
Sheng, Jie, Amankwah-Amoah, Joseph and Wang, Xiaojun (2018) Technology 
in the 21st Century: New Challenges and Opportunities.  Technological 
Forecasting & Social Change, 143 . pp. 321-335. ISSN 0040-1625. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/67252/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1016/j.techfore.2018.06.009

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/67252/
https://doi.org/10.1016/j.techfore.2018.06.009
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


 1 

Technology in the 21st Century: New Challenges and Opportunities 

ABSTRACT 

Although big data, big data analytics (BDA) and business intelligence have attracted growing 

attention of both academics and practitioners, a lack of clarity persists about how BDA has 

been applied in business and management domains. In reflecting on Professor Ayre’s 

contributions, we want to extend his ideas on technological change by incorporating the 

discourses around big data, BDA and business intelligence. With this in mind, we integrate the 

burgeoning but disjointed streams of research on big data, BDA and business intelligence to 

develop unified frameworks. Our review takes on both technical and managerial perspectives 

to explore the complex nature of big data, techniques in big data analytics and utilisation of big 

data in business and management community. The advanced analytics techniques appear 

pivotal in bridging big data and business intelligence. The study of advanced analytics 

techniques and their applications in big data analytics led to identification of promising avenues 

for future research.  

 

KEY WORDS: business intelligence; big data; big data analytics; advanced techniques; 

decision-making 
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1. INTRODUCTION 

In the last two decades, technological breakthroughs have ushered in a new era for businesses 

and governments (Amankwah-Amoah, 2017; Ayres & Williams, 2004; You et al., 2018). As 

Ayres and Williams (2004, p. 316) observed, “much of the world is connected via sophisticated 

networks that allow volumes of text, images, sound, and video to be exchanged in an instant”. 

The field of business analytics has been one of the rapid growing and promising areas of 

business intelligence (Chen et al. 2012; Sheng et al., 2017). Business intelligence means the 

“concepts and methods to improve business decision making by using fact-based support 

systems” (Lim et al., 2013, p. 17). In this process, business analytics is concerned with methods 

and techniques for dealing with data to assess the past or real-time business performance, and 

it plays a critical role in the interconnected world (Davenport, 2006). Indeed, past studies have 

demonstrated that improvement in decision-making depends on progress in analytical tools 

(Ayres, 1984, 1989). This provides a solid basis for future business planning and decision-

making by offering data users better knowledge and insights into business activities.  

Technological progress is critical to the global economy (Ayres, 1988; Ayres & Williams, 

2004), especially with new applications of information and communications technologies 

(ICTs) (Ayres & Williams, 2004). In the age of the Internet of Things, the exponential growth 

of technologies has brought greater complexity to business analytics (Beath et al., 2012). With 

significant scale escalation and scope expansion, the tremendous explosion of information has 

been called “big data”, which is not only characterised by extremely large volume, but also by 

significance in its variety, velocity, veracity, variability and value (Gandomi & Haider, 2015; 

Katal et al., 2013; Jin et al., 2015).  

Technological advancement and transition into a data-driven culture are important drivers for 

economic growth in the digital era; however, the prospect depends on the application of ICTs 

(Ayres & Williams, 2004). A growing body of literature supports the view that data-driven 

approaches, business intelligence and analytics largely depend on all kinds of data collection, 

information extraction and analytics techniques (Turban et al., 2008; Watson & Wixom, 2007). 

Although research on applications of big data analytics (BDA) and technological development 

have grown exponentially in the last ten years or so (Russom, 2011; Ayres & Williams, 2004), 

there remains inadequate clarity about what advanced techniques have been developed given 

the challenges inherent in big data's nature and how BDA has been applied in the business 

domain and discussed in scholarly work.  
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Against this backdrop, the main purpose of this paper is to extend Professor Ayres’ idea of the 

significance of technology in stimulating economic growth by recognising the importance of 

harnessing big data in the 21st century. We do so by surveying the literature on big data and 

BDA techniques in management application and outline directions for future research. This 

study is closely related to those of Chen et al. (2012) and Chen et al. (2014). One of our key 

arguments is that harnessing new technology and data to make better and informed decision 

can contribute to the wider discussion on different mechanisms for technological changes and 

driving economic growth and development. 

Following the idea of big data value chain in Chen et al. (2014) and taxonomy of emerging 

analytics areas in Chen et al. (2012), we take on both technical and managerial perspectives to 

explore current research in the management community. We develop a conceptual framework 

illustrating that BDA is the key that bridges the gap between big data and business intelligence. 

To that end, we identify the key technological advancements that address big data challenges 

and depict how BDA has been discussed and applied in management research. By 

incorporating and clarifying big data, BDA and business intelligence, this study helps identify 

research and business opportunities. Although some studies have charted the historical 

evolution of big data (see Phillips, 2017), we steer away from such analysis to offer a more 

robust review of the current state of knowledge.  

The rest of this paper is organised as follows. The next two sections clarify the key terms, scope 

and road map for this review. We then describe the findings on advanced technological enablers 

in BDA workflow and on BDA methods adopted in management applications. The final section 

presents the discussion and conclusion, highlighting the research gap and setting an agenda for 

future research on applying BDA in management. 

2. TECHNOLOGY AND BIG DATA IN THE 21ST CENTURY 

The term “big data” refers to the extremely large amount of structured, semi-structured, and 

unstructured data continuously generated from diversified sources, which inundates business 

operations in real time and impacts decision-making through mining knowledge from massive 

data (Phillips, 2017; Wamba et al., 2017. It presents a great opportunity to enhance our 

capabilities to better understand the world (Amankwah-Amoah, 2015, 2016). In addition, 

challenges inherent to big data are emerging that require technological advancement to help 

capture value from big data.  
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The proliferation of big data has inspired practitioners and academics to take advantage of it 

with more effective analytics (Phillips, 2017; Wamba et al., 2017). A host of factors such as 

diversified data sources and types, faster data generation speed and an urgent need of efficient 

analytics in such a data-driven business environment has motivated the advance in techniques 

to achieve better analytics performance. Indeed, technological breakthroughs and innovation 

have led to methodological improvements to perform complex data analysis over the past few 

years (McAfee et al., 2012; Davenport et al., 2012).  

