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Abstract 

Forming a memory often entails the association of recent experience with present events. This 

recent experience is usually an information rich and dynamic representation of the world 

around us. We here show that associating a static cue with a previously shown dynamic 

stimulus, yields a detectable, dynamic representation of this stimulus.  We further implicate 

this representation in the decrease of low-frequency power (~4-30 Hz) in the ongoing 

electroencephalogram (EEG), which is a well-known correlate of successful memory formation. 

The reappearance of content specific patterns in desynchronizing brain oscillations was 

observed in two sensory domains, i.e. in a visual and in an auditory condition. Together with 

previous results, these data suggest a mechanism that generalizes across domains and 

processes, in which the decrease in oscillatory power allows for the dynamic representation of 

information in ongoing brain oscillations.  

Introduction 

Not everything we associate in our memory occurs at the same time. When our favorite 

football player is seeing the red card, for instance, we are able to bring this together with the 

events we just witnessed a few seconds before.  Later, we are naturally able to recall all 

relevant information leading to the red card. In order to successfully make this association, our 

brain has to accomplish two things. First, it has to keep track of the past and maintain a 

representation of the events in the ongoing football match and second, form memories in 

which past events are connected to the red card.  Processes during the encoding phase that 

will determine our ability to later remember events can be investigated with the so-called 

subsequent memory paradigm (Paller & Wagner, 2002; Wagner, Koutstaal, & Schacter, 1999). 
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Subsequent memory effects refer to neural activity which distinguishes remembered from not 

remembered items at the time of encoding and are well documented in M/EEG and fMRI, 

showing involvement of cortical as well as medial temporal lobe regions (e.g. Long, Burke, & 

Kahana, 2014; Otten, Quayle, Akram, Ditewig, & Rugg, 2006). Concerning M/EEG power, 

decreases in low frequency (<40 Hz) brain dynamics have repeatedly and consistently been 

related to successful memory formation (Hanslmayr & Staudigl, 2014). 

It has recently been proposed that cortical power decreases in the alpha/beta frequency range 

allow for a rich representation of memory content, since a desynchronized system has more 

flexibility to code information over a system of high synchrony. We call this view, the 

information via desynchronization framework (Hanslmayr, Staudigl, & Fellner, 2012). 

Confirming this idea, we have shown that sustained power decreases in the alpha band at 

approximately 8 Hz, contain item specific information about the remembered content, when 

subjects successfully replay dynamic stimuli (i.e. video and sound clips) from memory 

(Michelmann, Bowman, & Hanslmayr, 2016). In this study, we provided direct evidence that 

power decreases are involved in the representation of stimulus specific information 

(Hanslmayr et al., 2012). Moreover these results are well in line with numerous studies 

showing that perception is not continuous but rather is rhythmically sampled at a frequency of 

~7-8 Hz (Hanslmayr, Volberg, Wimber, Dalal, & Greenlee, 2013; Landau & Fries, 2012; 

VanRullen, Carlson, & Cavanagh, 2007). These outcomes therefore indicate that rhythmic 

patterns from the perception of dynamic stimuli can reappear during internally guided retrieval 

processes, in the absence of the stimuli themselves (Michelmann et al., 2016). Accordingly, 

these prior findings also suggest the possibility that the replay of temporal patterns can be 

observed in a situation where dynamic stimuli have to be associated with a static cue.  
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To address this question, we here analyze the data during the encoding phase from a previous 

dataset (Michelmann et al., 2016). The paradigm required subjects to associate a dynamic 

stimulus with a static word that was used as a cue in the later retrieval phase. Importantly, 

during encoding the perception of the dynamic stimulus and the presentation of the word-cue 

was temporally separated, i.e. in every trial, one out of four dynamic stimuli was followed by a 

unique word-cue (Fig. 1, a-b). In a visual condition, these dynamic stimuli consisted of four 

short video-clips, in an auditory session four short sound clips were used. In a later retrieval 

block, participants were presented with the word-cue and were tested whether they 

remembered the associated video/sound clip. 

We hypothesize that, in order to associate the word-cue with the dynamic stimulus, subjects 

maintain (i.e. replay) a sensory representation of the dynamic stimulus, which is why we refer 

to this phase as the “maintenance and association” phase. Using temporal pattern similarity 

analysis, we should therefore be able to detect the replay of these patterns during the 

“maintenance and association” phase, i.e. when the association between a word and the 

sound/movie is formed. In accordance with the information via desynchronization framework, 

we should observe stronger decreases for later remembered versus later not remembered 

items. This subsequent memory effect should be most evident in the frequency band that 

codes for the representation of the dynamic stimulus, i.e. 8 Hz as per our previous findings. 

Moreover, if power decreases enable a richer representation of the perceptual content, we 

should already observe stronger power decreases for later remembered compared to later not 

remembered stimuli during the perception of the dynamic stimulus.   



