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ABSTRACT 

 

In this paper we present a new variant of the classical Vehicle Routing Problem – the Fleet Size and Mix 

Vehicle Routing Problem with Backhauls (FSMVRPB). An ILP formulation of the FSMVRPB is 

presented. Optimal solutions for small size instances are produced and upper and lower bounds are 

generated for larger ones. In this paper we also propose a Set Partitioning Problem (SPP) based 

heuristic. Three frameworks are developed and tested on a set of new FSMVRPB data instances which 

we generated. Computational results are presented which can be used for future benchmarking. 

 

Keywords: Mixed Fleet Backhauling, ILP formulation, Set Partitioning Problem, Heuristics. 

 

1. Introduction and Problem Definition 

We introduce a new variant of the classical vehicle routing problem (VRP) called the Fleet Size and Mix 

Vehicle Routing Problem with Backhauls (FSMVRPB). In the VRP we are given a set of customers with 

known demands (delivery only), a fleet of homogeneous vehicles available (unlimited in numbers) at a 

depot. The problem is to find the minimum cost routes originating and terminating at the depot while 

satisfying customer demand subject to the vehicle capacity and the route length restrictions. The 

FSMVRPB variant combines the aspects of two previously developed versions of the routing problems, 

i.e., the Fleet Size and Mix Vehicle Routing Problem (FSMVRP) (Golden et al. 1984) and the Vehicle 

Routing Problem with Backhauls (VRPB) (Golden et al. 1985). The VRPB was then further developed 

by Toth and Vigo (1996) who also generated the VRPB data sets for benchmarking purposes. The 

FSMVRP is different from the VRP in one aspect, i.e., it considers a heterogeneous vehicle fleet (with 

different fixed and running unit costs) instead of homogeneous vehicles. The VRPB is also different 

from the VRP mainly in one aspect, i.e., the fleet used can consider pick-ups after the deliveries are 
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made. In our version of the VRPB all the deliveries are made before any pick-ups on a route; no route is 

allowed with only pick-up (back-haul) customers; there may be restrictions on the number of vehicles 

available that must be utilized (Toth and Vigo, 1997; Osman and Wassan, 2002 and Wassan, 2007). In 

the literature, the VRPB model is further extended to some other variants such as the Vehicle Routing 

Problem with Mixed Deliveries and Pick-ups (VRPMD) (Deif and Bodin, 1984; Salhi and Nagy, 1999 

and Nagy and Salhi, 2005) and the Vehicle Routing Problem with Simultaneous Deliveries and Pick-ups 

(VRPSPD) (Min, 1989 and Nagy and Salhi, 2005). In the VRPMD, deliveries and pick-ups can be made 

in any order of the customers on a route, whereas in the VRPSPD the deliveries and pick-ups demands 

can come from the same customer. These extended models of the VRPB are not being considered here, 

hence we refer the interested reader to Wassan et al. (2008a) and Wassan et al. (2008b). 

The aspects of the FSMVRPB are defined as follows:  

• The customers are divided into two groups, i.e., delivery (linehaul) and pick-up (backhaul) customers. 

• A heterogeneous fleet of vehicles (each type available in unlimited numbers) with different fixed costs 

     according to their sizes. 

• All the deliveries are made to the linehaul customers before any of the backhaul customers are 

     serviced.  

• No route is allowed to contain backhaul customers only. However, a route with only linehaul 

     customers is allowed. 

• Vehicle capacity constraints are employed. However, the constraints on the route length and on the 

            fixed number of vehicles that must be or could be utilized are not considered in this case as considered 

in Toth and Vigo (1997). 

 

The problem is to find a minimum cost mixed fleet set of routes while satisfying the customer demand 

and problem constraints.  

 

The FSMVRP and the VRPB have been extensively investigated separately but not in a combined way. 

The FSMVRPB is a more realistic routing and distribution problem with a wide applicability for those 

logistic companies that wish to determine the composition of their vehicle fleet as well as operating their 

delivery routes efficiently so to achieve competitive advantage. Moreover, companies could enhance 

their green strategy by exploring the various facets of green logistic including fleet management, reverse 

logistic and green technology among others. For a more general and informative view on this hot and 

interesting topic, see the recent special issue in Transportation Research Part E by Sheu and Talley 

(2011). In this regard, this study deals with the fleet management issue including reverse logistic. 
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The paper is organised as follows: In the next section we present a brief literature review on the subject 

followed by the mathematical formulation in Section 3. Explanation of our solution method namely the 

Set Partitioning based heuristic is provided in Section 4. Details of the new data sets and computational 

results are given in Section 5.  The conclusion and suggestions are provided in the last section. 

 

2. Literature review 

 As mentioned earlier, this is one of the first studies of the FSMVRPB that deals with the problem 

formally; hence there are no published papers on this problem except a recent PhD thesis by Hajarat 

(2010). The only published study closest to ours is the interesting and practical paper by Tütüncü (2010). 

The author tackles the heterogeneous fixed fleet VRP with backhauls where the vehicle routing problem 

with heterogeneous fleet (VRPHE) model of Taillard (1999) is extended by reducing the number of 

vehicles per type and incorporating backhauls. A useful decision support system is developed for this 

purpose. Here we review the literature linked to both the FSMVRP and the VRPB as these two when 

combined make up this new combinatorial problem. 

 

There are three versions of the FSMVRP that exist in the literature. These versions differ from each 

other based on whether or not the variable running cost per vehicle is constant and whether the number 

of available vehicles for each type is known or not. Here, we shall try to differentiate them while 

reviewing the algorithms and techniques proposed to solve them. 

The first and the original version comes from Golden et al. (1984), where the unit variable costs are set 

to unity for all vehicles regardless of their types and the number of vehicles in each type is also 

unlimited. They adopted the savings technique of Clarke and Wright (1964) to develop algorithms and 

also provided two implementations of the giant tour based algorithm to solve the FSMVRP. Some of the 

recent studies for this version include Brandao (2009) who developed a deterministic tabu search 

scheme; Imran et al. (2009) who designed a variable neighbourhood search scheme that is combined 

with the multi-level approach of Salhi and Sari (1997); Liu et al. (2009) designed and implemented a 

genetic algorithm-based heuristic, and Subramanian et al. (2012) developed a hybrid approach where an 

iterated local search is used within the Set Partitioning model. These recent approaches produced very 

competitive results. In this paper the focus is kept on the original version of Golden et al. (1984). 
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The second version originates from Salhi et al. (1992) where the number of vehicles of each type is still 

unlimited but the variable cost is dependent on the vehicle type. The authors modified the savings based 

algorithm of Golden et al. (1984) to solve this variant. A recent study in this particular area focussing on 

multi-depots can be found in Salhi et al. (2013). 

