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ABSTRACT The role of electrostatic interactions in the assembly of a native protein structure was studied using fragment
complementation. Contributions of salt, pH, or surface charges to the kinetics and equilibrium of calbindin D9k reconstitution was
measured in the presence of Ca21 using surface plasmon resonance and isothermal titration calorimetry. Whereas surface
charge substitutions primarily affect the dissociation rate constant, the association rates are correlated with subdomain net
charge in a way expected for Coulomb interactions. The affinity is reduced in all mutants, with the largest effect (260-fold)
observed for the double mutant K25E1K29E. At low net charge, detailed charge distribution is important, and charges remote
from the partner EF-hand have less influence than close ones. The effects of salt and pH on the reconstitution are smaller than
mutational effects. The interaction between the wild-type EF-hands occurs with high affinity (KA ¼ 1.3 3 1010 M�1; KD ¼ 80
pM). The enthalpy of association is overall favorable and there appears to be a very large favorable entropic contribution from
the desolvation of hydrophobic surfaces that become buried in the complex. Electrostatic interactions contribute significantly to
the affinity between the subdomains, but other factors, such as hydrophobic interactions, dominate.

INTRODUCTION

The native conformations of proteins are governed by

noncovalent interactions. However, the specific contribu-

tions of hydrogen bonds, electrostatic and van der Waals

interactions, and the hydrophobic effect remain to be

clarified. Many studies have demonstrated that protein

stability can be increased by optimizing the Coulomb

interactions among charged groups on the protein surface

(see, for instance, Akke and Forsén, 1990; Dahlke Ojennus

et al., 2003; Grimsley et al., 1999; Hendsch and Tidor, 1999;

Makhatadze et al., 2004; Marti and Bosshard, 2003; Perl

et al., 2000; Schwehm et al., 2003; Spector et al., 2000).

Loladze and Makhatadze (2002) show that although surface

charge-charge interactions are not essential for protein

folding and stability, the stability can be modulated by

charge substitutions. One may anticipate that the contribu-

tion of electrostatic interactions to the free energy of folding

depends not only on the distribution of ionizable groups

within the protein structure but also on the net charge that

they produce. In general, increased net charge (positive or

negative) leads to higher solubility in water, but may reduce

the stability due to electrostatic repulsions within the folded

state. Electrostatic interactions are also important for guiding

the correct folding by disfavoring alternative structures, as in

Fos-Jun heterodimerization (O’Shea et al., 1992) and cal-

modulin subdomain pairing (Linse et al., 2000).

A general problem with stability studies is that the role of

electrostatic interactions under native conditions is inferred

by extrapolation from very non-physiological conditions,

sometimes even involving such high concentrations of

GuHCl that all electrostatic interactions are attenuated. The

extrapolation may be necessary, because otherwise only a

very small fraction of the protein is present in the unfolded

state. Under physiological conditions, the folding/unfolding

equilibrium is often strongly shifted toward the folded state

and the equilibrium constant between the two states cannot

be determined with any appreciable level of accuracy. Much

of our knowledge about factors governing protein stability,

and the relative importance of different contributions, is

hence based on extrapolations from conditions under which

both the native and unfolded states are significantly pop-

ulated, for example at elevated temperature or at very high

concentration of denaturant. Here we will explore an alternative

method to study the influence of electrostatic interactions

under physiological conditions.

The fragment complementation approach allows the

contributions of different kinds of noncovalent interactions

to be measured at the condition of interest, including

physiological conditions and the conditions under which

the protein is maximally stable. By this approach, a re-

constitution equilibrium is measured, i.e., the complex
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formation between subdomain fragments. For this purpose,

we have chosen a small (Mr� 8500) Ca21-binding protein of

the EF-hand family (Nakayama et al., 1992)—calbindin D9k

(Fig. 1). This protein can be reconstituted with high affinity

from two fragments representing its two EF-hand helix-loop-

helix subdomains (Berggård et al., 2001; Finn et al., 1992).

The protein has no disulfide bonds and the three-dimensional

structure is known to high resolution (Svensson et al., 1991).

A recent crystal structure of a three-dimensional domain-

swapped dimer shows that calbindin reconstituted from its

two EF-hands has the same structure as intact calbindin

(Håkansson et al., 2001), except at the region connecting the

subdomains. A strong correlation was found in previous

work between the stability of the intact protein and the

affinity between its two subdomains (Berggård et al., 2001).

This implies that fragment complementation studies may be

valuable in assessing the relative importance of different

noncovalent interactions.

Ionizable amino acids are abundant in calbindin D9k (Fig.

1) and include both positive and negative charges. The pKa

values of all ionizable groups are measured under a range of

solution conditions (Kesvatera et al., 1996, 1999, 2001b). As

many as 30 out of the 75 residues are charged at neutral pH,

producing a net charge of �7. These features make this

protein highly suitable for studies of electrostatic interactions

in proteins, for example through amino acid substitutions

and changes in the solution conditions. It is known that

electrostatic interactions are important for the function of

this protein, which involves the binding of two Ca21 ions

(Kesvatera et al., 1994; Linse et al., 1988, 1991;) and that re-

pulsive interactions among surface charges reduce the global

stability of the protein (Akke and Forsén, 1990).

In the present study, wild-type calbindin D9k as well as

five different mutants with surface charge substitutions in

EF-hand 1 were used in the reconstitution of the protein. The

effect of changes in the electrostatic properties of either

the protein itself or the surrounding dielectric solution on the

affinity between the two EF-hands in calbindin D9k was

measured using surface plasmon resonance (SPR) technol-

ogy and isothermal titration calorimetry (ITC). Our data show

that for highly charged subdomains, the association is corre-

lated with net charge, whereas at zero net charge, the detailed

distribution of charges is important for the affinity between

subdomains.

MATERIALS AND METHODS

Materials

All chemicals were of the highest grade commercially available. The CM5

sensor chips and amine-coupling kit containing NHS, EDC, and

ethanolamine hydrochloride were from Biacore AB (Uppsala, Sweden) as

well as PDEA used for the thiol coupling. The surfactant TWEEN 20 was

from Riedel de Haen (Seelze, Holland). EDTA disodium salt is from Merck

(Darmstadt, Germany).

