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Abstract

This paper considers the common sonobuoy configuration comprising two horizontal dipoles mounted
orthogonally together with an omnidirectional sensor. Under the assumption that, within a narrow fre-
quency band of interest, the acoustic power impinging on the sonobuoy consists of uncorrelated Gaussian
noise processes, the paper examines how data collected by the sensor can be used to infer the directional
distribution of the incident power, as characterised by its spherical harmonic coefficients. The results cover
arbitrary directional distributions, and are applicable to small sample sizes as well as large. In particular, the
paper examines the form of the likelihood function for the spherical harmonic coefficients, as required for
Bayesian inference methods such as particle filtering. Specific attention is given to the case of a single point
source superimposed on azimuthally isotropic noise. In this case it is shown that the maximum likelihood
estimator for target bearing differs from, and can be considerably more efficient than, the bearing estimator
traditionally used for this sensor configuration.

1 Introduction
Consider the common sonobuoy configuration shown in Fig. 1, in which two matched dipoles are arranged
orthogonally in the horizontal plane, with a colocated omnidirectional sensor. We shall use a Cartesian frame
of reference with its x and y axes as shown in the figure, and z-axis vertically upwards. We call this a
cardioid sensor because a common method of utilising such a sensor configuration is to combine the outputs
of the sensor elements so as to achieve a cardioid reception pattern, with its null steered in the direction of a
nuisance acoustic source (cf. [1]).

In this paper we shall suppose that, within a narrow frequency band of interest, the acoustic power im-
pinging on the sonobuoy consists of uncorrelated Gaussian noise processes arriving from various directions,
and consider how data collected from the sonobuoy can be analysed to estimate the directional distribution of
the arriving power.

There is an extensive literature on direction-of-arrival estimation based on data collected at hydrophone
arrays of arbitrary configuration: see for example [2, 3, 4, 5, 6]. Typically these consider the estimation
of one or more point sources combined with spherically isotropic noise (and/or internal sensor noise). The
general case is analytically somewhat intractable, and consequently much of the literature has focussed on
asymptotic results, valid as the sample size tends to infinity.
∗The author is with the Computing Laboratory at the University of Kent, Canterbury CT2 7NF, Kent, UK, (e-mail:
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Figure 1: Cardioid sensor configuration.

The present paper is motivated by the requirements of Bayesian analysis of data from several sonobuoys
of this type, sequentially processing samples of data that may be individually quite small. The most familiar
example of a Bayesian data fusion method is the Kalman filter,1 in which an estimate of the unknown system
state is repeatedly updated, on the one hand to take account of the system dynamics (e.g. target motion),
and on the other hand to take account of new sensor information. A severe restriction with the Kalman filter,
however, is that it can only handle systems which can be represented (or approximated) using linear dynamics
and Gaussian noise. Consequently, developers of Kalman filters have little practical incentive to formulate
system models that do not conform to this pattern. The situation has radically changed during the last decade
with the development of Monte Carlo Markov Chain (MCMC) methods [9], particularly in their sequential
form, often called particle filters [10, 11]. These methods provide recursive state estimation, after the fashion
of the Kalman filter, but using dynamic models that are not necessarily linear, and statistical models of sensor
errors that are not necessarily Gaussian. This allows for greater realism—at the cost, it should be said, of
much heavier computation requirements than the Kalman filter.

A key ingredient in these methods is the exact formulation of the likelihood function (explained in Sec. 6).
Because of the simplicity of the Fig. 1 sensor configuration, this proves to be more tractable than in the case
of general hydrophone arrays. Another way in which this paper differs from the direction-of-arrival literature
cited above is that we address an arbitrary directional distribution of the incident power, expressed using
spherical harmonic functions, explained in Sec. 4. In particular, this enables us to consider point sources
in non-isotropic noise. As well as this general case, we explore in particular the estimation of the direction
of arrival of a (random) signal from a single point source immersed in azimuthally—but not necessarily
spherically—isotropic noise.

Although the motivation of the paper is Bayesian inference, we take the opportunity to explore the sam-
pling behaviour of classical point estimators, in particular the maximum likelihood estimator of target bearing.

The layout of the paper is as follows. Sec. 2 describes how the data streams from the sensors are prepro-
cessed and condensed into a 3× 3 matrix S, which forms a sufficient statistic for the directional distribution

1Although often presented as a least-squares algorithm (e.g. [7, 8]), the Kalman filter also readily lends itself to a Bayesian interpre-
tation; indeed, the Kalman measurement update equation follows directly from Bayes’ Theorem.
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of the arriving power. Sections 3 to 5 develop a probability model for the scenario under consideration. Sec. 6
uses this model to formulate the log-likelihood function for the spherical harmonic coefficients of directional
distribution of arriving power; Sec. 6.1 specialises the discussion to the case of a single point source in az-
imuthally isotropic noise. The paper then goes on, in Sec. 7, to consider the effect of normalising the matrix
S with respect to the signal power received at the omnidirectional sensor: this has the effect of removing the
ambient noise power as a parameter of the likelihood function. Finally Sec. 8 summarises the conclusions
and suggests further work.