5 | P a g e  
 

  



6 | P a g e  
 

Materials and Methods 

Participants 

24 healthy, right-handed subjects (18 female and 6 male) participated in this study. 7 further 

participants were tested, or partly tested, but could not be analyzed due to poor memory 

performance (N=2), misunderstanding of instructions (N=2), and poor quality of EEG-recording 

and technical failure (N=3). All participants had normal or corrected-to normal vision. The 

average age of the sample was 23.38 (s.d. = 3.08) years. Participants were native English 

speakers (20), bilingual speakers (2) or had lived for more than 8 years in the UK (2). Ethical 

approval was granted by the University of Birmingham Research Ethics Committee, complying 

with the Declaration of Helsinki. Participants provided informed consent and were given a 

financial compensation of 24£ or course-credit for participating in the study. 

Material and experimental set up 

The cues amounted to 360 words that were downloaded from the MRC Psycholinguistic 

Database (Coltheart, 1981). Stimulus material consisted of 4 video clips and 4 sound clips in 

the visual and auditory session respectively. All clips were 3 seconds long; videos showed 

colored neutral sceneries with an inherent temporal dynamic, sounds were short musical 

samples, each played by a distinct instrument. In both sessions, a clip was associated with 30 

different words. 60 words were reserved for the distractor trials. Those words were not 

associated with a clip but only shown as new words during memory retrieval.12 additional 

words were used for instruction and practice of the task. For presentation, words were 

assigned to the clips or to distractors in a pseudorandom procedure, such that they were 

balanced for Kucera-Francis written frequency (mean = 23.41, s.d. = 11.21), concreteness 
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(mean = 571, s.d. = 36), imageability (mean = 563.7 s.d. = 43.86), number of syllables (mean = 

1.55, s.d. = 0.61) and number of letters (mean = 5.39, s.d. = 1.24). Furthermore lists were 

balanced for word-frequencies taken from SUBTLEXus (Brysbaert & New, 2009). Specifically, 

“Subtlwf” was employed (mean = 20.67, s.d. = 27.16). The order of presentation was also 

randomized, assuring that neither the clips and their associates, nor distractor words were 

presented more than 3 times in a row or in temporal clusters. The presentation of visual 

content was realized on a 15.6 inch CRT-monitor (Taxan ergovision 735 TC0 99) at a distance 

of approximately 50 centimeters from the subjects eyes. The monitor refreshed at a rate of 75 

Hz. On a screen size of 1280 x 1024 pixels, the video clips appeared in the dimension of 360 

pixels in width and 288 pixels in height. ‘Arial’ was chosen as the general text-font, but font-

size was larger during presentation of word-cues (48) than during instructions (26). In order to 

reduce the contrast, white text (rgb: 255, 255, 255) was presented against a grey background 

(rgb: 128, 128, 128). Auditory stimuli were presented using a speaker system (SONY SRS-

SP1000). The 2 speakers were positioned at a distance of approximately 1.5 meters in front of 

the subject with 60 centimeters of distance between the speakers. 

Procedure 

Upon informed consent and after being set up with the EEG-system, participants were 

presented with the instructions on the screen. Half of the subjects started with the auditory 

session, the others were assigned to undertake the visual task first. Both sessions consisted of 

a learning block, a distractor block and a test block. The sessions were identical in terms of 

instructions and timing and differed only in the stimulus material that was used. During 

instruction, the stimulus material was first presented for familiarization and then used in 
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combination with the example words to practice the task. Instructions and practice rounds 

were completed in both sessions.  

As a way to enhance memory performance, participants were encouraged to use memory 

strategies. The suggestion was to imagine the word in a vivid interaction with the material 

content, yet the choice of strategy remained with the subject. In the learning block, 120 clip-

word sequences were presented. Each sequence started with a fixation cross that was 

presented in the center of the screen for 1 second, and then the video-clip played for 3 

seconds. In the auditory condition, the fixation cross stayed on the screen and the sound-clip 

played for 3 seconds. Immediately after the clip, a word cue was presented in the center for 4 

seconds, giving the subject time to learn the association. After that, an instruction requested 

participants to subjectively rate on a 6 point scale how easy the association between the clip 

and the word was. After a press on the space bar, this scale was shown. Equidistant categories 

were anchored with the labels “very easy” and “very hard”; those labels were displayed at both 

ends above the scale. Participants used six response buttons to rate the current association 

(see: Fig. 1). In total each video-clip and each sound-clip was shown 30 times. Each word cue 

was unique, therefore targets were shown only a single time during encoding and retrieval, 

distractors were only shown a single time during retrieval.   

In the distractor block, subjects engaged in a short unrelated working memory task, namely 

they counted down in steps of 13, beginning from 408 or 402 respectively. After 1 minute the 

distractor task ended. Following a short self-paced break, subjects refreshed the instructions 

on the retrieval block.  

