
A Novice's Process of Object-Oriented Programming

Michael E. Caspersen
Department of Computer Science

University of Aarhus
Aabogade 34, DK-8200 Aarhus N

Denmark
mec@daimi.au.dk

Michael Kölling
Computing Laboratory

University of Kent
Canterbury, Kent CT2 7NF

United Kingdom
mik@kent.ac.uk

Abstract
Exposing students to the process of programming is merely im-
plied but not explicitly addressed in texts on programming which
appear to deal with ‘program’ as a noun rather than as a verb.

We present a set of principles and techniques as well as an infor-
mal but systematic process of decomposing a programming prob-
lem. Two examples are used to demonstrate the application of
process and techniques.

The process is a carefully down-scaled version of a full and rich
software engineering process particularly suited for novices learn-
ing object-oriented programming. In using it, we hope to achieve
two things: to help novice programmers learn faster and better
while at the same time laying the foundation for a more thorough
treatment of the aspects of software engineering.

Categories and Subject Descriptors D1.5 [Programming Tech-
niques]: Object-oriented programming.
D2.3 [Software Engineering]: Coding Tools and Techniques –
Object-oriented programming, Structured programming, Top-
down programming.

D2.4 [Software Engineering]: Software/Program Verification –
Class invariants, Programming by contract.

General Terms Algorithms, Design, Documentation, Languages.

Keywords CS1, Systematic Programming, Programming Proc-
ess, Design by Contract, Representation Invariant, Objects-First,
Stepwise Refinement, Top-Down Design, Incremental Develop-
ment, Testing, Refactoring, Programming Education, UML,
Pedagogy.

1. Introduction
I remember when I first learned to program. I had a
couple of workbooks covering the fundamentals of pro-
gramming. I went through them pretty quickly. When I
had done that, I wanted to tackle a more challenging
problem than the little exercises in the book. I decided I
would write a Star Trek game…
My process for writing the programs to solve the work-
book exercises had been to stare at the problem for a

few minutes, type in the code to solve it, then deal with
whatever problem arose. So I sat confidently down to
write my game. Nothing came! I needed to do something
beyond coding. But I didn’t know what else to do.

Kent Beck [3]

Most texts used to teach beginners to program focus on presenting
language constructs, programming language concepts, and com-
puter programs (complete or partial). They are concerned mostly
with ‘program’ as a noun rather than as a verb. The process of
program development is often merely implied rather than explic-
itly addressed. A typical structure is the presentation of a problem
followed by a presentation of a program to solve that problem and
a discussion of the program’s elements.

From the viewpoint of a student, the program was developed in a
single step, starting from a problem specification and resulting in
a working solution. Sometimes, a semi-formal requirements speci-
fication is included as an interim step, but this does not funda-
mentally alter our main point: the process of software develop-
ment is essentially invisible. The fact that we all start by develop-
ing sub-optimal and partial implementations on our way to a solu-
tion, which we later refine and improve, often seems to be the
best kept secret of the computing profession.

The exercises in texts often compound the problem; they fre-
quently require small, easy-to-understand steps that are quite dif-
ferent in character from the development of a complete software
solution. The problems resulting from this approach are poten-
tially two-fold:

• Students may be able to understand every separate construct
but do not have the skills to put the constructs together in an
organised way. This is succinctly illustrated in Kent Beck’s
quote above. Or, if they do succeed:

• Students, who labour through various incorrect attempts at
solving a problem, slowly improving their solution, running
into regular bugs along the way before developing a solu-
tion that mostly works, often think they are poor program-
mers for experiencing so much trouble along the way.

To solve these problems we need to do two things:

• Teach students about the process of software development,
to enable them to follow organised steps to move toward a
solution to a problem, and

• Treat software development explicitly as a process that is
carried out in stages and small steps, rather than the writing
of a single, monolithic solution.

Copyright is held by the author/owner(s).
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

If we do not explicitly teach the programming process, we end up
with two groups of students: those who cannot cope with the chal-
lenge of development and those who discover their own process.

Developing software is, by its very nature, always a process,
whether we are formally aware of it or not.

Some of the first group, those students we lose, might have been
saved had we given them better techniques to address this prob-
lem.

Students in the second group can also greatly benefit from a sys-
tematic process, since the techniques they discover and apply in
an ad-hoc manner often (and unsurprisingly) lead to inadequate
and badly designed solutions. The most applied development
technique among students is probably the “first solution that
comes to mind” technique. Many of our students are so happy to
find any solution at all that it does not occur to them to investigate
alternatives. Thus, a systematic process should not only help those
students who have fundamental problems arriving at any solution
at all but should improve the quality of solutions of all students.

