
Gomez, Rodolfo and Bowman, Howard (2006) Compositional Detection
of Zeno Behaviour in Timed Automata. Technical report. Computing Laboratory,
CT2 7NF Canterbury, Kent, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14389/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14389/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Computer Science at Kent

Compositional Detection of Zeno Behaviour
in Timed Automata

Rodolfo Gómez and Howard Bowman

Technical Report No. 12-06-2006
December 2006

Copyright c© 2003 University of Kent at Canterbury
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK

Compositional Detection of Zeno Behaviour

in Timed Automata

Rodolfo Gómez and Howard Bowman

Computing Laboratory, University of Kent, United Kingdom

{R.S.Gomez,H.Bowman}@kent.ac.uk

December 18, 2006

Abstract

The formal specification and verification of real-time systems are difficult tasks, given the com-
plexity of these systems and the safety-critical role they usually play. Timed Automata, and real-time
model-checking, have emerged as powerful tools to deal with this problem. However, the specifica-
tion of urgency in timed automata (essential in most models of interest) may inadvertently cause
anomalous behaviours that undermine the reliability of formal verification methods (such as reach-
ability analysis). Zeno runs denote executions which may be arbitrarily fast, i.e., executions where
an infinite number of events may occur in a finite period of time. Timelocks denote states where no
further divergent execution is possible; i.e., where time cannot pass beyond a certain bound.

In general, the verification of safety and liveness properties may be meaningless in models where
Zeno runs and timelocks may occur, hence the importance of methods to ensure that models are
free from such anomalous behaviours. In previous work, we developed methods to detect Zeno runs
and Zeno-timelocks (a particular kind of timelocks) in network of timed automata. Later stages of
this analysis derived, from the network’s product automaton, reachability formulae that characterise
the occurrence of Zeno runs and Zeno-timelocks. Although this simple reachability analysis has a
number of advantages over liveness checks (as done in model-checkers such as Uppaal, Kronos and
Red), the product automaton is prone to state explosion and so the analysis may not scale well.

Here, we refine our previous results by showing that Zeno runs and Zeno timelocks can be
characterised by reachability formulae derived from the network’s components, i.e., avoiding the
product automaton construction.

1 Introduction

In specifications of real-time systems, we often need to represent urgent actions, i.e., those whose
execution cannot be delayed beyond a given time bound. In all formal notations for real-time systems,
the semantics of urgent actions is achieved by preventing time from passing beyond a given bound.
When such a bound is reached, the system may evolve only through the immediate execution of an
action, which (in this sense) becomes urgent at that point.

In timed automata [2], the specifier may express constraints to prevent time from passing beyond
a certain bound; hence, urgent actions can be represented indirectly. However, it is the specifier’s
responsibility to ensure that, whenever a state is reached where time cannot pass any further, a sequence
of actions can be performed which eventually lead to a state where time may pass again.

A timelock is a state where time cannot diverge. Timelocks are counterintuitive, and denote errors
in the specification. For instance, a timelock is reached when a constraint in the timed automaton

1

prevents time from passing any further, but no action is enabled at that point (or the enabled actions
do not lead to a state where time may diverge).

Specifications cannot be reliably verified in specifications where timelocks occur. For instance, a
property stating that a certain unwanted state is never reached (namely, a safety property) may hold
in a timelocked specification just because a timelock prevents time from passing up to a point where
such a state becomes reachable. Thus, because timelocks cannot be implemented, this unwanted state
may still occur in some execution of the implemented system.

A related problem concerns the detection of Zeno runs, which denote arbitrarily fast (and infinite)
executions. Zeno runs, like timelocks, are counterintuitive: a real process cannot be infinitely fast.
However, unlike timelocks, Zeno runs may not be caused by specification errors, but simply because
the specification is realised at a high level of abstraction (e.g., when lower time bounds for the execution
of actions are irrelevant for the intended analysis).

For example, if the property to verify depends only on the ordering of events and not on their
relative timing, an “untimed” abstraction (of a more detailed specification) may suffice to perform
verification. Moreover, for complex specifications, such abstractions may be the only way to cope with
state explosion. Note that, loops in this abstraction will naturally induce Zeno runs, because lower
time bounds were removed from the more detailed specification.