In this retrieval block, either a cue or a distractor word (i.e. a new word) was presented upon 

a button press on the space bar. Subjects were instructed to try to vividly replay the content 
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of the corresponding video-clip or sound-clip in their mind upon presentation of the cue. The 

word stayed on the screen for 4 seconds, giving the subject the opportunity to replay the 

memory. Finally, a fixation cross was presented for a varying time window between 250 and 

750 milliseconds to account for movement and preparatory artifacts, before the response 

options appeared on the screen. 

The response options consisted of 6 options. 4 small screen shots of the videos or 4 black and 

white pictures of the featured instruments were presented in equidistant small squares of 

30x30 pixels. Additionally, the options “new” and “old” were displayed in the form of text at 

the most left and most right position (see: Fig. 1 C-D). Subjects could now either indicate the 

target (video/sound) they just replayed, by pressing the button corresponding to that clip. 

Instead, subjects could also indicate that the word was a distractor by pressing the button 

corresponding to the option “new”, or they would simply indicate that they remembered the 

word, but could not remember the clip it was associated with. In this last scenario, subjects 

would press the button corresponding to “old”. The positions of “old” and “new” at the ends, 

as well as the permutation of the 4 target positions in the middle, were counterbalanced across 

participants. Finally, after making a decision, a six point rating scale was presented on which 

subjects could rate the confidence in their response. Now a scale with equidistant categories 

was presented ranging from “guess” to “very sure”. An additional possibility was to press “F2” 

in case of an accidental wrong button press. In this case, the whole trial was discarded from 

analysis. Following the retrieval block, individual electrode positions were logged allowing for 

a break of approximately 30 minutes before beginning the second session. During encoding, 

participants performed 120 trials in the visual and in the auditory condition respectively. Each 

stimulus was therefore associated with a unique word-cue 30 times. During retrieval 
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participants performed a total of 180 trials in each condition that consisted of the 120 unique 

word-cues from encoding and an additional 60 distractor words. The whole experiment 

therefore comprised of 240 encoding and 360 retrieval trials. 

Data Collection 

The recording of behavioral responses and the presentation of instructions and stimuli were 

realized using Psychophysics Toolbox Version 3 (Brainard, 1997) with MATLAB 2014b 

(MathWorks) running under Windows 7, 64 Bit version on a desktop computer. Response 

buttons were “s, d, f, j, k, l” on a standard “QWERTY” layout. Buttons were highlighted and 

corresponded spatially to the response options on the screen, so participants did not have to 

memorize the keys. To this end, the shape of corresponding fingers was also displayed under 

the scale. To proceed, participants used the space bar during the experiment. Physiological 

responses were measured with 128 sintered Ag/AgCl active electrodes, using a BioSemi Active-

Two amplifier, the signal was recorded at 1024 Hz sampling rate on a second computer via 

ActiView recording software, provided by the manufacturer (BioSemi, Amsterdam, 

Netherlands). Electrode positions were logged with a Polhemus FASTRAK device (Colchester, 

VT, USA) in combination with Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011) 

implemented in MATLAB. 

Preprocessing 

The data was preprocessed using the Fieldtrip toolbox for EEG/MEG-analysis (Oostenveld, 

Fries, Maris, & Schoffelen, 2011). Data was cut into trial-segments from 2.5 seconds pre-

stimulus to 7 seconds after the onset of the dynamic stimulus. The linear trend was removed 

from each trial and a baseline correction was applied based on the whole trial. Trials were then 
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downsampled to 512 Hz and a band-stop filter was applied at 48-52, 58-62, 98-102 and 118-

122 Hz to reduce line noise at 50 Hz and noise at 60 Hz; additionally a low-pass filter at 140 Hz 

was applied. After visual inspection for coarse artifacts, an independent component analysis 

was computed. Eye-blink artifacts and eventual heartbeat/pulse artifacts were removed, bad 

channels were interpolated and the data was referenced to average. Finally the data was 

inspected visually and trials that still contained artifacts were removed manually. In the 

auditory condition, on average 12.95% of trials were excluded during preprocessing (s.d. = 

4.71%, min = 4.17%, max = 25.83%), in the visual condition, excluded trials amounted to an 

average of 14.31% (s.d. = 4.49%, min = 5.83%, max = 25.00%). There was no difference in the 

amount of trials that went into the similarity analysis after preprocessing. Neither in the visual 

condition (mean = 26.13, 25.00, 26.13 and 25.58 trials, s.d. = 2.09, 1.91, 2.29 and 2.04 trials, 

ANOVA: F (2.96, 68.15) = 2.037, p = 0.12) nor in the auditory condition (mean = 26.04, 26.25, 

25.71 and 26.46 trials, s.d. = 1.92, 1.92, 2.12, 2.06 trials, ANOVA: F (2.68, 61.54) = 0.906, p = 

0.434). 