The problem has been first identified a long time ago [9, 13, 22].
The terms stepwise refinement and top-down design were intro-
duced in the 1970s, and the general principles appeared in some
texts at the time, but few current texts do justice to the topic. Re-
cently, some work in this area has been published. For example,
Bennedsen & Caspersen argue for the necessity of teaching a sys-
tematic programming process and demonstrate ways to apply pro-
gramming strategies and techniques [5]. A further discussion of
related work is provided in section 5.

In this paper, we identify and describe systematic programming
techniques particularly suited for novices learning object-oriented
programming. More specifically, we present part of an informal,
but systematic, process of decomposing a programming problem.
The process is designed to be applied by beginners. This paper
does not completely describe the whole process, but the largest
part of it. Some additional work remains to be done.

The aim of this process is to be applied in an introductory learn-
ing and teaching situation. Thus, some of the design goals are that
the process has very little bureaucratic overhead, is easy to under-
stand, and is simple to follow.

Our hope is that the result is not only to enable more students to
develop programs but also to achieve an improvement in code
quality (such as readability, correctness, testing, and extendabil-
ity) of student solutions.

Section 2 presents the techniques in an abstract form, followed by
two examples in sections 3 and 4 that illustrate and discuss the
techniques. Section 5 discusses related and future work and sec-
tion 6 presents our conclusions.

2. A SYSTEMATIC PROCESS FOR NOVICES
In this section, we describe, in a general way, some simple steps
that can be followed to implement classes whose intended behav-
iour is essentially understood.
This section is kept brief and is intended as an initial overview –
we will discuss the techniques in more detail using an example in
the following section.
Our techniques do not address the analysis phase or the finding of
the classes from the problem domain. This may be achieved by

using the noun/verb method or other simple methodologies. More
likely, in very early student exercises, the teacher or the textbook
will provide the class structure.

2.1 Step 1: Create the class (with method stubs)
We assume that the classes and their observable (public) func-
tionality is understood and given, for example in the form of a
Java interface or carefully written javadoc comments.
The first step towards implementation is to create an implementa-
tion class that implements this interface (or, if the interface is not
formally given, provides methods with the intended signatures).
The method implementations at this stage are stubs (i.e. minimal
method bodies).
For methods that do not return values, the method body is empty.
For methods with return values, the method body consists of a
single return statement. The value returned is a default value (zero
for numbers, null for object types, etc.).
Repeat this for every class in the project.

2.2 Step 2: Create tests
Once method stubs have been defined, test cases can be written
for every method. This is commonly done using JUnit [16]. Sev-
eral educational tools support JUnit testing (e.g. BlueJ and Dr.
Java [18, 11]), and in environments that support recording of in-
teractive testing, such as BlueJ [17], the existence of stubs enables
the test interaction to be recorded.
Initially, most tests will fail. Details about how these tests should
be developed are beyond the scope of this paper and have been
discussed elsewhere [4, 15].

2.3 Step 3: Alternative representations
The next step aims at deciding on an implementation representa-
tion for the objects to be defined. The representation is defined by
the instance fields of the class.
For every class, alternative representations must be considered.
These can be as many as a student can think of, but must be at
least two.
We label each of our candidate representations R1 to Rn.
Next, we create a Representation Evaluation Matrix (REM). A
REM is a table with one column for each candidate representa-
tion, and one row for each method in our class to be implemented
(Table 1). Above the table is a short description of each alterna-
tive.
R1: a short description of the first representation alternative here

R2: a short description of the first representation alternative here

IMPL. EFFORT R1 R2

method1() Challenging Trivial

method2() Trivial Hard

method3() Easy Hard

Table 1: Implementation effort estimation matrix
We use this matrix to compare each method that must be imple-
mented for each possible object representation. The comparison
criteria may vary – leading to different tables – but is initially al-
ways “implementation effort”.

Table 1 shows an example of an Effort REM. In this table, we
compare the estimated effort it takes to implement each method
using a particular object representation. As values, we use a small
ordered set of effort qualifiers. They are Trivial, Easy, Average,
Challenging, and Hard (the “TEACH scale”).
In later exercises, different REMs may be used for other criteria
that are explicitly mentioned in the task specification. For exam-
ple, if runtime performance is an explicitly stated goal, a Per-
formance REM may be used.
It is crucial not to judge representations on imaginary require-
ments. Especially, performance consideration should not play a
role in early exercises, and it should be made clear that perform-
ance is entirely irrelevant for judgement of the Effort REM. We
recommend focusing on Effort REMs in early exercises.
Initially the instructor can supply the REM, but gradually the stu-
dents should be responsible for filling in the REM.
Once the Effort REM is complete, we choose the representation
that is judged to have the simplest overall implementation.