Although Zeno runs are not necessarily undesirable, and they do not compromise the verification of
safety properties, it is important to have methods to detect whether or not they may occur in a model.
In general, the verification of liveness properties is well-defined only over divergent executions. To some
extent, the problem is similar to that of verification of liveness properties without fairness assumptions:
we do not want to consider runs where the system “chooses” to perform infinitely fast. Secondly, the
absence of Zeno runs guarantees the absence of Zeno-timelocks (a particular kind of timelocks, which are
particularly difficult to detect), and, in deadlock-free specifications, the absence of Zeno runs guarantees
absence of any kind of timelocks. Thus, we need methods to guarantee absence of Zeno-runs, but we
also need methods to guarantee timelock-freedom that are insensitive to the occurrence of Zeno runs.

In the context of timed automata, timelocks have been investigated by a number of researchers, in-
cluding Henzinger et al. [15], Bornot et al. [8], Tripakis [16, 17] and Bowman [9, 10]. Yet, model-checkers
do not offer satisfactory support for timelock detection. Model-checkers require the specification to be
timelock-free (and in some cases, in addition, free from Zeno runs). However, few model-checkers
support detection of timelocks and Zeno runs, and the methods implemented suffer from a number
of shortcomings. In addition, although timed automata models have been proposed where (a certain
class of) timelocks can be prevented by construction [8, 10], most model-checkers cannot support such
notations, which are fundamentally different in the semantics of urgency and synchronisation.

In our previous work [14, 12] we developed new methods to detect Zeno runs and Zeno-timelocks
in timed automata, which improved and complemented current detection methods as done in model-
checkers such as Uppaal [5], Kronos [20] and Red [19] (these model-checkers reduce the test for timelocks
and Zeno runs to the verification of liveness properties).

We showed that an improved compositional application of Tripakis’ strong non-Zenoness property
[16, 17] could be obtained to efficiently check the absence of Zeno runs. This check depends on the
detection of loops in the components of a network, and the structure of guards and resets in those
loops. For those models in which this static check was insufficient (models may be free from Zeno
runs even when loops are not strongly non-Zeno), we proposed to continue the analysis by building
the product automaton and running a number of static and reachability-based checks (also based on
loops’ structural properties). However, the product automaton may suffer from state explosion, and
most loops analysed are actually safe, or no reachable by possible executions.

This paper refines those earlier results, showing that in many cases Zeno runs and Zeno-timelocks
may be detected via reachability formulae derived exclusively from components; i.e., they do not re-

2

quire building the product automaton. The methods described here rely on the relationship between
components’ loops and loops in the product automaton, and in the gathering of those components’
loops that may synchronise together.

Organization. Section 2 presents the timed automata model, and introduces Zeno runs. Section 3
presents a classification of timelocks, and elaborates on the difference between Zeno runs and Zeno-
timelocks, and Section 4 describes current timelock detection methods in real-time model-checkers.
Sections 5 and 6 give a summary of our earlier work on this subject. Section 7 offers some insight
into the relationship between components’ loops and loops in the product automaton. In particular,
we introduce the concept of synchronisation groups, to refer to those components’ loops which may
synchronise together. Sections 8 and 9 show that synchronisation groups suffice to derive reachability
formulae that characterise the occurrence of Zeno runs and Zeno-timelocks. We conclude in Section 10,
and comment on further work.

2 An Introduction to Timed Automata

Timed Automata [2] is a formal notation to represent real-time systems, such as embedded controllers
and communication protocols (see, e.g., [5] and [13]). Timed Automata are a simple, yet quite expressive
graphical notation, which allows fully automatic verification via real-time model-checkers (Uppaal [5],
Kronos [20], Red [19], etc).

The literature on timed automata is very rich, and many variations of the original model [2] have
been proposed (see, e.g., [15, 16, 3]) and adopted by model-checkers. Here we present a basic timed
automata model that suffices to illustrate the main elements of the theory. This model is similar
to Timed Safety Automata of Henzinger et al. [15], and also corresponds closely to the specification
language of Uppaal1.

2.1 Syntax

Basic Notation. CAct is a set of completed actions. HAct = { a?, a! | a ∈ CAct } is a set of half actions.
Two half actions, a? and a!, can synchronise and generate a completed action a. Act = HAct ∪ CAct
is the set of all actions. C is the set of clocks, all of which take values in the positive reals (R+0). CC
is a set of clock constraints, described by the following BNF.