Behavioral analysis 

For behavioral analysis, correct trials were defined as those in which the target was correctly 

identified. The confidence rating of the response was considered as high if a rating of 5 or 6 

was selected. Misses were defined as trials in which a cue-word was incorrectly identified as a 

new word, the wrong clip was selected, or the response “old” was given to indicate recognition 

of the word without remembering the target video or sound it was associated with. 

Power analysis 
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Oscillatory power was determined by multiplying the Fourier-transformed data with a complex 

Morlet wavelet of 6 cycles. Raw power was defined as the squared amplitude of the complex 

Fourier spectrum and estimated for every 4th sampling point (i.e. sampling rate of 128 Hz). For 

the contrast of subsequent hits and subsequent misses, a baseline was computed as the 

average power between -1 and 7 seconds of all trials within the contrast (Long et al., 2014). 

Every trial was then normalized by subtracting the baseline and subsequently dividing by the 

baseline (activitytf – baselinef)/baselinef, where t indexes time and f indexes frequency. The 

relative power was calculated for all frequencies between 2 and 30 Hz. 

Phase pattern analysis during perception and “maintenance and association” 

While participants learned the associations in the encoding block, they repeatedly perceived 

(saw/heard) the same dynamic stimulus. Content-specific properties could consequently be 

identified if they were shared by trials of the same content but not by trials of a different 

content. Hence, content-specific phase during perception was assessed by contrasting the 

phase similarity between pairs of trials in which the same content was presented, with the 

phase similarity of an equal number of trial pairs that were of different content. For each pair 

of trials, the cosine of the absolute angular distance was then computed and finally averaged 

across all (same or different) combinations [29]. The average similarity value for same and 

different combinations was subjected to statistical testing across subjects at every time point, 

at every electrode and in every frequency of interest; this contrast embodies content specific 

phase patterns during perception. 

Participants also repeatedly associated the same dynamic stimuli (one of four videos/sounds) 

with a different word cue. Therefore the temporal pattern during perception of the dynamic 

stimulus could also be compared to the temporal pattern during association. This way the 
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similarity between combinations of same content (e.g. watching video A, associating video A 

to a cue) could be compared to the similarity between combinations of different content (e.g. 

watching video A, associating video B to a cue). Notably, excluding within trial combinations 

eliminates the potential confound of temporal autocorrelation.  

In the end, the phase similarity between combinations of same content was contrasted with 

the phase similarity between trials of different content. This contrast reveals phase patterns 

that are specific to the dynamic stimulus which subjects associated with the cue. Phase 

similarity between perception and association was assessed across time points, consequently 

comparing temporal patterns. To this end a time window from perception was used as in sliding 

window and a measure of phase coherence over time was computed (see below and Fig. 3 A-

B). 

To maximize the signal to noise ratio, the following restrictions were applied: The tested 

frequency was 8 Hertz, following our previous results and hypotheses (Michelmann et al., 

2016); The time-window during perception was centered on the cluster in which phase 

patterns were most reliably content specific during encoding (i.e. the cluster with the lowest 

p-value). Finally, all possible combinations of trials were used regardless of subsequent 

memory performance.  

The measure to assess phase similarity between two windows was the Single-trial Phase 

Locking Value (S-PLV) (Lachaux et al., 2000; Mormann, Lehnertz, David, & E. Elger, 2000). This 

measure defines similarity between two windows (x and y) as the constancy of phase angle 

difference over time, where n denotes the width of the window and 𝜑 is the phase: 
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S-PLV assesses the phase coherence between two time windows and has the advantage of 

increased robustness for noisy data at the expense of temporal resolution. 

(Lachaux et al., 2000) suggest to compute the S-PLV over 6-10 cycles of a frequency for a good 

signal to noise ratio, for our purposes, S-PLV was applied to a time window of 8 cycles, which 

resulted in a 1 second window for 8 Hertz. Phase values were extracted by multiplying the 

Fourier-transformed data with a complex Morlet Wavelet of 6 cycles. Phase-values were then 

downsampled to 64 Hz. The similarity measure was computed for every pair of trials in the 

combinations of same content and in the combinations of different content. Importantly, the 

sliding window approach that was used accounts for the non-time-locked nature of the data 

(temporal patterns could be present anywhere in the “maintenance and association” interval). 

This resulted in a time course of similarity for the combinations of same and of different 

content. 

The difference in this similarity was first averaged across the whole “maintenance and 

association” episode (between 3500 and 7000ms) and then statistically tested across subjects 

with a random permutation procedure (see: statistical analyses) based on clusters of summed 

t-values across electrodes (Maris & Oostenveld, 2007). In a second test, the time courses at 

every electrode were compared with a series of t-tests and subsequently tested with a cluster-

based random permutation procedure, where clusters were summed across electrodes and 

time (see also: statistical analyses, below). Additionally, a control frequency was tested, namely 

𝑆𝑃𝐿𝑉 =  |𝑛−1 ∑ 𝑒𝑖(𝜑𝑥𝑡−𝜑𝑦𝑡)

𝑛

𝑡=1

| 
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6 Hz, based on the results from the power analysis. Time windows were defined accordingly 

for this frequency as 8 cycles around the center of the most reliable cluster during perception.  