2 Signal Preprocessing

2.1 Dipole processing
Suppose that, for each dipole, the outputs of the two hydrophones that it comprises are subtracted. For a
signal approaching at an angle α to the axis of the dipole, the transfer function will be

H(iω) = eiω(l/v) cos α − e−iω(l/v) cos α = 2i sin(ω(l/v) cos α)

where v is the local velocity of sound. Now if for all angular frequencies ω in the band of interest, v/ω �
l (i.e. the dipole dimensions are small compared to the wavelength), the transfer function is effectively
(2iωl cos α)/v. We now apply a further gain factor v/2l to the dipole output and integrate it (within the
frequency band of interest), so that the final transfer function becomes simply

H(iω) ≈ cos α (1)

which does not depend on ω, and brings the dipole signals into phase with the omni signal.

2.2 Shaping, demodulation and sampling
Suppose that the frequency band of interest extends over the angular frequencies ωc ± ωb where ωb � ωc.
Each of the three received signals—one from each dipole, preprocessed as described in Sec. 2.1, together
with the omnidirectional signal—is processed as follows:

1. Shape the signal, if necessary, so that the power spectral density of the ambient noise is flat within the
frequency band of interest. (The shaping required will be the same for the omnidirectional and dipole
signals.)

2. Demodulate the signal around ωc, and sample the in-phase and quadrature components at a rate of
ωb/π samples/sec.

3. Interleave the in-phase samples with the quadrature samples (with the in-phase sample first).

4. Collect the data for a period of T seconds, to form a sequence of ν = 2ωbT/π samples.

2.3 Formation of S-matrix
The output from the preceding subsection will be three sequences each comprising ν (real) numbers. Let
these sequences be denoted sx(i), sy(i) for the sequences from the x and y dipoles respectively, and so(i) for
the sequence from omnidirectional sensor. We now define the vectors xi = (sx(i), sy(i), so(i))T and form
the matrix:

S =
ν−1∑
i=0

xixT
i =

 Sxx Sxy Sxo

Sxy Syy Syo

Sxo Syo Soo

 (2)

where the superscript T denotes transpose. The diagonal terms of this matrix are the sums of squares of the
processed signals, with the remaining terms being cross-products.
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n, m Yn,m(θ, φ)
0, 0 1/

√
4π

1, 0
√

3/4π sinφ

1, 1 −
√

3/8π eiθ cos φ

2, 0
√

5/16π (2− 3 cos2 φ)
2, 1 −3

√
5/24π eiθ sinφ cos φ

2, 2 3
√

5/96π e2iθ cos2 φ

Table 1: Spherical harmonic functions for n ≤ 2, 0 ≤ m ≤ n.

3 Model for a Single Random Source
Consider the case of a signal approaching2 from an azimuth θ measured anticlockwise (looking downwards)
from the positive x-axis, and from an elevation angle φ (−π/2 ≤ φ ≤ π/2), and assume that no other source
of acoustic energy is impinging on the sensors. Then, in virtue of the transfer function in (1), we have for
each i, xi = a(θ, φ)so(i), where a(θ, φ) is the transfer vector a(θ, φ) = (cos θ cos φ, sin θ cos φ, 1)T .3

Now further suppose that the signal is a Gaussian noise process whose power spectral density (after the
shaping described in Sec. 2.2) is flat within the passband. Then (cf. [12, §10-6]) the so(i) will be independent
samples from a Normal distribution with mean zero and some variance σ2. Therefore the vectors xi will be
independent samples from a multivariate Normal distribution with zero mean vector and covariance matrix:

Vs(θ, φ) = σ2
sa(θ, φ)a(θ, φ)T

= σ2
s

 cos2 θ cos2 φ sin θ cos θ cos2 φ cos θ cos φ
sin θ cos θ cos2 φ sin2 θ cos2 φ sin θ cos φ

cos θ cos φ sin θ cos φ 1


(3)

4 Directional Distribution of Incident Power
In Sec. 3 we considered a Gaussian noise signal arriving from a specific azimuth and elevation. We now
generalise the results of that section to allow multiple such point sources of Gaussian noise, plus diffuse
ambient noise. We do this by supposing that the distribution in azimuth and elevation of incident power in
the passband is described by a density function ϕ(θ, φ), so that the power arriving from azimuths between
θ and θ + δθ and elevations between φ and φ + δφ is given, in the limit as δθ → 0 and δφ → 0, by
ϕ(θ, φ) cos φ δθ δφ.

Provided it satisfies unexacting regularity conditions, ϕ(θ, φ) can be represented as follows:

ϕ(θ, φ) =
∞∑

n=0

n∑
m=−n

an,mYn,m(θ, φ) (4)

where the Yn,m(θ, φ) are the spherical harmonic functions, and the an,m are complex-valued constants.
This expansion is analogous to the expansion of a periodic function as a Fourier series.4

2By this we mean that in the vicinity of the sensor, the wavefronts are approaching from this direction. This may of course be very
different from the line of sight to the source of the signal, especially in elevation.

3The notation a(θ, φ) follows for example [4, 5, 6]. Since the elements of this vector are real-valued, we take the opportunity to
work with real rather than complex numbers throughout, which facilitates cross-referencing to the statistics literature.