φ ::= x ∼ c | x − y ∼ c | φ1 ∧ φ2

where c ∈ N, x, y ∈ C, φ, φ1, φ2 ∈CC and ∼ ∈ {<,>,=,≤,≥} (we will use true to denote the constraint
x ≥ 0). Clocks(φ) is the set of clocks occurring in φ ∈ CC ; C ⊆ C is the set of clocks of a particular
automaton; and CCC is the set of constraints restricted to C. V : C → R+0 is the space of clock
valuations, and VC : C → R+0 is the space of valuations restricted to C. For any φ ∈ CC and v ∈ V,
v |= φ denotes that v satisfies φ (equivalently, v is in the solution set of φ). For any δ ∈ R+0, v + δ is
the valuation s.t. (v + δ)(x) = v(x) + δ, for all x ∈ C. For any reset set r ∈ P(C), r(v) is the valuation
s.t. r(v)(x) = 0 for all x ∈ r and r(v)(y) = v(y) for all y /∈ r.

Timed Automaton. A timed automaton is a tuple A = (L, l0,TL, C, T, I), where the elements are
defined as follows.

• L is a finite set of locations.

1www.uppaal.com

3

• l0 ∈ L is the initial location.

• TL ⊆ Act is a finite set of transition labels.

• C ⊆ C is a finite set of clocks.

• T ⊆ L × TL × CC C × P(C) × L is a transition relation. Transitions (l, a, g, r, l′) ∈ T are usually
denoted,

l a,g,r−−−−→ l′

where a ∈ TL is the action, g ∈ CC C is the guard and r ∈ P(C) is the reset set.

• I : L → CCC is a mapping that associates invariants with locations.

A network of timed automata is denoted |A = |〈A1, ... , An〉, where Ai is a timed automaton. Usually,
we would expect components to specify only possible synchronisations: if a component includes a half
action a!, then another component should include the complementary action, a?.

Product Automaton. Consider a network |A = |〈A1, ... , An〉, where Ai = (Li, li,0,TLi, Ci, Ti, Ii).
Let u and u′ denote location vectors in L1 × · · · ×Ln (e.g., u = 〈u1, . . . , un〉). We use the substitutions

〈u1, . . . , uj , . . . , un〉[l → j] for 〈u1, . . . , uj−1, l, uj+1, . . . , un〉; and

u[l1 → i1, . . . , lm → im] for u[l1 → i1] . . . [lm → im]

The product automaton for |A is defined as the timed automaton Π,

Π = (L, l0,TL, C, T, I)

where

• L is the smallest set of location vectors which includes l0 and is closed under the transition relation
T ,

L = { l0 } ∪ {u′ | ∃u ∈ L, a ∈ TL, g ∈ CCC , r ∈ P(C) . u a,g,r−−−−→u′ ∈ T }

• l0 is the initial location vector, l0 = 〈l1,0, . . . , ln,0〉;

• TL is the set of actions labelling transitions in T ,

TL = { a | ∃u, u′ ∈ L, g ∈ CCC , r ∈ P(C) . u a,g,r−−−−→u′ ∈ T }

• C is the set of clocks of the product automaton, C =
n
⋃

i=1
Ci;

• T is the transition relation defined by the following rules (1 ≤ i 6= j ≤ n),

(P1)
ui

a?,gi,ri−−−−−→i l uj
a!,gj ,rj−−−−−→j l′

u
a,gi ∧ gj ,ri∪rj−−−−−−−−−→u[l → i, l′ → j]

(P2)
ui

a,g,r−−−−→i l a ∈ CAct

u a,g,r−−−−→u[l → i]

• I is the function which associates invariants to location vectors,

I(〈u1, ..., un〉) =

n
∧

i=1

Ii(ui)

4

Rule (P1) adds a completed action in the product for every possible synchronisation between compo-
nents. The guard and reset set in this action correspond to the conjunction of guards and the union
of the reset sets in the synchronising transitions, respectively. This rule asserts that synchronisation is
only possible if both parties are enabled. Rule (P2) denotes the interleaving of completed actions.