Statistical analyses 

Behavioral performance 

Behavioral results were compared between the auditory and visual condition with a series of 

paired t-tests. P-values were compared against a Bonferroni-corrected threshold (Bland & 

Altman, 1995), however no specific hypothesis was tested. Performance differences between 

stimuli were tested with a repeated measures ANOVA with the factor “stimulus” (1, 2, 3 and 

4) under Greenhouse-Geisser correction. 

Decreases in power 

To test for differences in baseline corrected power, a paired t-test was first computed for every 

time point and frequency at every channel. For multiple-comparison-correction, a random 

permutation procedure was applied (Maris & Oostenveld, 2007). This procedure sums up 

neighboring t-values above a cluster forming threshold and compares the resulting clusters’ 

sizes to the distribution of the maximal cluster sums that are derived, when condition labels 

are randomly swapped with the Monte-Carlo method. The minimum number of neighboring 

channels to be considered a cluster was specified with 3, which attenuates the impact of 

spatially high frequency noise; neighboring electrodes were derived via the triangulation 

method of the Fieldtrip toolbox (http://www.fieldtriptoolbox.org/). The clusters were summed 

across time, frequency and channels, then labels were permuted 1000 times; thresholding of 

the clusters as well as the testing of the null hypothesis was addressed with an a priori defined 

threshold for single-sided testing (alpha level of 0.05). To identify frequencies with a reliable 
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power difference, a paired samples t-test was computed for every frequency on the average 

power difference across all channels and across the whole time window of interest. 

Phase similarity during perception of the dynamic stimulus 

Phase similarity during perception was tested in the same way as power. A series of paired t-

tests was computed to contrast the average similarity of combinations of same content with 

the average similarity of combinations of different content. T-values for every frequency band, 

electrode and time point were then corrected for multiple comparisons in an unrestricted 

cluster-based permutation approach. The cluster permutation compared again the sums of t-

values across frequency, electrodes and time against the distribution of these clusters derived 

via the Monte-Carlo method (as described above). Later, the frequency 8 Hertz was tested 

separately with the same cluster permutation in order to identify a temporospatial cluster, in 

which 8 Hertz phase could differentiate content particularly well.  

Phase similarity between perception and “maintenance and association” 

The similarity between the time-window during perception and the maintenance-episode was 

tested for differences between combinations of same and combinations of different content. 

As mentioned above, in a first step, the average difference between 3.5 and 7 seconds was 

contrasted with a paired t-test on every electrode to test for a general effect. Multiple 

comparisons correction was done again with the following procedure: The labels of the 

average similarity for same and different content combinations were randomly swapped for 

each participant 1000 times, therefore eliminating the association between condition and 

observed similarity. Then a t-test was computed between random conditions on the average 

similarities ( 3.5 and 7 seconds) in the same way as with the real conditions. Subsequently, t-
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values were summed across neighboring electrodes for the random labels and for the real 

conditions, however only  those t-values that exceeded the critical threshold (i.e. a t-value 

corresponding to alpha = 0.05, defined a priori) were considered. This way 1000 cluster-sums 

were derived from the random labels, which formed the null-distribution. The real cluster-sum 

under correct labels was compared against this distribution. The p-value of the whole statistical 

test was derived as the ratio of random cluster-sums that were bigger than the observed 

cluster-sum. In a second step, a paired t-test was not only computed for every electrode, but 

also at every time point during the “maintenance and association” interval. Differences were 

again tested with a cluster based permutation approach. Now clusters were formed by 

summation of the thresholded t-values across neighboring electrodes and neighboring time 

points. They were subsequently compared against the distribution of these clusters for 1000 

random label permutations in exactly the same procedure described above. 

Results 

Behavioral performance 

In the visual session, participants remembered on average 53.92% (standard deviation [s.d.] = 

17.56%) of the video clips with high confidence (rating > 4), and they further remembered 

9.97% (s.d. = 7.62%) of the clips with low confidence (Fig. 1 E). In the auditory session, 44.44% 

(s.d. = 19.8%) of the audio clips were subsequently remembered with high confidence, which 

was significantly less than in the visual condition (t23 = -2.81, p < 0.01). An additional 9.06% 

(s.d. = 6.9%) of the audio clips were remembered with low confidence. In accordance, the 

number of subsequent misses was significantly lower in the visual session (mean 35.07%, s.d. 

= 16.43%) than in the auditory session (45.45%, s.d. = 20.27%, t23 = -3.33, p < 0.01). The total 
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amount of subsequent misses in the auditory condition (45.45%, s.d. = 20.27%) comprised of 

17.22% (s.d. = 12.98%) “old” responses, 14.24% (s.d. = 10.42%) erroneous selections of “new” 

and 13.99% (s.d. = 9.69%) selections of the wrong sound-clip. In the visual condition, 

subsequent misses (35.07%, s.d. = 16.43%) comprised of 11.28% (s.d. = 9.97%) “old” 

responses, 14.37% (s.d. = 11.74%) erroneous selections of “new” and 9.41% (s.d. = 6.33%) 

selections of the wrong video-clip.  