The third version, termed as VRPHE, comes from Taillard (1999). Here, the variable cost depends on 

the type of vehicle but there are restrictions on the number of vehicles available for each type. This is 

solved using a Column Generation Method. Recent studies for this version include Tarantilis et al. 

(2004) who implemented a threshold accepting metaheuristic; Li et al. (2007) developed a record-to-

record travel algorithm; Li et al. (2010) integrated a multi-start adaptive memory programming and a 

path re-linking with tabu search, and Brandao (2011) produced an efficient implementation of a tabu 

search. These methodologies proved very successful in producing high quality results. For an overview 

of various approaches for the mix fleet VRPs, see Baldacci et al. (2009).   

The VRPB has been studied since the 1980s by Golden et al. (1985). Exact methods based on ILP 

formulations are put forward by Toth and Vigo (1997) and Mingozzi et al. (1999) where optimal 

solutions for instances with up to 100 customers are obtained. Many classical heuristics and meta-

heuristics have also been proposed. Some of the recent references include Brandao (2006) who 

developed a tabu search algorithm, and Wassan (2007) who developed a reactive tabu search enhanced 

by adaptive memory programming. These methods produced good quality results. 

 

3. Mathematical formulation 

The following mathematical formulation for the FSMVRPB is extended from the one of Lee et al. 

(2008) which is initially given for the FSMVRP by incorporating the presence of backhauls. Another 

way would be to start from a formulation of the VRPB and then introduce the possibility of 

heterogeneous types of vehicles. We opted for the former as it is relatively easier and much simpler to 

modify. 

 

The following notations are used throughout.  

 

L= number of linehaul customers, indexed 1,…, L (depot is indexed by 0) 

B= number of backhaul customers, indexed L+1 ,…, n 

n = total number of customers (L + B) 



 5 

K = number of vehicle types (v = 1,…, K) 

Qv = capacity of a vehicle of type v, (Q1 < Q2 < Q3 … <QK) 

fv= fixed cost of a vehicle of type v,  (f1 < f2 < f3 … <fK) 

di = demand of customer i ( i = 1,..., n) 

cij = travelling cost (distance) between node i and node j  

ψij   the vehicle load on the arc from customer i to customer j 

1, if arc ( , ) is traversed by vehicle type 

0, otherwise

v

ij

i j v
x




   

 

Minimise 

0

1 1 1 0 0

K L K n n
v v

v j ij ij

v j v i j

f x c x
    

           (1) 

 

Subject to:  

0 1

1
n K

v

ij

i v

x
 

           j = 1 ,…, n     (2) 

0 1

1
n K

v

ij

j v

x
 

           i = 1 ,…, n     (3) 

0 0

n n
v v

ip pj

i j

x x
 

           v = 1 ,…, K,    p=0 ,..., n  (4)  

   
0 0

ψ ψ
L n

jij jl

i l

d
 

       j = 1 ,…, L    (5) 

0

1 1

ψ ψ
n n

jjl j ij

l L i

d
  

        j = L+1 ,…, n    (6) 

ψ 0ij               i = 0 ,…, L , j=0  & j = L+1 ,…, n  (7) 

ψ 0ii            i = 0 ,…, n     (8) 

0

1 1

ψ
n n

i i

i L i L

d
   

         (9)

 

0

1 1

ψ
L L

j j

j j

d
 

         (10) 

0 0v

jx     j = L+1 ,…, n,  v = 1 ,…, K  (11)    
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0v

ijx 

                                

i = L+1 ,…n, j=1,...,L,  v = 1 ,…, K (12)    

1

ψ
K

v
vij ij

v

x Q


     i ≠ j = 0, 1 ,…, n   (13) 

v

ijx  {0,1}                           i = 0,. ..,n,  j = 0 ,…, n, v = 1 ,..., K   (14) 

ψ 0ij      i = 0 ,..., n,  j = 0 ,…, n  (15) 

 

 

In the above formulation, Equation (1) is the objective function which refers to minimising the total cost. 

The first part of this equation relates to the fixed cost of using different types of vehicles and the second 

part relates to the travelling cost. Constraints (2) and (3) ensure that each customer is visited exactly 

once and by one vehicle only. Constraints in (4) guarantee that each route is continuous and served by 

one type of vehicle. Note that (4) combined with (2) and (3) guarantee that there will be only one vehicle 

serving a customer. Constraints in (5) ensure the precedence relationship and are used to make sure that 

the demand of linehaul customers is satisfied by the delivery, while constraints in (6) are also 

precedence constraints which ensure that the backhaul pickups are satisfied. Constraints in (7) confirm 

that the load of all arcs from deliveries to any backhaul or to the depot is zero (vehicles are empty on 

those arcs). Constraints (8) guarantee that there is no load on arc (i,i), whilst constraints in (9) impose 

that the total loads on all vehicles returning from the backhaul customers to the depot is exactly the sum 

of the demand of the backhaul customers. Similarly constraints in (10) ensure that the total load of all 

vehicles leaving the depot is exactly the sum of linehaul customers’ demand. Constraints in (11) prevent 

any route starting from the depot to any backhaul customer and those in (12) guarantee that no vehicle 

goes from a backhaul to a linehaul. Constraints in (13) restrict the vehicle load from customer i to j from 

exceeding the capacity of the vehicle using the arc (i,j). Constraints (14) and (15) define the binary and 

the continuous decision variables v

ijx and ψij respectively. 