2.4 Step 4: Instance fields
When we have settled on one particular representation, we can re-
fine our implementation class.
We now define the fields needed to represent the object. (The
field definitions need not be complete; further fields may be
added later to support method implementations. However, many
important fields are derived from the implementation representa-
tion.) The field definitions may include their role (in the form of a
comment) and possible constraints on their values (also in com-
ment form).
At this stage, we also provide appropriate initialisations for the
fields, either in the form of default values or by using client-
supplied values. This includes at least partial implementation of
the class’s constructor.

2.5 Step 5: Method implementation
Step 5 is actually more than a single step: it has the form of a
nested loop. The definition is:

while there is an unfinished method:
 Pick an unfinished method;
 Implement the method

The “Implement the method” step itself contains a loop:

while not done:
 improve the method;
 test

The order in which a student chooses the methods is essentially
arbitrary. Our recommendation for students who are not entirely
confident is to choose the method that, according to the Effort
REM, is easiest to implement first.
It is easy to see that this completes the implementation. If a stu-
dent successfully completes this step, the class is finished.
All the magic now lies in the “Implement method” step. This is
still a large task, and needs further advice to break it down into
smaller steps.

2.6 Method implementation rules
Implementing a method is potentially a large and non-trivial task.
We aim to provide a process that breaks this task into smaller
steps as well. This time, we cannot give a single recipe, since de-
tails of the method may vary widely. Instead, we give a set of
rules that can be applied in certain cases.
Some methods, of course, consist of only a few lines of code and
may be easy to write. Our rules aim at breaking all methods down
into smaller chunks, until they approach the complexity of those
easy-to-write methods. This is essentially a small variation of
stepwise refinement [22].
At the heart of this technique is the Mañana Principle. The
Mañana Principle says

When – during implementation of a method – you wish you
had a certain support method, write your code as if you had it.
Implement it later.

Thus, the Mañana Principle encourages separation of concerns
and the use of many small methods. We discuss an example be-
low.
To get beginners used to the Mañana Principle, there are some
more specific forms of this rule, each of which state a more con-
crete situation in which this principle should be used. They are:

Special Case rule: If you write code to treat a special case
in your algorithm, treat the special case in a separate
method.
Nested Loop rule: If you have a nested loop, move the inner
loop into a separate method.
Code Duplication rule: If you write the same code segment
twice, move the segment into a separate method.
Hard Problem rule: If you need the answer to a problem
that you cannot immediately solve, make it a separate
method.
Heavy Functionality rule: If a sequence of statements or an
expression becomes long or complicated, move some of it
into a separate method.

The special methods created as part of these rules are usually pri-
vate methods, unless they are created in different classes – we dis-
cuss this further below.
It is important to remind students that these separate methods do
not need to be implemented straight away. The calling method
can be written as if the method existed. Following this, a stub for
the Mañana method should be created. (If the programming envi-
ronment had specific tool support for the Mañana principle, this
could be automated by the IDE.)
The specific rules are initially easier to apply, because they pro-
vide concrete hints to times when they should be applied. They
are, however, just instances of the Mañana Principle, and, if ap-
plied regularly, develop a coding habit that encourages the under-
standing and application of the principle in general.
This principle – and the specific rules – may sound abstract or
complicated when presented in this theoretical form, but they are
quite easy to understand when presented in the context of an ex-
ample. In the next section, we discuss the development of a class
defining objects for dates (time, month and year) to illustrate
these techniques in practice.

3. A FIRST EXAMPLE: DATE
We demonstrate the techniques discussed above in the context of
a simple programming problem: the implementation of a class
representing a date.

3.1 Specification of Date
Here, we give the specification of the problem as a Java interface.
It could easily be presented more informally; the introduction of
interfaces is not a requirement for this process.
interface Date {
 /**
 * Advance the date to the next day
 */
 void setToNextDate();

 /**
 * Return a string representation of this date
 * in the format yyyy-mm-dd
 */
 String toString();
}

Figure 1: Specification of Date

3.2 Creating method stubs
The first step is to create a class for the implementation that con-
tains method stubs. The resulting class is presented in Figure 2.
(Note that we do not formally implement the interface given
above to demonstrate that the use of Java interfaces is not a re-
quirement.)
If the specification was provided in the form of a Java interface,
this process is essentially mechanical and could be automated by
a development environment. For students in early stages of learn-
ing, however, it might help to write this class skeleton by hand.
The important thing is: simple rules can be given to guide the
creation of this class.
/** An instance contains a date */
class Date1 {

 /**
 * Advance the date to the next day
 */
 public void setToNextDate() {
 }

 /**
 * Return a string representation of this date
 * in the format yyyy-mm-dd
 */
 public String toString() {
 return null;
 }
}

Figure 2: Date class with method stubs

3.3 Test cases
The next step is to ensure that appropriate test cases exist.
Our techniques do not necessarily prescribe a strict test-first ap-
proach, in which students create tests for all methods themselves.
A viable alternative for early programming tasks is to use teacher-
provided tests. The teacher may provide a test suite for the ex-
pected methods as part of the specification of the task.
The important step here is to ensure that tests exist, can be com-
piled, and can be executed (but do not need to pass).
In this paper, we do not present the specific tests, since the actual
test development is not the main focus of this paper. The example
(including the test), however, is available from a web site. The
URL is given at the end of this paper.

