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1. Introduction

The Skyrme model is a (3 + 1)-dimensional nonlinear theory of pions and was conjectured

by Skyrme as a model of baryons [1]. In 1983, Witten stimulated a surge in research activity

by relating the Skyrme model to QCD – in the large colour limit [2]. The minimum-energy

solutions of the model are called Skyrmions and, once quantised, are identified as baryons.‖
In this article we are interested in static solutions of the Skyrme model, best defined by the

static energy functional

E =
1

12π2

∫ {
−1

2
Tr(RiRi)−

1

16
Tr([Ri, Rj][Ri, Rj]) +m2Tr(I2 − U)

}
d3x,(1.1)

where Rµ = (∂µU)U † is an su(2) Lie algebra-valued current, and U(x, t) is an SU(2) Lie

group-valued scalar field. The parameter m is related to the physical pion mass mπ via

m = 2mπ/(eFπ) where Fπ is the pion decay constant and e is the Skyrme constant. Here we

have presented the energy functional in so-called Skyrme-units, see [6, 7] for the “standard

values” and [8, 9] for a more detailed discussion of our current understanding. For non-zero

pion mass the finite energy requirement forces the field U : R3 → SU(2) to satisfy

lim
r→∞

U = I2,

and we choose the same boundary condition for mπ = 0. This one-point compactifies R3 to

the 3-sphere S3. Using the fact that the group manifold of SU(2) is also S3 the field can be

extended to a map U : S3 → S3. All finite energy field configurations U(x) belong to an

element of π3(S3) = Z, and hence have an associated integer B ∈ Z. It is this B which is

identified as the baryon number and can be explicitly calculated as

B = − 1

24π2

∫
εijkTr(RiRjRk)d

3x, (1.2)

=
1

2π2

∫
det (J(x)) d3x,

where J(x) is the Jacobian of the map [10]. Naively, the density of B could be assumed

to be positive for all x ∈ R3, but this does not have to be the case. It was argued in [11]

that as R3 covers S3 – the group manifold of SU(2) – there is a folding structure. On these

folds the Jacobian-determinant becomes zero which results in tubes of zero baryon density.

Inside these tubes singularity theory predicts regions of negative baryon density, but this

was never observed in numerical calculations of the full field equations, without imposing

any symmetries. This is what we are interested in this paper. It is useful to define two

‖ The quantisation of Skyrmions is the subject of much ongoing research. While semi-classical quantisation

has had some recent successes, see e.g. [3], there are also problems with this approach. For example quantum

corrections (see e.g. [4] for a detailed discussion) do not necessarily cancel when comparing different sectors

[5]. A full discussion of quantisation issues goes beyond the scope of this paper which focuses on classical

solutions in the Skyrme model.
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quantities,

B+(x) =
1

2π2
max{det(J(x)), 0}, (1.3)

B−(x) =
1

2π2
max{− det(J(x)), 0},

where B =
∫
B(x)d3x and trivially B(x) = B+(x) − B−(x). We refer to these quantities as

the positive baryon density and negative baryon density, respectively. Furthermore, the total

negative baryon density is defined as

B− =

∫
B−(x)d3x (1.4)

and measures how much negative baryon density occurs in a given field configuration.

The paper is laid out as follows. Section 2 reviews the geometric formulation of the

Skyrme model proposed in [10] and discusses the Jacobian. In particular, we show an

important identity relating the Jacobian of the Skyrme field to a simpler quantity. Section 3

reviews the rational map ansatz [12] as well as the non-holomorphic rational map ansatz [11].

In section 4 we examine the folding structure of the B = 3 Skyrmion using both full field

simulation and the non-holomorphic rational map ansatz. Section 4.1 discusses the effects of

the pion mass term on the folding structure. In section 4.2 we locally expand the pion fields

around the origin and reproduce the singular surface. We end with a conclusion.

2. Geometric setting for Skyrmions

Instead of considering the Skyrme model in a physical field theoretic setting, it can be very

insightful to consider it geometrically [10, 13]. In the following, we give a brief account of

this approach and set up our notation.

A field configuration is a map πππ from a physical space R3 to a target space SU(2).

Physical space R3 and target space SU(2) ∼= S3 both are 3-dimensional, connected and

orientable Riemannian manifolds. Here we choose the Kronecker delta δij as the flat-metric

on R3 and γαβ as the metric on S3. We denote a point in R3 as x and a point in S3, the

image of x, as πππ(x). As R3 is flat we trivially choose its dreibein to be δij, and we choose

ζµ
α(πππ(x)) as the dreibein on S3 with

ζµ
αζν

βγαβ = δµν . (2.5)

Note the inverse of ζµ
α is ζµα, i.e. ζµαζν

α = δµν and ζµαζµ
β = δα

β.