Loops. Let A be a timed automaton. A simple loop is an elementary cycle in A; i.e., a sequence of
transitions,

l0
a1,g1,r1

−−−−−→ l1
a2,g2,r2

−−−−−→ l2 · · · ln−1
an,gn,rn
−−−−−→ ln

where l0 = ln and li 6= lj for all 0 ≤ i 6= j < n. A non-simple loop is a strongly connected subgraph2 of
A, which is not itself a simple loop. By definition, a non-simple loop contains at least (all the transitions
of) two simple loops.

We will denote loops as a sequence of actions that starts and ends in the same location. In the
case of non-simple loops, this sequence will contain repeating actions. This sequence of actions, both
for simple and non-simple loops, is used just for notational purposes, and is not intended to reflect a
traversal of the loop during the execution of the timed automaton. In addition, unless we explicitly
restrict their scope, our definitions and results apply to both simple and non-simple loops.3

By way of example, Figure 1(i) shows two simple loops, 〈a, b〉 and 〈c, d〉; and one non-simple loop,
〈a, c, d , b〉. Similarly, Figure 1(ii) depicts two simple loops, 〈e, f 〉 and 〈g , h, f 〉, and one non-simple
loop, 〈e, f , g , h, f 〉.

1 32

a

b

c

d

(i) (ii)

e

f

g h

4

5

6

x:=0

x<=1

x<=1

x<=1

x<=1

x:=0x<=1 x<=1

Figure 1: Simple and Non-simple Loops

Let A be a timed automaton, and lp a loop in A. We define the following sets. Loops(A) is the set of
all loops in A. SimpleLoops(A) ⊆ Loops(A) is the set of all simple loops in A. Loc(lp) is the set of all
locations of lp; Clocks(lp) is the set of all clocks occurring in any invariant of lp; Trans(lp), Guards(lp)
and Resets(lp) are, respectively, the sets of all transitions of lp, all guards of lp, and all clocks that are
reset in lp; and Act(lp) is the set of all actions labelling transitions in lp. In the following definitions,
we use ⊑ (⊒) to denote any element in {<,=,≤} ({>,=,≥}); and we use t ∈ φ to denote that t is a
conjunct of formula φ.

Half Loops, Completed Loops and Matching Loops. lp is a half loop if it contains at least one
transition labelled with a half action (formally, HAct ∩ Act(lp) 6= ∅). lp is a completed loop if all its
transitions are labelled with completed actions (formally, Act(lp) ⊆ CAct). Two half loops lp1 and lp2

2A directed graph is strongly connected if there exists a path between any two nodes.
3We will see that loop structure, and not the possible ways in which loops may be traversed, is relevant to detection

of Zeno runs and Zeno-timelocks.

5

(in different network components) are referred to as matching loops if they contain at least a pair of
matching half actions (formally, ∃ a?, a! ∈ HAct . a? ∈ Act(lp1) ∧ a! ∈ Act(lp2)).

Bounded from Below (clock). Given a clock constraint φ, a clock x is bounded from below in φ,
if x ⊒ c ∈ φ or x − y ⊒ c ∈ φ, where y is a clock and c > 0. By extension, a clock is bounded from
below in a given location or transition if it is bounded from below in the location’s invariant, or in the
transition’s guard, respectively.

Bounded from Above (clock). Given a clock constraint φ, a clock x is bounded from above in φ if
x ⊑ c ∈ φ; or x − y ⊑ c ∈ φ; or y − x ⊒ c ∈ φ (where the clock y is bounded from above in φ and
c > 0). By extension, a clock is bounded from above in a given location or transition if it is bounded
from above in the location’s invariant, or in the transition’s guard, respectively.

Smallest Upper Bound (clock). Let lp be a loop and x a clock in lp, where at least one invariant in
the loop contains a conjunct x ⊑ c (c > 0). We define cmin(x, lp) ∈ N to be the smallest upper bound
for x occurring in any invariant in lp, i.e., cmin(x, lp) ≤ c′, for any conjunct x ⊑ c′ occurring in any
invariant of the loop (c′ > 0).

2.2 Semantics

We formalise, here, the behaviour of a timed automaton in terms of a timed transition system (TTS)
[6, 11]. We assume that the automaton contains only completed actions, thus, its behaviour can
be completely determined from its own structure. With this approach, the behaviour of a network
corresponds to the TTS of the product automaton.4

Let A = (L, l0,TL, C, T, I) be a timed automaton where all actions are completed actions (TL ⊆
CAct). The behaviour of A is represented by the TTS (S, s0,Lab, TS), which is defined as follows.