Protein mutagenesis and purification

Mutant proteins derived from bovine calbindin D9k were expressed in

Escherichia coli from a synthetic gene. The gene for calbindin with the

P43M substitution was first moved from the runaway plasmid pRCB1

(Brodin et al., 1986) into a modified Pet3a plasmid with NdeI and SacI

cloning sites (PetSac) using PCR to introduce a SacI cloning site and keep

the NdeI site. In parallel, the gene for P43M was extended using PCR to

FIGURE 1 Calbindin D9k in Ca21-loaded form. prepared from the PDB

file 4ICB (Svensson et al., 1992) using MOLMOL software (Koradi et al.,

1996). EF1 is shown in gold and EF2 is shown in silver. (A) Ribbon diagram

with the side chains of all charged and mutated residues displayed. Lys side

chains are in blue, Asp in magenta, Glu in red, and others in black. Mutated

residues are labeled with their identity in the wild-type protein. (B) Space-
filling model with mutated residues shown in the same colors as in A.
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include a Gly-Gly-Cys extension (P43M-GGC) and cloned into the PetSac

plasmid. Mutations were then introduced into P43M in PetSac by Quik-

Change mutagenesis (Stratagene, San Diego, CA), and proteins were

purified as described (Johansson et al., 1990). The mutants are named after

their substitution using one-letter codes for amino acids. Hence, in addition

to the substitution Pro43/Met, E17Q1D19N contains the substitution

Glu17/Gln and Asp 19/Asn, A15D1P20G contains Ala15/Asp and

Pro20/Gly, K25Q contains Lys25/Gln, K12Q contains Lys12/Gln, and

K25E1K29E contains Lys25/Glu and Lys29/Glu. The homogeneity of

the purified proteins was confirmed by agarose gel electrophoresis, SDS-

polyacrylamide gel electrophoresis, and 1H NMR spectroscopy.

Agarose gel electrophoresis

Agarose gel electrophoresis was carried out in sodium barbitone buffer,

2 mM EDTA, pH 8.6, using a 1% agarose gel. The protein was visualized

by staining with Coomassie blue.

1H NMR spectroscopy

1HNMRspectrawere recordedon aVarianUnity Plus 600MHz spectrometer

(Varian, Palo Alto, CA) at 27�C. Purified intact proteins were dissolved in

H2O with 10% D2O in the presence of three equivalents of Ca21 at pH 7.

CD spectroscopy

Far UV CD spectra were recorded on a JASCO J-720 spectrometer (JASCO,

Tokyo, Japan) in a 1-mm quartz cuvette between 250 and 190 nm, with

a bandwidth of 1 nm, a step of 1 nm, a scan rate of 10 nm/min, and an 8-s

response time.

CNBr cleavage and fragment purification

Each mutant was cleaved by CNBr to produce EF-hand fragments EF1 and

EF2. The two fragments from the wild-type protein have different net

charges (�1 for EF1 and �6 for EF2 when in apo-form), and can be

separated from each other using ion exchange chromatography in the

presence of EDTA (Berggård et al., 2001; Finn et al., 1992). In the calcium

bound state, the two EF-hands interact so tightly that they resist separation

by this method. Cleavage of the calbindin D9k mutants at the methionine

residues at positions 0 and 43 with CNBr and purification of the resulting

fragments with ion-exchange chromatography were performed as follows.

Fifty milligrams purified protein was dissolved in 1.2 mL MilliQ H2O

(Millipore, Billerica, MA) and put on ice. TFA, 4.8 mL, was added gradually

with gentle shaking. The protein/TFA solution was added to 0.6 g CNBr on

ice, and N2 gas was bubbled through for 5 min. The sample was sealed and

left at room temperature overnight. Cleavage of P43M-GGC yields wild-

type EF1 and EF2-GGC. Cleavage of the other mutants yields mutated EF1

and wild-type EF2. The volume of the mixture was reduced by evaporation

using a Buchi rotavapor (Buchi, Flawil, Switzerland) and the mixture was

redissolved in 30 ml of 5 mM EDTA. The pH was adjusted to 7.5 using 1 M

TRIS base (final TRIS concentration was ;24 mM). The sample was

pumped onto a 1.53 12 cm DEAE-Sephacel column pre-equilibrated in 10

mM TRIS/HCl, 1 mM EDTA, pH 7.5. The fragments were eluted with

a linear NaCl gradient from 0.05 M to 0.40 M. The mutated EF1 fragments

(residues 1–43) have net charges ranging from 11 to �5 without calcium

and elute earlier in the gradient than EF2 (residues 44–75). The elution order

of EF2 and residual intact protein differs among the mutants, but in all cases

EF1 elutes before residual uncleaved protein. EF2 eluted in two separate

peaks corresponding to monomeric and dimeric material. The identity and

purity of the fragments was readily confirmed by agarose gel electrophoresis

because EF2 and EF1 have different net charges, and differ also from the

remaining uncleaved proteins (Fig. 2 A). The isolated fragments were

analyzed by MALDI-TOF mass spectrometry (Swegene Proteomics Centre,

Lund University). The concentrations of fragment stock solutions were

determined by amino acid analysis after acid hydrolysis (Biomedical Centre,

Uppsala University).

Surface plasmon resonance studies

The interaction between EF1 and EF2 was studied by surface plasmon

resonance technology, using the Biacore3000 apparatus. Different flow

buffers were used depending on the pH. As flow buffer for physiological

conditions, 10 mM HEPES/NaOH, pH 7.4, with 0.15 M NaCl, 0.005%

TWEEN 20, 0.02% NaN3, and 2 mM CaCl2 was used. The same buffer was

used to monitor the salt concentration effect on the reconstitution, the only

difference being the varying amount of NaCl. AMP was used instead of

HEPES for the measurements at pH 9 and 9.5 and MES was used for pH 5.5

and 6.5 whereas HEPES was used for pH 8 and all other components were

identical to the pH 7.4 buffer. The small amount of TWEEN 20 in the buffers

was used to prevent clogging of the tubes in the Biacore apparatus and

prevent unspecific binding. All buffers were filtrated through sterile 0.22 mm

filters before use and degassed for 30 min. The built-in thermostat kept the

temperature at 25�C during all experiments.