Advanced analytics, also known as discovery analytics or exploratory analytics, is a collection 

of techniques used to “discover new business facts that no one in the enterprise knew before” 

(Russom, 2012, p. 2). Applying advanced techniques to analysing complicated data sets has 

led to BDA (LaValle et al., 2011), which is comprised of advanced analytics techniques, 

hardware and software, platforms and tools to perform big data management and analysis. 

BDA is a combination of massive data sets and advanced analytics that investigates the 

specifically detailed aspects of business activities and provides on-going positions of the 

business (Russom, 2011; Wang et al., 2018). It provides great support for making decisions 

and taking actions based on evidence (Wang et al., 2018).   

3. CONDUCTING THE REVIEW 

As illustrated in Paré et al. (2015), a scoping review “attempts to provide an initial indication 

of the potential size and nature of the available literature on a particular topic” to “examine the 

extent, range and nature of research activities, determine the value of undertaking a full 

systematic review, or identify research gaps in the extant literature” (p. 186). This study is a 

mapping review that aims to clarify BDA research trends and identify the advanced techniques 

applied in current business intelligence. For this purpose, we adopted the best practice 

advocated by past studies (e.g., Cropanzano, 2009; Short, 2009; Webster & Watson, 2002) and 

employed by review studies such as Short et al. (2009) and Ucbasaran, Shepherd, Lockett, & 

Lyon (2013). We also followed the four-step process of doing content analysis as introduced 

in Seuring and Gold (2012).  

The surveyed literature was comprised of English-written peer-reviewed papers on big-data-

related topics covering a 16-year period from 2000-2015. We set up the review from the turn 

of this century, when big-data-related concepts started to gain prominence, although big data 

as a management-related term first gathered steam around the year of 2007 (Halevi & Moed, 
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2012). Given that research has flourished in both top-tier and lower-ranked journals, we 

decided not to limit the scope of the review to the status of journals in line with past reviews. 

In addition to articles published in academic journals, several conference proceedings, 

unpublished studies and book chapters were included. 

To identify studies that describe techniques and their applications in BDA, extensive research 

in library services and major databases (including Informs, Business Source Complete, Sage, 

Wiley, Springer, Emerald, ScienceDirect, JSTOR, Other publishers’ online service) was 

carried out. Structured keywords such as “big data”, “big data analytics”, “advanced analytics”, 

and relevant terms of technologies and techniques were used to search and identify related 

studies. Depending on the sufficiency of search outcomes, combinations of keywords were 

used to extend or narrow selection results. In addition, to ensure the identified studies were 

within the scope of this review, a quick content check was conducted by reading the abstracts 

and considering the appropriateness of the topic based on the definitions in the previous section.  

The next stage of the process entails a detailed examination of the whole paper and 

classification of selected papers according to the techniques applied in the study. Within the 

classification scheme, all papers are tagged with labels like the year of publication, authors, 

research methodology, key areas, key features and key findings. In all, 280 studies were 

identified and analysed in this study. Around 83% of the sample was from academic journals 

in management domains, while the remaining were conference papers, books or industrial 

research reports. Among the journal articles, most were in fields such as information 

management, marketing and operations, while there are fewer organisational studies, sector 

studies and general management subjects. Although it shows an imbalance in the distribution 

of subjects in the collected papers, studies into big data show a growing trend over the sample 

period, especially after 2010. 

To delineate the findings, we utilised Figure 1 as a road map that links big data, BDA and 

business intelligence as cores in a single framework. Figure 1 shows the features and linkages 

between the various constructs, i.e., big data, BDA and business intelligence. At the first stage 

of this review, we focused on the technical aspect of BDA. We argued that the nature of big 

data presents technical challenges to data management and data analytics, but by applying 

advanced technologies and techniques at each stage of the analytics workflow, big data are 

manageable and valuable information can be potentially extracted to inform business decisions. 

Then we moved on to examine the application of advanced techniques in BDA for achieving 
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business intelligence. Based on data types, we classified big data into structured data and 

unstructured data, which corresponds to the classification of emerging BDA areas described in 

Chen et al. (2012). The focus at this stage was to look into the application of analytics 

techniques in management research. 

------------------------------ 

Insert Figure 1 about here 

------------------------------ 

4. TECHNOLOGY IN BIG DATA ANALYTICS WORKFLOW 

Due to the challenges of big data in terms of huge volume, high variety, high velocity, high 

variability, low veracity and high value, greater efficiency is a primary goal in handling such 

data sets. Ayres (1984) emphasises that better analytical tools with enhanced capabilities are 

the keys to improving analysis and thus decision-making. The review suggests that advanced 

analytics techniques can improve efficiency at each stage of the BDA workflow. Indeed, new 

techniques have been constantly proposed and discussed in fields such as computer science 

and engineering. These techniques can help achieve better data quality, adequate storage space, 

faster access and process speed, deeper analysis and more concise results presentation. In the 

following discussions, various techniques are introduced based on analytics workflow structure 

and around a theme of analytics efficiency.  

4.1 Big Data Acquisition 

The review revealed that sources generating data have become more diversified and massive 

data may come from enterprise business, networking, scientific experiments and others (see 

Hu, Wen, Chua, & Li, 2014). Data acquisition not only concerns extracting raw data from data 

sources, but includes collection, transmission and pre-processing of data (Hu et al., 2014; Chen 

et al., 2014; Tsai et al., 2016). Khan et al. (2014) also indicate that data collection, filtering and 

classification are the main tasks at this stage. Facing massive data, targeting useful data and 

cleaning the data are particularly vital. Through these steps, analytics can be performed on data 

with better quality by adopting advanced techniques in the acquisition.  

To retrieve raw data generated from various sources, new techniques are developed. A few 

commonly used methods seen in literature include log files (e.g., Moreta & Telea, 2007; 
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Suneetha & Krishnamoorthi, 2009; Thelwall, 2001b; Nicholas & Huntington, 2003), sensors 

(e.g., Wang & Liu, 2011; Jonsson & Eklundh, 2002; Luo et al., 2009), web crawlers (e.g., 

Choudhary et al., 2012; Kaplan & Haenlein, 2010; Thelwall, 2001a), mobile devices (Baak et 

al., 2013; Kaplan & Hegarty, 2005; Laurila et al., 2012) and RFID (Roberts, 2006). The 

distributed architecture is normally used to capture system log, and web crawler is often used 

for unstructured network data (Liu et al., 2013).  