4For similar applications of spherical harmonics within underwater acoustics, see [13, esp. §IIIA] and [14, 15].
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We shall follow (subject to some differences in notation) the definition of spherical harmonics used in
[16, 17]. With this definition, the first few spherical harmonic functions—all we shall need—are given in
Table 1 (cf. [16, Table 12.3]) for m ≥ 0; the functions for negative m can by obtained using the relationship

Yn,−m(θ, φ) = (−1)mYn,m(θ, φ) (5)

where the overbar represents complex conjugation.
The coefficients an,m in the expansion (4) are now given by:

an,m =
∫ π/2

φ=−π/2

∫ 2π

θ=0

ϕ(θ, φ)Yn,m(θ, φ) cos φdθ dφ (6)

and the spherical harmonic functions satisfy the following orthonormality relation:∫ π/2

φ=−π/2

∫ 2π

θ=0

Yn,m(θ, φ)Yn′,m′(θ, φ) cos φdθ dφ = δm,m′δn,n′

for n, n′ ≥ 0, −n ≤ m ≤ n and −n′ ≤ m′ ≤ n′, where δi,j is Kronecker’s delta function.
Note that the total power impinging on the sensors is given by:∫ π/2

φ=−π/2

∫ 2π

θ=0

ϕ(θ, φ) cos φ dθ dφ =
√

4πa0,0 (7)

5 General Probability Model
Building on the previous section, let us assume that the power inpinging on the sensors within the passband
is a superposition of independent Gaussian noise processes distributed in azimuth and elevation according to
the directional density function ϕ(θ, φ). In this case, the observation vectors xi will still—as in Sec. 3—be
independent samples from a multivariate Normal distribution with a zero mean vector, but with a covariance
matrix V(ϕ) which is the appropriately weighted integral of Vs(θ, φ) from (3):

V(ϕ) =
∫ π/2

φ=−π/2

∫ 2π

θ=0

Vs(θ, φ)ϕ(θ, φ) cos φdθ dφ (8)

We now note that, using (6), the matrix Vs(θ, φ) can itself be represented in spherical harmonics as
follows:

Vs(θ, φ) = σ2
s

√
π

15
× (9) 10Y0,0 − 2

√
5Y2,0 + 2

√
30Y c

2,2 2
√

30Y s
2,2 −10

√
6Y c

1,1

2
√

30Y s
2,2 10Y0,0 − 2

√
5Y2,0 − 2

√
30Y c

2,2 −10
√

6Y s
1,1

−10
√

6Y c
1,1 −10

√
6Y s

1,1 30Y0,0


where Y c

n,m(θ, φ) and Y s
n,m(θ, φ) are respectively the real and imaginary parts of Yn,m(θ, φ).

Consequently, using (6), (8) and (9):

V(ϕ) =
√

π

15
× (10) 10c0,0 − 2
√

5c2,0 + 2
√

30c2,2 2
√

30s2,2 −10
√

6c1,1

2
√

30s2,2 10c0,0 − 2
√

5c2,0 − 2
√

30c2,2 −10
√

6s1,1

−10
√

6c1,1 −10
√

6s1,1 30c0,0


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where instead of the complex coefficients an,m we have used their real and imaginary parts cn,m and sn,m.
It is apparent by inspection of (10) that if we knew the value of V(ϕ) we could determine all the spherical

harmonic coefficients an,m up to order n = 2, with the exception of a1,0, a2,−1 and a2,1. From Table 1 and
(5), it emerges that these three exceptions correspond precisely to those spherical harmonic functions that are
not even functions of φ. This reflects the fact that since all the sensor elements lie in a single horizontal plane,
the sensor configuration is unable to distinguish up from down.

5.1 Example 0: Isotropic noise

Notice that if ϕ(θ, φ) is uniform in azimuth, i.e. does not depend on θ, then since
∫ 2π

θ=0
eimθ dθ = 0 for any

non-zero integer m, then from (6) all the coefficients an,m with non-zero m will be zero, whereupon (10)
reduces to

V(ϕ) =
√

π

15

 10c0,0 − 2
√

5c2,0 0 0
0 10c0,0 − 2

√
5c2,0 0

0 0 30c0,0

 (11)

in accordance with the well-known result (cf. [1]) that in these circumstances the output of the three sensors
will be uncorrelated.

If we write:

g =
30c0,0

10c0,0 − 2
√

5c2,0

=
2

∫ π/2

φ=−π/2

∫ 2π

θ=0
ϕ(θ, φ) cos φdθ dφ∫ π/2

φ=−π/2

∫ 2π

θ=0
ϕ(θ, φ) cos3 φ dθ dφ

(12)

then (11) can be rewritten as:

V(ϕ) = σ2
n

 1/g 0 0
0 1/g 0
0 0 1

 (13)

where σ2
n is the total noise power as given by (7). (g is commonly referred to as the dipole gain, since the

noise power is attenuated by a factor of g in comparison with a signal from a point source aligned with the
dipole.) If the distribution of incident power is spherically isotropic, so that ϕ(θ, φ) is a constant, then c2,0

will be zero, and g will be three. If the incident noise power is uniform in azimuth, but is entirely concentrated
in the horizontal plane (φ = 0), then by inspection of (12) it is clear that g = 2. These results agree with [1].5

Notice in particular that so far as the behaviour of this sensor configuration is concerned, the distribution
in elevation of azimuthally isotropic noise is entirely characterised by the single parameter g.

6 Likelihood Function
Suppose that a collection d of sensor output data has a probability distribution which depends on a vector of
unknowns ϑ, and that we wish to use the observed value of d to draw conclusions about the value of ϑ. The
likelihood function is defined as follows:

L(ϑ|d) = c(d)f(d|ϑ) (14)

where c(d) is an arbitrary function of d. Essentially this is just the probability density function of d condi-
tional on ϑ, but considered as a function of ϑ rather than a function of d.