Immobilization of EF2 to the sensor chip was performed through two

different couplings techniques, amine coupling and ligand thiol disulfide

exchange coupling. 10 mM HEPES/NaOH at pH 7.4, 0.15 M NaCl, 0.005%

TWEEN20, 0.02% NaN3, and 3.4 mM EDTA was used as flow buffer

during coupling. Amine coupling was performed as described earlier

(Berggård et al., 2001). Ligand thiol coupling (Fig. 2 B) was performed at

FIGURE 2 (A) Agarose gel electrophoresis in 75 mM sodium barbitone

buffer, pH 8.4, with 2 mM EDTA, on DEAE-Sephacel fractions after CNBr

cleavage for the mutant K12Q. Fractions 36–41 were pooled as EF1, frac-

tions 57–67 as residual uncleaved protein, and fractions 82–89 as EF2. (B)
Chemistry of the EF2-GGC immobilization using the ligand-thiol disulfide-

exchange method.
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a constant flow rate of 5 ml/min. Equal volumes of 0.1 M NHS and 0.4 M

EDC were first mixed, and 25 ml of the mixture was allowed to flow over the

sensor-chip surface to activate the carboxymethylated dextran (5 min).

Twenty microliters of a PDEA solution, made by dissolving 4.5 mg PDEA

in 205 ml 0.1 M borate buffer at pH 8.5, were injected to introduce a reactive

disulphide group onto carboxyl groups of the sensor chip. EF2-GGC at 0.01

or 0.1 mg/ml in 70 ml 10 mM sodium formate buffer at pH 4.3 was then

injected over the sensor chip. The C-term Cys of EF2-GGC was used to

create a covalent link between the immobilized EF2-GGC and the dextrane

matrix of the sensor chip (Fig. 2 B). Deactivation of the excess reactive

disulphides on the chip was done by injecting 20 ml of 50 mM L-cysteine

with 1 M NaCl in 100 mM formate buffer at pH 4.3. At least one of the four

flow cells on each sensor chip was reserved for a blank immobilization with

no protein in the coupling step and was used as reference. Chips with

immobilized EF2 were generally used for less than two weeks. Amine

coupling was used only for a control experiment on the reconstitution with

EF1 wild-type in physiological conditions, whereas the rest of the

measurements were done by immobilizing EF2-GGC by thiol disulfide

exchange coupling.

Association and dissociation experiments

The kinetics of the reconstitution reaction was studied at constant flow rates

of 10 ml/min and 30 ml/min with no significant change in the rate constants

obtained. Therefore flow rate of 10 ml/min was used in subsequent

experiments. The association of EF1 to the immobilized EF2 and the

following dissociation was studied at several different EF1 concentrations

ranging from 0.275 nM to 140 nM for the amine coupling and from 5 nM to

164 nM for the ligand thiol coupling. Protein stock solutions were diluted

using the flow buffer and 300 ml was injected during the association phase

which was followed for 30 min. The dissociation process was followed until

.85% of the bound EF1 had dissociated, with the time required depending

on the particular solution condition or EF1 mutant used. After each experi-

mental cycle, the surfaces were regenerated by injecting 10 mM EDTA,

pH 8, for 5 min to remove residual-associated fragments.

Control experiments

Control experiments were performed to confirm both the specificity of the

binding and the stability of the immobilized EF2. In particular, 300 ml of 100

mMwild-type calbindin D9k without any performed cleavage was flowed for

2 h onto the chip directly after a previous association was performed as

described before. No binding was detected as a consequence of the injection,

indicating that the intact protein does not interact with the reconstituted one;

moreover, the dissociation rate of the reconstituted protein during the

injection of intact calbindin D9K was not affected at all, indicating no

interaction between intact protein and immobilized EF2. The time-stability

of the immobilized EF2 was also checked to exclude any effects that might

arise from very slow dissociation of coupled EF2 from the sensor chip over

the range of time of a measurement. Running buffer without dissolved EF1

was flowed over all of the flow cells of the sensor chip for 3.5 h and no

variation of the signal was detected, indicating that the amount of the

immobilized protein is constant. Immobilization is performed using buffer

with EDTA to avoid close coupling of two EF2-GGC as a homodimer,

which may happen in the presence of Ca21.

During the coupling procedure, EF2-GGC is subjected to pH 7.4 in flow

buffer with EDTA for ;5–15 min before changing to buffer with Ca21.

EF2-GGC contains one potential deamidation site (Asn56), and deamidation

is catalyzed at basic pH and more rapid for flexible Ca21-free EF-hands. A

small amount of the purified EF2-GGC was therefore incubated in flow

buffer with EDTA for up to two days at pH 7.6 and 8.6, and analyzed on

agarose gels. These gels separate similar peptides according to net charge,

and show maximum 5% deamidated EF2-GGC after two days. Hence EF2-

GGC is not deamidated during the time frame of our study.

Data analysis

The data were evaluated using Levenberg-Marquardt nonlinear least-square

method. The data analysis was made using the software KaleidaGraph

(Synergy Software, Reading, PA). The association reaction studied by the

use of SPR occurs between EF2 immobilized to the sensor chip surface and

EF1 in solution. EF1 with or without mutations is in constant flow during the

association phase, and EF1-EF2 complex formation leads to a change in

refractive index of the sensor-chip surface, which is reported continuously in

terms of response units (RU). The response is proportional to the total mass

of reconstituted molecules onto the chip surface. The dissociation process is

initiated by change to a constant flow of protein-free buffer, and a decrease

in the SPR signal corresponds to EF1 dissociating from the immobilized EF2

into the solution. In addition to the response changes due to association and

dissociation, the signal changes abruptly when protein injection starts or

ends, due to mechanical disturbances. The first and the last few minutes of

each phase are therefore omitted in the fitting procedure. The dissociation

and the association data were fitted separately.