Data transmission refers to transporting the data into a data storage infrastructure or data centre. 

It has IP backbone transmission and data centre transmission. The inter-DCN (e.g., Ghani et 

al., 2000; Shieh, 2011) and intra-DCN (e.g., Barroso et al., 2013) allow mobility of data within 

or between storage devices. A final step and a key to improving data quality is data pre-

processing, which requires data integration (e.g., Lenzerini, 2002; Gravano et al., 2003), 

cleansing (e.g., Maletic & Marcus, 2000; Jeffery et al., 2006) and redundancy elimination (e.g., 

Sarawagi & Bhamidipaty, 2002; Tsai & Lin, 2012; Hussain et al., 2010). It helps aggregate 

data into a uniform format and improves data consistency. The processed data have benefits in 

BDA due to reduced costs and increased availability (Chaudhuri et al., 2011). 

4.2 Big Data Storage 

One key observation is that data volume is experiencing spectacular growth, which raises the 

standard for data storage in terms of space and ease to access. The review indicates that 

advanced data storage techniques can help maximise storage space using a distributed or a 

networked infrastructure and help save costs and time by conducting analysis within the 

database or memory (Lv et al., 2017). Data storage capabilities rely on hardware infrastructure, 

database and management and programming models (Hu et al., 2014). To store larger data sets, 

hardware infrastructure have advanced to networking architecture, such as direct attached 

storage (DAS), network attached storage (NAS) and storage area network (SAN) (e.g., Chen 

et al., 2014; Khan et al., 2014; Shiroishi et al., 2009; Gibson & van Meter, 2000; Reed et al., 

2000; Barker & Massiglia, 2002; Telikepalli et al., 2004). These storage facilities connect to 

each other or link to a network, which gives easier access to other storage space. Moreover, 

distributed storage frameworks such as Google GFS and Hadoop HDFS have advantages in 

dealing with large data sets and steaming data with cheaper disk drivers (e.g., Ghemawat et al., 

2003; Shvachko et al., 2010). Data are broken down into smaller scales and distributed in 

different servers, which enables scalability for processing.  
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As for the database to store and manage data, RDBMS is mainly for large structured data sets 

(Moniruzzaman & Hossain, 2013; Ramakrishnan & Gehrke, 2000).  

For non-relational databases, there are three major types: key-value database, document 

database and column-oriented database. It is faster to retrieve data with key and value pairs and 

easier to compress data and operate parallel processing with data records in a sequence of 

columns (e.g., DeCandia et al., 2007; Chodorow, 2013; Cattell, 2011; McCreary & Kelly, 

2013). In-memory (e.g., Watson, 2014; Hahn & Packowski, 2015) and in-database (e.g., 

Russom, 2012; Chaudhuri et al., 2011) techniques enable data processing and analysis within 

memory or the database instead of transporting data between the data centre and disks. In 

addition, public or private clouds infrastructure help facilitate data management. Resources in 

clouds can be allocated dynamically, but this raises security concerns (e.g., Talia, 2013; Bi & 

Cochran, 2014; Assunção et al., 2015). 

4.3 Big Data Processing 

Elgendy and Elragal (2014) identify four requirements of processing big data: fast data loading, 

fast query processing, highly efficient utilisation of storage space and strong adaptability to 

highly dynamic workload patterns. The review found that timely processing techniques can 

speed up data processing and enhance the efficiency of large-scale data analytics. Researchers 

have begun to examine a range of big data techniques such as generic processing model 

(Grolinger et al., 2014; Dean & Ghemawat, 2008, 2010; Condie et al., 2010; Sagiroglu & 

Sinanc, 2013), stream processing model (e.g., Neumeyer et al., 2010; Cherniack et al., 2003; 

Stonebraker et al., 2005), and graph processing model (Malewicz et al., 2010; Lumsdaine et 

al., 2007; Salihoglu & Widom, 2013). The latter two can deal with large-scale data using graph 

and event nodes.  

In terms of querying, compared to relational processing that uses Structured Query Language 

(SQL) to access structured data in the relational database (e.g., Pedersen & Jensen, 2001), 

parallel processing can perform more efficient queries. Data are spread across many servers, 

and computing problems are solved on separate servers in parallel. No memory or resources 

need to be shared across different servers, and it is easy to expand with additional servers. It is 

highly efficient for large-scale data sets and unstructured data (e.g., Roosta, 2012; Jordan & 

Alaghband, 2002; Parhami, 2006). 
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4.4 Big Data Analysis 

Data analysis seeks to “understand the relationships among features” and “develop effective 

methods of data mining that can accurately predict future observations” (Khan et al., 2014, p. 

10). It can be descriptive, predictive and prescriptive (Hu et al., 2014). The review revealed 

that three broad categories of techniques have also been adopted in big data analysis. Mature 

analysis methods including regression and statistical analysis have been used in advanced 

analytics, and they are widely adopted in analysing large data clusters. Furthermore, new 

approaches are emerging, and growing adoption of the advanced methods has been seen in 

BDA to facilitate decisions.  

In particular, data mining (see Wu et al., 2008; Han et al., 2011; Witten et al., 2011) and 

machine learning (Singh, 2014) are gaining popularity. Given the fact that big data are large in 

volume and diversified in format, data analysis relies more on computational algorithms to 

conduct in-depth examinations. Najafabadi et al. (2015) point out that deep learning algorithms 

benefit extracting information from massive data. Moreover, to present the massive amount of 

data and analysis results, more concise and interactive methods and platforms are required, 

such as advanced data visualisation (ADV). These platforms are relatively new in business 

intelligence and analytics, but they are helpful in give data users better engagement with data 

analysis and interpretation. 