The FSMVRPB can be shown to be NP-hard as it can be reduced to two known NP hard problems 

namely the classical capacitated VRP by setting K = 1 and B = 0 (i.e.,  L=n),  and the VRPB by setting 

K = 1. In order to solve this combinatorial problem, we first provide optimal solutions for those 

instances with n = 20 and upper and lower bounds for the larger problems by setting a CPU time 

restriction of 2 hours on CPLEX. In the next section, we propose an efficient implementation of a hybrid 

heuristic that is based on set covering and set partitioning models to solve the FSMVRPB. 
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The above formulation requires 2( 1)K n  binary
 
decision variables including ( ( 1) )KL n L Kn    

variables set to 0, 2( 1)n continuous decision variables including 2( ( 2) )n L L  variables set to 0, and 

2( ( 5) 3)n n K K     constraints. This renders the problem intractable even for powerful optimisers 

such as CPLEX as will be shown in the computational results section. 

Given that 00 and 0v

ij jx    it can be noted that (7) can be replaced 
0

ψ 0
L

ij

i

  for j=0 & j = L+1 ,…, 

n and (11) by   0

1

0
n

v

j

j L

x
 


 

for all v = 1 ,…, K . However, these new constrainsts will add extra 

complexity to the formulation as setting these variables to zero, as defined in (7) and (11), is relatively 

more efficient than letting the solver to determine their corresponding optimal values.  

 

Some tightening of the formulation 

It can be observed that for the case where backhauls are present in the formulation such as the classical 

VRPB and the FSMVRPB studied here, possible tightening of those constraints that distinguish between 

linehauls and backhauls may be worth investigating. We achieve this by not including the parts of the 

constraints where the decision variables will always have a zero value. These cases happen in constraints 

(2), (3) and (4). In addition, we distinguish between linehauls and backhauls when restricting the load on 

a given arc by redefining (13) into 4 distinct sets of constraints (13a-13d).  

(i) Constraints set (2) can be replaced by the following two sets of constraints where the first one 

      deals with linehauls and the second with backhauls:  

0 1

1 1

1 1,..., (2 )

1 1,..., (2 )

L K
v

ij

i v

n K
v

ij

i v

x j L a

x j L n b

 

 

 

  







   

 

(ii) Constraints set (3) can also be replaced similarly with two sets: 

0 1

0

1 1 1

1 1,..., (3 )

1 1,..., (3 )

n K
v

ij

j v

n K K
v v

ij i

j L v v

x i L a

x x i L n b

 

   

 

   



  

 
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(iii) Constraints set (4) can also be replaced by three sets of constraints with (4a) and (4b) as in (i) 

and (ii) and the new (4c) relating to the depot. 

 

0 0

1,..., 1,..., (4 )
L n

v v

ip pj

i j

x x p L v K a
 

    

 

0

1 1

1,..., 1,..., (4 )
n n

v v v

ip pj p

i j L

x x x p L n v K b
  

     

 

0 0

1 0

1,..., (4 )
L n

v v

i j

i j

x x v K c
 

     

 

(iv)  Constraints set (13) can be replaced by the following 4 sets of constraints (13a)-(13d). 

0 0

1

ψ 1,..., (13 )
K

v
vj j

v

x Q j L a


   

                   
0 0

1

ψ 1,..., (13 )
K

v
vj j

v

x Q j L n b


  
 

                   
0

1

ψ ( ) , 1,..., (13 )
K

v
vij j i

v

x Q d i j L c



 
 

                    1

ψ , 1,..., (13 )
K

v

ij ij v

v

x Q i j L n d


  
 

 

This reformulation has the same number of constraints as the previous one except that the new ones are 

less dense with a less number of variables involved in each constraint. 

 

Other modelling considerations 

 

In this study, we consider that no route is made up of backhaul customers only. This is a restriction 

usually imposed in the literature but it can be relaxed easily in our model by just ignoring constraints 

(11). Also, if tightening is adopted the followings constraints need to be modified. In constraints (4b) 

1

n
v

ip

i

x


 needs to be replaced by
0

n
v

ip

i

x


 and in constraints (4c) 0

1

L
v

j

i

x


 by 0

1

n
v

j

i

x


 . Note that this is equivalent 
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to using the original constraints (4). In constraints (13a), 
0 0

1

ψ 1,...,
K

v
vj j

v

x Q j n


   needs to be true for 

all customers not just linehauls as originally stated. 

In this study, we also assume that the number of vehicles available for each type is unlimited and can be 

computed as a by-product using 0

1

L
v

j

j

x


  for each type v. In case, the number of vehicles available for 

each type is predefined, say Kv, the following constraints 0

1

L
v

vj

j

x K


  need to be added to the above 

formulation. Also, if the overall number of vehicles is known, say NV, the following constraint 

0

1 1

K L
v

j

v j

x NV
 

 will be required. In the special case where there is one type of vehicle only, the problem 

reduces to the VRP. This is obtained by setting 1K  and using a two index variable instead of three by 

replacing with v

ij ijx x  and removing all the summations over v . 

 

 

4. Set Partitioning-based methodology 

 

The process of our set partitioning based methodology involves the generation of a large set of linehaul 

giant tours, the construction of a directed Cost Network and its optimal partitioning, and the insertion of 

backhauls to create a pool of mixed fleet vehicle routes. For bigger size instances with a higher 

proportion of linehauls the pool becomes too large to be handled by the Set Partitioning model using 

CPLEX. Hence we have devised three frameworks to identify subsets of routes that we consider to be 

promising. These are explained in the following subsections. 

 

4.1 Construction of the linehaul giant tours 

Linehaul giant tours are generated using two widely used methods, i.e., the Sweep procedure of Gillett 

and Miller (1974) and the Nearest Neighbourhood (NN) method. The Sweep scheme starts by choosing 

the node closest to the y-axis. It then adds the remaining nodes by selecting them in a clock-wise manner 

until a tour that contains all linehauls is completed. The NN scheme starts by choosing a node closest to 

the depot, it then adds the next node closest to the last added node, and the process continues until all the 

linehaul nodes are added to the giant tour. 



 10 

 

4.2 Construction of the linehaul cost network and its optimal partitioning 

For each of the giant tours, a directed cost network similar to the one developed in Imran et al. (2009) is 

constructed. This was initially presented by Beasley (1983) for the VRP and Golden et al. (1984) for the 

FSMVRP. 