In the visual condition, there was no difference in the amount of trials that were remembered. 

The four videos were remembered with a probability of 61.94%, 63.61%, 62.08% and 68.06% 

(ANOVA: F (2.39, 54.86) = 2.250, p = 0.106, s.d. = 20.29%, 18.04%, 16.93% and 18.49%) for high 

confidence there was a probability of 50.28%, 54.17%, 55.14%, 56.11% (ANOVA: F (2.42, 55.56) 

= 1.438, p = 0.245), s.d. = 20.45%, 19.91%, 17.28%, 21.14%) to remember each video.  

There was however a difference in the amount of trials per stimulus that were remembered in 

the auditory condition. The four sounds were remembered with a probability of 46.53% 

61.81% 60.28% and 45.42% (ANOVA: F (2.66, 61.11) = 10.277, p < 0.001, s.d. = 24.93%, 20.59%, 

20.83% and 26.70%). For high confidence there was a probability of 37.22%, 54.17%, 50.42% 

and 35.97%, (ANOVA:  F (2.67, 61.36) = 11.342, p < 0.001, s.d. = 25.32%, 23.33%, 19.49%, 

23.26%) to remember the different sounds. 

Successful memory encoding is associated with low frequency power decreases 

in the visual and auditory condition 

To find correlates of successful memory encoding, the oscillatory power between subsequently 

remembered (hits) and subsequently not remembered (misses) items was compared. 

Specifically, we contrasted trials for which associations were subsequently remembered with 
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high confidence, with trials in which the associations were subsequently not remembered 

correctly. In this analysis, only those datasets were used, in which a minimum of 15 trials 

remained for hits or misses after preprocessing (N=18). Two crucial episodes for successful 

memory encoding were tested separately: (i) the time interval in which the dynamic stimulus 

was actually perceived (0 to 3 seconds) and (ii) the “maintenance and association” interval (3 

to 7 seconds), in which the memory formation would be expected to have taken place. In the 

time interval from 0 to 3 seconds, a small cluster of power decreases was associated with 

successful memory in the visual condition; it displayed a trend towards significance (p < 0.07, 

Fig. 2A, left). Likewise, in the auditory condition a similar cluster of power decreases appeared 

(p = 0.047, Fig. 2B, left).  

During the “maintenance and association” interval (3 to 7 seconds), substantially reduced 

power in the lower frequencies (<30 Hz) was observed for subsequent hits compared to 

subsequent misses (Fig. 2, middle) in both conditions. In the visual condition, a broad cluster 

emerged where power was significantly lower when tested against random permutations (p = 

0.031, Fig. 2A, middle). Likewise a broad cluster of significant power decreases appeared in the 

“maintenance and association” interval of the auditory condition (p < 0.003, Fig. 2B, middle).  

To identify frequencies that robustly exhibited lower oscillatory power for successful memory 

encoding, the power during the “maintenance and association” interval was averaged across 

all electrodes and time points and differences were subjected to a t-test. Following our 

previous results (Michelmann et al., 2016), we expected the strongest power decreases in both 

conditions to peak at 8 Hz. Indeed, a clear peak at 8 Hz was observed in the visual condition 

(t17 = -2.82, p < 0.01, Fig. 2A, middle). In the auditory condition, however, a peak was observed 
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at 6 Hz (t17 = -4.45, p < 0.001, Fig. 2B, middle), yet power decreases also extended to 8 Hz (t17 

= -3.53, p = 0.001). 

For the visual condition, the power decreases at 8 Hz displayed a broad topography with a 

parietal maximum over the left hemisphere (Fig. 2A, right). Decreases in 8 Hz power were 

similarly broadly distributed in the auditory condition, with maxima over left parietal and right 

frontal regions (Fig. 2B, right). 

Together, these results confirm the fundamental role of decreases in low frequency oscillatory 

power for the successful formation of memory.  
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Temporal patterns are content specific during perception and can be detected 

during “maintenance and association” 

The detection of content specific temporal patterns during the “maintenance and association” 

period necessitates that the dynamic stimuli themselves elicit temporally distinct neural 

responses. To address this, we first compared the pairwise phase consistency (PPC) (Vinck, van 

Wingerden, Womelsdorf, Fries, & Pennartz, 2010) between trials in which the same dynamic 

stimulus was perceived with the PPC between trials of different content. These findings of 

content specific phase during perception were previously published (Michelmann et al., 2016). 