5. BIG DATA ANALYTICS TECHNIQUES IN MANAGEMENT APPLICATION 

Having set out the various advanced techniques in data analytics workflow, this section relates 

to BDA mainly in management disciplines. Following the classification approach in Chen et 

al. (2012), we group the literature based on various data types: structured data, text, web and 

multimedia data, network data and mobile data. The review indicates that techniques for 

structured data analytics have seen tremendous improvements. Novel platforms and advanced 

analytics have been developed, while several mature programs in current business intelligence 

system continue serving in BDA by continuously optimising the designs for handling large 

volume data. The review also reveals that current research emphasises unstructured data 

analytics, and the majority of previous studies apply advanced techniques to analyse big data 

for enhancing management effectiveness.  
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In the business intelligence 1.0 system (Chen et al., 2012), data are mostly structured with pre-

defined index or primary keys indicating relationships of data entities. In business intelligence 

2.0 and 3.0 systems, data are generated with faster speed and greater diversity, which requires 

new analytics techniques to meet new challenges in structured and unstructured data analytics. 

Given the significant interest in unstructured data analytics in the current business intelligence 

and analytics research (Hu et al., 2014, Chen et al., 2014), our discussions underscore such 

importance by discovering major themes in management-related big data research.  

5.1 Text Analytics 

A considerable stream of research investigates the topic of text analytics (see a detailed 

summary of literature in Appendix A). In our literature sample, many studies target text mining, 

clustering and classification to detect topics and opinions, personalisation and 

recommendations and other areas. Text analytics depends largely on text mining, which deals 

with unstructured text from documents, emails, logs, web pages, social media, comments, 

feedback and so on. In this process, document representation and query processing help retrieve 

information, while Natural Language Processing (NLP) detects certain words, phrases, events 

and topics from massive data. Then the processed data can be used to construct models for 

further analysis, such as topic models (e.g., Blei, 2012), language models (e.g., Kao & Poteet, 

2007), sentiment or opinion mining (e.g., Pang & Lee, 2008; Garg & Chatterjee, 2014; Ibrahim 

et al. 2017), interactive question and answer systems (e.g., Fan et al., 2006). Hence, information 

retrieval and statistical NLP are the bases from which more text-based searching and analysing 

techniques are innovated. These novel approaches can serve as techniques for other emerging 

research such as web and network analytics.  

5.2 Web and Multimedia Analytics 

Web analytics has become an essential part in Web 2.0 systems (O’Reilly, 2007). It aims to 

discover and analyse useful information from web documents and services such as web text, 

link structure, web logs and other types of web data (Ashton et al., 2014). The review found 

that web mining is a big part of web analytics (see Table 1). The web content, structure and 

usage mining data (Pal et al., 2002) provide abundant information about user dialogues and 

behaviours (e.g., clickstream), which is useful for improving business operations, particularly 

for improving the efficiency of marketing activities in electronic commerce.  
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------------------------------ 

Insert Table 1 about here 

------------------------------ 

In addition to web data presented in text format, other information contained in images, audio 

and video is becoming new research objectives. Current research mainly concentrates on the 

multimedia summarisation (Ding et al., 2012), multimedia annotation (Wang et al., 2012), 

multimedia index and retrieval (Lew et al., 2006) and multimedia recommendation (Park & 

Chang, 2009). These techniques help extract hidden information from images, audios and 

videos with proper classification, annotation and retrieval, which can be used with other web 

and media data to suggest particular content to users based on their preference. However, we 

noted a handful of studies using multimedia data for gaining business insights, which lags 

behind other data exploration. It may due to the richness of content, which causes difficulties 

in extracting information and organising it into structured data.  

5.3 Network Analytics 

Network science has evolved with the rapid growth of online interactions and online social 

networking since 2000. Such massive amounts of user-generated data often reflect consumers’ 

opinion and connections. The review illustrates that social media analysis seems to be a 

promising direction in big data research. Many studies use social media data to discover 

consumers' sentiment, predict consumers' behaviour, detect relationships and influences in the 

online community and enhance brand and sale performance (see Appendix B). Discovery of 

potential links, social influence and interactions in the network is helpful for understand the 

preferences, behaviours and dynamics in the virtual community.  

5.4 Mobile Analytics 

Mobile devices are penetrating universally, and mobile computing technologies enable 

millions of applications to generate a vast amount of information. Mobile and sensor-based 

systems foresee a promising future in business intelligence and analytics (see Table 1). 

Gathered from applications embedded in smart devices such as smartphones and tablets, data 

generated from these sources are usually fine-grained, location-specific, context-aware and 

highly personalised. The review shows that typically, mobile analytics uses mobile sensing, 

web logs, networking and applications to acquire personalised data from mobile users and 
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create behavioural models of individuals to realise customised advertisements or 

recommendations. It provides great opportunities to innovate and advance understanding of 

markets and customers in a timely manner.  

6. DISCUSSIONS AND CONCLUDING THOUGHTS 

Although the last ten years has witnessed a surging stream of research on big data, BDA and 

business intelligence, limited attention has been paid to harnessing big data to improve 

managerial and economic decisions. This study sought to fill this void by reviewing the 

literature on BDA across the social sciences and thus shed light on how data have been utilised 

in different settings. The paper identified 280 studies published in the past 16 years and 

classified them with a structured scheme. This review does not claim to be complete, given the 

fast growing body of research in relevant areas. In reflecting on Professor Ayre’s contributions, 

we saw the need to extend his works by incorporating the richness of big data research. 

Clarifying the current knowledge of advanced analytics techniques benefits future application 

of BDA in the business sector. This study serves as the link between our survey of literature 

and Professor Ayres’ emphasis on the role of technology in making better decisions. Within 

the review scope, an investigation into the collected studies led to the identification of two 

dimensions in current BDA research. From a technical perspective, studies focus on the 

analytics workflow, in which advanced techniques can help improve efficiency in handling big 

data. From a managerial perspective, advanced techniques target diversified data types and 

sources and are used in business analytics to achieve better managerial insight. 