• S ⊆ L × VC is the set of reachable states in the executions of A; i.e., the smallest set of states
which includes s0 and is closed under the transition relation TS (a state is of the form s = [l, v],
where l is a location in A and v is a clock valuation),

S = { s0 } ∪ { s′ | ∃ s ∈ S, γ ∈ Lab . s
γ

=⇒ s′ ∈ TS }

• s0 = [l0, v0] is the initial state, where l0 is the initial location in A, and v0 is the initial valuation,
which sets all clocks to 0;

• Lab = TL ∪ R+ is the labels for transitions in TS ;

• TS ⊆ S × Lab × S is the transition relation. Transitions can be of one of two types: action
transitions (actions), e.g. (s, a, s′), where a ∈ TL, or time transitions (delays), e.g. (s, δ, s′), where
δ ∈ R+ and the passage of δ time units is denoted. Transitions are denoted,

s
γ

=⇒ s′

where γ ∈ Lab. The transition relation is defined by the following inference rules.

(R1)
l a,g,r−−−−→ l′ v |= g r(v) |= I(l′)

[l, v]
a

=⇒ [l′, r(v)]
(R2)

∀ δ′ ≤ δ , (v + δ′) |= I(l)

[l, v]
δ

=⇒ [l, v + δ]

4Bengtsson and Yi [4] present a TTS-based semantics for networks of timed automata directly in terms of the component
automata. This is equivalent to ours.

6

A transition l a,g,r−−−−→ l′ is said to be enabled in the state [l, v], if the current valuation satisfies the
guard (v |= g), and performing the transition does not invalidate the invariant of the target location
(r(v) |= I(l′)).

Runs. A run is a path ρ in the automaton’s TTS,

ρ , s1
γ1

==⇒ s2
γ2

==⇒ s3
γ3

==⇒ . . .

where si ∈ S and γi ∈ Act ∪ R+ (i ∈ N, i ≥ 1), such that ρ ends in some state sn ∈ S (if ρ is finite).
We use ρ ⊆ ρ′ to denote that the sequence ρ is a prefix of ρ′. Runs(s) and FiniteRuns(s) ⊆ Runs(s)
denote the set of all runs starting from s, and the set of all finite runs starting from s, respectively. We
use s

γ
=⇒ ρs

′ to denote that s
γ

=⇒ s′ is performed at some point in ρ. Similarly, s ∈ ρ denotes that s is

reachable in ρ; s
∗

=⇒ s′ρ denotes that s′ is reachable from s in ρ; and s
∗

=⇒ s′ denotes that s′ is reachable
from s (equivalently, ∃ ρ ∈ Runs(s). s′ ∈ ρ).

Trans(ρ) and Trans∞(ρ) ⊆ Trans(ρ) denote the set of all automata transitions visited by ρ, and
the set of all transitions that are visited infinitely often by ρ, respectively. Formally,

Trans(ρ) = { l
a,g,r
−−−→ l′ | ∃ v. v |= g ∧ [l, v]

a
=⇒ ρ[l

′, r(v)] }

Trans∞(ρ) = { l
a,g,r
−−−→ l′ | ∀s ∈ ρ.∃ v. s

∗
=⇒ ρ[l, v] ∧ v |= g ∧ [l, v]

a
=⇒ ρ[l

′, r(v)] }

Regarding loops, we say that a run ρ visits a loop lp if all transitions of lp occur in ρ (not necessarily
consecutively); i.e., if Trans(lp) ⊆ Trans(ρ). More interestingly, we will be concerned with those runs
that visit a certain loop infinitely often. Thus, we introduce next the concept of covering runs.

Covering Runs. Let lp be a loop, and ρ an infinite run. We say that ρ covers lp if it visits lp infinitely
often. Formally, ρ covers lp if Trans(lp) ⊆ Trans∞(ρ). We use CoveringRuns(s, lp) to denote the set
of all runs starting from s that cover lp.

