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‘Somatic marker’ theory proposes that body statetsas a valence associated with
potential choices based on prior outcomes; and #idsdecision-making. The main
supporting evidence for this theory arose from icéih interviews of subjects with

ventromedial prefrontal cortex (VMF) lesions anckithperformance on the lowa
‘Gambling Task’ (IGT). VMF patient behaviour hasebedescribed as ‘myopia’ about
future consequences. The aim of this paper is vestigate the implications of this
description using an abstract simulation of theralemechanisms that could underlie
decision-making in this type of reinforcement léagtask

1. Introduction

Over the past decade there has been an increasimgst in the role of emotions
in everyday decision-making. A theory particulaskell represented in the
literature is A. Damasio’s ‘somatic marker’ theofpamasio, 1994), which
proposes that body states act as a valence whicheassociated with potential
choices based on prior outcomes; and thus aid ideeisaking. The main
supporting evidence for this theory arose fromictihinterviews of subjects
with ventromedial prefrontal cortex (VMF) lesionsdatheir performance on the
lowa ‘Gambling Task’ (IGT) (Bechara, 1999), comghte normal controls and
those with lesions in other brain areas. The IGTs@is of four decks that
subjects can pick from; two decks, A and B, whiaid/ high wins but higher
losses (Disadvantageous) and the other two, C antdaDyield low wins with
lower losses (Advantageous). Normal subjects shtgrtpicking from the
disadvantageous decks but learn to pick from tham@tdgeous decks, unlike the
VMF patients who, as in their real social and peaddives, continue to pick
disadvantageously.

A description that accounts for this behaviour iMN patients’ is
‘myopia’ for future consequences, in that they drieen by immediate reward
and are less interested in uncertain future losgaim (Bechara et al, 2000a).
The main aim of this paper is to investigate thelications of this ‘myopia’
with an abstract neural network simulation thatldocharacterize decision-
making in this type of task. The current literatiaeks a model that accurately



reproduces these experimental results, and isaaibstt from specific anatomical
details, which underlie other models e.g. WagarBmagard (2004).

This model focuses on a time averaging parantetehich dictates the
relative influence of current and past information decision-making. A
‘myopia’ for future consequences could be caused biynilar ‘myopia’ for past
events, where the experience from those eventsotswell integrated into
current decision-making. Exploration of the stapace fort, from constant
values to linear or logarithmic growth over the 1flals in each example of the
task, found that certain values Dprovided a good fit to the experimental data
for normal controls and VMF subjects. This inveatign informs us about how
these different groups may utilise past informatiorpresent decision-making,
especially in relation to situational novelty.

2. Design

In the design of the neural network, attempts wede to make the least
number of assumptions and still produce an abstretork that can replicate
the human data. The model makes the following bessamptions:

1. That pleasure and pain are equally valued by Noowiadrols and VMF
patients of the IGT.

2. An activation-based memory is sufficient to hold tequired
information about the task.

Based on the above assumptions, the network showiigure 1 was designed

and implemented as a possible solution

For each choice, there are two memory units whéghasent a measure
of expected value, with one unit recording positiwéormation (the positive
unit) resulting from a choice and the other unigatése information (the
negative unit). The results of a particular chasce passed on to the relevant
Memory Layer units by having the unit associatethwhe current choice active
in the Result Layer, while all other units in thayer are inactive. By passing
the activation from the Result layer multiplicafivevith activation in the Value
Input Layer through the gating neurons, only theridey Layer units connected
with the current choice are reinforced on any patar trial, all other units only
decay. Activation in the Value Input Layer (Seeuf@l) is calculated using the
current win and/or current loss divided by thetstgrbalance of $2,000 or the
maximum card seen so far. This gives a value betvieand 1, which, once
gated (as discussed above), becomes the inputhet®Memory Layer, y (See
Equation 1) which is passed through a time-averpgiguation. The time-
averaging equation (Equation 1) represents howrimdtion decays over time in
the memory layer and how present information isuedl against past
knowledge.



act(t) =r.act(t-1)+ @-1).y,(t) 1)

wherey,(t) is the input activation from the Value Input Laygated to the
relevant Memory Layer unit at timieandact(t) is the units activation at tinte

Finally, on each trial, the activation from the atge memory units is
subtracted from the activation in the correspongingitive memory units and
then passed through a sigmoidal function onto trnected Response Layer
units. Once all Response Layer units have receiedr inputs from the
memory layer, and additional random noise has laelgled, a winner-takes-all
system ensures that the unit with the highest atitim becomes the choice for
the next trial. The addition of random noise allofes increased exploration,
preventing action choice being completely greedyteMalso that, after each trial
units in the Value Input Layer and the Responserlaye set to zero. Whereas
the Memory Layer units (which hold a measure of gaperience related to a
particular choice) and those units in the Resulgetaholding the Response
Layer result from the current trial, to be usedtlas choice in the next trial,
retain activation.
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Figure 1. Diagram of Neural Network used for the lowa Gamdpliask. It shows the repetition of
the basic architecture for each choice in the proldpace. In the IGT there are four choices/decks.