Oscillatory phase of the neural responses was specific to the dynamic stimuli in two broad 

clusters in the visual (p < 0.001, p = 0.003, Fig 3C) and one broad cluster in the auditory 

condition (p < 0.001, Fig 3G), confirming prior reports that the content of dynamic stimuli is 

tracked by the phase of low frequency oscillations (Ng, Logothetis, & Kayser, 2013). Vitally, 

both clusters included 8 Hz which was the oscillation for which we hypothesized to detect the 

reappearance of temporal patterns in the “maintenance and association” period.  

We now identified periods during perception in which the time courses at 8 Hz were maximally 

content specific by restricting the statistical test to 8 Hz only and selecting the cluster in which 

content could most reliably be differentiated during perception (i.e., the cluster with the 

lowest p-value). In the visual condition, this cluster extended from -152 ms to 564 ms (p < 

0.001). Note that post-stimulus effects are smeared temporally into the pre-stimulus interval 

because of the wavelet decomposition. The most reliable cluster of content specificity in the 

auditory condition extended from 22 ms to 871 ms (p = 0.002). A further cluster in the visual 

condition was observed between 2,650 ms and 3,300 ms (p = 0.016). In the auditory condition 
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further clusters emerged between 1,818 ms and 2,627 ms (p = 0.003) and between 1,203 ms 

and 1,504 ms (p = 0.047) indicating that in both modalities early and later time windows 

showed content specific temporal patterns.  

For the 8 Hz oscillation, a 1-second wide window was now centered on the cluster that most 

reliably distinguished content during perception (i.e. at 206 ms in the visual condition and 446 

ms in the auditory condition, Fig 3 A, E). In a sliding window approach, a measure of phase 

coherence (S-PLV (Lachaux et al., 2000)) was then computed between this window and every 

1-second-wide window between 3 and 7 seconds during the “maintenance and association” 

period (see Fig. 3 A-B). This was done for all available trials from encoding, regardless of 

subsequent memory performance. For practical reasons, at the end of the trial the window 

was slid out back into the pre-stimulus interval (zero padding could be an alternative but more 

intricate approach). This time course of similarity (phase coherence) was now computed for 

trial-combinations comprising perception and association of the same stimulus and for trial-

combinations of perception and association of different content. Importantly, the 

combinations of same content were never built within a trial, assuring a balancing of temporal 

autocorrelation between same and different combinations. Furthermore, by changing only the 

pairing between trials and using the same trials to form pairs of same and different content, it 

was ensured that the signal to noise ratio was the same in both conditions. In a first test, we 

subjected the average similarity across time to a t-test, contrasting same and different 

combinations at every electrode. A cluster-based permutation revealed a significant cluster in 

the visual condition (p < 0.001), but not in the auditory condition. In a follow-up test, we 

repeated the t-test for every time-point at every electrode and summed clusters across time 

and electrodes. A permutation test revealed 2 clusters of significant differences in the visual 
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condition (p < 0.001, p = 0.035, Fig. 3 B, D). The first cluster was located over left-frontal regions 

and extended from 4.8 to 5.41 seconds after stimulus onset (i.e. 1.8 to 2.41 seconds after the 

start of the “maintenance and association” phase). The second cluster was located over 

parietal and occipital areas, extending from 4.97 to 5.34 seconds (1.97 to 2.34 seconds of the 

“maintenance and association” phase, Fig. 3 D right). We applied the same approach to the 

auditory condition; a cluster (p = 0.047) emerged over right-frontal regions extending from 

4.11 to 4.44 seconds after stimulus onset (1.11 to 1.44 seconds of the “maintenance and 

association” phase), even though strictly interpreted, this cluster does not exceed a corrected 

alpha threshold (Fig. 3 F, H right). Finally we also tested the frequency of 6 Hz, which showed 

the most reliable power decrease in the auditory condition, however no effects were found. 
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Discussion 

For most of the memories that we form during the day, we rely on rich and dynamic ongoing 

representations of the world around us. At a later point, we then associate these 

representations with distinct events. Both of these properties of our natural experience are 

rarely captured in experiments that investigate episodic memory. First, most studies use non-

information rich stimuli to study memory, like words or pictures, and second material for 

association is usually presented simultaneously.  

In this study, we used a memory task that can mimic memory in a more naturalistic scenario: 

an ongoing representation of an information rich, dynamic stimulus is maintained in working 

memory, in order to be associated with a subsequent event. In one session, subjects repeatedly 

watched one out of four short video clips, which was immediately followed by a unique word-

cue. In a second session, subjects listened to one out of four sound clips, which they 

subsequently associated with a cue (Fig. 1). In order to form an association, participants had 

to maintain a representation of the video/sound clip in working memory. 

Investigating the correlates of subsequent memory, we found broad and sustained decreases 

in ongoing oscillatory power to be associated with successful memory formation. These power 

decreases were particularly strong while subjects maintained dynamic representations in 

working memory, namely while they formed the association. Importantly, we found that these 

power decreases carried stimulus specific information in their temporal pattern of activity. 