Consider again, for instance, the non-simple loop 〈e, f , g , h, f 〉 in Figure 1(ii). Any run where the se-
quences of actions (1) g, h, f and (2) e, f occur infinitely often is considered to cover the non-simple
loop 〈e, f , g , h, f 〉 (and, necessarily, to cover both simple loops 〈g , h, f 〉 and 〈e, f 〉). On the other hand,
a run that only visits e and f infinitely often, will be considered to cover the simple loop 〈e, f 〉, but
not to cover the non-simple loop 〈e, f , g , h, f 〉 (even if the run visits g and h a finite number of times).
In addition, note that the definition of covering run is not concerned with the order in which transi-
tions are visited (e.g., if there are many “entry points” to the loop, different traversals may be possible).

Regarding the time spent by executions, we define delay(ρ) to be the limit of the sum of all delays
occurring in ρ (if the limit exists), or ∞ otherwise. A run ρ is divergent if delay(ρ) = ∞ (otherwise, the
run is convergent). A timed automaton may exhibit runs that cannot be extended to divergent runs,
and runs where actions occur infinitely often in a finite period of time (which we call Zeno runs); none
of these runs correspond to natural executions. We use ZRuns(s) ⊆ Runs(s) to denote the set of Zeno
runs starting from s.

3 Timelocks in Timed Automata

Generally speaking, progress in timed automata executions can be prevented by deadlocks and timelocks.
A deadlock is a state where, for however long time is allowed to pass, no further actions can be performed

7

(i.e., deadlocks in the conventional sense of the word, adapted here to timed systems). Formally, given
a timed automaton A = (L,TL, T, l0, C, I) with timed transition system TSA = (S,Lab, TS , s0), a state
s ∈ S is a deadlock if

∀ d ∈ R+0. (s + d) ∈ S =⇒ ∄ a ∈ TL . (s + d)
a

=⇒

where, if s = [l, v], then s + d = [l, v + d]. On the other hand, a timelock is a state s ∈ S where time is
not able to pass beyond a certain bound.

∀ ρ ∈ Runs(s). delay(ρ) 6= ∞

A timed automaton is deadlock-free (timelock-free) if none of its reachable states is a deadlock (time-
lock). Deadlocks and timelocks can be further classified as pure-actionlocks, time-actionlocks or Zeno-
timelocks.

Pure-actionlock. A pure-actionlock is a state where the system cannot perform any actions, but time
is allowed to diverge. Formally, a state s is a pure-actionlock if

∀ d ∈ R+0 . (s + d) ∈ S ∧ ∄ a ∈ TL . (s + d)
a

=⇒

Time-actionlock. A time-actionlock is a state where neither actions can be performed nor time can
pass. Formally (recall that Lab = TL ∪ R+), s ∈ S is a time-actionlock if

∄ γ ∈ Lab . s
γ

=⇒

Zeno-timelock. A Zeno-timelock is a state where the system can still perform actions, but time
cannot diverge. This represents a situation where the system performs an infinite number of actions in
a finite period of time. Formally, s ∈ S is a Zeno-timelock if (a) there are no divergent runs starting
from s, and (b) all finite runs starting from s can be extended to Zeno runs (i.e., convergent runs where
actions occur infinitely often). ZRuns(s) denotes the set of Zeno runs starting from s (see Section 2.2).

∀ ρ ∈ Runs(s). delay(ρ) 6= ∞ ∧ ∀ ρ′ ∈ FiniteRuns(s).∃ ρ′′ ∈ ZRuns(s). ρ′ ⊆ ρ′′

21 3

a
x:=0

c!
x>1

x<=2

b
y:=0

y<=2

4 5 6

c?
y>1

1 2

x<=1 x<=1

(i) (ii)

a
x=1

b
x=1

||

Figure 2: Timelocks. (i) Time-actionlock. (ii) Zeno-timelock

Figure 2 illustrates the occurrence of time-actionlocks and Zeno-timelocks. Figure 2(i) shows a network
where a time-actionlock may occur. Suppose that b is initially performed, and a is performed 2 time
units later. At this point v(x) = 0 and v(y) = 2, and so the automata must synchronise on c, but this
is not possible because c! is not enabled. Therefore, a time-actionlock arises (the invariant in location
5 prevents time from passing). The error was to force synchronisation at a time when components may
not be ready to do so(perhaps, the specifier forgot to synchronise a and b first). Figure 2(ii) shows a
timed automaton where a Zeno-timelock occurs. The invariants prevent time from passing any further

8

when v(x) = 1, but all actions in the loop are enabled. Therefore, the only possible evolutions are
characterised by Zeno runs in a finite period of 1 time unit (perhaps, the specifier forgot to reset x).