The dissociation of the complex can be modeled as a first-order reaction,

d½EF1 � EF2�ðtÞ
dt

¼ �koff ½EF1 � EF2�ðtÞ; (1)

where koff is the dissociation rate constant. Equation 1 can be analytically

solved by integration, yielding an exponential decrease for the complex con-

centration as a function of time, which leads to the equation

½EF1 � EF2�ðtÞ ¼ ½EF1 � EF2�ðt ¼ 0Þe�koff t: (2)

Since the instrumental response R(t) is assumed to be linear with the com-

plex concentration (Stenberg et al., 1991), Eq. 2 can be transformed into the

following equation for fitting to dissociation data,

RðtÞ ¼ C e
�koff t 1Ro; (3)

where C is equal to R (0) � R0. R0 is the baseline value. The SPR response

approaches R0 when t approaches infinity. For each case, 4–12 repeat

measurements were performed to yield an average koff and its standard

deviation.

During the association phase, the complex concentration at the sensor

chip surface is also affected by the rate of dissociation koff, resulting in a more

complicated kinetics that can be written as

d½EF1 � EF2�ðtÞ
dt

¼ kon½EF2�ðtÞ½EF1�ðtÞ � koff ½EF1 � EF2�ðtÞ;

(4)

where kon is the association rate constant. The consumption of EF1 can be

shown to be negligible therefore [EF1] can be approximated as constant and

the total concentration of EF2 is the sum of the free immobilized EF2 and

EF2 in complex with EF1. Equation 4 can be solved analytically, and with

the boundary of [EF1�EF2] (t ¼ 0) ¼ 0, the solution is

½EF1 � EF2�ðtÞ ¼ kon½EF2�tot½EF1�
kon½EF1�1 koff

�
1� e

�ðkon ½EF1�1koff Þt
�
: (5)

The equation curve for the fitting of association data is then

RðtÞ ¼ kon Rmax½EF1�
kon½EF1�1 koff

�
1� e

�ðkon ½EF1�1koff Þt
�
1R0; (6)

where Rmax indicates the maximum SPR response that would be expected if

all the active immobilized EF2 molecules would interact with EF1. Rmax

would, in principle, be constant for all association experiments run on one

particular surface of immobilized EF2. However, instabilities in the

instrument and the deterioration of the immobilized protein with time and

number of experiments may cause variations in Rmax. Six to twelve
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measurements were performed for each condition and an average kon and

standard deviation was obtained.

Isothermal titration calorimetry

Isothermal titration calorimetry was carried out using a VP-ITC instrument

from MicroCal (Northhampton, MA) at constant temperature (25�C) in

2 mM HEPES/NaOH buffer, pH 7.4 with 1 mM CaCl2. In addition, 0, 20,

50, 150, or 400 mM NaCl was present in the buffer for the salt-dependence

experiments and 150 mM NaCl for the experiments with EF1 mutants.

Deionized water was used in the reference cell. All solutions were

thoroughly degassed by stirring under vacuum before use. For the salt-

dependence experiments, 39 mM EF2 was titrated into 1.2 mM EF1 in the

sample cell (1.4 ml). Two to three titrations were carried out at each NaCl

concentration. For each titration, a 2 ml injection was followed by 24

injections of 9 ml each into the sample cell. The mixture was allowed to react

for 4 min between injections. The baselines of the raw data were adjusted

manually before integration. Heats due to injection and dilution were

obtained by titrating additional EF2 after the saturation of EF1. For the

titrations with EF1 mutants, 160 mM EF2 was titrated into 2–6 mM EF1

mutants with a 1 ml injection followed by 24 injections of 5 ml each into the

sample cell. Two titrations were carried out for each EF1 mutant and the

experimental procedure was otherwise identical to that of the salt-

dependence experiments.

DH� was obtained by global fits of a 1:1 binding model to all titration

curves for the same condition usingMATLAB 6.5 (TheMathWorks, Natick,

MA). Because the experiments were designed for DH� determination and

not affinity determination, the binding constants were fixed to values

obtained from the SPR measurements. The first injection has been omitted in

the data analysis. The errors in DH� were obtained using a Monte Carlo

analysis.

Assuming ideal behavior, the standard free energy change DG� and the

standard entropy change DS� can be calculated from the equilibrium con-

stant and DH� using Eqs. 7–9, which are valid at equilibrium.

m�AB � m�A � m�B 1RT ln
CAB

C�
CA

C� �
CB

C�

¼ 0; (7)

DG� ¼ m�AB � m�A � m�B ¼ �RT lnKA C�; (8)

DG� ¼ DH�� TDS�: (9)

KA is the equilibrium constant in molar units, and � denotes standard state

(C� ¼ 1 M).

RESULTS

Mutagenesis and nomenclature

The design goal was to probe the role of electrostatic

interactions in the assembly of a protein from its sub-

domains. Site-specific substitutions involving six residues of

EF-hand 1 of calbindin D9k were introduced to produce five

mutants. The residues were chosen to represent surface

positions both close to and far from the interface with EF-

hand 2. Three of the substituted residues (A15, E17, D19) are

in the loop of the N-terminal calcium-binding site; one (K12)

is in a-helix I, and two (K25 and K29) in helix II. The

substitutions were introduced in a mutated version of the

minor-A form of bovine calbindin D9k in which Met43

substitutes for Pro43 in the loop between the two EF-hands.