The procedure of the construction of our cost network and its optimal partitioning is briefly given here 

for completeness. Consider a giant tour defined by the following sequence 1 2 1{0, , ,...., , }n ni i i i   where ‘0’ 

and ' 1'n  denote the depot and ki refers to the thk customer on the sequence. Let G (V, E) be a directed 

network with a vertex set V= 1 2 1{0, , ,...., , }n ni i i i   and an edge set {( , ) with ; 0,1,..., }r sE i i r s r n    

with the cost of the arc ( , )r si i  denoted by  

                                                1

1

0 0

,

if 

otherwise

r j j s j

r s

s s

v i i i i i K

j r j ri i

f c c c d Q
C 



 


   

 
 

 
 

where vf  represents the fixed cost of the smallest vehicle (say v) that accommodates the total demand on 

the arc ( , )r si i (i.e., 1 j

s

v i v

j r

Q d Q



  ), and KQ is the capacity of the largest vehicle. 

The optimal fleet configuration is obtained by partitioning this directed cost network using Dijkstra’s 

algorithm though dynamic programming can also be used. Note that the Dijkstra’s partitioning-based 

approach has been used widely, see for instance Renaud et al. (1996) and Salhi and Sari (1997). 

The selected routes from the optimal partitioning of each of the cost networks are then scrutinised by 

removing the duplicate routes. The remaining routes are stored into a pool which we call the Route 

Reference Set. The routes in this pool are then improved by using the local search procedure 2-Opt 

method (Lin, 1965). Our implementation of the 2-Opt procedure removes two non-adjacent arcs on a 

route, the partial tour between the two removed arcs is reversed and two new arcs are then added to 

connect to the reversed partial tour. This procedure could be extended to 3-Opt where three arcs are 

involved instead, see Christofides and Eilon (1969). However, given the massive number of routes that 

need to be checked, this extra refinement can be too costly in terms of computation time. A Set 

Partitioning Problem (SPP) is solved based on the routes from the Route Reference Set. Our SPP model 

is described as follows.  
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Let M = the number of routes (the cardinality of the Route Reference Set) 

      Cost of route ; 1,...,iC i i M   

       
1 if customer belongs to route

0 Otherwise
ij

j i
a


 


 

       
1 if route is selected

0 Otherwise
i

i
x


 


 

     

1

1

Minimise

subject to 1 ; 1,..., (16)

{0,1}; 1,...,

M

i i

i

M

ij i

i

i

C x

a x j n

x i M





 

 



  

 

4.3 Insertion of backhauls 

The backhaul customers are inserted into the linehaul solution obtained by the SPP one at a time by 

adopting the Sweep method. By selecting the linehaul routes systematically, the backhaul customers are 

swept clock-wise and added at the end of each route by deleting the arc which connects the last linehaul 

customer to the depot. The backhaul additions are performed while satisfying the capacity constraints of 

the vehicles already used in the linehaul routes. A FSMVRPB solution is obtained once all the backhauls 

are inserted. The 2-Opt procedure is again used as the post-optimizer to seek further improvement on the 

FSMVRPB solution. Note that we discard those 2-Opt moves which could break the precedence 

constraint of serving linehauls before backhauls on a route.  

 

Framework-1: A simple approach 

The procedure of finding the optimal linehaul routes from the Route Reference Set and then adding 

backhauls using the Sweep method to obtain a FSMVRPB solution is termed as Framework-1. The 

flowchart of this framework is given in Figure 1 where LH routes refer to the routes made up of linehaul 

customers only, whereas LH/BH routes represent those routes that contain both linehaul and backhaul 

customer 
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Figure 1: Framework-1 

 

Figure 1: Framework- 1 

 

 

Framework-2: The use of the SPP on LH and LH/BH pool of routes 

This framework is different from the previous one in the sense that it solves the Set Partitioning model 

after the backhaul customers are added to the linehaul routes in the Route Reference Set using the Sweep 

method. Here the backhauls are added one by one, i.e. each time a backhaul is added to the linehaul 

route a new combined linehaul/backhaul route is formed as long as the capacity of the vehicle is not 

violated.  For example, three possible routes are generated from a linehaul route as shown in Figure 2.  

 

As we also use anti-clock-wise Sweep to add the backhauls, several routes are generated from each 

linehaul route. Hence the size of the pool becomes very large as both the LH and the LH/BH routes 

constitute our new Route Reference Set. The flowchart of Framework-2 is given in Figure 3. 
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Figure 2: An example of adding backhauls one by one to generate combined  

                 linehaul/backhaul routes using clock-wise Sweep. 
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Framework-3: A reduction scheme on the number of linehaul routes 

Framework-2 uses a huge number of routes in the pool and as a result some instances could not be 

solved due to an excess of memory when using CPLEX. Here, a different approach is tested in 

Framework-3 where we aim to reduce the large number routes in the pool. In other words, instead of 

using all the linehaul routes and adding backhauls one by one to generate a huge number of routes as in 

previous frameworks, here a smaller elite set of LH routes is obtained, see Figure 4. This is achieved by 

firstly solving the Set Partitioning problem (SPP) once to obtain the best linehaul solution containing an 

optimal set of routes. These routes are then removed from the set of LH routes and stored into the pool 

which we refer to as Routes Reference Set (Elite LH only). More LH routes are then removed and added 

to this pool by solving repeatedly the Set Covering Problem (SCP) using the remaining routes in the set. 

The size of this elite pool is set to 2y
2
, where y denotes the number of routes in the solution obtained by 

the SPP. This setting was empirically found to be appropriate.  

 

 

 

 

 

 

 

Figure 4: Framework-3 

 

Note that the SCP solutions at this stage of the search may be infeasible as the model allows a customer 

to be on more than one route. Nevertheless our purpose is to choose a pool of promising routes that are 

added to the Routes Reference Set. The reason behind solving SPP once is that there will always be at 

least one feasible solution in the pool. The backhaul customers are then added to the elite Routes 
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Reference Set pool of routes in the same manner as in Framework-2. The final best solution is obtained 

by solving the SPP on this LH and LH/BH pool. The flowchart and the steps of Framework-3 are given 

in Figures 4 and 5, respectively. The SCP model is the same as the SPP except that Equation (16) is 

replaced with the following Equation (17). 