Now we can define the Jacobian matrix associated with the map πππ(x) as

Ji
µ(x) = (∂iπ

α(x))ζµα(πππ(x)). (2.6)

The matrix Ji
µ(x) is a measure of the deformation induced by the map πππ at the point x in

R3. We can define a useful quantity called the strain tensor Dij, as

Dij(x) = Ji
µ(x)Jj

ν(x)δµν = (∂iπ
α(x))(∂jπ

β(x))γαβ. (2.7)
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The strain tensor is invariant under rotations in target space (i.e. rotations of the frame

fields ζµ
α(πππ(x))), but not under orthogonal rotations of the physical space R3. But it is well

known that the characteristic polynomial P = det(D− λI3) is invariant under rotations. So,

we can now define the three invariants,

Tr(D) = λ2
1 + λ2

2 + λ2
3, (2.8)

1

2
(Tr(D))2 − 1

2
Tr(D2) = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3,

det(D) = λ2
1λ

2
2λ

2
3,

where λ2
1, λ

2
2, λ

2
3 are the non-negative eigenvalues of the symmetric matrix Dij.

Reparametrising the SU(2)-valued field in the traditional way with the three Pauli

matrices, τa, and the four scalar fields σ(x), πa(x) (a = 1, 2, 3) as

U(x) = σ(x) + iπππ(x) · τττ , (2.9)

we see that σ(x) and πππ(x) must satisfy the constraint σ2 + πππ · πππ = 1 for all x ∈ R3. As

pointed out in [13], πα(x) in the above geometric discussion can be identified with the vector

πa in (2.9) and σ(x) is a function of πa(x) which ensures that U(x) ∈ SU(2). Now, we can

define the induced-metric on S3 as

γαβ(x) = δαβ +
παπβ
σ2

.

A short calculation in [13] shows that

Dij(x) = −1

2
Tr(RiRj),

and the energy functional (1.1) can be rewritten as

E = Tr(D) +
1

2
(Tr(D))2 − 1

2
Tr(D2), (2.10)

= λ2
1 + λ2

2 + λ2
3 + λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3.

Also, it is easy to see from the above relations that the baryon number integral (1.2) can be

written in terms of these eigenvalues as

B =
1

2π2

∫
λ1λ2λ3 d

3x. (2.11)

2.1. The Jacobian

In the following we calculate the Jacobian in stereographic coordinates. This is needed for

the analysis of the numerically found solutions. Consider the Skyrme field in sigma model

coordinates (σ(x), πi(x)) with σ2 +πππ2 = 1. Then we can define stereographic coordinates by

projecting from the North pole N (σ = 1) as

Φα
N =

πα

1− σ
. (2.12)
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Note that the metric in stereographic coordinates for this chart is given by

ds2
N =

3∑
α=1

4

(1 +RN
2)2

(dΦα
N)2 , (2.13)

where RN
2 =

3∑
α=1

(Φα
N)2 = 1+σ

1−σ . Since the metric (2.13) is diagonal we can define the frame

fields

ζNµ
α =

1 +RN
2

2
δµ
α and its inverse ζN

µ
α =

2

1 +RN
2 δ

µ
α. (2.14)

Hence, the components of the Jacobian matrix JN are given by

JNm
µ =

∂Φα
N

∂xm
ζN

µ
α =

∂Φµ
N

∂xm

2

1 +RN
2 . (2.15)

Using (2.7) we can calculate the strain tensor Dmn and obtain

DNmn =
4

(1 +RN
2)2

∂Φα
N

∂xm

∂Φβ
N

∂xn
δαβ. (2.16)

Note ‘N ’ is not an index to be summed over.

To obtain a well-defined SO(3) frame bundle the frame fields ζS have to be chosen as

ζSµ
α = −1 +RS

2

2
δµ
α and its inverse. (2.17)

See e.g. [14] for further details. This leads to

JSm
µ = −∂Φµ

S

∂xm

2

1 +RS
2 , (2.18)

where Φα
S = πα

1+σ
is the South pole projection.

The minus sign in (2.18) arises because stereographic coordinates are related by inversion,

which has negative determinant. The expression for the strain tensor DSmn is

DSmn =
4

(1 +RS
2)2

∂Φα
S

∂xm

∂Φβ
S

∂xn
δαβ (2.19)

There is a sign ambiguity when defining the Jacobians JN and JS. Here we have chosen

the Jacobian such that the standard hedgehog has positive Jacobian. In fact, for B = 1 the

hedgehog can be written as

σ = cos(f(r)) and πi =
xi
r

sin(f(r)), (2.20)

where r =
√
x2

1 + x2
2 + x2

3 and f is a real radial shape function that can be determined

numerically. Asymptotically, f(r) ≈ π − Ar as r → 0 with A > 0 and f(r) ≈ C
r2

as r → ∞
with C ≈ 2.16, see e.g. [15]. Near the origin, σ ≈ −1, so we project from the north pole

and obtain det JN ≈ A3 > 0, whereas as r → ∞, σ ≈ 1 we project from the south pole and