The mutants are named after their substitutions (in addition

to P43M) using one-letter amino acid codes. The net charge

at neutral pH is altered by12 units for E17Q1D19N, by�1

unit for each of A15D1P20G, K25Q and K12Q, and by �4

units for K25E1K29E. This last mutant has a drastic charge

change (from 11 to �3 in the presence of calcium) that

should invoke significant net repulsion of the negatively

charged partner subdomain EF2. Intact proteins with the

A15D1P20G, and E17Q1D19N substitutions have been

studied before (Akke and Forsén; 1990; Johansson et al.,

1991; Linse et al., 1988, 1991), whereas the other three

mutants were designed specifically for this study. The extra

P20G substitution provides A15D1P20G with a Ca21

affinity that is only twofold reduced compared to wild-type

(Johansson et al., 1991). The backbone carbonyls of E17 and

D19 ligate the Ca21 ion in site I, whereas the side chains are

surface-exposed. The Ca21 affinity for E17Q1D19N is 10-

fold reduced relative to wild-type (Linse et al., 1991),

yielding a KD of 1 mM, which means that E17Q1D19N is

99.95% saturated in 2 mM CaCl2. For the other mutants we

expect smaller effects or even an increase in calcium affinity,

based on earlier studies of surface charge mutants (Linse

et al., 1988; Svensson et al., 1991).

Protein purification, CNBr cleavage, and isolation
of fragments

The protocol for the wild-type (wt) protein (Johansson et al.,

1990) was used for the purification of all intact mutants,

except that the salt concentrations for elution had to be

adjusted according to the net charge of the protein. The

solution structure has been solved for A15D1P20G

(Johansson et al., 1993), and found essentially identical to

the parent protein, even in the calcium loop. NMR assign-

ments reveal that the structure is essentially retained in

E17Q1D19N (Linse et al., 1991). 1H NMR spectra in H2O

for K12Q, K25Q, and K25E1K29E are very similar to the

spectrum of the wild-type substitute P43M (Fig. 3). This

close similarity includes all the outshifted NH and methyl

protons, indicating that no major structural rearrangements

have occurred due to the surface charge substitutions. In the

gel filtration of the intact protein with the GGC extension,

both the monomer and a higher aggregate were obtained.

Only the monomeric peak was used for further purification

and CNBr cleavage to produce EF2-GGC. All purified

mutant proteins were cleaved by CNBr and fragments

separated used ion exchange in EDTA followed by

a desalting step. Typical yields of pure fragment were 16–

19 mg EF1 and 8–12 mg EF2 when 50-mg purified intact

protein was cleaved. MALDI-TOF mass spectroscopy was

performed for all isolated fragments confirming that there

was no further degradation beyond the cleavage at

methionine. EF2-GGC shows only one peak that agrees

with the expected mass. Each EF1-peptide shows a major

peak that agrees with retained Met0 on the N-terminus and

a homoserine on the C-terminus (as should be the result of

the CNBr reaction). In addition there are two minor peaks,

Electrostatic Interactions in Protein Reconstitution 1995

Biophysical Journal 88(3) 1991–2002



one with 18-Da higher mass corresponding to Met0 plus ho-

moserine lactone, and one with 131-Da lower mass corre-

sponding to the loss of Met0 and homoserine on C-terminus.

CD spectra of the various EF1 mutants at 20 mM in the

presence of 2 mM CaCl2 show that under these conditions,

the helical content is the same (data not shown).

Surface plasmon resonance studies

Immobilization of EF2-GGC using the ligand thiol-coupling

method (Fig. 2) was more efficient than immobilization

of EF2 using the amine-coupling method. Coupling of

.;1000 RU was difficult using amine coupling, most likely

because this method disfavors a negatively charged protein

or fragment. Apo EF2 has a formal charge of �6 at neutral

pH and requires very low pH to become positively charged.

Although much higher coupling levels of EF2-GGC were

easily achieved using the ligand thiol-coupling method, the

procedure was controlled to reach ;2000 RU. The

maximum signal during EF1-binding experiments was

;200 RU for thiol coupled surfaces and ,50 RU with

amine-coupled surfaces, indicating that a larger percentage

of coupled EF2 was active for binding to EF1 using the

ligand thiol method.

EF1 wt was injected over surfaces with thiol-coupled EF2-

GGC to study the association kinetics over a range of EF1

concentrations. This mode of analysis was chosen based on

the known dimerization properties of the two fragments. EF1

has the higher homodimerization constant (Julenius et al.,

2002) and may form homodimers when immobilized due to

local high concentration on the sensor-chip surface.

Therefore, homodimer dissociation becomes the rate-limit-

ing step for association of EF2 with immobilized EF1

(Berggård et al., 2001). This problem is not encountered

when EF2 is immobilized because EF1 is injected in con-

centrations that are orders-of-magnitude below the inverse of

its association constant (Berggård et al., 2001; Julenius et al.,

2002). Injection of EF1 was interrupted after 30 min, after

which buffer was flowed over the surfaces to study the

dissociation kinetics for up to 28 h. Under physiological

conditions, the dissociation was only ;85% complete after

28 h. However, instabilities in the instrument made it dif-

ficult to study the dissociation process for longer periods of

time. Binding and dissociation was observed in buffer with 2

mM CaCl2 (Figs. 4 and 5 A). Equations 5 and 3 for a simple

1:1 binding model were very well fitted to the association

and dissociation phase data, respectively (Fig. 4). The affin-

ity we obtain from the rate constants is slightly lower than

that obtained previously using amine coupling (Berggård

et al., 2001). A test experiment using amine coupling pro-

duced roughly the same results for wt EF1 as previously

obtained (data not shown). No binding was observed in the

presence of EDTA (Fig. 5 A).

Effects of point mutations in EF1 on protein
reconstitution (SPR)

Five mutants with charge substitutions in the EF1 subdomain

were used to study the role of electrostatic interactions in the

reconstitution of calbindin D9k (Table 1, Fig. 5). The data

show that the kinetics of the reconstitution is strongly

affected by the charge substitutions. All mutants show higher

dissociation rate constants than wt. For the mutants

E17Q1D19N, K25Q, and K12Q, a time of 25 h was

sufficient for following the complete dissociation process.