The review of the multi-disciplinary literature on BDA techniques and their applications further 

revealed several underexplored areas. One key observation in this review is that among the 

four topics in unstructured data analytics, text analytics and network analytics seem to be more 

attractive to management researchers than web, multimedia and mobile data techniques. This 

may be a result of the growing number of users on social media platforms (e.g., Facebook and 

Twitter) and accessibility of the data sources that sparks such big data research (Rapp et al., 

2013; Mount & Martinez 2014; Chan et al., 2017). While text and network analytics are popular, 

analysis of web data, audio, video, mobile and sensor data are rarely seen in general 

management studies. Nevertheless, other types of unstructured data are also being generated 

and collected on an astronomical scale across various industry sectors, and most organisations 

have more data than they know how to use effectively (LaValle et al., 2011). 
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Perhaps the most prominent gap in the current literature is the limited attention paid by scholars 

in information science and management science to the potentials of harnessing BDA to achieve 

competitive advantage. One shortcoming we spotted is that the majority of studies have been 

conducted by scholars in areas such as marketing and operations management. Information 

management has yielded a large number of papers proposing novel approaches to handling big 

data, and the applications of these techniques are seen in marketing and operations research. 

Studies in this area cannot flourish in isolation and require research inputs from other 

management disciplines such as strategy, innovation, entrepreneurship, international business, 

organisation and sector studies. Therefore, research is needed to advance further understanding 

and utilisation of BDA in managerial applications. Nonetheless, in other management subjects, 

the influence of big data on the performance of management is understudied and offers 

promising avenues for future research. Similarly, there is an urgent need for closer 

collaborations between the academics and the industry to advance big data research and 

applications.  

In addition, empirical and modelling papers are in the majority of studies reviewed, which tend 

to utilise advanced techniques and propose novel approaches to processing big data. The 

volume, variety and velocity characteristics of big data require a combination of 

interdisciplinary knowledge and a mixed methodological approach to address the challenges 

of using it (Chan et al., 2016). Despite the fact that big data research has seen rapid growth in 

management disciplines, it is still at an early stage and many key questions remained 

unanswered.  

Big data analytics can empower businesses to perform better predictive and prescriptive 

analysis to forecast and plan for the future, which are essential for management to make 

accurate decisions (see also Ayres, 1989). To guide future research, a framework is proposed 

to identify opportunities (see Figure 2). In this cycle, big data, BDA and business intelligence 

are linked, and research opportunities can be explored from two alternative routes. One is the 

top-down strategy. Guided by the business objective and intelligence desired, proper analytics 

techniques can be selected based on big data theory and applied to available data sets, which 

will help make better use of big data. On the other hand, a bottom-up strategy indicates that 

research can start with sorting out available big data and then analysing it with suitable 

techniques and technology support to gain valuable insights, thereby ultimately making an 

impact on business decisions and performance.  
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------------------------------ 

Insert Figure 2 about here 

------------------------------ 

One limitation of this study is the selected scope using a keyword search approach. It may omit 

some earlier studies that might not use certain keywords that were not popular at that time. 

Future research opportunities can be identified in each element and linkage in this framework, 

which can help identify new research interests and may also offer implications for enterprises 

to take advantages of big data.  

------------------------------ 

Insert Table 2 about here 

------------------------------ 

Table 2 proposes several unanswered questions in present BDA research in management field. 

Among them, we think the priority should be developing a clearer picture of big data potentials 

and BDA methods. Given that there is a lack of theories and conceptual maps to instruct 

researchers around big data themes, guidance on how to leverage big data and analytics 

techniques for achieving business intelligence are in urgent need to systematise the research 

with solid theoretical foundations. In honour of Professor Robert Ayres’ contributions to 

research in technological forecasting and social change, we hope that this study can serve as a 

useful reference point for researchers in management fields to advance big data research, 

forecasting and applications of BDA.  
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FIGURES 

Figure 1. Road Map to Review Studies on Big Data, BDA and Business Intelligence 

 

 

 

Figure 2. Framework for big data research 
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TABLES 

Table 1. List of Studies on Web and Mobile Analytics 

 Analytics Studies Key area 

Web Web mining Baek et al. (2012) Online reviews 

Castellanos et al. (2012) Streaming data analytics 

Chau and Chen (2008) Web page classification 

Chau and Xu (2007) Online community 

Chung et al. (2005) Knowledge discovery 

Costa et al. (2012) E-commerce 

D’Haen et al. (2013) Predict profitability 

Ding et al. (2015) Real-time analysis 

Ho et al. (2011) Personalization 

Költringer and Dickinger (2015) Destination brand  

Shahabi and Banaei-Kashani (2003) Personalization 

Thorleuchter and Van den Poel (2013) Idea mining 

Wang et al. (2007) Web content mining 

Yeh et al. (2009) Customer prediction 

Sonnier et al. (2011) Online communication 

Web analytics Järvinen and Karjaluoto (2015) Digital marketing 

Kou and Lou (2012) Web search engines 

Lau et al. (2012) International investment 

Clickstream Chatterjee et al. (2003) Online advertising 

Montgomery et al. (2004) Personalization 

Schäfer and Kummer (2013) E-commerce 

Huang and Mieghem (2014) Inventory management 

Cloud computing Marston et al. (2011) Business-related issues 

Delen and Demirkan (2013) Service orientation 

Guo et al. (2014) Apparel manufacturing 

Zissis and Lekkas (2011) E-government 

Multimedia Image retrieval and 

annotation 

Lee and Wang (2012) Geographic knowledge discovery 

Lee et al. (2011) Analytics technique 

Liao et al. (2014) Analytics technique 

Yang and Lee (2008) Image semantics 

Video data Zhang et al. (2014) Social influence 

Mobile Mobile sensing Andrews et al. (2016) Mobile advertising 

Fong et al. (2015) Mobile targeting 

Ghose et al. (2012) Mobile Internet usage 

Lee (2007) Personalization 

Li and Du (2012) Mobile advertising 

Li and Wang (2015) Food supply chain 

Luo et al. (2014) Mobile targeting 

Yang et al. (2008) Recommendation 

Mobile network Chung et al. (2015) Personalization 

Ghose and Han (2011) Mobile Internet usage 

Wang et al. (2013) Market dynamics 

Mobile app Ghose and Han (2014) Mobile apps demand 

Xu et al. (2014) Online media 
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Table 2. Unanswered Questions for Future Research 

Area Key theme Unanswered questions 

Big data Structured 

data 

1. To what extent can conventional techniques be applied to big structured data? 

2. How can structured data be effectively combined with unstructured data to 

design business strategy? 