In the case considered in this paper, our raw observations are the vectors xi for i = 0, . . . ν − 1, and
we wish to draw inferences about the covariance matrix V = V(ϕ) and hence about the coefficients an,m

describing the directional power density ϕ. (We shall assume that ν ≥ 3; in practice it will usually be much

5But note that [1] defines dipole gain in amplitude rather than power terms: our g is their g2.
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greater than this.) A sufficient statistic6 for V, and hence for these quantities, is the matrix S previously
defined in (2). This matrix has a Wishart distribution with ν degrees of freedom (cf. [19, p. 162], [20,
Eq. 3.2.1]) with probability density function:

f(S|V) = kV det(S)(ν−4)/2 exp
(
−1

2
tr(V−1S)

)
(15)

where the normalisation term kV is given by

k−1
V = 23ν/2π3/2 det(V)ν/2

3∏
j=1

Γ
(

ν − j + 1
2

)

In the likelihood function, by appropriate choice of the function c(d) we can get rid of any factors that do
not depend on V, and thus simplify (15) to obtain:

L(V|S) = exp
(
−1

2
tr(V−1S)

)
/ det(V)ν/2

with the corresponding log-likelihood function (cf. [3, Eq. 2]):

lnL(V|S) = −1
2

tr(V−1S)− ν

2
ln det(V) (16)

It is possible to express the log-likelihood function directly in terms of the spherical harmonic coefficients
by substituting from (10) into (16), but the result is rather unwieldy in the general case, so we shall not carry
it out explicitly; instead, in the following subsection we shall consider an illustrative special case.

6.1 Example 1: Point source with isotropic noise
Now consider the case where azimuthally isotropic noise of total power σ2

n, distributed in elevation so as to
give a dipole gain g (12), is combined with a single signal of power ρσ2

n arriving from azimuth angle θ and
elevation angle φ. By making the appropriately weighted sum of (3) and (13), we get:

V = σ2
n

 ρ cos2 θ cos2 φ + 1/g ρ sin θ cos θ cos2 φ ρ cos θ cos φ
ρ sin θ cos θ cos2 φ ρ sin2 θ cos2 φ + 1/g ρ sin θ cos φ

ρ cos θ cos φ ρ sin θ cos φ ρ + 1

 (17)

From this it is straightforward to show that

det(V) = σ6
n

ρ(1 + g cos2 φ) + 1
g2

(18)

(so det(V) does not depend on θ) and

det(V)tr(V−1S)/σ4
n = c0 + ρh(θ, φ) (19)

where
c0 =

Sxx + Syy

g
+

Soo

g2
(20)

6The sufficiency of S is readily established using the Factorisation Theorem (cf. [18, §3.3]) and the relationship xiV
−1xT

i =

tr(V−1xix
T
i ).
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and

h(θ, φ) =
2 + g cos2 φ

2g
(Sxx + Syy) +

Soo cos2 φ

g

−2 cos φ

g
(Sxo cos θ + Syo sin θ)

+
(

Syy − Sxx

2
cos 2θ − Sxy sin 2θ

)
cos2 φ (21)

Notice that h(θ, φ) does not depend on ρ or σ2
n. Also, the left-hand side of (19) is necessarily non-

negative, since the matrix V is positive definite and S is non-negative-definite. Moreover the equation holds
for any non-negative value of ρ. It follows that h(θ, φ) is itself non-negative.

The log-likelihood can now be expressed by substituting from (18) and (19) into (16), to yield:

lnL(θ, φ, ρ|S) (22)

= − g2

2σ2
n(ρ[1 + g cos2 φ] + 1)

{c0 + ρh(θ, φ)}

−ν

2

{
3 ln(σ2

n) + ln
(

ρ(1 + g cos2 φ) + 1
g2

)}
Notice that the log-likelihood depends on the target azimuth θ only via the function h(θ, φ).

6.1.1 Numerical illustration

To give a flavour of the log-likelihood function defined in (22), Fig. 2 shows a perspective view of the
corresponding likelihood function considered as a function of θ and ρ (expressed in the figure in degrees
and dB respectively), with φ and g assumed to be 0 and 3 respectively, and σ2

n set to a nominal value of unity.
The likelihood function is calculated for the following value of the S-matrix:

S =

 8.30727 1.72855 5.96266
1.72855 2.47490 1.58611
5.96266 1.58611 30.37420


This matrix was randomly sampled from the distribution (15), with V given by (17) with φ, g and σn

2 having
the values just given, θ = 0, ρ = 0.1 (-10 db) and ν = 30. Note the following points:

• The point of maximum likelihood is at θ = 15.2◦, ρ = −12.6 dB, somewhat offset from the true values
θ = 0, ρ = −10 dB.

• If we consider the section of the figure along the line ρ = −12.6 dB (i.e. passing through the point of
maximum likelihood), in addition to the primary peak at θ = 15.2◦, there is a secondary peak, with
about 20% of the maximum likelihood, at about θ = −165◦.

• If we consider the section of the figure along the line θ = 15.2◦, the likelihood falls off sharply above
ρ = −11 dB. Below -13 dB, however, the likelihood falls off only slightly, and flattens out at about
72% of its maximum value.

• If ρ is assumed to have some value less than -25 dB, then the likelihood function varies only slightly
as a function of θ.

With an SNR of -10 dB, ν = 30 is of course rather a small sample size for practical use, but using this
value in Fig. 2 helps to reveal the underlying character of the likelihood function. As ν and/or ρ are increased,
the likelihood function tends to become dominated by a sharp peak in the vicinity of the true values of θ and
ρ.
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Figure 2: Likelihood function corresponding to the log-likelihood function of (22), evaluated for g = 3,
σ2

n = 1, φ = 0, and for a matrix S as described in the text. The likelihood function is defined only up to an
arbitrary scaling factor, so no scale is shown in the figure.