The mutants A15D1P20G and K25E1K29E were almost

totally dissociated after 3 h. The highest dissociation rate

constants (;10�3 s�1) were found for A15D1P20G and

FIGURE 3 1H NMR spectra in H2O for calbindin D9k P43M, and the

charge mutants K12Q, K25Q, and K25E1K29E. The charge mutants also

contain the P43M substitution.
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K25E1K29E, which are neutral or negatively charged in the

presence of calcium. These mutant EF1s dissociate ;100-

fold faster than EF1 wt. In all tested cases, the mutations

affect the dissociation rate constant much more than the

association rate constant. The highest association rate con-

stant (only twofold higher than wt) is found for E17Q1

D19N, which has a formal net charge of 13 at neutral pH,

opposite to the charge of EF2. The lowest association rate

constant is found for K25E1K29E (threefold lower than for

wt). The affinity between EF1 and EF2, as deduced from the

rate constants, is lower for all the mutants compared to wt.

The lowest affinity between EF1 and EF2 was found for

K25E1K29E (260-fold lower than wt), whereas it was

reduced 100-fold for A15D1P20G and 25-fold for K25Q

relative to wt. Only modest effects on the affinity were seen

in E17Q1D19N (twofold lower than wt, which is approx-

imately the size of the errors) and K12Q (threefold lower

than wt).

Effects of point mutations in EF1 on protein
reconstitution (ITC)

ITC was used to investigate the effect of mutations on the

enthalpic and entropic contributions to the free energy of

binding (Fig. 6). Calorimetric titrations were performed in

2 mM HEPES/NaOH pH 7.4 with 1 mM CaCl2 and 150 mM

NaCl. Due to the very high affinity between EF1 and EF2,

ITC could not be used to determine the affinity, as this would

FIGURE 4 Typical SPR sensorgrams for the association (A) and dis-

sociation (B) of 1.2 nM EF1 wt with EF2-GGC immobilized. Experimental

data from one replicate (shaded) are shown together with least-squares fitted

curves (solid).

FIGURE 5 SPR sensorgrams (experimental data from one replicate) for

the association and dissociation of EF1 wild-type in the presence of Ca21 or

EDTA (A) and EF1 surface charge mutants in the presence of Ca21 (B–F)

to immobilized EF2-GGC. The first 3500 s are shown for 50 nM (solid) and
10 nM (shaded) EF1. The arrow indicates the point where protein injection

is interrupted and replaced with buffer flow.
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require such low concentrations that the signal would be

negligible. For all the mutants, the standard enthalpy of bind-

ing was more favorable than for wild-type EF1. This suggests

that the unfavorable effect on binding free energy DG� as

observed for all mutants is due to the entropic component,

TDS�, being much less favorable, or even unfavorable, off-

setting the gain in enthalpy.

Effects of pH on protein reconstitution (SPR)

For the wild-type EF1 the reconstitution was studied in the

pH range between 5.5 and 9.5. The results show that the rate

constants are weakly dependent on pH in this range (Fig. 7

C). The pH range was not extended outside 5.5–9.5 due to

instrumental instability at higher pH and the loss in calcium

affinity for both the binding sites at lower pH (Kesvatera

et al., 2001a). The only ionizable groups that undergo a

titration in this pH range are the N-terminal amine group and

a few carboxylates at the Ca21-sites (Kesvatera et al., 1996,

2001b). The rather weak pH dependence seen within this pH

range is therefore not surprising.

Effects of NaCl concentration on protein
reconstitution (SPR)

The effect of salt concentration on the affinity between EF1

and EF2 was monitored in the NaCl concentration range

between 5 and 400 mM at a constant pH of 7.4. The effect of

salt concentration is much smaller than the effects due to

mutations as described above. The association rate constant

is reduced ;10-fold at low salt compared to 150 mM NaCl

(Fig. 7 A). A similar reduction is seen when going to high salt

concentration. The dissociation rate constant is found to be

roughly independent of salt concentration between 5 and 400

mM NaCl (data not shown). The affinity between EF1 and

thiol-coupled EF2-GGC is increased approximately fivefold

as the salt concentration increases from low to 150 mMNaCl

(Fig. 7 B).

Effects of NaCl concentration on protein
reconstitution (ITC)

ITC was used to investigate the thermodynamic origin of the

small peaking at 0.15 M NaCl of the affinity between EF1

and EF2. Calorimetric titrations were performed at 0, 20, 50,

150, and 400 mM NaCl in 2 mM HEPES/NaOH pH 7.4 with

1 mM CaCl2 (Figs. 6 and 8). Due to the very high affinity

between EF1 and EF2, ITC could not be used to determine

the affinity, as this would require such low concentrations

that the signal would be negligible. Instead the titrations

were performed at a concentration (1.2 mM) that was high

enough to get a decent signal but low enough to avoid

screening effects from the peptides at the lowest salt

concentrations. At physiological salt concentration, we

obtain DH� ¼ �30 kJ mol�1. The enthalpy of association

is roughly invariant with salt and the small difference

TABLE 1 Rate and equilibrium constants, and thermodynamic parameters, for the reconstitution of EF1 wt and mutants with

immobilized EF2-GGC (at physiological conditions of pH 7.4, 150 mM NaCl, 25�C)

Net EF1 charge* 10log kon
10log koff

10log KA DH�/kJ mol�1 TDS�/kJ mol�1

Wild-type 11 5.1 6 0.2 �5.0 6 ,0.1 10.1 6 0.2 �29.3 6 0.8 28.3 6 1.9

E17Q1D19N 13 5.4 6 0.1 �4.4 6 ,0.1 9.8 6 0.1 �46.7 6 1.1 9.3 6 1.6

K12Q 0 4.9 6 0.2 �4.7 6 0.3 9.6 6 0.5 �50.9 6 1.1 3.9 6 3.9

K25Q 0 4.8 6 0.3 �4.0 6 0.1 8.7 6 0.4 �36.0 6 1.1 13.6 6 3.4

A15D1P20G 0 5.1 6 0.2 �3.0 6 ,0.1 8.1 6 0.2 �48.8 6 1.3 �2.6 6 2.4

K25E1K29E �3 4.6 6 0.1 �3.1 6 0.1 7.7 6 0.2 �35.0 6 1.4 8.9 6 2.5

*The net charge of the mutant is given as the formal charge at pH 7.4 with Ca21 bound.