3.4 Alternative representations for Date
The next step in our technique is to consider alternative represen-
tations (at least two).

An obvious representation for this problem is to use three integer
variables day, month and year; we will denote this alternative R1.
An alternative representation is to count the number of days from
a certain start date, say 0001-01-01; we denote this alternative R2.

R1 simplifies the implementation of toString whereas the imple-
mentation of setToNextDate will be more challenging, since it
must deal with the special case of the last day of a month.

R2 leads to a simple implementation of setToNextDate (a simple
increment), whereas implementing toString will be hard.

The result of this analysis is the Effort REM for Date (Table 2).

R1: Use three integers for date: day: int; month: int; year: int

R2: Use one integer: number of days since 1 Jan 0001

IMPL. EFFORT R1 R2

setToNextDate() Challenging Trivial

toString() Trivial Hard

Table 2: Estimate of required effort to implement Date

We choose to use R1 for our class, since it seems to be the repre-
sentation that allows for the quickest implementation of Date.

3.5 Instance fields of Date
Choosing R1 as the basis for our implementation determines the
instance fields. The definition of class Date1 after adding the
fields is presented in Figure 3. The method stubs are unchanged.
Comments from previous code segments are left out for brevity;
only comments for new methods are included from here on.
class Date1 {

 private int day; // 1 ≤ day ≤ daysInMonth
 private int month; // 1 ≤ month ≤ 12
 private int year;

 /**
 * Create a date instance with an arbitrary
 * (fixed) value.
 */
 public Date1() {
 day = 23; month = 10; year = 2006;
 }

 public void setToNextDate() {
 }

 public String toString() {
 return null;
 }
}

Figure 3: Adding instance fields to Date

3.6 Implementing the methods
The next step is to implement and test the methods. Some meth-
ods may be easy to implement in one step; toString in our exam-
ple falls into this category. Other methods may require more
work. In this case, partial solutions may be used for initial ver-
sions. Figure 4 shows our class after implementing function
toString and a first, naïve version of setToNextDate.

class Date1 {
 private int day; // 1 ≤ day ≤ daysInMonth
 private int month; // 1 ≤ month ≤ 12
 private int year;

 public Date1() {
 day = 23; month = 10; year = 2006;
 }

 public void setToNextDate() {
 day = day + 1;
 }
 public String toString() {
 return year + “-” + month + “-” + day;
 }
}

Figure 4: Naïve implementation of Date
This partial solution is indeed a very naïve implementation. Nev-
ertheless, we might claim that the setToNextDate method is 97%
correct since it works correctly in 353 out of 365 cases! In some
sense, we are very close to a full solution, and if the class is part
of a larger system, it can now be used (as a test stub) by other
parts of the system.
Incrementing the field day might violate the representation invari-
ant, and in this special case the above implementation of setTo-
NextDate fails to work properly. We have to check for this special
case and handle it appropriately. For simplicity, we temporarily
assume 30 days in every month.
In the special case where day after being incremented exceeds the
number of days in the month, we must set day to 1 and increment
field month. Following our Special Case rule from section 2, we
deal with this special case by introducing a new private method,
checkDayOverflow. Figure 5 shows the resulting code.
class Date1 {
 private int day; // 1 ≤ day ≤ daysInMonth
 private int month; // 1 ≤ month ≤ 12
 private int year;

 public Date1() {
 day = 23; month = 10; year = 2006;
 }

 public void setToNextDate() {
 day = day + 1;
 checkDayOverflow();
}

/**
 * Check for special case where day > daysInMonth;
 * in that case, set day to 1 and add 1 to the month
 */

 private void checkDayOverflow() {
 if (day > 30) {
 day = 1;
 month = month + 1;
 }
 }

 public String toString() {
 return year + “-” + month + “-” + day;
 }
}

Figure 5: Partial implementation of Date
Now, incrementing the variable month might also violate the rep-
resentation invariant; this special case is handled similarly by in-
troducing a new private method checkMonthOverflow, which is
called after incrementing month. Except for the assumption of 30
days in every month, the method is now finished.
To finish our implementation, we have to replace the literal 30
with the correct number of days in every month. Here, the Maña-

na Principle comes in again, this time in the form of the Hard
Problem rule: If we need some information that we do not have,
we pretend we have a method that gives us the answer. Thus, we
just assume a method daysInMonth that does exactly what we
need. We do not worry about the implementation of this method
now; it is postponed until later.
The new version of the checkDayOverflow method is shown in
Figure 6.
private void checkDayOverflow() {
 if (day > daysInMonth()) {
 day = 1;
 month = month + 1;
 checkMonthOverflow();
 }
}