JS ≈ 2C3

r9
> 0. These expression of the Jacobians (JN and JS) are useful when examining the
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behaviour near the north and south pole, which corresponds to the vacuum σ = 1 and the

anti-vacuum σ = −1 respectively.¶
For analysis of numerical data later in the paper, we can express the Jacobian directly

in terms of the four pion fields as

JNm
µ = (1− σ)

∂ΦN
µ

∂xm
(2.21)

=
∂πµ

∂xm
+

πµ

(1− σ)

∂σ

∂xm
(2.22)

=
∂πµ

∂xm
−
∑
ν

πµπν

σ(1− σ)

∂πν

∂xm
, (2.23)

where we used the identity

σ
∂σ

∂xj
= −

3∑
ν=1

πν
∂πν

∂xj
, (2.24)

which is derived by differentiating the normalisation condition.

As a check, we can evaluate

Dmn = Jm
µ(x)Jn

ν(x)δµν (2.25)

and obtain

Dmn =
∂πµ

∂xm

∂πν

∂xn

(
δµν −

πµπν
σ2

)
. (2.26)

The term in the brackets corresponds to the induced metric in (σ, πi) coordinates. Using the

identity (2.24) we obtain the more familiar expression

Dmn =
∂σ

∂xm

∂σ

∂xn
+
∂πµ

∂xm

∂πν

∂xn
δµν . (2.27)

With this expression, equation (2.10) gives the pion field version of the Skyrme Lagrangian

which is often used for numerical simulations, see e.g. [16]. It can be shown by direct

calculation that

det(JN) = − det(J0)/σ, (2.28)

where the components of the unframed Jacobian matrix J0 is given by

J0ji =
∂πi
∂xj

. (2.29)

Hence det JN vanishes when det J0 does for σ 6= 0, therefore JN and J0 have the same singular

surfaces. Equation (2.28) is useful in section 4.2 when discussing the folding structure of

B = 3.

¶ Here, vacuum and anti-vacuum refers to the absence of pion fields. Vacuum and anti-vacuum are antipodal

points when viewing the target space SU(2) as a 3-sphere. For massless pions, m = 0, any constant field

has zero energy (1.1), yet for massive pions, m > 0, the vacuum σ = 1 is the unique configuration with zero

energy.
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3. Rational map ansatz

The rational map ansatz+ [12] makes use of the feature that a point in R3 can be written

in polar coordinates (r, z) where the angular coordinate z is represented by a point on the

Riemann sphere via z = eiφ tan θ
2
. The Skyrme field U(x) then takes the form

U(r, z) = exp(if(r)n(z) · τ ), (3.30)

where f(r) is a real valued profile function with the boundaries f(0) = π and f(∞) = 0;

τ = (τ1, τ2, τ3) is the triplet of Pauli matrices and n is the unit vector

n(z) =
1

1 + |R(z)|2
(R(z) +R(z), i(R(z)−R(z)), 1− |R(z)|2).

R(z) is a holomorphic rational map between Riemann spheres, and is given by the two

polynomials p(z), q(z),

R(z) =
p(z)

q(z)
.

Then the baryon number is equal to the algebraic degree of R(z),

deg (R(z)) = max {deg(p(z)), deg(q(z))} .

Such a field configuration is a suspension and gives rise to an isomorphism between π3(S3)

and π2(S2). This point of view proved very useful for quantising Skyrmions in [17]

because a suspension provides a natural way to calculate homotopy groups of the Skyrmion

configuration space from the space of rational maps. It is the choice of R(z) which replicates

the polyhedral shape of Skyrmions, and the symmetries of the accepted numerical solutions.

The benefit of the rational map ansatz is that it gives rise to the following three simple

eigenvalues of the strain tensor,

λ1 = − f ′(r) (3.31)

λ2 = λ3 =
sin f

r

1 + |z|2

1 + |R|2

∣∣∣∣dRdz
∣∣∣∣ .

Inserting these eigenvalues into equation (2.10) gives the simple radial energy functional

E = 4π

∫ (
f ′2r2 + 2B(f ′2 + 1) sin2 f + I sin4 f

r2
+ 2m2r(1− cos f)

)
dr, (3.32)

where

I =
1

4π

∫ (
1 + |z|2

1 + |R|2

∣∣∣∣dRdz
∣∣∣∣)4

2idzdz̄

(1 + |z|2)2
. (3.33)

+ Technically, this is not an ansatz but rather an approximation. It is a very useful tool for obtaining initial

configurations for numerical minimisations, and it gives a more fundamental understanding of the symmetries

of Skyrmions. However, since this term is widely used in the literature we will also refer to the rational map

approximation as the rational map ansatz.
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This energy functional can be easily minimised by choosing the correct degree polynomials

p(z), q(z) which minimise I, then numerically minimising the profile function f(r). The

minimum energy solutions found using this method only exceed the non-symmetry numerical

solutions by about 3%, see e.g. [12, 16, 18].