 

 

 

Step 1: Generate giant tours for linehaul customers. 

Step 2: For each giant tour, construct the corresponding directed Cost Network and solve the   

            shortest path problem to find the optimal set of LH feasible mix fleet routes. 

Step 3: Obtain the best linehaul solution containing the optimal set of routes by solving the 

            SPP, and set y = the number of routes found in the SPP solution. 

Step 4: Remove the SPP solution routes from the set of LH routes and store them into 

            the elite pool Routes Reference Set. 

Step 5: Remove more promising routes from the remaining routes in the set of LH routes 

           and add them to the elite pool by solving the Set Covering Problem repeatedly until 

           2y2 routes are pooled. 

Step 6: Add the backhaul customers to the linehaul routes in the elite pool as described in 

Framework-2. 

Step 7: Use SPP again to obtain the best final FSMVRPB solution. 

Step 8: Apply the 2-opt local search to seek further improvement.  

     Figure 5: The main steps of Framework-3  

 

In Step 1, we used both the Nearest Neighbour and the Sweep heuristics to generate the giant tours. In 

Step 2, the shortest path is solved using Dijkstra’s algorithm (note that dynamic programming can also 

be used efficiently here as the network is directed). 

 

Additional Experiments/Fine-Tuning 

In this study, the main parameter used is 2y
2
 that determines the size of the pool in Framework-3. This 

was found empirically to be appropriate after conducting several experiments using various sizes. We, 

however, performed some fine-tuning experiments on Framework-2 to check if any further improvement 

was possible on the existing procedures. Note that the volume of routes produced in our heuristic is very 

large.  On one hand, this provides an opportunity for a better quality solution but on the other hand, it 

creates computational issues, especially when it comes to using CPLEX as part of the methodology. 
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Hence, attempts to find a balanced compromise between the solution quality and the computational 

burden was explored. We report two such efforts. 

Case 1:  In this case, some of the giant tours which we considered not to be promising are excluded from 

the search. We identified such giant tours on the basis of excessively long arcs that form longer arcs 

routes which may have a small chance of being chosen at a later stage. In brief, any giant tour that has an 

arc larger than   is removed where and   refer to the overall average of the giant tours arc length 

averages and their standard deviations respectively, and [ 2,2]    is a parameter emphasizing the 

percentage of tours removed. Using basic statistics, for instance if 0   there will be approximately 

50% of tours removed, 1   will lead to approximately 15% of tours to be removed whereas 2   will 

allow about 2.5% of tours to be removed only. If 0  more than half of the number of giant tours will 

be removed. Several experiments were conducted with different pool sizes (in percentage) determined 

by the values of   to achieve a better compromise between the solution quality and the computer 

time/storage used. The results of two such experiments are presented here. As compared to Framework-

2, a saving of around 34% in CPU time was achieved with 50% reduction in the number of giant tours 

(i.e., 0  ), however the solution quality reduced by 1.24% on average. A 15% reduced pool of giant 

tours (i.e., 1  ) achieved around 13% reduction in the CPU time while producing 0.9% inferior 

solution on average. Overall, this analysis showed that when comparing Case 1 with Framework-3, even 

with a reduction of 50% in the number of giant tours, the former still spends twice as much time while 

yielding inferior solutions on average. 

Case 2: In this case, the size of the LH/BH pool was reduced by randomly choosing a subset of routes 

only. We tested different randomly chosen pool sizes and found significant compromises on solution 

quality. For instance, reducing the pool size by 30% produced an average solution that was around 6% 

worse on average as compared to the solution produced by Framework-2. The results are obviously even 

worse when compared to our best framework Framework-3.  

 

 

5. Computational Experiments 

We first provide the details of our computer specifications and the new data sets which we constructed 

for this variant. We then provide optimal solutions for the smaller instances (n=20) together with upper 

and lower bounds for large instances followed by detailed heuristics results and analysis. 
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5.1 New Data Sets, Computer specifications 

Computer specifications and software used: 

The optimal solutions are obtained using the IBM ILOG CPLEX 12.3 software on Intel Core 2Duo PC 

with a 2.80GHz processor and 8GB of RAM. The heuristic algorithms are coded in Microsoft Visual 

C++ 6 and run on an Intel Pentium 4 with a 3.0 GHz processor and 2.5 GB of RAM personal computer. 

 

New data instances: 

The FSMVRPB instances are generated using the mixed fleet data set of Golden et al. (1984) and the 

VRPB data set of Toth and Vigo (1997). In these instances, the mix fleet attributes (distances, fixed and 

running costs, various vehicle capacities) are taken from the first study and the backhaul percentages are 

from the latter. It should be noted that the original source of this data set is the VRP data initially 

proposed by Christofides and Elion (1969). We generate a set of 36 FSMVRPB instances using the 12 

test problems of Golden et al. (1984) ranging from 20 to 100 customers. We denote them by HWS, short 

for Hajarat, Wassan and Salhi. For each instance, following the conventions used in Toth and Vigo 

(1997), three new instances are generated using linehaul/backhaul (LH/BH) percentages of 50/50, 67/33 

and 80/20, by taking every first customer as a backhaul in two, three and five customers, respectively. 

For ease of reference we present in Table 1 the data of these 36 FSMVRPB instances. The HWS 

instances can be obtained from CHLO (2013).  

 

     (Insert Table 1 around here) 

 

First we provide our optimal solution and lower/upper bounds generated by CPLEX and then present our 

heuristic results. In addition, we also report and compare our results against the best solution from the 

literature for the special case of this problem, i.e., the fleet size and mix VRP (FSMVRP) where only 

delivery customers are considered. 

We used percentage deviation to assess the tightness of the lower and upper bounds as well as the 

quality of our heuristics. For each instance the deviation is computed as follows:  
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(%) .100best

best

F F
Deviation

F


  where bestF refers to the largest LB (or smallest UB or the best of the 

heuristic solution values), and F is the value for the LB, UB or the heuristic solution value. The overall 

average deviation is computed as the average over all the instances. 