Specifically, the phase of an 8 Hz frequency, which we previously linked to content 

representation (Michelmann et al., 2016) and where power decreases were strongest in the 

visual condition, was modulated in a stimulus specific way.  
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These results form part of converging evidence for a general mechanism, in which 

desynchronization of brain oscillations in the cortex, indicated by power decreases, allows for 

the rich representation of information (Hanslmayr et al., 2012). Specifically, the decrease in 

oscillatory strength, which also signifies a release from inhibition (Haegens, Nacher, Luna, 

Romo, & Jensen, 2011; Klimesch, Sauseng, & Hanslmayr, 2007), renders the oscillation less 

stationary, i.e. less predictable. In mathematical terms, this decrease of predictability means 

an increase in the amount of information that can be coded (Hanslmayr et al., 2012; Shannon 

& Weaver, 1949). During perception we observed content specific patterns over sensory and 

frontal electrodes, we then tracked these patterns on the same electrodes. When we 

previously observed reappearing patterns during episodic memory reinstatement, oscillatory 

patterns were localized in sensory-specific areas (Michelmann et al., 2016). In contrast, the 

pattern reappearance observed in this analysis displayed a different, i.e. more frontal 

topography. Speculatively, the difference in observed topography may be due to different task 

demands during the maintenance and association period that require, for instance, working 

memory processes (e.g. Goldman-Rakic, 1995). The generalization of the desynchronization-

mechanism across different processes is further complemented by its generalization across 

modalities; namely, in this study as well as in previous results, we observed oscillatory patterns 

in desynchronizing brain dynamics for visual and auditory stimuli.  

Finally, the frequency band of 7-8 Hz has been previously implicated in the rhythmic sampling 

of perceptual content (Hanslmayr et al., 2013; Landau & Fries, 2012; VanRullen et al., 2007). 

These studies integrate well with our findings and suggest that the 8 Hz frequency temporally 

organizes the representations of stimulus specific information during perception, episodic 
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memory reinstatement and episodic memory formation and that decreases in oscillatory 

power allow these temporal patterns to resurface. 

Our results moreover inform current debates about the neural mechanisms underlying 

working memory. While some studies have previously shown that content specific activity 

patterns can be decoded during working memory maintenance (Fuentemilla, Penny, 

Cashdollar, Bunzeck, & Düzel, 2010; Jafarpour, Penny, Barnes, Knight, & Duzel, 2017), other 

studies suggest that representations in working memory may not always be maintained online, 

but rather latently stored in synaptic weights or even via more complex mechanisms (Stokes, 

2015). Those representations can then reemerge when they become task relevant, or they can 

be evoked experimentally by either ‘pinging’ them with unspecific input (Wolff, Jochim, 

Akyürek, & Stokes, 2017) or by stimulating transcranially with a magnetic pulse  (Rose et al., 

2016). Hence, an important insight from the here presented study is that during the formation 

of an association with a previously shown dynamic stimulus, a detectable representation of 

that stimulus reappears. The method that we used in order to observe these stimulus patterns 

was specifically tailored to the detection of patterns that are dynamic in nature, i.e. it is suited 

to detect (in)consistencies in phase resets over time. It needs to be acknowledged that parts 

of the patterns that we track may be strongly driven by evoked responses to the stimulus onset 

during perception. Importantly, however, our method makes it possible to detect these 

patterns, when their exact time point of reappearance can be unknown and variable between 

trials. This is very relevant for studies that investigate working memory maintenance because 

patterns that are involved in the online maintenance of representations in prefrontal cortex 

and parietal cortex of nonhuman primates, have been found to be highly dynamic (Crowe, 

Averbeck, & Chafee, 2010; Meyers, Freedman, Kreiman, Miller, & Poggio, 2008). An open 
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question that remains beyond the scope of this study however, is whether content specific 

temporal patterns can also be elicited by static stimuli and whether our method can help to 

detect them. 

An interesting question that arises from our results is whether the (re-)appearance of temporal 

patterns is functionally relevant for the successful formation of memories. We could 

demonstrate subsequent memory effects for power decreases here, because a minimum of 15 

trials per condition can yield stable power estimates (Hanslmayr, Spitzer, & Bäuml, 2009). We 

could further link power decreases to the presence of content specific temporal patterns; 

however because the trial count of forgotten associations for most of the subjects was too low 

for stable similarity estimates, it is not clear whether these patterns are functionally involved 

in memory formation. Specifically, the present study was designed to produce a sufficient 

number of remembered trials and we consequently could not contrast stimulus-specific 

temporal patterns between remembered and forgotten associations. Repeating this study in a 

longer and more adaptive design, could therefore allow for the contrast of patterns during 

successful and unsuccessful memory formation.  

Additionally, future studies should address whether content-specific temporal patterns are 

causally involved in memory formation, either by disrupting content specific temporal patterns 

and therefore tampering with memory formation or even by artificially introducing spurious 

patterns to cause forged associations.  
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