FIGURE 6 ITC data for 39 mMEF2 wt titrated into 1.2 mMEF1 wt at 150

mMNaCl in 2 mMHEPES/NaOH, pH 7.4 with 1 mMCaCl2. An initial 2-ml

injection was followed by 9-ml injections. The heat response is shown in the

upper panel and the heat-per-mole injectant in the lower panel. Data from

one replicate are shown together with the global fit of three replicates.
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observed at 150 mM NaCl compared to all other salt con-

centrations is just beyond the error limits.

Both the enthalpic (DH�) and entropic (�TDS�) compo-

nents favor complex formation between EF1 and EF2. The

lack of salt effects on DH� suggests that the salt-dependence
of DG� originates from entropic effects (Fig. 8).

DISCUSSION

The results of the present study show that electrostatic

interactions can modulate the association of super-second-

ary-structure elements, or subdomains, in a protein. The

distribution of surface charges over the two helix-loop-helix

subdomains in calbindin D9k clearly affects the affinity be-

tween them. The equilibrium constant varies over roughly

one order in magnitude due to changes in salt conditions and

over more than two orders of magnitude upon charge sub-

stitutions at physiological salt.

A high affinity reconstitution

The reconstitution of calbindin D9k from its EF-hand

subdomains is distinguished by a very high affinity with

a KD in the picomolar range (Berggård et al., 2001). This

very high affinity occurs in the presence of calcium and is

a result of a sizeable association rate constant and a very low

dissociation rate constant. CD spectroscopy shows that each

fragment on its own may bind calcium and fold as an EF-

hand (Julenius et al., 2002). Each fragment may form

homodimers, but with at least million-fold lower affinity

(Julenius et al., 2002) than for the heterodimeric complex of

EF1 and EF2 (Berggård et al., 2001). In the absence of

calcium, the binding between EF1 and EF2 is much reduced

(Fig. 5 A) and has not been measured.

The high affinity between EF1 and EF2 is to a large extent

governed by hydrophobic core residues (Berggård et al.,

2001). This is most likely a combined effect of entropic

contributions from the release of water and an optimized van

der Waal’s packing of the core. Single side-chain sub-

stitutions from Leu to Ala or Gly, or from Phe to Ala were

found to affect the equilibrium constant up to 20,000-fold

FIGURE 7 Association rate constant (kon, A and C) and equilibrium

association constant (KA, B) plotted in logarithmic units (lg¼ 10log) for EF1

wt injected over EF2-GGC as a function of NaCl concentration (A, B) and

pH (C).

FIGURE 8 Enthalpic (DH�; B) and entropic (�TDS�; C) contributions to
(DG�; A) for the association of EF1wt and EF2 wt as a function of NaCl

concentration.
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(Berggård et al., 2001). These effects are clearly much larger

than the ones here observed upon point mutation of charged

residues (up to 260-fold). Of course, one may anticipate

larger effects of charge substitutions of the side chains that

act as bidentate ligands in calcium coordination, due to a

dramatic loss in calcium affinity (Carlström and Chazin, 1993;

Maune et al., 1992).

The role of noncovalent interactions in proteins

The study of hydrophobic core mutants showed that there is

a linear correlation between the mutational effects on free

energy of reconstitution and free energy of unfolding of

intact calbindin D9k, indicating that the factors governing the

stability of the intact protein also contribute to the affinity of

the bimolecular EF1-EF2 complex (Berggård et al., 2001).

Measuring the free energy of association between wild-type

and mutated fragments, one avoids the general problem of

assessing free energy effects by comparing values extrapo-

lated from very non-physiological conditions like high

concentrations of denaturant or elevated temperature. Instead

the contributions of individual residues can be measured dir-

ectly at chosen solution conditions, including those where the

protein is maximally stable.

The calorimetric study of the association between EF1 and

EF2 (Figs. 7 and 8) reveals that for the wild-type, the

enthalpy (DH� ¼ �30 kJ mol�1) of complex formation

constitutes approximately one-half the free energy of

association at the standard condition of 1 M (DG� ¼ �57

kJ mol�1) The entropic contribution at the standard state can

be calculated as �TDS� ¼ �28 kJ mol�1 (or DS� ¼ 94 JK�1

mol�1) using Eq. 9. The entropic component will contain

contributions both from what can be called the intrinsic

entropy of the complex compared to free fragments (DS*),
and a concentration-dependent contribution from the fact

that two components react to form one component. This

latter factor will favor dissociation of the fragments. Many

researchers relate this entropic correction to the loss of

translational entropy upon association (Amzel, 1997; Luque

and Freire, 1998),

DS� ¼ DS�1R ln 55:5:

With this correction, the intrinsic entropy of association is

DS* ¼ 127 JK�1 mol�1, yielding an entropic contribution to

the binding free energy of �TDS* ¼ �38 kJ mol�1 at

physiological salt and 25�C. Hence, the intrinsic entropic

change strongly favors complex formation. The change in

conformational entropy upon complex formation is most

likely unfavorable, as the free fragments can be expected to

sample a larger number of conformations than the complex.

There is, however, a large and favorable entropy increase due

to the release of water molecules from hydrophobic surfaces

that become buried in the complex. This contribution

overrules the conformational entropy, and the intrinsic

entropy change is a stronger driving force for complex for-

mation than the enthalpy change.

Effects of charge substitutions on the kinetics of
protein reconstitution

Phage-display studies of calmodulin reconstitution have

shown that charge-charge repulsion can be a significant

destabilizing factor even at physiological salt (Linse et al.,

2000). The present study was therefore performed at

physiological salt to evaluate electrostatic contributions to

the binding free energy under these conditions. Our data

show that even at this salt concentration (0.15M NaCl), the

kinetics of calbindin D9k reconstitution from EF2 and EF1

are clearly affected by charge substitutions in EF1 (Fig. 5).