5.2 Optimal solution and lower/upper bounds 

 

We run CPLEX for a maximum execution time of two hours using the breadth first strategy (also known 

as best-bound). In Table 2, we report for each of the instances the optimal solution in bold if found and 

the corresponding CPU time used. We also report the lower and the upper bounds found within the two 

hours maximum allowed time. CPLEX has obtained 10 optimal solutions for the 12 small instances 

(n=20) and one for the 50 customers instance (HWS17). We conducted these experiments using both 

formulations namely without and with tightening. With regard to lower bounds, the modified 

formulation, with the new constraints (2a-2b, 3a-3b, 4a-4c, and 13a-13d), provide tighter lower bounds 

on average with a deviation of 0.044% worse compared to 0.403% for the first formulation. In addition, 

the largest deviation for the modified formulation is 0.48% only (instance HWS26) whereas the other 

formulation produces a 7.61% (instance HWS16). However, the first formulation appears to generate 

relatively better upper bounds on average with a deviation about 0.5% lower than the modified one.  

One obviously can argue about the usefulness of considering these two formulations separately and 

running them for 2 hours each instead of considering one only but for 4 hours. Though, this was not the 

aim of this exercise, this can easily be tested as long as CPLEX does not run out of memory.  

 

It is worth noting that optimality could not be guaranteed within the time limit of two hours for two of 

the smaller instances namely HWS10 and HWS12. We then decided for these particular small instances 

to let CPLEX run for a longer time to obtain the optimal solutions.  According to Table 2, the average 

duality gap between upper and lower bounds, including optimal solutions, is around 14%. This high 

value is mainly due to the larger instances (n ≥ 75). This information may not necessarily be useful as 

our lower bounds could be too loose or the obtained upper bound may be not that good. 

 

      (Insert Table 2 around here) 
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5.3 Heuristics results and analysis 
 

Frameworks: 

In Table 3 results of the three frameworks are compared with those obtained by the constructive 

heuristic namely the Sweep-alpha method developed in Hajarat (2010). In this method the LH giant 

tours generated by the Sweep procedure are partitioned into feasible mix fleet routes by calculating a 

desirability factor “alpha” that relates to the total distance (cost) of a route, the corresponding cost per 

unit demand and the relative vehicle fixed cost per unit of distance travelled. Backhauls are then added 

to tours using the Sweep method.  

The results are compared on the basis of average solution quality and the CPU time. All frameworks 

performed better on the solution quality as compared to the Sweep-alpha approach; however the later 

spent relatively much less computer time. Among the frameworks, Framework-1 operated fast but fell 

behind on solution quality (a deviation of about 6%) as compared to the other two frameworks. 

Framework-2 produced the best quality solution as it operates on a very large pool size (around 10 times 

bigger than Framework-1), hence it spent a significant amount of computer time and could not solve two 

instances due to an excess memory problem when using CPLEX. Framework-3 on the other hand found 

the right balance by building an operative pool size to solve all the instances within a reasonable 

computing time while compromising a little on the solution quality with a deviation of about 2%. 

However, Framework-3 outperformed the Sweep-alpha heuristic yielding a percentage improvement of 

over 6% while still requiring a reasonably small amount of CPU time. This heuristic also behaves rather 

well considering it yields an average duality gap, with respect to the lower bound, to just above 5%.  

 

     (Insert Table 3 around here) 

 

5.4 Performance of the proposed heuristic on FSMVRPB with |B|=0 

For further comparison, we tested our approach on a special class of FSMVRPB namely the standard 

Fleet Size and Mix VRP (FSMVRP). This is described in Section 2 as the original version (Golden et al. 

(1984)), where all customers are treated as linehauls (i.e., |B|=0). In Table 4, we report the overall best 

solutions obtained from several algorithms and the ones found by the proposed heuristic. Even though 

our methodology was originally designed to solve the FSMVRPB and not the FSMVRP, our Set 

Partitioning based heuristic shows to perform reasonably well given that the overall best results from the 
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literature were on average just over 2% better than ours. These results show that our heuristic is flexible 

enough to cater for similar and related problems that incorporate heterogeneous vehicle fleet. 

 

    (Insert Table 4 around here) 

 

6. Conclusion and Suggestions 

The contributions of the paper to the literature are the introduction of a new variant of the classical VRP 

which we call the Fleet Size and Mix Vehicle Routing Problem with Backhauls (FSMVRPB);  the 

generation of a large number of new instances (36 in total) ranging in size from 20 to 100; a new ILP 

formulation of the problem together with some constraints tightening; optimal solutions for small size 

instances as well upper and lower bounds for larger ones; and finally an efficient design of a Set 

Partitioning based heuristic. The proposed heuristic contains three frameworks. The first one did not 

include the backhauls in the pool fleet composition which affected the solution quality but proved to be 

faster than the other two. The second incorporated both linehauls and backhauls in the pool fleet 

composition. This enhanced the quality of solutions but required a large CPU time besides being unable 

to solve all instances due to the huge number of routes generated. The third one restricts the number of 

routes in the pool efficiently making it the most appropriate in terms of both the solution quality and the 

computational time. The proposed heuristic proved to be a good performer as it yields solutions that are 

on average 5% over the obtained lower bounds only. We therefore think that the results produced for 

this new problem are not only of interest to practitioners but to academics for benchmarking purposes. 

The heuristic is also tested on a special case (the heterogeneous VRP namely the FSMVRP) and 

performed reasonably well.  

 

This study will hopefully entice other researchers to explore this interesting practical routing problem 

even further. This could be achieved by exploring the identification of promising routes or giant tours in 

more depth. Another approach would be to develop efficient meta-heuristics or a hybridisation of 

heuristics and exact methods. Other related routing problems that could be worth examining in the future 

may include multi-depots, time windows, constraint on loading and unloading sequences, among others.  

 

Acknowledgments- We would like to thank the editor and the referees for their valuable comments and 
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Table 1: FSMVRPB instances data. 
 