This holomorphic ansatz is very successful at capturing the major features of the Skyrme

model and is a very useful technique to give initial configurations which are close to the

minimum energy solutions for numerical minimisation. This avoids numerically expensive

collisions which were previously used to create appropriate initial conditions [19, 16]. A

feature of the holomorphic ansatz is that it locally preserves orientation. Hence there cannot

be regions of negative baryon density. This constrains the possible configurations. We can

extend the ansatz to non-holomorphic R(z, z̄) as in [11]. This now allows points in R3 with

negative baryon density. In this case the three eigenvalues of the strain tensor Dij are slightly

more complicated and are

λ1 = − f ′(r), (3.34)

λ2 =
sin f

r
(|Rz|+ |Rz̄|)

1 + |z|2

1 + |R|2
,

λ3 =
sin f

r
(|Rz| − |Rz̄|)

1 + |z|2

1 + |R|2
,

where Rz and Rz̄ are the derivatives of R with respect to z and z̄, respectively. It is now

apparent that for non-holomorphic (or non-antiholomorphic) R the angular strains λ2, λ3

are no longer isotropic, and only when Rz (or Rz̄) equal zero do we regain the previous

holomorphic ansatz. The energy functional for this more general ansatz is

E =
1

3π

∫ (
f ′2r2 + 2J (f ′2 + 1) sin2 f + Ĩ sin4 f

r2
+ 2m2r(1− cos f)

)
dr,(3.35)

where

J =
1

4π

∫ (
(|Rz|2 + |Rz̄|2)

(
1 + |z|2

1 + |R2

)2
)

2idzdz̄

(1 + |z|2)2
, (3.36)

Ĩ =
1

4π

∫ (
(|Rz|2 − |Rz̄|2)

(
1 + |z|2

1 + |R|2

)2
)2

2idzdz̄

(1 + |z|2)2
, (3.37)

and

B =
1

2π

∫
f ′(r) sin2 f(r)

(
(|Rz|2 − |Rz̄|2)

(
1 + |z|2

1 + |R|2

)2
)

2idzdz̄

(1 + |z|2)2
. (3.38)

Again f(r) is a profile function which is a solution of the ODE

(r2 + 2J sin2 f)f ′′ + 2rf ′ + (J f ′2 −J − Ĩ sin2 f

r2
) sin 2f −m2r sin f = 0,(3.39)

with the boundary conditions f(0) = π and f(∞) = 0.
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As above, we restrict to maps of the form

R(z, z̄) =
p(z, z̄)

q(z, z̄)
,

where the z̄ dependence is chosen in such a way as to preserve the symmetry of the original

minimal energy rational map. Then the baryon number is generically equal to N1−N2, where

N1 is the maximal holomorphic degree of (p, q) and N2 is the maximal antiholomorphic degree

of (p, q).

In (3.39) J replaces the role of B in the holomorphic rational map ansatz. This has

a significant effect on the profile function f . To study this effect we linearise (3.39) about

r = 0 and set f(r) = π − ν(r) where ν(r)� 1. This gives the new linear ODE

r2ν ′′ + 2rν ′ − 2J ν +m2rν = 0, (3.40)

with the solution

f(r) = π − Cr
(
−1+

√
1+8J
2

)
+ . . . (3.41)

For m = 0, equation (3.40) is a Cauchy-Euler equation, whereas for m 6= 0 the solution is

given in terms of a Bessel function. Numerical calculations show that as the pion mass is

increased, J becomes larger and hence f decays slower about the origin. We can now play

the same trick for the limit of r going to infinity. Here we set f(r) = ε(r) where ε(r) � 1,

giving the linearised equation

r2ε′′ + 2rε′ − 2J ε−m2rε = 0.

This gives the solutions

f(r) =

 Cr
−
(

1+
√
1+8J
2

)
, if m = 0,

Ce−2m
√
r

r3/4

(
1 + 4(1+8J )−1

16m
√
r

+ ...
)
, if m 6= 0.

The effect of the mass term is to make the solution more localised around the origin.

4. The B = 3 Skyrmion

It has been known for a long time that the baryon density for the B = 3 Skyrmion is

tetrahedrally symmetric [20, 19]. A lot of its features can be explained by a tetrahedrally

symmetric rational map [12]. But, as shown in [11], the non-holomorphic rational map

allows negative baryon density and has lower energy that the holomorphic map. The non-

holomorphic rational map gives rise to four singular tubes (det(J) = 0) which start at the

origin, pass through the faces of the tetrahedron then go off to infinity. It has been shown in

[11] that there are three folding lines equally spaced along these tubes. Also, in the centre of

these tubes there are regions of negative baryon density. This inspired us to explore the form

and amount of negative baryon density in actual minimum-energy Skyrme solutions. The
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calculations in [11] were performed for zero pion mass, m = 0. Therefore, we first describe

the m = 0 case and then discuss the effects of non-zero pion mass, m > 0, in section 4.1.

