this by modulating the activity of the sensor nodes 
with the changes they observed by of the environmental 
signal which is achieved by increasing or decreasing the 
period tb. This is demonstrated by the graph in Figure 10 
where the increases in the number of broadcasts before a 
gradient update and the increases in tb due to a GS or NS 
packet are low. 

 
Figure 8: The percentage of broadcasting nodes over time 
while the QS algorithm is executed; this indicates the 
amount of communication taking place in the network 

Initially, the number of broadcasting nodes is high as 
the nodes are not in any clusters. As the algorithm 
proceeds, the percentage of the nodes sending out 
messages falls from 60% to 2% as the nodes settle into 
their clusters. The percentage of broadcasting nodes 
varies between 2% and 30% at the same rate as the data.  

The effect of this kind of operation on the energy 
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consumption of the network was observed by applying a 
simple energy model which has been used in the research 
of several clustering algorithms [18, 19, 20]. The 
assumptions in this model are concerned with the actions 
that expend energy such as the transmission and reception 
of each bit of data between sensors and that there is a 
continuous function for energy consumption. 
Assumptions were made about the values of εelec, the 
energy required to drive the transmitter/receiver circuitry, 
and εamp, the energy required for the transmitter amplifier 
during communication. An additional assumption was 
made about the energy required for data fusion when the 
clusters have been formed and the transmission of the 
aggregated data to the base station being the same as the 
transmission of data between sensors except over a longer 
distance. The parameters that are derived from these 
assumptions are listed in Table 1 and to validate their use 
with the QS algorithm, the scale of the network was 
altered to make it similar to the networks used in [18, 23]. 
Thus, the nodes in the network were evenly spaced by 1m 
apart instead of the 1km separation that will be used in 
the SECOAS trial and the following equations were used 
for calculating TXi,j, the energy expended when 
transmitting k bits of sensor data from sensor i to sensor j 
which is di,j m away, and RXi, the energy spent on 
receiving k bits at sensor i: 
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Table 1: The parameters used for simulating energy 
dissipation 

Parameter Value 
εelec 50nJ/bit 
εamp 100pJ/bit/m2 

Initial energy 0.5J 
Packet size 2000bits 

Fusion energy 5nJ/bit/message 
 
The same parameters were used when running the 

DMAC algorithm stated in Section III under the same 
conditions for comparison to the QS algorithm. The 
DMAC algorithm requires that the nodes are allocated 
with weights, thus to make the algorithm dependent on 
the spatial data variation of the observed phenomena, the 
weights allocated were made equal to average of the 
gradients between each sensor node and their neighbours. 
The nodes that measure the largest gradient are observing 

the biggest change in that area making them good cluster-
heads in that region. The gradient dependent weights in 
the DMAC algorithm allow the nodes to react to spatial 
signal changes by continuously changing the 
clusterheads. This makes it suitable for the comparison to 
the QS algorithm which tries to do the same thing. The 
QS and DCA algorithm were executed on square sensor 
networks that were increased in size from 9 to 169 nodes. 
In each case, the cluster-heads select at random a node 
from their cluster to send aggregated data to a base 
station with the co-ordinates (-13, 0) after forming 
clusters. Figure 11 shows the average energy dissipated 
after 3000 epochs at each node, the average percentage of 
cluster-heads and the average number of clusterheads as 
the network size increases. 

 
Figure 9(a): The average energy dissipated by a node in 
the network of increasing size, (b) the average percentage 
of cluster-heads per minute and (c) the average number of 
cluster-heads when running the QS and DCA algorithm 
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Figure 11(a) and (b) shows that when the network uses 
QS algorithm it consumes less energy as the number of 
nodes increase.  This may be due to the fact that the 
decreasing proportion of cluster-heads. The opposite 
applies to the DCA algorithm; the amount of energy 
dissipated increases with network size as the number of 
cluster-heads also increases. The reason for this is the 
restriction of the DCA algorithm on the size of the 
clusters created; it requires that neighbours must be 
within a one-hop distance of a cluster-head. The QS 
algorithm, on the other hand, allows the cluster to be as 
large as is necessary to reflect the change in the 
environmental signal. As the network size increases, the 
number of clusters created with the QS algorithm 
increases only slightly as shown in Figure 11(c) which 
suggests those clusters become larger to contain more 
nodes that observe similar spatial changes. It also 
suggests for a range of networks of certain size 
approximately the same number of clusters will be 
created since this is all that is needed to represent the 
environmental signal. If the signal fluctuated more 
rapidly, then the QS algorithm would require more energy 
to form smaller clusters and would have more nodes 
communicating with the base station. The energy 
consumption depends on the signal variation which in this 
case as opposed to the number of nodes.  

VI. CONCLUSIONS AND FUTURE WORK 

The QS algorithm provides a method of clustering in 
sensor networks based on the spatial patterns in an 
environmental signal. The results show that the algorithm 
has two parameters that control the sensitivity of the 
clustering to the variation of the signal: the number of 
broadcasts before a gradient update and the tb increase 
due to NS/GS packets passed between cluster members. 
Although energy is not used as a guide to forming the 
clusters, energy savings are gained by reducing the 
communication between nodes when the clusters were 
formed. The QS algorithm formed less clusters than the 
DCA algorithms regardless of the network size because 
of the environmental signal. This also saved energy and 
allowed the algorithm to scale well with the increase in 
network size. Future work will involve the 
implementation of the algorithm on real sensor nodes in 
the SECOAS trials, an assessment of the effect of 
processing costs of the algorithm on the energy costs and 
the experimentation of the algorithm on other spatial 
signals. 
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