Unstructured 

data 

3. How can unstructured data be effectively utilised to address business problems? 

4. What is the most effective method to concurrently analyse both structured and 

unstructured data? 

Big data 

analytics 

Technique 

improvement 

5. To what extent does an advanced technique improve the effectiveness of 

analytics? 

6. What is the most effective mechanism to assess and compare the effectiveness 

of different analytics techniques? 

Technique 

application 

7. How best to transfer and apply techniques in computer science, engineering and 

other technological subjects into analysing big data for general management? 

Business 

intelligence 

Theoretical 

road map 

8. What are the main steps for adopting big data in enterprise business intelligence 

process? 

9. What are influential paths and mechanisms for value creation in organizations? 

Technological 

support 

10. How best to incorporate advanced analytics techniques into current business 

intelligence system to improve BDA ability? 

11. What is the most appropriate business intelligence platform for firms? 
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Appendix A. List of studies on the topic of text analytics 

Studies Key area/application Key findings 

Aliguliyev (2009a) Document clustering By signing weights, document clustering can be improved and thus the performance of search 

engines. 

Aliguliyev (2009b) Document summarization The sentence-clustering based method improves document summarization performance. 

Archak et al. (2011) Consumers reviews The textual content of product reviews has a significant impact on consumers' choices, which can 

be used for predicting future sales. 

Balakrishnan et al. (2010) Capital market Narrative disclosure has value-relevant information to predict market performance. 

Bao and Datta (2014) Risk type evaluation Risk types can be measured with corporate textual data of risk disclosure. 

Baralis et al. (2013) Document summarization The proposed method can effectively perform ontology-based analysis of document sentences. 

Beebe et al. (2011) Analytics technique The extended approach to digital forensic text string search process improves information retrieval 

effectiveness. 

Cao et al. (2011) Online reviews More helpfulness is found in reviews with extreme opinions than in those with mixed or neutral 

opinions. 

Chen and Tseng (2011) Quality evaluation The proposed method can effectively evaluate review quality and thus improve opinion mining 

efficiency. 

Chou et al. (2010) Analytics technique Combining filter and wrapper attribute selection approaches provides more efficient and accurate 

classification results. 

Chung and Tseng (2012) Product review The proposed framework can effectively detect the relationship between reviews and ratings. 

Colace et al. (2014) Analytics technique A single label text classification method performs better when labelled examples are limited. 

Coussement and van den 

Poel (2008) 

Churn prediction Textual information in emails is beneficial to improve churn prediction performance. 

Crawford Camiciottoli et al. 

(2014) 

Brand associations Consistent brand associations are detected in an online community of international consumers. 

Delen and Crossland (2008) Literature survey Text mining is of great use to analyse textual information and identify patterns of research topics. 

Duan et al. (2011) Analytics technique This is an effective approach to extract bilingual multiword expression. 

Fan et al. (2006) Personalization Online information routing of personalised information can be improved with the two-stage model. 

Fuller et al. (2011) Deception detection Text and data mining are combined to automatically detect deception with better accuracy. 

Glancy and Yadav (2011) Fraud detection A computational fraud detection model on textual data is effective for detecting financial fraud in 

reports. 

Guerreiro et al. (2016) Cause-related marketing Text mining techniques can help review literature and uncover topics. 

Hashimi et al. (2015) Selection criteria A set of criteria is proposed to evaluate the effectiveness of different text mining techniques. 

He (2013a) Online interaction Video stream data are used to identify patterns in online learning behaviours. 
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He (2013b) Case-based reasoning Text mining and Web 2.0 tools can be beneficial to CBR systems with a better user experience. 

Hu et al. (2012) Online reviews Manipulation by firms is found in online reviews, particularly in product ratings. 

Hyung et al. (2014) Music recommendation Analysing listeners' text from a radio station's online bulletin board is beneficial for recommending 

music. 

Janasik et al. (2009) Research method SOM enables better effectiveness of text mining to improve inference quality in qualitative 

research. 

Kayser and Blind (2016)  Foresight practice Text mining contributes to foresight by broadening the knowledge base. 

Krishnamoorthy (2015) Online reviews The proposed model based on linguistic features can achieve better predictions of online review 

helpfulness. 

Lee and Bradlow (2011) Market structure analysis The proposed system automatically processes text from online reviews and improves marketing 

strategy. 

Li et al. (2015) Process mining The proposed method improves data extraction and task identification from event logs. 

Lo (2008) Web service quality Text analysis helps in classifying customers' messages and identifying service quality. 

Ludwig et al. (2013) Online reviews Powerful reviews should be identified, encouraged and promoted with typical linguistic style. 

Ludwig et al. (2014) Community identification Linguistic style match in user communities indicates community identification and fosters greater 

participation quantity and quality. 

Martı́nez-Trinidad et al. 

(2000) 

Analytics technique The tool is used for detecting themes in documents. High co-occurrence between two concepts 

implies strong relationships. 

Moon et al. (2014) Product review Analysing text of consumers' product reviews can enhance sales. 

Moro et al. (2015) BI in banking Text mining is used to review the literature on business intelligence application in banking. 

Mostafa et al. (2013) Brand sentiment Tweets are used to detect consumers' sentiments, and a general positive attitude is found in the 

sample. 

Nassirtoussi et al. (2014) Market prediction The review identifies a clear frame of discussion on market prediction using online text mining. 

Nassirtoussi et al. (2015) Market prediction A multi-layer algorithm integrates sentiment analysis to tackle textual information with a focus on 

financial market prediction. 

Netzer et al. (2012) Market structure analysis Online user-generated contents can improve mapping of market structure. 

Ngo-Ye and Sinha (2014) Online reviews Review text and reviewer engagement characteristics can predict the helpfulness of online reviews. 

Noh et al. (2015) Patent analysis Keyword strategies of text mining can be applied for patent analysis with better validity and 

reliability. 

Ordenes et al. (2014) Customer feedback The advanced linguistic-based text mining model can more deeply analyse customers' experiences. 

Özyurt and Köse (2010) Chat mining Mining chat conversations using proposed classification can effectively detect topics. 