6.1.2 Fisher information for target bearing

A measure of the information contained within a random dataset x about an unknown parameter ϑ is the
Fisher information:

I(ϑ) = Ex

{(
d ln f(x|ϑ)

dϑ

)2
}

= Ex

{(
d lnL(ϑ|x)

dϑ

)2
}

(23)

where Ex{·} represents statistical expected value with respect to the random variable x. (See for example
[21, Sec. 5a.4].) We work primarily in terms of the Fisher information rather than the more familiar Cramér-
Rao bound because, in its usual formulation (1/I(θ)), the CRB is not strictly applicable to angular data,
essentially because the reduction of errors modulo 2π results in an upper bound on estimation errors.7

In this subsection, we shall derive the Fisher information for the target bearing θ using the expression for
the log-likelihood in (22). Using (22) in (23), it is clear that

I(θ) =
(

g2ρ

2σ2
n(ρ[1 + g cos2 φ] + 1)

)2

ES

{(
dh(θ, φ)

dθ

)2
}

Now from (21):

dh(θ, φ)
dθ

=
2 cos φ

g
(Sxo sin θ − Syo cos θ) + ((Sxx − Syy) sin 2θ − 2Sxy cos 2θ) cos2 φ

7See [22, Eq. 5.2.5] for a CRB formula applicable to angular data. The usual CRB formula remains applicable provided angular
errors are small.
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Figure 3: Sample size ν required to achieve a Fisher information I(θ) of 100, as a function of the signal-to-
noise ratio ρ expressed in dB, for g = 3, φ = 0. The dotted lines are linear asymptotes.

Consequently ES{(dh(θ, φ)/dθ)2} can be expressed as a linear combination of expected values of the form
ES{SijSkl}, which can be obtained using [20, Theorem 3.3.15(i)]. After reduction, it emerges that:

I(θ) =
νgρ2 cos2 φ(1 + g cos2 φ)

1 + ρ + gρ cos2 φ
(24)

In the case where g = 3 (spherically isotropic noise) and φ = 0, this reduces to I(θ) = 12νρ2/(1 +
4ρ). Fig. 3, based on this equation, shows as a function of ρ the sample size required to achieve a Fisher
information of 100, corresponding to a Cramér-Rao accuracy bound of 0.1 radians. Notice the elbow in the
curve at around −6 dB: below this level the sample size increases by two orders of magnitude per drop of
10 dB, while above this level the sample size decreases by just one order of magnitude for each 10 dB rise.
As φ moves away from zero, I(θ) falls away at least as fast as cos2 φ, and the elbow in the curve moves up
towards 0 dB (ρ = 1).

6.1.3 Maximum likelihood estimate of θ

From (22), it is clear that the maximum likelihood estimator of θ is the value that minimises h(θ, φ), i.e.:

θ̂ml = arg min
θ

h(θ, φ) (25)

The function h(θ, φ), defined in (21), has an alternative expansion as follows:

h(θ, φ) =
Soo cos2 φ

g
+

2 + g cos2 φ

2g
u0

−2 cos φ

g
u1 cos(θ − θ1)−

cos2 φ

2
u2 cos 2(θ − θ2) (26)
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in which

u0 = Sxx + Syy (27)

u1 =
√

S2
xo + S2

yo (28)

θ1 = arctan
(

Syo

Sxo

)
(29)

u2 =
√

(Syy − Sxx)2 + 4S2
xy (30)

2θ2 = arctan
(

2Sxy

Sxx − Syy

)
(31)

where arctangents are placed in the quadrant corresponding to the signs of the numerator and denominator.
By inspection of (25)–(31), it is clear that θ̂ml lies somewhere between θ1 and whichever is closer of θ2 or

θ2±π. Notice that the estimator given by [1], namely θ1 itself, will not generally coincide with the maximum
likelihood. Appendix A contains proofs that θ̂ml and θ1 are unbiased estimators of θ.

As previously noted, h(θ, φ) does not depend on ρ or σ2
n, so this is true of θ̂ml also. Here we shall assume

that g is known: perhaps estimated over a time period much longer than that spanned by the sample S. This
leaves φ, and in particular cos φ, as a nuisance parameter. Estimating φ by maximum likelihood is not an
attractive proposition, since even if σ2

n were known this would require a three-way maximisation of (22) over
θ, φ and ρ. Under some scenarios it may be appropriate simply to assume that cos φ ≈ 1. Otherwise, a very
simple estimator of cos φ is:

cos φ̂1 = min(1, u2/u1) (32)

Fig. 4 compares the mean squared errors of three estimators of θ, namely (i) θ̂ml(φt), the maximum like-
lihood estimator evaluated with φ set to its true value φt, (ii) θ̂ml(φ̂1), the maximum likelihood estimator
evaluated with cos φ determined from (32) and (iii) θ1. The plotted values are for ν = 3000, 1000, 300, 100,
30 and 10; in each case ρ was determined from (24) to achieve a Fisher information I(θ) = 100, correspond-
ing to a CRB of 0.1 radians. This shows that θ1 is less efficient as an estimator than the maximum likelihood
estimator θ̂ml, and the disparity is increasingly pronounced at low signal/noise ratios. The performance of θ̂ml
is already close to the CRB for ν = 30.