3. Results

In the exploration of the parameter spacetf@6See equation 1), it was found
that the normal control deck choice profiles coaldy be reproduced with a
rising value oft over the course of the IGT. However, the closeshe deck
choice profiles for the VMF patients was best mgiled using a constant
T=0.52. (This gave an average variance in data pointwdmt the simulation
and the real data of 2%). The important factor éproducing the normal
controls data was not a particular growth functidrr across trials, but that it
began att =0.52 or below and rose to 0.9 by the 80th trial and tktayed
constant at 0.9 for the remaining 20 trials. Theéh8B@ial was chosen as the
limiting point as this is when many subjects, bp#tients and controls, gained
conceptual knowledge of the advantageous and dis#ageous decks and
therefore a conscious strategy (Bechara et al, [200he essential quality was
an increasing over time/trials: with logarithmic growth from Q9in 80 trials;
sigmoidal growth from 0.3-0.9 in 80 trials and Bmneyrowth from 0.52-0.9 in 80
trials, each giving an average variance of appnately 6% between the real
data and that from the simulation. Interestinglyg tstarting point for linear
growth of T for normal subjects is the same as the constanevabst accurate
in reproducing the VMF patient data.

4. Conclusions

The required growth im suggests that normal controls build up a knowleofge
the task in hand by valuing new information moreyea the task than later.
This has the consequence that previous learningctgation, is built up and
not lost as rapidly as with a constarmvhere new information can never have
more than the initial I-influence Therefore, ift is initially low and then
increases over trials, new information has a greapact early in the task.
These simulation results are largely consistenh viite myopia for future
consequences theory of VMF patient behaviour. Altiothe model fleshes out
the theory somewhat, by suggesting that what isingsin VMF patients is the
capacity to adjust the trade-off between respondtingew reward/punishment
information and allowing past experience to aftbet current choice. That is, in
post-initial phases of the lowa Gambling Task VM&tignts are unable to
switch to a strategy in which past experience iplasized and preserved. By
its nature such a strategy would focus more onrdutonsequences, since
learning that pays heed to past experience is fikety to enable decision-
making that is more tuned to longer-term futuresemuences. This leads to
the suggestion that the ventromedial prefrontalesois important in sustaining
activation for goal directed behaviour by integngtirelevant past experience.
Perhaps VMF patients are unable to hold onto oesthis information. It has



been proposed that this retention of goal releirdotmation is a key role of the
prefrontal cortex. “How does the PFC (Prefrontalrt€x) ‘latch’ onto goal-
relevant information and maintain it without distiop? Several ideas have been
suggested. These typically employ a form of gasiiggnal that instructs the PFC
network when to maintain a given activity stateisTgating signal may come
from dopaminergic (DA) neurons in the midbrain arabal ganglia.” (p1370,
Squire, 2003). This could be related to the grawthover trials.

Damasio (1994) has suggested that VMF patients’isteemaking
processes are no longer properly supported by ‘Sommarkers’. The authors of
this paper only argue that VMF patients have atéithicapacity in integrating
relevant past information into their decision pres®s, without going as far as
stating what form this information takes, e.g. efffer ‘cold’ cognitive. It is
known that information is passed onto and analygedome way within
consciousness as some VMF patients (50% by 80 )caegert ‘conceptual’
knowledge of the best decks, 70% of controls rethit state by 80 cards
(Bechara et al, 2000b). But unlike controls VMFigats do not reflect this
knowledge in their subsequent behaviour and stik more or less randomly. It
seems that conceptual conclusions for these psatiané insufficient for
behavioural control. This could be similar to wheeme addicts ‘know of what
not to do’, but lack the behavioural control tovmet repeated use. Do theories
of dual systems, provide a potential solution, \ehttie non-conscious System 1
(Evans, 2003) in VMF patients is making decisioastaining affect, with little
or no influence from conscious conclusions (SysEmThe current simulation
is considered to be at a level of abstraction altbaedescribing a dual systems
theory, but it could be modified to become the ®asfi a representation of
‘somatic-makers’ in the System 1 part of a dualepss model, with the relative
influence of System 2 over System 1 controllingghawth oft across trials.
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