Singh et al. (2014) Employee blogs Textual characteristics of blogs affect readers’ attention and retention, which can help improve 

understanding of reading behaviour in communities. 
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Suh et al. (2010) Petition trend forecast Text and data mining are combined to efficiently detect and forecast trend of the petition in e-

government. 

Sunikka and Bragge (2012) Research profiling Text mining is applied to review the literature on personalization to identify future research 

opportunity.  

Tang and Guo (2015) Electronic word-of-mouth Linguistic indicators from text can predict word-of-mouth attitudes about products and services. 

Thorleuchter and van den 

Poel (2012) 

E-commerce Textual information on companies’ websites is useful for predicting commercial success. 

Thorleuchter et al. (2010) Idea mining An idea mining approach is proposed to automatically discover new ideas from textual information. 

Thorleuchter et al. (2012) Profitability prediction Current customers' website information can be used to identify future profitable customers more 

accurately. 

Ur-Rahman and Harding 

(2012) 

Analytics technique Classification accuracies are improved by classifying textual data into different classes. 

Wang et al. (2013) Online reviews A web-based system can automatically extract and summarise information from review documents, 

Wei et al. (2006) Document clustering The personalised document-clustering approach can achieve better clustering effectiveness. 

Wei et al. (2007) Query expansion A topic-based method for query expansion is more effective for addressing word mismatch problem 

in information retrieval. 

Wei et al. (2008) Knowledge map It is effective to generate knowledge maps using the multilingual document clustering method. 

Wei et al. (2008) Personalization Better effectiveness and personalisation are achieved by the extended document-clustering 

technique. 

Weng and Liu (2004) E-mail responding Different concepts are integrated into classification to effectively extract information and reply e-

mails. 

Yang (2009) Web page annotation The proposed methods can automatically generate metadata for the web page for semantic analysis. 

Yang and Lee (2004) Web directories The corpus-based method automatically and efficiently illustrates web directory hierarchy with 

labels. 

Yoon (2012) Weak signal detection Keyword-based text mining is useful for identifying weak signal topics for future business planning. 

Zeng et al. (2010) Analytics technique A multi-grain hierarchical topic structure that can provide a description for subtopics outperforms 

other methods. 

Zhan et al. (2009) Online reviews Text in online product reviews can be automatically summarised based on internal topic structure. 

Zhang and Jiao (2007) Recommendation and e-

commerce 

The proposed associative classification-based recommendation system can be applied for 

personalization in B2C e-commerce application. 
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Appendix B. List of studies on network analytics 

Studies Key area/application Key findings 

Social media analysis 

Abrahams et al. (2014) Quality management Social media content and text are of great use for product defect discovery. 

Beverungen et al. (2015) Free labour Social media users working as free labour challenges Marxist organization studies. 

Chan et al. (2017) Operation management Social media comments are analysed to discover useful information for operations management. 

Chan et al. (2016) Analytics technique A mixed approach to analysing social media data can enhance operational decision-making. 

Claussen et al. (2013) Mobile apps success App success relies on rewarding users’ engagement, high user ratings and frequent updating. 

Feuls et al. (2014) Unemployment Use of social media can help unemployed people to maintain and cultivate social networks. 

Gao et al. (2015) Emotion analysis A rule-based approach is proposed to detect emotion-causing component from social media data. 

Ghose et al. (2012) Ranking system The proposed ranking system analyses user-generated content to assess customers' preferences and 

can provide best-value hotels. 

Gopinath et al. (2013) Blogs and advertising The effects of pre- and post-release blog and advertising vary across markets with different 

demographic characteristics and groups. 

He et al. (2015) Marketing Competitive social media analysis with sentiment benchmarks is beneficial to marketing. 

Iyer and Katona (2016) Marketing The incentives for social communication in social media decrease with an increased span of 

communications. 

Jang et al. (2013) Deep sentiment analysis The proposed method can determine customers' value structure and causality for identifying a 

niche market. 

Kim et al. (2015) Forecasting earning Social network information and a machine learning algorithm can improve forecasting accuracy. 

Li et al. (2014) Targeted advertising The effectiveness of advertisement can be enhanced by leveraging social context and social 

influence. 

Luo et al. (2013) Firm equity value Social media metrics significantly indicate firms' equity value with stronger and faster predictive 

relationships than traditional online behavioural metrics. 

Mayzlin and Yoganarasimhan 

(2012) 

Web logs linking Blogs with links to other blogs signal as high news-breaking ability and lead to more readers and 

enhanced learning. 

Miller and Tucker (2013) Business value of IT Social media management in health-care sector leads to more user-generated content by 

employees, and it may have adverse effects. 
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Moe and Trusov (2011) Online product rating Online product ratings dynamics have direct and immediate effects on sales and indirect impact on 

further ratings. 

Mount and Martinez (2014) Open innovation Social media has benefits to be applied to the open innovation process. 

Nam and Kannan (2014) Brand performance Social tagging has great implications for brand performance measurement and brand equity 

management. 

Nguyen et al. (2015) Brand innovation Social media strategic capability can enhance brand innovation and moderate between innovation, 

knowledge acquisition and market orientation. 

Oestreicher-Singer and 

Sundararajan (2012) 

Recommendation  Demands increase with explicit visibility of a co-purchase relationship in a recommendation 

network. 

Okazaki and Taylor (2013) International advertising Three theoretical foundations are identified for future research on social media use for 

international advertising. 

Orlikowski and Scott (2014) Online evaluation Online and traditional valuation is significantly different in performativity, which has 

organizational implications. 

Prates et al. (2013) Web search engines Social media data are adopted to improve contextual information extraction through web 

searching. 

Rapp et al. (2013) Contagion effect Positive contagion effects of social media use are found in enhancing brand performance, retailer 

performance and consumer-retailer loyalty. 

Roth et al. (2013) Personnel decision The use of social media in human resources practice has great importance for organizations, 

individuals and society and needs further study. 

Sabnis and Grewal (2015) Competition There is a significant relationship between competitor user-generated content and firms' 

performance. 

Schniederjans et al. (2013) Impression management Social media has a positive impact on impression management and can influence firms' financial 

performance. 

Schweidel and Moe (2014) Brand sentiment The analysis of brand sentiment cannot ignore the differences across different social media venue 

formats. 