The figure shows no significant difference between the performance of θ̂ml(φt) and θ̂ml(φ̂1). The same
simulation results were also analysed using the more sensitive technique of paired comparisons, examining
the sampling distribution of ln[(θ̂ml(φ̂1)− θt)2/(θ̂ml(φt)− θt)2], where θt is the true bearing. This too failed
to find a significant difference, indicating that the actual difference in MSE is less than 2%.

The results shown in Fig. 4 are for φt = 0. Simulations were also carried out for φt = 30◦ and φt = 60◦,
and again with all these three values of φt but with ρ, ν chosen to achieve a Fisher information of 10000. In
each case, the results corroborated the conclusions of the previous paragraphs.

7 Likelihood Function for the Normalised Observation Matrix
A disadvantage with the approach taken so far, as far as Bayesian reasoning is concerned, is that the ambient
noise power enters the log-likelihood function in an essential way: in (22) for example, σ2

n is a nuisance
parameter which needs to be handled alongside φ and ρ (the other, inevitable, nuisance parameters) when our
primary interest is probably in the target bearing θ. By ‘an essential way’ we mean that σ2

n does not simply
appear in an additive term which does not involve θ: in that case we could simply ignore that term if our
interests were only in θ.

In this section, instead of considering the raw observation matrix S, we normalise it with respect to the
energy Soo received by the omnidirectional hydrophone, and thus consider instead:

S̃ = S/Soo (33)
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Figure 4: Mean squared error of the azimuth estimators θ̂ml(φt), θ̂ml(φ̂1) and θ1 described in the text, for
g = 3 and φ = 0. The points plotted correspond to various combinations of sample size ν and SNR ρ, in
each case chosen to achieve a Fisher information of 100 rad−2. For clarity, the data for θ̂ml(φt) and θ̂ml(φ̂1)
are plotted slightly to left and right of the true SNR. The results shown were obtained by simulation: the error
bars are ±2σ, with σ estimated from the sample variance.

(We shall assume that Soo > 0.) By inspection of the form of V it is clear that the distribution of S̃ does not
depend on σ2

n, and consequently neither will the likelihood function derived from it.
Appendix B derives the probability density function for S̃ given V, and hence shows that the likelihood

function for S̃ is:

L(V|S̃) =
(

1
det(V)[tr(V−1S̃)]3

)ν/2

(34)

with V given by (10).

7.1 Example 1 revisited
From (19) we have:

det(V)tr(V−1S̃) = σ4
n(c̃0 + ρh̃(θ, φ)) (35)

where c̃0 = c0/Soo and h̃(θ, φ) = h(θ, φ)/Soo. Substituting from (35) and (18) into (34), and dropping
multiplicative terms that do not depend on θ or ρ, we get:

L(θ, φ, ρ|S̃) =
(ρ[1 + g cos2 φ] + 1)ν

(c̃0 + ρh̃(θ, φ))3ν/2
(36)

As expected, σ2
n does not appear in this equation.
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7.1.1 Maximum likelihood estimates

By differentiating (36) it is easy to show that the maximum likelihood estimate for θ does not depend on ρ,
and is the value of θ that minimises h̃(θ, φ). This is the same value as was obtained in Sec. 6.1.3: in other
words, using S̃ in place of S does not alter the maximum likelihood estimate for θ.

As to the maximum likelihood estimate for ρ, by differentiating the logarithm of (36) it is straightforward
to show that the unique stationary point is achieved when

ρ =
2c̃0

h̃(θ, φ)
− 3

1 + g cos2 φ

and that this stationary point is a maximum. However, the stationary point may well be negative (for some
values of θ), so the maximum likelihood estimate for ρ is

ρ̂ml = max
(

0,
2c̃0

h̃(θ, φ)
− 3

1 + g cos2 φ

)
(37)

Thus the maximum likelihood estimate for ρ depends on the assumed values of θ and φ, and reaches its
maximum value when h̃(θ, φ) is a minimum, i.e. when θ is equal to its own MLE. This is as would be
expected.

8 Conclusions and Further Work
We have shown that, under the assumptions in this paper, data collected from the sensor configuration in
Fig. 1 enables us to estimate the angular power distribution of the acoustic field incident on the array only to
the extent that this distribution can be expressed in terms of the spherical harmonic coefficients a0,0, a1,−1,
a1,1, a2,−2, a2,0 and a2,2. The raw sum-of-squares matrix S defined in (2) is a sufficient statistic for these
coefficients, and the log-likelihood function can be obtained by substituting from (10) into (16).

In the specific case of a single Gaussian source superimposed on azimuthally isotropic noise, the log-
likelihood function reduces to the form shown in (22). The corresponding maximum likelihood estimate θ̂ml
for the target bearing θ is unbiased. Simulation indicates that, in the cases investigated, its efficiency is close
to the CRB for sample sizes as small as 30, and that it can be considerably more efficient than the estimator
θ1 of (29) used in [1], especially at lower SNRs. The elevation angle φ occurs, via its cosine, as a nuisance
parameter in determining θ̂ml, but simulation results indicate that cos φ can be simply estimated using (32),
with very little effect on the efficiency of θ̂ml.

The dependency of the log-likelihood function in (22) on the ambient noise power can be avoided by
working from the normalised sum-of-squares matrix S̃ defined in (33), which gives rise to the likelihood
function in (36). The maximum likelihood estimate of θ is unchanged, but there is now a closed-form expres-
sion (37) for the maximum likelihood estimate of the signal/noise ratio.