Figure 6: Final version of checkDayOverflow()
This method will not compile until we provide a method stub for
daysInMonth. The stub, in this case, should not return a zero, but
should return 30 – the approximation we have used previously.
The most important thing at this stage is that we have explicitly
separated two independent problems: the correct use of this
method and the implementation of the method. Separating these
problems makes each half easier to solve.
Since our checkDayOverflow method is now complete, we might
now proceed to implement checkMonthOverflow. In the general
case, implementing one method may generate several other meth-
ods via the Mañana Principle, which can then be gradually im-
plemented.
For our example, implementing the daysInMonth method is the
last thing that is missing. To calculate the number of days in the
current month, we declare a local array variable in this method to
hold the number of days per month (with 28 days for February),
and the method returns the number of days in the current month
by looking up the number in the array. This brings us almost to
the finishing line: the implementation now works, except for the
special case where the current year is a leap year (“99.93% cor-
rectness”).
As previously, we treat a special case by introducing a new pri-
vate method to deal with it. In this case, we introduce a boolean
method isLeapYear that returns true if the current year is a leap
year. The implementation of this method is a straightforward im-
plementation of the leap year rule: a year is a leap year if the year
is divisible by 4 but not by 100 or if it is divisible by 400.
The hardest part of this calculation is the check whether a number
can be divided by another so, again, following the Mañana Prin-
ciple, we use a method divides that gives us the result, and then
we implement that method later.
The complete implementation of our Date class including these
methods is shown in Figure 7.
class Date1 {
 private int day; // 1 ≤ day ≤ daysInMonth
 private int month; // 1 ≤ month ≤ 12
 private int year;

 public Date1() {
 day = 23; month = 10; year = 2006;
 }

 public void setToNextDate() {
 day = day + 1;
 checkDayOverflow();
 }

 private void checkDayOverflow() {
 if (day > daysInMonth()) {
 day= 1;
 month= month + 1;
 checkMonthOverflow();
 }
 }

 /**
 * Check for special case where month > 12;
 * in that case, set month to 1 and add 1 to the year
 */
 private checkMonthOverflow() {
 if (month > 12) {
 month= 1;
 year= year + 1;
 }
 }

 /**
 * Return the number of days in the current month
 */
 private int daysInMonth() {
 // month: 1 2 3 ... 12
 int[] daysInMonth = {31,28,31,...,31};

 int result = daysInMonth[month-1];
 // special case: February in a leap year
 if (month == 2 && isLeapYear()) {
 result= result + 1;
 }
 return result;
 }

 /**
 * Return true iff the current year is a leap year
 */
 private boolean isLeapYear() {
 return (divides(4, year) && !(divides(100, year))
 || divides(400, year);
 }

 /**
 * Return true iff a divides b
 */
 private boolean divides(int a, int b) {
 return b % a == 0;
 }

 public String toString() {
 return year + “-” + month + “-” + day;
 }
}

Figure 7: Complete implementation of Date

3.7 Discussion of Date implementation
The above development of a class implementing Date demon-
strates the application of the techniques set out in section 2. The
most relevant observation is that every step is broken into small,
manageable chunks.

Some of the steps in our technique are fairly easy to learn (creat-
ing method stubs, defining the instance fields after deciding on a
representation); others require much practice (creating tests, im-
plementing methods).

The detailed discussion of the method implementation has shown
that – at least in this case – the harder tasks can also be broken
down into small parts. This technique can be applied to any im-
plementation of a method.

4. A SECOND EXAMPLE: CALENDAR
Our second example is one that consists of two classes: a class
Appointment to record personal appointments, and a class Calen-
dar class to hold the appointments. We discuss this example to il-
lustrate some additional points (while mostly skipping those parts
that we have already covered above).

4.1 Specification of Calendar
Again, we give the specifications of Calendar and Appointment in
the form of Java interfaces (Figure 8). Alternatively, they may be
provided as a UML diagram or informally as a list of required
methods.

To abstract from the details of actual time and date information,
start time and duration of appointments are represented as integer
values. For example, we may have an appointment that starts at 6
and has duration 5 and another that starts at 9 and has duration 1.
/** A calendar that can hold appointments */
interface Calendar {

 /** Add appointment a to this calendar */
 void add (Appointment a);

 /** Remove appointment a from this calendar */
 void remove(Appointment a);

 /** Return the first free slot of
 duration d at or after time s */
 Appointment getFirstAvailable(int s, int d);
}

/** An appointment */
interface Appointment {
 int getStartTime();
 int getDuration();
 String getDescription();

 /** collidesWith is true iff this and a overlap */
 boolean collidesWith(Appointment a);
}

Figure 8: Specification of Calendar and Appointment

4.2 Creating method stubs and test cases
For this example, we skip the discussion of method stub creation
and test case definitions, since the process is essentially the same
as in the first example. Instead, we jump straight ahead to the dis-
cussion of representation alternatives.