The family of rational maps for the B = 3 Skyrmion with the correct symmetry is

R =
p1 cosχ+ p2 sinχ

q1 cosχ+ q2 sinχ
, (4.42)

where the polynomials p1, p2, q1 and q2 are

p1(z, z̄) = i
√

3z3z̄ + i
√

3z3 − zz̄ − 1, q1(z, z̄) = z4z̄ + z3 − i
√

3z2z̄ − i
√

3z,

p2(z, z̄) = z4 − 2i
√

3z2 + 1, q2(z, z̄) = −z4z̄ + 2i
√

3z2z̄ − z̄.
(4.43)

With a simple numerical scanning algorithm we find that the family of rational maps in (4.42)

attains its minimum energy for χ = 0.154. This gives E/B = 1.161. Note this is lower than

the minimum energy for the holomorphic ansatz (E/B = 1.184). This value of χ is slightly

lower than that found in [11]. This difference is believed to be due to numerical accuracy.

Figure 1: Baryon number three minimum-energy solution for zero pion mass, m = 0. The

red surface is a level set of constant positive baryon density. The yellow surface is a level set

of constant negative baryon density.

To find the B = 3 minimum energy solution we numerically minimised this rational

map ansatz on a lattice of 2503 points, with spacing ∆x = 0.08 using fourth order accurate

derivatives. For m = 0 we find E/B = 1.146 and the negative baryon density B− = 4.5×10−5.

This is in reasonable agreement with B− = 9.25×10−5 found for the non-holomorphic rational

map for χ = 0.154. A surface of constant baryon density (ie. constant Jacobian determinant)

is displayed in figure 1 for this solution.
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To truly capture these regions of negative baryon density we were forced to have a very

large box. It is known that asymptotically the B = 3 Skyrmion decays as a B = −1 Skyrmion

[21]. The B = 1 Skyrmion can be calculated from the highly symmetric rational map, R = z,

known as the hedgehog ansatz. Then the equations of motion (3.39) can be linearised to

obtain the asymptotic behaviour of the radial profile function f ∼ C/r2 as r → ∞ for

some constant C. Substituting this into the radial energy-density (3.35) and baryon density

(3.38), we find that the energy-density scales as 1/r4 and the baryon-density as 1/r7. We

have checked numerically that choosing U(x) = I2 on the boundary of the numerical box

contains the baryon-density within the accuracy of our numerics. However, for an evaluation

of the total energy to a high order of accuracy contributions from outside the box need to be

included, see e.g. [22] for further details.

Yellow is a level surface of det(J(x)) ' 0, and red

is the surface of the anti-vacuum σ ' −1.

Pre-images of the anti-vacuum. Red is where

sign(J(x)) = −1, and ivory is where sign(J(x)) =

1.

Figure 2: Minimisation of the central region of the B = 3 non-holomorphic rational map for

zero pion mass, m = 0.

Figure 1 shows the regions of negative baryon density of the minimum-energy baryon

number three Skyrmion. A point of particular interest is the tetrahedron of negative baryon

density in the centre of the Skyrmion. Each of the corners of this dual-tetrahedron gives rise

to tubes of det(J) = 0, which pass though the faces of the tetrahedron with positive baryon

density. However, the singular surface tubes may or may not be connected to the dual

tetrahedron singular surface in the centre. In order to explore how these singular surfaces

are connected we performed a numerical simulation over a box centred at the origin with

(∆x = 0.01, n = 180) sides about 9% of the large box. This is a large increase in resolution,

increasing the number of points per unit distance by a factor of 8 in each direction. The

boundary conditions, on the surface of the box, are important. One option would be to
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interpolate the numerical configuration displayed in figure 2. However, due to the large

number of additional points such an interpolation is very challenging to calculate and not

necessary very reliable. We chose the boundary conditions to be the rational map (4.42) with

the minimum-energy profile function found numerically which is a good approximation to

the exact solution. The result of our numerical calculation is presented in figure 2 and shows

the singularity structure near the origin of the B = 3 Skyrmion.

Figure 2a shows the folding tubes in yellow. Contrary to the conjecture in [11] the tubes

do not seem to pinch off to singular points. This is evidence that there are no swallowtails in

the B = 3 Skyrmion and will be discussed further in the next subsection. Figure 2b is also

interesting. It shows that it is energetically favourable for the B = 3 Skyrmion to ‘create’

two more pre-images of the anti-vacuum, one with positive orientation and one with negative

orientation. The rational map ansatz (3.30) has the anti-vacuum as a suspension point.