Shriver et al. (2013) Social network analysis Online user-generated content has a positive relationship with their social ties, and it has network 

effects that boost advertising and revenue growth. 

Singh et al. (2011) Analytics technique The proposed method of sampling qualitative comments improves the effectiveness of text mining. 

Sun (2012) Product rating A higher variance of product ratings helps with sales increase if and only if the average rating is 

low. 

Tirunillai and Tellis (2014) Brand performance Dynamic analysis of online user-generated content can reflect consumers' satisfaction with the 

quality and thus improve competitive brand positions. 

Van Iddekinge et al. (2013) Personnel decision Social media information of job applicants is irrelevant and invalid to recruitment selection. 
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Wu (2013) Social network effect Social media can enrich network information, which has a positive effect on work productivity and 

job security. 

Social network analysis   

Autio et al. (2013) Entrepreneurial action Online user community information about users' needs can stimulate entrepreneurial action. 

Fang et al. (2013) Adoption probabilities The method can effectively predict adoption probabilities based on key factors that affect adoption 

decisions. 

Garg et al. (2011) Information diffusion Information diffusion and discovery in online social networks are effectively measured using 

proposed methods. 

Ransbotham et al. (2012) Information value The value of collaborating user-generated content depends on contributors' efforts as well as their 

network. 

Wang et al. (2013) E-commerce Social network analysis and web mining are integrated to detect groups in virtual communities for 

better recommendations and marketing. 

Community detection 

Feng et al. (2015) Personalization A time-weighted overlapping community detection method performs better to predict users' 

interests and thus give personalised recommendations. 

Johnson et al. (2015) Leadership Use of language shapes online community dynamics. Similar use is found from leaders and other 

participants. 

Social influence   

Berger (2014) Word of mouth Word of mouth is goal-driven and has five key functions with psychological factors behind them. 

Cascio et al. (2015) Consumer behaviour People tend to change their initial recommendation decisions to be consistent with peer 

recommendations. 

Cheng and Ho (2015) Online reviews There is a positive impact of reviewers' number of followers, level of expertise, image count and 

word count on readers’ perceptions of reviews. 

Eisingerich et al. (2015) Word of mouth Consumers' willingness to engage in word-of-mouth on online social sites is lower than face-to-

face WOM. 

Goes et al. (2014) Online community Popular users in online community tend to generate more objective, negative and varied product 

reviews. 

Goh et al. (2013) Brand community Users' and marketers' engagement in social media brand communities has a positive impact on 

purchase behaviour and expenditures. 

Haenlein (2011) Customer relations There is a strong positive social network relationship in customer-level revenue. 

Hennig-Thurau et al. (2015) Microblogging A microblog containing post-purchase quality evaluation information affects early movie adoption 

behaviours. 

Hildebrand et al. (2013) Consumer satisfaction Feedback on product features from other community members has a negative influence on 

customers' satisfaction with self-designed products. 



 

 

39 

Kurt et al. (2011) Consumer behaviour Agency-oriented consumers spend more when shopping with friends, while communion-oriented 

consumers do not. 

Lee et al. (2015) Online rating Prior ratings by friends positively influence users’ ratings, while social networking decreases 

possible effects on ratings by the crowd. 

Lu et al. (2013) Opinion leadership The activity of the online community and style of writing the review are strong drivers for network 

growth. 

Sridhar and Srinivasan (2012) Online ratings The online rating has a social influence on other consumers that is contingent on product 

experience. 

Sentiment analysis 

Alfaro et al. (2013) Opinion mining Opinion trends can be detected from weblog comments, providing useful information for decision-

making. 

Balahur et al. (2012) Emotion detection When words have no affective meaning, an approach using EmotiNet is more valid for emotion 

detection. 

Colace et al. (2015) Recommendation User-generated data in the online social network can support customised recommendations. 

Colace et al. (2015) Analytics technique The proposed method uses a mixed graph of terms that yields more effective sentiment 

classification. 

Da Silva et al. (2014) Microblogging Classifier ensembles can improve classification accuracy of microblogging sentiment analysis. 

Das and Chen (2007) Sentiment extraction Small investor sentiment from stock message boards is related to stock value and has an impact on 

investors' opinions and financial management. 

Dehkharghani et al. (2014) Causal rule discovery Sentiment causal rules effectively summarise important relationships and sentiment from social 

media textual data. 

Deng et al. (2014) Term weighting The supervised term-weighting approach gives more accurate results in sentiment analysis. 

Fang et al. (2014) Sentiment classification The proposed approach with sentiment information from source-domain labelled data and 

preselected sentiment works is proved efficient. 

Fersini et al. (2014) Polarity classification Ensemble learning is introduced to predict polarity with better accuracy. 

García-Cumbreras et al. 

(2013) 

Collaborative filtering Sentiment analysis incorporated in collaborative filtering algorithms improves rating prediction 

and recommendation. 

García-Moya et al. (2013) Analytics technique The proposed system allows analysing sentiment data in the corporate data warehouse. 

Gopaldas (2014) Consumer sentiment The proposed theory of marketplace sentiments advances studies on consumers with a 

sociocultural perspective. 

Homburg et al. (2015) Marketing performance Firms' active participation in the online community among consumers has a negative impact on 

consumers' sentiment and returns. 

Kang and Park (2014) Customer satisfaction Customers' satisfaction can be measured by customers' reviews with greater effectiveness and 

efficiency. 
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Khan et al. (2014) Microblogging The proposed hybrid approach can achieve higher accuracy in sentiment classification. 

Kontopoulos et al. (2013) Microblogging An ontology-based method is more efficient for analysing opinions towards specific topics in 

microblogs. 

Li and Wu (2010) Forums hotspot detection The proposed method can improve hotspot detection and forecast from online forums. 

Marrese-Taylor et al. (2014) Opinion mining The aspect-based opinion mining approach can be used in tourism product reviews with extension. 

Musto et al. (2015) Social streams The proposed framework can effectively process semantic analysis of textual content in social 

streams. 

Ye et al. (2009) Sentiment classification Well-trained machine learning algorithms can classify sentiment polarities of reviews with high 

accuracy. 

Yu et al. (2013) Firm equity value Social media has greater effects on firm stock performance than conventional media. 

 