4.3 Alternative representations for Calendar
As always, before embarking on implementing a specification, al-
ternative representations must be considered. This must be done
for each class. In this discussion, we consider only the implemen-
tation of class Calendar and ignore class Appointment.

One representation of a calendar is an unordered set of appoint-
ments; we will denote this representation R1. An alternative repre-
sentation is a sorted set of appointments; we will denote this rep-
resentation R2.

For both R1 and R2, implementation of add and remove is trivial (a
delegation to the similar Set method).

R1 simplifies the programming task of getFirstAvailable (at the
expense of runtime efficiency). The method can be implemented
as a simple linear search where each repetition requires another
repetition over the set of appointments (i.e. getFirstAvailable will
be O(n2) where n denotes the number of appointments in the cal-
endar), but the required programming effort is manageable.

We know that R2 allows for a more efficient implementation (get-
FirstAvailable will have time complexity O(log(n) + m) where m
denotes the number of collisions until a free slot is found), but
clearly this is at the expense of a considerable increase in the
complexity of the programming task. R2 requires the definition of
a total ordering (natural order) of appointments as well as fluency
with the SortedSet interface, which is an order of magnitude more
complex than the more straightforward Set interface.

The result of the analysis is summarized in the Effort REM for
Calendar (Table 3).

R1: Use unordered set to store appointments

R2: Use a sorted set to store appointments

IMPL. EFFORT R1 R2

add() Trivial Trivial

remove() Trivial Trivial

getFirstAvailable() Average Challenging

Table 3: Estimate of required effort to implement Calendar
We choose R1 because it clearly allows for the simplest imple-
mentation of Calendar.

4.4 Implementation of Calendar
Having decided upon a representation of a calendar (i.e. having
defined the representation invariant), we have decoupled the three
subtasks of implementing the methods of the Calendar interface.
This is an instance of the principle separation of concerns –
Dijkstra’s mantra and primary instrument of thought [10, pp. 209-
217].

Having decided upon a set representation, where we are free to
choose any concrete class that implements the Set interface, we
can make a partial implementation of Calendar (Figure 9).
/** A calendar with appointments */
class CalendarUnsorted {
 private Set<Appointment> appointments;

 /** Create an empty calendar */
 public CalendarUnsorted() {
 appointments = new HashSet<Appointment>();
 }

 public void add(Appointment a) {
 // FixMe
 }

 public void remove(Appointment a) {
 // FixMe
 }

 public Appointment getFirstAvailable(int s, int d) {
 return null; // FixMe
 }
}

Figure 9: Partial implementation of Calendar
This is indeed a very small step toward a complete implementa-
tion of Calendar, but it compiles and maybe even makes a few
test cases run. For novices (and indeed for others), making small
successful steps toward the goal is a rewarding and satisfying way
of developing software.

Using a set as the representation of a calendar allows for a
straightforward implementation of each of the three methods in-
dependently of each other.

Methods add and remove can be implemented simply by delegat-
ing the method call to the similar Set methods. Adding this to the
initial implementation gives the next two methods of our solution
to the problem (Figure 10).

 /** Add appointment a to this calendar */
 public void add(Appointment a) {
 appointments.add(a);
 }

 /** Remove appointment a from this calendar */
 public void remove(Appointment a) {
 appointments.remove(a);
 }

Figure 10: Implementation of methods add and remove
Method getFirstAvailable is somewhat more complicated. It can
be implemented as a linear search by successively checking for
availability of appointment slots (s, d), (s+1, d), (s+2, d), ... until
an available appointment slot is found ((s, d) denotes the ap-
pointment with start time s and duration d). A first attempt at im-
plementing getFirstAvailable is shown in Figure 11.

/** Return the first free slot of
 duration d at or after time s */

 public Appointment getFirstAvailable(int s, int d) {
 Appointment result;
 boolean available = false;
 do {
 result = new Appointment(s++, d);
 // set 'available' such that available holds iff
 // result does not collide with any appointment
 // already in the calendar
 } while (!available);
 return result;
 }

Figure 11: Partial implementation of method getFirstAvailable
It is obvious that the calculation of available involves an iteration
over the appointments in the calendar, and consequently a nested
loop. One of our rules for method implementation is the Nested
Loop rule: use a new private method to unfold nested loops. In-
stead of proceeding with development of the inner loop, we define
a new private method for the calculation of the boolean expres-
sion available as defined above. We name the method isAvailable
(Figure 12).