For all variants, the most pronounced effects are seen in the

dissociation rate constants. At physiological salt, the as-

sociation rate constant is not very sensitive to electrostatic

interactions, but correlates with net charge in a way that

would be expected for Coulomb interactions. Hence net

charge seems to be an important modulator of the rate of

recognition.

Effects of charge substitutions on protein
reconstitution equilibrium

The equilibrium constant for the reconstitution reaction is

spread over a wide range covering more than two orders of

magnitude (a factor of 260). The large reduction in affinity as

observed for K25E1K29E is most likely due to increased

electrostatic repulsion between the EF-hand subdomains.

Still, the affinity of this mutant EF1 for wt EF2 is as high as

KA ¼ 4.8 3 107 M�1 (KD ¼ 20 nM) due to very strong

attractive contributions from the hydrophobic and other

interactions that overrule the electrostatic repulsion. The

reduction in affinity, as observed for like-charged subdo-

mains, is not paralleled by an increased attraction when the

opposite charges are more pronounced, as in E17Q1D19N.

This suggests that it is more feasible for a protein to use

repulsive electrostatic interactions to prevent unwanted

conformations than to use attractive forces to specify a fold.

Our data shows that at low charge, the dependence on net

charge breaks down and interactions within the charge

network on the protein surface come into play. The

equilibrium constants of the three neutral EF1s vary over

almost two orders of magnitude, indicating that at zero net

charge the position of the substitution is critical for the effect

on reconstitution of calbindin D9k. K12 is found in helix I,

A15 in the calcium loop of EF1, and K25 in helix II. For

these three side chains, the distance in the x-ray structure

(Svensson et al., 1992; Fig. 1) to the closest charges in EF2

are 20 Å (K12–E60), 13 Å (A15–E60), and 3 Å (K25–D47).

The small effect observed for K12Q relative to wild-type (a

factor of 3) can therefore be reconciled by the fact that this

residue is more remote from all EF2 charges than A15 and
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K25. The closer distance from K25 to D47 and to other

negative charges on EF2 predicts larger effects for K25Q

than for K12Q, as is indeed seen. The large effect observed

for A15D1P20G (a factor-of-100 lower affinity than wt)

may seem surprising, especially as the structure calcium

binding loop of EF1 is very similar to wild-type (Johansson

et al., 1993). This suggests that destabilizing repulsive elec-

trostatic interactions within EF1 due to Asp15 may reduce the

affinity for EF2.

Titration calorimetry reveals an enthalpy-entropy com-

pensation mechanism upon charge substitutions, as there are

larger effects on both DH and TDS than on DG (calculated as

�RT ln KA). The charge substitution effects on affinity are

dominated by entropic effects, which may be related to

mutational effects on the conformational degrees of freedom

and/or hydration.

Effects of NaCl concentration on
protein reconstitution

A traditional interpretation of the screening effect according

to the Debye-Hückel theory foresees the presence of

a screening factor dependent on the square-root of the ionic

strength. Therefore, the interactions between small opposite

charges is reduced as the salt concentration is increased.

Likewise, binding of small positive ionic ligands, like metal

ions to a negatively charged protein, is strongest at low ionic

strength and reduced by several orders of magnitude as the

salt concentration increases (Kesvatera et al., 1994; Linse

et al., 1991; Svensson et al., 1991). In contrast, the re-

constitution of calbindin D9k from the oppositely charged

EF1 and EF2 (11 and �4, respectively) is not favored by

low salt concentration. Instead, the affinity increases ap-

proximately fivefold upon addition of physiological salt.

Although the net charge of EF1 and EF2 are of opposite sign,

the distribution of individual charges may be such that the

sum of all electrostatic contributions produces an overall

unfavorable electrostatic contribution to the free energy of

reconstitution. Screening by salt may then damp the un-

favorable component and allow for tighter association. In

addition, the salt effect may be due to other contributions, for

example hydrophobic interaction may also be salt-depen-

dent. The calorimetric analysis suggests that the salt effect

arises mainly from the salt-dependence of the entropic

component. Hence, the salt concentration seems to affect the

decrease in conformational entropy upon complex formation

and/or the entropy increase due to the release of water mol-

ecules from hydrophobic surfaces that become buried in the

complex.

Homogenous coupling produces high quality data

The present work uses thiol coupling of EF2 via a three-

residue extension at the C-terminus (Fig. 2). One major

benefit of this coupling is its homogeneity. All EF2 mol-

ecules are immobilized using the same functional group, pro-

ducing high quality data that is extremely well fitted to a

simple 1:1 binding model (Fig. 4). Another benefit of thiol

coupling is charge conservation, as no formal charge is lost.

In addition, the three-residue extension allows the thiol-

coupled EF2 to be more remote from the dextran matrix, the

partial charges of which may provide electrostatic perturba-

tions of the binding of EF1. The more conventional amine

coupling, on the other hand, occurs between the dextran

carboxylates and amine groups at the N-terminus or lysine

side chains. Therefore, amine-coupled EF2 is heterogeneous.

In addition, the loss of one positive charge at the coupling

site means that EF2 is one-unit more negative after amine

coupling. This may lead to an additional electrostatic con-

tribution to the binding of the positive wt EF1 (net charge11

with Ca21 bound), and may explain the slightly higher

affinity obtained with the amine compared to thiol coupling.

Protein reconstitution is a bimolecular binding/recognition

reaction and folding/unfolding is unimolecular; however, the

same intermolecular interactions (electrostatic, van der

Waal’s, hydrophobic effect, H-bonds, etc.) are in operation

in both events and there is a strong correlation between

mutational effects on stability and reconstitution (Berggård

et al., 2001). The main difference between the two events is

the entropic loss of bringing two fragments together. There is

considerable interest in finding a solution to the protein
folding problem, i.e., to predict structure from sequence. To

develop algorithms for this purpose, theoreticians need

massive data to test their models, and many investigators are

convinced that more structures will not help them to solve

this problem. Rather, a large body of thermodynamic data as

to the roles of different interactions will be needed, and the

present work presents a way that such data can be ac-

cumulated under physiological conditions.
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