Hence for the rational map ansatz there are only three pre-images of the vacuum, all at the

origin and with positive orientation. The extra pre-images in figure 2b are very similar to the

monopole zeros of the Higgs field in [23] where they find five monopole zeros, four positive

and one negative. As outlined in [23], one would naively suspect that a positive orientation

point would annihilate with a negative orientation point. However, the configuration may be

stabilised by tetrahedral symmetry.

4.1. The effects of the pion mass on the folding structure

It is well known that the Skyrme theory describes atomic nuclei better when a pion mass

term is included, see [7, 24, 3] for a discussion of m 6= 0 and [8] for the implications to

spinning Skyrmions. This inspired us to investigate how the surfaces of det(J(x)) = 0 vary

as a function of m. In this section, we first examine this question using the non-holomorphic

rational map ansatz and then check our results using full field minimisation. As a side effect,

this analysis provides a good test of the effectiveness of the rational map ansatz.

In order to find the minimum-energy rational map in (4.43) for given m we minimised

the numerical integral of (3.35) with respect to χ using a standard search algorithm. The

resulting function χ(m) is displayed in figure 3a for values of m between 0 and 1. The

energy per baryon number is shown in figure 3b. Note that E/B increases monotonically

as m increases which agrees with the findings in [24]. A point worth noting is that it is

energetically favourable for Ĩ to decrease slightly, see figure 3c, and for J to increase as m

increases, see figure 3d. This has an effect on the behaviour of the shape function around

the origin as can be seen from equation (3.41).

The radial integral of the baryon density in (3.38) can be evaluated exactly using

the boundary conditions of f(r). Using the minimum-energy χ(m) we then integrated the

negative baryon density B− over S2 to give the total negative baryon density B− as defined in

(1.4). Figure 4a shows B− as a function of m. It is apparent that as the mass m increases it

is more energetically efficient for the B = 3 Skyrmion to have more negative baryon density,

B−. As shown in figure 4a there is a 40% increase in negative baryon density as m increases
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Figure 3: The minimum-energy E/B, Ĩ, J and χ as a function of m.

from 0 to 1.

In the rational map ansatz, the negative baryon density arise as tubes emanating from

the faces of the tetrahedral polyhedron, very similar to the yellow tubes in figure 1. To

study how these tubes change as a function of mass, we numerically integrated the area of a

negative baryon density tube over S2. This is shown in figure 4b. Hence, the rational map

ansatz predicts that the tubes of negative baryon density increase in size roughly linearly

with m.

To proceed we used the rational maps for the values of the pion mass given above to

generate the initial conditions for a full field minimisation on a square lattice of 2503 points

with lattice spacing ∆x = 0.08, as before. The results are shown in figures 5. It is worth

discussing the actual full field minimum-energy B = 3 solutions. One should first note that

the hole in the level-set of positive det (J(x)) becomes smaller for increasing m. This is
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Figure 4: Data arising from the minimum-energy B = 3 rational map (4.42).

well understood as the potential term forces the Skyrmion field to reach the vacuum value

exponentially. Also, as m increases the singular tubes become more pronounced. This is

clearly seen in figure 5 where the singular tubes are much more defined for m = 1 than for

m = 0.1.

As shown in figure 6a, the energy per baryon for the full field minimisation is about 2%

lower than that for the rational map ansatz, for all m. This is expected, because as previously

shown the rational map ansatz forces all of the pre-images of the anti-vacuum to be at the

origin.

As can be seen in figure 2a the Skyrme field has a fifth pre-image at the origin with

negative orientation showing that there is also negative baryon density at the origin. This

region of negative baryon density is inside a tetrahedron, which is dual to a surface of positive

baryon density. In this central region σ ≈ −1, and this is where the potential energy (the

pion mass term) is maximal. Hence as m increase the negative baryon density at the origin

decreases. To verify this we numerically integrated over the central tetrahedron of negative

baryon density. This is shown in figure 6c where as m increases the total negative baryon

density in the central dual tetrahedron decreases. Hence, as the pion mass m increases

there are two competing trends. On the one hand, the negative baryon density in the folds

increases as in the non-holomorphic rational map ansatz. On the other hand, the negative

baryon density at the centre decreases. This gives a heuristic explanation of the behaviour

of the total negative baryon density shown in figure 6b. Initially it decreases, as m increases

from m = 0 to m ≈ 0.7. Then the negative baryon density starts to increase again. This

trend is further verified because we also found the minimum-energy B = 3, m = 2 solution.

This solution has E/B = 1.551, B− = 4.1 × 10−5 and a B− dual tetrahedron with total

baryon density of 1.2 × 10−5. Figure 6c is not very smooth. This is most likely due to the

numerical grid and the algorithm which identified the edge of the dual tetrahedron.
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m = 0.1 m = 0.3

m = 0.5 m = 0.7

m = 0.9 m = 1

Figure 5: B = 3 Skyrmion of varying m. Red is a level set of B = const > 0, yellow is B = 0.
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Figure 6: B = 3 full field minimum-energy solutions data.