/** Return true iff Appointment a does not collide
 with any appointments in this calendar */

 private boolean isAvailable(Appointment a) {
 return true; // FixMe
 }

Figure 12: Specification of method 'isAvailable'
With method isAvailable to serve us, we can now finish the loop
body of method getFirstAvailable (Figure 13).
 public Appointment getFirstAvailable(int s, int d) {
 Appointment result;
 boolean available = false;
 do {
 result = new Appointment(s++, d);
 available = isAvailable(result);
 } while (!available);
 return result;
 }

Figure 13: Implementation of method getFirstAvailable
Removing the unnecessary variable available gives the final ver-
sion of getFirstAvailable (Figure 14).
 public Appointment getFirstAvailable(int s, int d) {
 Appointment result;
 do {
 result = new Appointment(s++, d);
 } while (!isAvailable(result));
 return result;
 }

Figure 14: Improvement of method getFirstAvailable
(Side note: we assume here an unbounded calendar, i.e. there will
always be an available slot, and the loop will always terminate.

For a bounded calendar, we would have to add a test for reaching
the end of the calendar in the loop condition. This would, of
course, again involve the Mañana Principle, and we would use a
method atCalendarEnd.)

Now we only need to implement the new private method isAvail-
able. As mentioned earlier, this can be done by a repetition check-
ing for collision between a and each appointment i in the set
(Figure 15).
private boolean isAvailable(Appointment a) {
 for (Appointment i : appointments) {
 if (a.collidesWith(i)) return false;
 }
 return true;
}

Figure 15: Implementation of method 'isAvailable'
This completes the development of an implementation of Calen-
dar based on R1. The development of an implementation of Ap-
pointment is left to the reader.

4.5 Discussion of development of Calendar
The discussion of the calendar example has shown the application
of the Nested Loop rule. When consistently applying this rule, the
code remains considerably simpler (and easier to understand for
beginners) than an alternative using a nested loop.

In this example, all the methods introduced through our rules
were private methods in class Calendar. In the general case, this
does not always have to be the case. If, for instance, class Ap-
pointment did not have a method collidesWith, this method may
have been introduced by applying the Hard Problem rule while
implementing the calendar's isAvailable method.

In early exercises, we usually start with problems where the meth-
ods that naturally develop are in the same class. This can then – a
bit later – be extended and linked to a discussion of responsibility-
driven design, and the question which class should provide a new,
required method.

5. RELATED AND FUTURE WORK
Numerous software engineering topics relate to our efforts of
identifying a systematic programming process for novices. We
will discuss these topics in turn.

Stepwise refinement. More than 35 years ago Dijkstra and Wirth
identified the need for a constructive and systematic approach to
programming – not only for novices but for the community as a
whole [8, 9, 22, 23]. Our work builds on the work of Wirth and
Dijkstra but concentrates on a specialized process for novices
learning object-oriented programming.

Programming methodology. In the early seventies Dijkstra for-
malized his ideas about structured programming and developed a
methodology for systematic construction of programs using func-
tional specifications (pre and post conditions) and loop invariants
to drive the development process [10]. In continuation of Dijk-
stra’s seminal work, Back developed a refinement calculus [1, 2]
while Gries and others produced text books based on the method-
ology (e.g. [6, 14, 20]). Our approach differs from this work by
being a formally-based but informally-practiced approach to sys-
tematic program development.

Responsibility-driven design. The Mañana Principle is related to
responsibility-driven design [21]. In this paper, we apply the

Mañana Principle only for functional decomposition, but even
here it reveals its relationship to responsibility-driven design (the
nested loop rule factors a part of the program to a separate method
with the responsibility of implementing the nested loop function-
ality).
Refactoring. During a programming session, it is inevitable that
decisions made earlier in the session need to be altered at a later
stage. Realizing and learning that this is the rule rather than the
exception helps novice programmers come to terms with the fact
that programming is not a linear process. This is refactoring-in-
the-small [12]. An interesting aspect here is programming envi-
ronment support: in a similar manner in which refactoring is now
commonly supported in development environments, the Mañana
Principle could easily be supported by automating the creation of
method stubs whenever a new private method is introduced.
XP and agile software development. Extreme programming and
agile software development covers many aspects of software en-
gineering [3, 19]; two of the basic principles are: “Take small
steps” and “Always do the simplest thing that will work”. We use
these principles as guidelines for choosing among several possible
implementations of an abstraction (a method specification or an
interface) and for the process of implementing it. They are wise
guidelines for novices as well as experts.
Test-driven development. The strategy of test-driven development
[4, 15] relates closely to step 2 in our process: Create tests. Test-
driven development is gaining increased recognition, and it is
beneficial to apply this strategy with novices for several reasons
(e.g. force a consumer view as well as producer view of program
components). But it is not necessary to adopt test-driven devel-
opment in order to apply our process; instead test cases can be
provided as part of the specification of a programming task.
In this paper, we have concentrated on a part of the process where
decomposition generates support methods. This part is not exclu-
sively object-oriented and is equally applicable to functional and
procedural languages, even though we have presented it in the
context of an object-oriented language. Future work includes ex-
tending the set of rules that unfolds the Mañana Principle to cover
cases of decomposition that generate not only new methods but
also new classes (or interfaces).
A second direction of future work will focus on investigating and
designing tool support for the process in general and in particular
for the Mañana Principle.