An assumption throughout this paper has been that the acoustic power arriving at the sensor consists
entirely of a superposition of uncorrelated Gaussian noise processes. Work is in progress exploring the effect
of superimposing deterministic (e.g. sinusoidal) signals on this scenario. It would also be useful to examine
the effects of multipath propagation, and to explore non-Gaussian noise models.
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Appendices

A Unbiasedness of Azimuth Estimators
In this appendix we prove that, in the scenario considered in Sec. 6.1, the maximum likelihood estimator θ̂ml of (25) and
the estimator θ1 of (29) are each unbiased estimators of the target bearing θ.

Traditionally, an estimator ϑ̂ of a parameter ϑ is defined to be unbiased if E{ϑ̂} = ϑ. However, if the parameter ϑ
represents an angle, the concept of the expected value E{ϑ̂} is problematic, because its value will depend on the way in
which angles are reduced modulo 2π (cf. [21, Sec. 3a.7]). Consequently, in such cases we say that the (angular) bias of
an estimator ϑ̂ is:

arctan

 
E{sin ϑ̂}
E{cos ϑ̂}

!
− ϑ

with arctangents placed in the quadrant corresponding to the signs of the numerator and denominator. An estimator is
unbiased if its bias is zero (modulo 2π). (See for example [22, Sec. 5.2].)

Theorem 1 (Azimuth equivariance) Let ϕα be the directional power density that results from rotating the density ϕ by
angle α in azimuth, i.e.

ϕα(θ, φ) ≡ ϕ(θ + α, φ)

and let Sα = CSCT , where C is the matrix:

C =

0@ cos α − sin α 0
sin α cos α 0

0 0 1

1A
Then the probability distribution of Sα under the directional power density ϕα is identical to the distribution of S under
the directional density ϕ.

Proof: It is readily shown from (3) that Vs(θ + α, φ) ≡ CVs(θ, φ)CT and hence from (8) it follows that V(ϕα) =
CV(ϕ)CT . The theorem now follows directly from [20, Theorem 3.3.1].

This theorem shows that although in Fig. 1 we defined the x and y axes to be aligned with the dipole axes, there is
nothing special about this choice: we could equally have chosen arbitrary orthogonal axes in the horizontal plane.

Lemma 1 Let θ̂ be an estimator of θ which is determined in an azimuthally equivariant way from the function h(θ, φ) in
(21), i.e. so that with probability one:

θ̂(h(θ + α, φ)) = θ̂(h(θ, φ)) + α (38)

Then either θ̂ is unbiased, or it has a fixed bias that does not depend on the true target bearing.

Proof: This follows from Theorem 1. Choose an axis triad (ξ, η, z) such that the ξ-axis is aligned with the true target
bearing. Referred to these axes, the probability distribution of the function h(θ, φ) is fixed (being determined by the
remaining parameters σ2

n, g, ρ and φ); consequently the probability distribution of θ̂ml is also fixed, and so too is the bias.

(The ‘with probability one’ qualification of azimuth equivariance in Lemma 1 allows, for example, the maximum
likelihood estimator to break ties between equal h(θ, φ) minima in a manner that is not equivariant.)

Theorem 2 Provided ρ > 0 and |φ| < π/2, the maximum likelihood estimator θ̂ml of θ is unbiased.

Proof: By Lemma 1, it suffices to prove this in the case where the true bearing is zero, whereupon (17) reduces to:

V = σ2
n

0@ ρ cos2 φ + 1/g 0 ρ cos φ
0 1/g 0

ρ cos φ 0 ρ + 1

1A
and we need to prove that E{sin θ̂ml} = 0 and E{cos θ̂ml} > 0.
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First we convert the probability density function in (15), which is expressed in terms of S—or equivalently its
elements Sxx, Sxy , Syy , Sxo, Syo and Soo—and express it instead in terms of Soo and the quantities u0, u1, θ1, u2

and θ2 defined in (27)–(31). The Jacobian of this transformation is:

det
∂(Sxx, . . . Soo)

∂(Soo, . . . θ2)
=

u1u2

2

and it is straightforward to show that

detS =
1

4

`
−2u0u

2
1 + (u2

0 − u2
2)Soo + 2u2

1u2 cos 2∆θ
´

where ∆θ = θ2 − θ1, and

det(V)tr(V−1S)/σ4
n =

Soo + gu0

g2
+ ρh(0, φ)

with det(V) given by (18). Consequently, substituting into (15), we find that the probability density function for
Soo, . . . θ2 is of the form:

f(Soo, u0, u1, θ1, u2, θ2|V) = κ1 det(S)(ν−4)/2 exp (−κ2(κ3 + ρh(0, φ))) (39)

where κ1, κ2 and κ3 may depend on Soo, u0, u1 and/or u2, but do not depend on θ1 or θ2. Moreover, each of κ1, κ2 and
κ3 is non-negative, and positive with probability one.

Since θ1 and θ2 enter into (39) only via the terms cos θ1, cos 2θ2 and cos 2∆θ, it follows that

f(Soo, u0, u1, θ1, u2, θ2|V) = f(Soo, u0, u1,−θ1, u2,−θ2|V)

Since θ̂ml is determined by u1, θ1, u2 and θ2, and θ̂ml(u1, θ1, u2, θ2) = −θ̂ml(u1,−θ1, u2,−θ2), this in turn implies
that the probability distribution of θ̂ml is symmetric about zero, and hence E{sin θ̂ml} = 0.