4.2. Expansion around the origin

The tetrahedral symmetry of the B = 3 Skyrme field poses stringent restrictions on the

allowed terms in a Taylor expansion around the origin. Here we calculate the allowed

polynomials and estimate the relevant coefficients from the numerical solution.

The rational map of the B = 3 Skyrmion is given by

R(z) =

√
3iz2 − 1

z3 −
√

3iz
(4.44)

which is Td tetrahedrally symmetric using the same orientation as in [12]. This symmetry is

generated by a C2 symmetry

z 7→ −z, R 7→ −R, (4.45)
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and a C3 symmetry

z 7→ iz + 1

−iz + 1
, R 7→ −iR + i

R + 1
, (4.46)

for the tetrahedral symmetry T , together with an additional reflection symmetry

z 7→ z̄ − i
−iz̄ + 1

, R 7→ R̄− i
−iR̄ + 1

. (4.47)

The corresponding symmetries in component notation for the C2 generator is

(x1, x2, x3) 7→ (−x1,−x2, x3) , (π1, π2, π3) 7→ (−π1,−π2, π3) . (4.48)

and

(x1, x2, x3) 7→ (x2, x3, x1) , (π1, π2, π3) 7→ (π3, π1, π2) (4.49)

for the C3 generator. The reflection symmetry is given by

(x1, x2, x3) 7→ (x1,−x3,−x2) , (π1, π2, π3) 7→ (π1,−π3,−π2) (4.50)

Hence the field πππ can be expanded around the origin as

πππ = a1

 x1

x2

x3

+ b1

 x2x3

x1x3

x1x2

+ c1

 x3
1

x3
2

x3
3

+ c2r
2

 x1

x2

x3


+ d1

 x2x3x
2
1

x1x3x
2
2

x1x2x
2
3

+ d2r
2

 x2x3

x1x3

x1x2

+ . . . , (4.51)

where r2 = x2
1 +x2

2 +x2
3. The tetrahedral symmetry can be augmented to spherical symmetry

by setting b1 = 0, c1 = 0 and d1 = d2 = 0, which corresponds to the Taylor expansion of the

hedgehog ansatz around the origin. This provides a useful check that we have implemented

the tetrahedral symmetry correctly.

In order to compare the Taylor expansion of πππ to the numerical solution, we have to

calculate the coefficients in (4.51). We used the following approach. Setting x2 = 0 and

x3 = 0 in (4.51) gives a polynomial in x1. We fitted this polynomial to our numerical data

using a least square fit, and this allows us to calculate a1 and c1 + c2. Similarly, setting

x2 = x1, and x3 = 0 gives a1, b1, c1 + 2c2 and 2d2. Finally, setting x2 = x1 and x3 = x1 also

gives an equation in d1. In order to improve the approximation close to the origin, we fitted

to a polynomial of higher degree. By plotting numerical data and approximation we found

that the values a1 = −0.41, b1 = −2.1, c1 = −2.2, c2 = 1.2, d1 = 0.76 and d2 = 0.64 are

a reasonable approximation for −0.5 < x1, x2, x3 < 0.5. Note that the errors in particular

for the coefficients d1 and d2 are rather large. We can now evaluate the Jacobian of the

map. At the origin x = 0, the Jacobian is non-zero, namely, det(J0) = a3
1 < 0. The value of

det J0(0) = −0.055 calculated numerically from the exact solution matches the value for the

expansion (4.51).

Figure 7 shows a plot of the surface det J = 0 inside a cube of length 0.5. This clearly

looks very similar to the surface det J = 0 arising from the numerical solution displayed in
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Figure 7: Singular surface det J = 0 calculated using the polynomial expansion around the

origin in (4.51). In this figure, det J = 0 is displayed inside a cube of length 0.5.

figure 2b. Using our expansion, we can check whether the singular surface pinches off at a

point. By setting x2 = x1, and x3 = x1 in the Jacobian J0 we can show that det J0 = 0

for x1 = −0.09 but there is no positive solution within the box. We were careful to include

terms up to fourth order because the normal form of the swallowtail singularity is given by

y1 = x4
1 + x2

1x2 + x1x3,

y2 = x2,

y3 = x3, (4.52)

which includes a fourth order term. The Jacobian matrix of (4.52) is given by

J =

 4x3
1 + 2x1x2 + x3 x2

1 x1

0 1 0

0 0 1

 . (4.53)

The singular set det J = 0 consists of folds, cusps and swallowtails and is given by

x3 = −4x3
1 − 2x1x2. The fold surfaces meet to form four cusp lines which in turn meet

at the origin where the swallowtail is located.

In summary, we have deduced the following folding structure for the B = 3 Skyrmion.

There are four folding tubes through the faces of a tetrahedron. These tubes smoothly connect

to the corners of a dual tetrahedron at the origin. The folding surface are not intersecting

each other, so there are no swallowtail singuarities in the B = 3 Skyrmion, contrary to
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the conjecture in [11]. By symmetry, the cusp lines are expected to lie on the edges of the

tetrahedron, and there is some numerical evidence.