6. CONCLUSIONS
We have argued that we need to teach novices about the process
of software development in order to enable them to follow organ-
ised steps to move toward a solution to a problem, and that we
must treat software development explicitly as a process that is
carried out in stages and small steps, rather than the writing of a
single, monolithic solution.
Furthermore we have identified and described principles and sys-
tematic programming techniques particularly suited for novices
learning object-oriented programming. To complement the prin-
ciples and techniques, we have presented an informal but system-
atic process designed to be applied by beginners. Through two
examples we have demonstrated the application of the process.
The process we propose is a carefully down-scaled version of a
full and rich software engineering process. By using it we hope to
achieve two things: To help novice programmers learn faster and

better while at the same time laying the foundation for a more
thorough treatment of the various aspects of a software engineer-
ing process.
The complete programs discussed in this paper are available at
www.daimi.au.dk/~mec/oopsla2006/.

7. Acknowledgement
It is a pleasure to thank David Gries for numerous careful com-
ments and improvements to an earlier version of the paper.

References
[1] Back, R.-J., On the Correctness of Refinement Steps in Pro-

gram Development, PhD thesis, Department of Computer
Science, University of Helsinki, 1978.

[2] Back, R.-J., Refinement Calculus: A Systematic Introduction,
Springer-Verlag, 1998.

[3] Beck, K. Extreme Programming Explained: Embrace
Change, Addison-Wesley, 2000.

[4] Beck, K., Test-Driven Development by Example, Addison-
Wesley, 2003.

[5] Bennedsen, J. and Caspersen, M.E., ”Revealing the Pro-
gramming Process”, Proceedings of the thirty-sixth SIGCSE
Technical Symposium on Computer Science Education, St.
Louis, Missouri, USA, 2005, pp. 186-190.

[6] Cohen, E., Programming in the 1990’s, Springer-Verlag,
1990.

[7] Dahl, O.-J., Dijkstra, E.W. and Hoare, C.A:R., Structured
Programming, Academic Press, 1972.

[8] Dijkstra, E.W., “A Constructive Approach to the Problem of
Program Correctness”, BIT 8, 1968.

[9] Dijkstra, E.W., “Notes on Structured Programming”, EWD
249, 1969. In [7].

[10] Dijkstra, E.W., A Discipline of Programming, Prentice-Hall,
1976.

[11] Dr. Java, http://drjava.org, Accessed 12 July 2006.

[12] Fowler, M., Refactoring: Improving the Design of Existing
Code, Addison-Wesley, 1999.

[13] Gries, D., “What Should We Teach in an Introductory Pro-
gramming Course”, Proceedings of the fourth SIGCSE Tech-
nical Symposium on Computer Science Education, 1974, pp.
81-89.

[14] Gries, D., The Science of Programming, Springer-Verlag,
1981.

[15] Hunt, A. and Thomas, D., Pragmatic Unit Testing in Java
with JUnit, The Pragmatic Programmers, 2003.

[16] JUnit. www.junit.org.

[17] Kölling, M., Unit Testing in BlueJ. www.bluej.org/tutorial/
testing-tutorial.pdf. Accessed 12 July 2006.

[18] Kölling, M., Quig, B., Patterson, A. and Rosenberg, J., “The
BlueJ System and its Pedagogy”, Computer Science Educa-
tion, Vol. 13, No. 4, 2003, pp. 249-268.

[19] Martin, R.C., Agile Software Development: Principles, Pat-
terns, and Practices, Prentice-Hall, 2003.

[20] Morgan, C., Programming from Specifications, Prentice-
Hall, 1990. http://users.comlab.ox.ac.uk/carroll.morgan/PfS/
Accessed 12 July 2006.

[21] Wirfs-Brock, R. and McKean, A., Object Design: Roles, Re-
sponsibilities, and Collaborations, Addison-Wesley, 2003.

[22] Wirth, N., “Program Development by Stepwise Refinement”,
Communications of the ACM, Vol. 14, No. 4, April 1971, pp.
221-227.

[23] Wirth, N., Systematic Programming, Prentice-Hall, 1973.