It remains to show that E{cos θ̂ml} > 0. Define v5 = (Soo, u0, u1, u2, ∆θ)T . The value of v5 completely deter-
mines the ‘waveform’ of the function h(θ, φ), leaving only its phase angle to be determined by θ1. Consequently, given
v5, the minimum value of h(θ, φ) will be reached at a fixed angular offset from θ1, so we can write θ1 = θ̂ml + δθ(v5),
where |δθ(v5)| < π/2. In what follows, for brevity we write simply δθ, leaving its dependence on v5 implicit.

Consider now the probability density function for θ̂ml conditional on v5. Using (26) and (39), we can determine that
this is of the form:

f(θ̂ml|V,v5) = κ4 exp
h
−κ5 + κ6 cos(θ̂ml + δθ) + κ7 cos 2(θ̂ml + δθ + ∆θ)

i
where κ4, . . . κ7 may depend on v5 but not on θ̂ml, and are each non-negative. Now, using the inequality ex ≥ x +1, we
can show:

E{cos θ̂ml|v5}

=

Z π

−π

cos θ̂mlf(θ̂ml|V,v5) dθ̂ml

= κ4

Z π

−π

cos θ̂ml exp
h
−κ5 + κ6 cos(θ̂ml + δθ) + κ7 cos 2(θ̂ml + δθ + ∆θ)

i
dθ̂ml

≥ κ4

Z π

−π

cos θ̂ml

h
1− κ5 + κ6 cos(θ̂ml + δθ) + κ7 cos 2(θ̂ml + δθ + ∆θ)

i
dθ̂ml

= κ4κ6

Z π

−π

cos θ̂ml cos(θ̂ml + δθ)dθ̂ml

=
κ4κ6

2

Z π

−π

h
cos δθ + cos(2θ̂ml + δθ)

i
dθ̂ml

= κ4κ6π cos δθ ≥ 0

The last inequality will be strict unless κ4 and/or κ6 is zero. Provided ρ > 0 and |φ| < π/2, the set of values of v5 for
which this will happen has probability zero. We can conclude that E{cos θ̂ml} > 0, which completes the proof.
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In the proof above, it is assumed that θ̂ml is determined from (25) with g and φ set to their true values in the expansion
of h(θ, φ). However, the proof will still work if the true values are replaced by values ĝ and φ̂ estimated from the data,
provided that the estimates are themselves functions of v5. This is not an unreasonable requirement: it simply means that
the estimates are azimuthally invariant, e.g. that φ̂(Sα) = φ̂(S), where Sα is as in Theorem 1. In particular, the estimator
of cos φ in (32) meets this requirement.

Theorem 3 Provided ρ > 0 and |φ| < π/2, the estimator θ1 of θ is unbiased.

Proof: Essentially as for Theorem 2, but with δθ = 0.

B Distribution of the Normalised Observation Matrix
Consider first the general case. Suppose that f(x1, . . . xn) is the joint probability density function of random variables
x1, . . . xn, and that we want to derive the joint density of x̃1, . . . x̃n−1, where x̃i = xi/xn. The joint cumulative
distribution of x̃1, . . . x̃n−1 is given by

F̃ (x̃1, . . . x̃n−1)

= Prob(x1 ≤ x̃1xn ∧ · · · ∧ xn−1 ≤ x̃n−1xn)

=

Z ∞

xn=−∞

Z x̃1xn

x1=−∞
· · ·
Z x̃n−1xn

xn−1=−∞
f(x1, . . . xn) dxn−1 . . . dx1dxn

To get the joint density of x̃1, . . . x̃n−1, we differentiate the cumulative distribution function with respect to x̃1, . . . x̃n−1,
yielding:

f̃(x̃1, . . . x̃n−1)

=

Z ∞

xn=−∞
xn−1

n f(x1, . . . xn−1, xn)dxn

=

Z ∞

xn=−∞
xn−1

n f(x̃1xn, . . . x̃n−1xn, xn)dxn

The general rule is that we multiply the original pdf by the divisor variable (xn in this case) raised to the power of the
number of remaining variables, and integrate the result over the range of the divisor variable.

In the case of the Wishart distribution of (15), we wish to use Soo as the divisor variable, and there are five variables
remaining, namely Sxx, Sxy , Sxo, Syy and Syo, so the density function for S̃ is given as:

f̃(S̃|V)

= kV

Z ∞

Soo=0

S5
oo det(S)(ν−4)/2 exp

„
−1

2
tr(V−1S)

«
dSoo

= kV det(S̃)(ν−4)/2 ×Z ∞

Soo=0

S(3ν−2)/2
oo exp

„
−1

2
Soo tr(V−1S̃)

«
dSoo (40)

where we have used the relationships det(S) = S3
oo det(S̃) and tr(V−1S) = Soo tr(V−1S̃)

By effecting a change of variable

u =
1

2
Soo tr(V−1S̃)

we can transform the integral in (40) into the gamma function integral, and thus infer:

f̃(S̃|V) = kV det(S̃)(ν−4)/2

„
2

tr(V−1S̃)

«3ν/2

Γ(3ν/2)

=
k̃ν [det(V)]ν [det(S̃)](ν−4)/2

[det(V)tr(V−1S̃)]3ν/2
(41)
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where:

k̃ν =
Γ(3ν/2)Q3

j=1 Γ
`

ν−j+1
2

´
The likelihood function for S̃ can be obtained by dropping from (41) multiplicative terms that do not depend on V,

to give (cf. (34)):

L(V|S̃) =

 
1

det(V)[tr(V−1S̃)]3

!ν/2
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