5. Conclusion

This paper was motivated by the results of [11], where the authors found regions of negative

baryon density in the rational maps for the B = 3 minimum-energy Skyrmion. For small m

these regions of negative baryon density are very small, but we have been able to numerically

verify their existence. Also we have discovered a tetrahedron of negative baryon density at the

origin, which is dual to a tetrahedron produced as a level-surface of positive constant baryon

density. The singularities corresponding to surfaces of zero baryon density form four tubes

which smoothly join up at the dual tetrahedron at the origin. Contrary to the conjecture in

[11], there are no swallowtail singularities in the B = 3 Skyrmion configuration. We have

also found that for the B = 3 Skyrmion there are five pre-images of the anti-vacuum, four

with positive orientation, on the vertices of a tetrahedron, and one with negative orientation

at the origin. This behaviour is also seen in monopoles [23].

The authors of [11] did not find any regions of negative baryon density in the rational

map ansatz for the B = 4 minimum-energy solution. This has been verified here numerically.

Furthermore, assuming octahedral symmetry we have shown in appendix Appendix A that

there are no regions of negative baryon density around the origin. These results are also

consistent with the instanton ansatz [25].

It has already been discussed that regions of negative Jacobian-determinant occur for

the charge three instanton [25]. This is significant because there is a BPS extended Skyrme

model which can be derived from Yang-Mills instantons [26], which must contain regions

of negative baryon density. This extended model has an infinite number of vector mesons.

There has also been research into a truncated version of this model [27], where only a few

extra terms are included. Understanding the form and distribution of the negative baryon

density in these models would be very interesting. It should be noted that there is another

BPS Skyrme model [28], where the Bogomolny equation shows that the baryon density is

proportional to the square root of the potential. Hence, if the potential is positive definite

through space, so is the baryon density.∗
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Appendix A. B = 4

It has been shown [11] that even when the B = 4 rational map ansatz is extended to be

non-holomorphic no negative baryon density is found. This is also seen in our full field

minimisation of the B = 4 Skyrmion for m = 0 and m = 1, see figure A1a and A1b,

respectively. For m = 0 we found E/B = 1.12, and for m = 1 we found E/B = 1.30. In

both cases, up to numerical accuracy, we did not find any negative baryon density.

m = 0 m = 1

Figure A1: Minimum-energy full field solutions of the B = 4 Skyrmion. Red is a surface of

constant positive det(J).

In the following, we show that the B = 4 minimum-energy octahedrally symmetric

Skyrmion does not have regions of negative baryon density near the origin. This is where

the non-holomorphic rational map ansatz is not a good approximation of the exact solution.

As a starting point, we consider the rational map of the B = 4 Skyrmion is given by

R(z) =
z4 + 2

√
3iz2 + 1

z4 − 2
√

3iz2 + 1
(A.1)

which is octahedrally symmetric. This symmetry is generated by a C4 symmetry:

z 7→ iz, R 7→ 1

R
, (A.2)

and a C3 symmetry

z 7→ iz + 1

−iz + 1
, R 7→ e−

2πi
3 R. (A.3)

The corresponding symmetries in component notation for the C4 generator is

(x1, x2, x3) 7→ (x2,−x1, x3) , (π1, π2, π3) 7→ (π1,−π2,−π3) . (A.4)
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and

(x1, x2, x3) 7→ (x2, x3, x1) , (π1, π2, π3) 7→
(
−1

2
π1 −

1

2

√
3π2,

1

2

√
3π1 −

1

2
π2, π3

)
(A.5)

for the C3 generator. Hence the field πππ can be expanded around the origin as

πππ = b1

 x2
1 + x2

2 − 2x2
3

−
√

3x2
1 +
√

3x2
2

0

+ c1

 0

0

x1x2x3


+ d1

 x4
1 + x4

2 − 2x4
3

−
√

3x4
1 +
√

3x4
2

0

+ d2

 2x2
1x

2
2 − x2

1x
2
3 − x2

2x
2
3

−
√

3x2
1x

2
3 +
√

3x2
2x

2
3

0

+ . . .

A similar expansion as r tends to infinity has been performed in [22]. We can now evaluate

the Jacobian of the map. At the origin x = 0, the Jacobian is identically zero. Hence the

singularity is clearly non-generic since for a generic singularity the Jacobian has rank 2. The

determinant of the Jacobian can be expanded into O−symmetric polynomials. The lowest

order term is

det(J) =
√

3b2
1c1

(
x2

1x
2
2 + x2

2x
2
3 + x2

3x
2
1

)
+ . . .

Hence the singularities are on the three coordinate axes which meet at the origin.

Furthermore, sufficiently close to the origin det(J) is positive, and hence there is no negative

baryon density.
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