No N L B QA fA QB fB QC fC QD fD QE fE QF fF 

HWS1 20 10 10 20 20 30 35 40 50 70 120 120 225     

HWS2 20 13 7 20 20 30 35 40 50 70 120 120 225     

HWS3 20 16 4 20 20 30 35 40 50 70 120 120 225     

HWS4 20 10 10 60 1000 80 1500 150 3000             

HWS5 20 13 7 60 1000 80 1500 150 3000             

HWS6 20 16 4 60 1000 80 1500 150 3000             

HWS7 20 10 10 20 20 30 35 40 50 70 120 120 225     

HWS8 20 13 7 20 20 30 35 40 50 70 120 120 225     

HWS9 20 16 4 20 20 30 35 40 50 70 120 120 225     

HWS10 20 10 10 60 1000 80 1500 150 3000             

HWS11 20 13 7 60 1000 80 1500 150 3000             

HWS12 20 16 4 60 1000 80 1500 150 3000             

HWS13 50 25 25 20 20 30 35 40 50 70 120 120 225 200 400 

HWS14 50 33 17 20 20 30 35 40 50 70 120 120 225 200 400 

HWS15 50 40 10 20 20 30 35 40 50 70 120 120 225 200 400 

HWS16 50 25 25 120 1000 160 1500 300 3500             

HWS17 50 33 17 120 1000 160 1500 300 3500             

HWS18 50 40 10 120 1000 160 1500 300 3500             

HWS19 50 25 25 50 100 100 250 160 450             

HWS20 50 33 17 50 100 100 250 160 450             

HWS21 50 40 10 50 100 100 250 160 450             

HWS22 50 25 25 40 100 80 200 140 400             

HWS23 50 33 17 40 100 80 200 140 400             

HWS24 50 40 10 40 100 80 200 140 400             

HWS25 75 37 38 50 25 120 80 200 150 350 320         

HWS26 75 50 25 50 25 120 80 200 150 350 320         

HWS27 75 60 15 50 25 120 80 200 150 350 320         

HWS28 75 37 38 20 10 50 35 100 100 150 180 250 400 400 800 

HWS29 75 50 25 20 10 50 35 100 100 150 180 250 400 400 800 

HWS30 75 60 15 20 10 50 35 100 100 150 180 250 400 400 800 

HWS31 100 50 50 100 500 200 1200 300 2100             

HWS32 100 66 34 100 500 200 1200 300 2100             

HWS33 100 80 20 100 500 200 1200 300 2100             

HWS34 100 50 50 60 100 140 300 200 500             

HWS35 100 66 34 60 100 140 300 200 500             

HWS36 100 80 20 60 100 140 300 200 500             

 

n: number of customers; L: number of linehaul customers; B: number of backhaul customers; Qv: capacity of vehicle v;  

fv: fixed cost of vehicle type v; v = A, B … F  
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Table 2: Optimal, LB/UB bounds with CPLEX (2 hour time limit using best-bound  

                strategy) 
 

Problem details CPLEX Solution   

(Formulation without 

tightening) 

CPLEX solution  

(Formulation with 

tightening) 

 Problem Size L B UB Optimal/LB  

(Time in secs) 

UB Optimal/LB 

(Time in secs) 

HWS1 20 10 10 720.57 720.57     (294) 720.57 720.7      (175) 

HWS2 20 13 7 818.12 818.12     (1064)              818.12 818.12     (1498) 

HWS3 20 16 4 848.23 848.23      (548)              848.23 848.23     (1242) 

HWS4 20 10 10 4342.48 4342.48    (4) 4342.48 4342.48   (2) 

HWS5 20 13 7 5357.98 5357.98    (69) 5357.98 5357.98   (85) 

HWS6 20 16 4 5421.63 5421.63   (1567) 5421.65 5421.63   (2249) 

HWS7 20 10 10 729.50 729.50     (57) 729.50 729.50     (38) 

HWS8 20 13 7 838.11 838.11     (101) 838.11 838.11    (156) 

HWS9 20 16 4 890.76* 880.14             890.76 890.76    (6130) 

HWS10 20 10 10 4349.13 4349.13    (7) 4349.13 4349.12   (4) 

HWS11 20 13 7 5363.58 5363.58    (64) 5363.58 5363.58   (52) 

HWS12 20 16 4 5497.97* 5452.08 5497.98 5465.40 

HWS13 50 25 25 1685.97 1481.96 1632.16 1480.75 

HWS14 50 33 17 1817.67 1704.11 1898.58 1705.44 

HWS15 50 40 10 2073.93 1929.35 2060.37 1937.24 

HWS16 50 25 25 5592.97 5115.66 5558.37 5537.24  

HWS17 50 33 17 6547.93 6547.93   (3477) 6547.93 6547.93   (5076) 

HWS18 50 40 10 7590.69 6860.21 7693.79 7026.15 

HWS19 50 25 25 1643.36 1509.32 1656.35 1509.41 

HWS20 50 33 17 2088.72 1925.55  2073.07 1926.03 

HWS21 50 40 10 2363.80 2157.31  2381.68 2196.32 

HWS22 50 25 25 1717.55 1694.88 1717.55 1697.38 

HWS23 50 33 17 2179.09 2029.01  2206.23 2028.35 

HWS24 50 40 10 2618.39 2337.11  2485.95 2335.56 

HWS25 75 37 38 1475.40 1228.95 1546.75 1228.48 

HWS26 75 50 25 1599.49 1348.49 1503.14 1341.97 

HWS27 75 60 15 1862.38 1463.34 1617.19 1466.24 

HWS28 75 37 38 2038.02 1487.99 2322.16 1486.89 

HWS29 75 50 25 2779.15 1665.78 1887.32 1660.15 

HWS30 75 60 15 2665.26 1847.10 2757.74 1853.72 

HWS31 100 50 50 7615.37 4881.46 8766.06 4870.54 

HWS32 100 66 34 7491.00 5903.18 7180.29 5901.57 

HWS33 100 80 20 9006.20 6889.46  8721.29 6886.44 

HWS34 100 50 50 2929.31 2374.40 3324.57 2369.80 

HWS35 100 66 34 3332.50 2728.35 4539.46 2730.67 

HWS36 100 80 20 3755.16 3140.05 4206.21 3139.87 

 

*: Optimal solution were observed when extra time was allowed and other CPLEX parameters attempted (such as depth first). 
Time: CPU time in seconds (recorded if the time was less than 2 hours) 

Underline: shows the tighter bounds (upper or lower). 
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Table 3: Comparison of three frameworks results. 
 

 

HWS19 50 1729.30 1.97 1744.49 3.44 1704.41 39.81 1751.59 5.02 1704.41 

HWS20 50 2182.47 4.44 2245.85 11.89 2037.23 84.95 2063.87 12.72 2037.23 

HWS21 50 2509.58 9.53 2550.63 17.17 2340.09 103.52 2435.18 23.45 2340.09 

HWS22 50 1841.28 2.11 1817.79 3 1774.71 18.41 1990.6 4.3 1774.71 

HWS23 50 2322.46 4.97 2317.93 8.31 2166.52 64.77 2189.97 9.38 2166.52 

HWS24 50 2550.88 9.25 2638.87 17.44 2430.88 49.72 2539.94 18.8 2430.88 

HWS25 75 1453.86 6.73 1456.01 16 1332.02 1006.28 1332.02 109.89 1332.02 

HWS26 75 1568.82 20.81 1508.29 101.88 1421.04 1779.88 1431.97 133.33 1421.04 

HWS27 75 1684.76 44.22 1679.28 185.36 1534.65 1996.59 1534.65 241.45 1534.65 

HWS28 75 1976.80 6.67 1880.97 39.69 1617.85 1351.92 1660.03 37.47 1617.85 

HWS29 75 2153.57 21.13 2044.62 121.09 1799.76 1513.3 1827.05 68.13 1799.76 

HWS30 75 2467.32 45.31 2182.3 219.17 1990.46 2662.15 1993.36 242.78 1990.46 

HWS31 100 5746.00 20.42 4943.29 71.14 5201.81 4257.41 5201.81 335.72 4943.29 

HWS32 100 6898.01 85.70 6358.1 214.92 - 6035.96 1866.3
3 

6035.96 

HWS33 100 8410.82 146.88 7723.52 649.82 - 7601.09 950.66 7601.09 

HWS34 100 2813.74 20.45 2465.41 55.31 2646.52 2871.74 2671.66 119.67 2465.41 

HWS35 100 3378.77 65.69 3280.1 140.64 2971.98 651.8 2971.98 471.84 2971.98 

HWS36 100 3782.32 150.08 3806.15 305.51 3533.9 1729.3 3565.49 829.44 3533.9 

ARPD (%)  8.41 
 

6.09 
 

0.37 
 

2.08 
  

Avg CPU   19.48  62.94  668.66  156.47  

Min CPU   0.2  0.25  0.58  0.36  

Max CPU   150  649  4257  1836  

 
RPD: Relative Percentage Deviation from the best [RPD = (Heuristic Solution-H-Best)/H-Best*100] 

ARPD: Average of RPD 

CPU: CPU time in seconds. 

 
 

Sweep Framework-1 Framework-2 Framework-3 Heuristic 

Best Problem n  Solution CPU Solution CPU Solution CPU Solution CPU 

HWS1 20 765.29 0.20 811.77 0.84 726.48 0.61 726.48 0.59 726.48 

HWS2 20 919.50 0.30 889.41 0.42 818.12 1.09 818.12 0.89 818.12 

HWS3 20 937.39 0.41 880.38 0.66 848.59 1.64 848.59 0.98 848.59 

HWS4 20 4398.06 0.28 4381.13 0.27 4350.65 0.91 4350.65 0.48 4350.65 

HWS5 20 5427.87 0.34 5406.41 0.38 5366.39 2.75 5366.39 0.75 5366.39 

HWS6 20 6331.74 0.42 5911.26 0.66 5875.23 3.44 5875.23 1.3 5875.23 

HWS7 20 791.50 0.20 776.75 0.25 767.93 0.58 788.65 0.69 767.93 

HWS8 20 959.18 0.27 915.53 0.36 872.97 1.39 900.27 0.47 872.97 

HWS9 20 945.88 0.45 995.25 0.63 903.18 2.09 917.93 0.77 903.18 

HWS10 20 4429.37 0.24 4423.98 0.25 4365.44 0.88 4379.64 0.36 4365.44 

HWS11 20 5878.81 0.27 5927.87 0.38 5414.5 2.72 5857.03 0.47 5414.5 

HWS12 20 6340.10 0.38 6336.83 0.61 5928.78 4.94 6321.41 0.75 5928.78 

HWS13 50 1752.72 1.66 1728.51 3.47 1625.7 17.88 1625.7 11.81 1625.7 

HWS14 50 1920.65 4.53 1902.36 10.55 1811.63 26.19 1825.99 18.06 1811.63 

HWS15 50 2120.89 8.95 2207.59 20.83 2018.93 38.42 2037.43 39.08 2018.93 

HWS16 50 5629.79 1.83 5634.7 3.56 5561.67 330.34 5561.67 4.5 5561.67 

HWS17 50 7075.39 4.53 6679.18 9.89 6570.39 996.55 6596.97 16.03 6570.39 

HWS18 50 8152.40 9.66 7697.89 30.38 7599.08 1120.5 7634.94 54.75 7599.08 
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Table 4: Performance of the proposed heuristic on the special case the standard FSMVRP: 

Comparison against the best algorithms published in the literature. 

 
Problem Our solution Overall Best solutions 

3 961.03   961.03
WO,CT,B,I

 

4 6945.93   6437.33
 WO,CT,B,I

 

5 1008.59   1007.05
 WO,CT,B,I

 

6 6973.89   6516.47
 WO,CT,B,I

 

13 2434.48   2406.36
 CT,B,I

 

14 9120.35   9119.03
 CT,B,I

 

15 2644.55   2586.37
 WO,CT,B,I

 

16 2782.54   2720.43
 CT,I

 

17 1761.17   1734.53
 B

 

18 2403.25   2369.65
 B,I

 

19 8860.19   8659.74
 WO

 

20 4105.86   4039.49
 CT

 

ARPD (%) 2.308  
WO: Wassan and Osman (2002); CT: Choi and Tcha (2007); B: Brandao (2009); I: Imran et al. (2009) 

RPD: Relative Percentage Deviation from the best [RPD = (Heuristic Solution - Best) / Best*100] 

ARPD: Average of RPD 

 