We will not deal in this paper with deadlock detection (e.g, this a routine check in Uppaal), or
time-actionlock prevention (e.g., in models such as Timed Automata with Deadlines [7, 8, 9, 10], time-
actionlocks are prevented by construction). These were mentioned here for the sake of completeness in
the definition of progress conditions.

On the Nature of Zeno Runs and Zeno-Timelocks. By definition, the absence of Zeno runs
guarantees the absence of Zeno-timelocks, but the converse does not hold. Figure 3(i) shows an example
of Zeno runs: The automaton may engage in runs that consecutively perform a and b instantaneously.
However, the automaton is free from Zeno-timelocks, because the clock x is reset in the loop and time
can always pass in either location (i.e., any run can be extended to a divergent one). In contrast, a Zeno-
timelock occurs in the automaton depicted in Figure 3(ii): The invariants prevent time from passing
any further when v(y) = 1, and the clock y is not reset in the loop, but all actions are permanently
enabled. Therefore, executions are characterised exclusively by Zeno runs (these will not delay beyond
1 time unit).

(i) (ii)

1 2

x<=1 x<=1

a
x:=0

b
x:=0

3 4

y<=1

c
y=1

d
y=1

y<=1

Figure 3: Zeno Runs (i) and Zeno-timelocks (ii)

Zeno runs and Zeno-timelocks may compromise the verification of correctness properties. For ex-
ample, liveness properties are usually verified assuming fairness conditions; in real-time systems, one
of such conditions is that time will pass provided urgent behaviour is not currently scheduled. In other
words, the verification of liveness properties must ignore Zeno runs to be meaningful. Safety properties,
on the other hand, may find false witnesses in Zeno-timelocks, which may prevent the reachability of er-
ror states (however, as Zeno-timelocks are anomalies in the model, but cannot occur in implementations,
such error states may indeed be reachable in the executions of the concrete system).

4 Timelock Detection in Model Checkers

Currently, only a few model-checkers support detection of Zeno runs and Zeno-timelocks, notably
Kronos, Red and Uppaal. However, the methods suffer from a number of limitations. In Kronos,
timelock-freedom can be asserted by model-checking the formula,

λK , init impl ab ed{=1} true

which corresponds to the TCTL formula ∀2∃3=1true. This formula denotes that 1 time unit can pass
from every reachable state; in other words, divergent runs are possible from every state.

λK is sufficient-and-necessary for timelock-freedom [15], thus it can be checked to guarantee absence
of Zeno-timelocks, but not absence of Zeno runs. λK is not compositional (i.e., whether λK is satisfiable
for a component does not guarantee that the whole network is timelock free), and Kronos requires the
product automaton to be constructed a priori. In addition, the verification of λK relies on a fixpoint
algorithm, which can be computationally expensive.

9

Red does better than Kronos as it offers on-the-fly detection of timelocks, however the verification
algorithm is also based on fixpoint calculations, and the detection of cycles in the (symbolic) state-space
representation [19].

Uppaal’s requirements language is not expressive enough to characterise a formula equivalent to
λK . However, Uppaal can verify a CTL formula that guarantees both absence of Zeno runs and Zeno-
timelocks. This is done via a test automaton [1] and a leads-to formula [18]. Given a network of timed
automata, a test automaton is added as a new component as shown in Figure 4 (the test automaton
consists of a single location, T). The network is free from Zeno runs and Zeno-timelocks (and timelocks,
in general) if the leads-to formula λU holds,

λU , t==0 --> t==1

λU holds if from every reachable state, every run allows a 1 time unit delay (the semantics of the leadsto
operator in Uppaal, -->, is such that λU corresponds to the CTL formula ∀2 (t = 0 ⇒ ∀3 t = 1)).

NETWORK ||

t<=1

t=1
t:=0 T

Figure 4: The Test Automaton Approach

λU is a stronger property than λK , and is sufficient-only both for timelock-freedom and absence of Zeno
runs. Therefore, in specifications where λU does not hold, we cannot determine whether timelocks or
Zeno runs occur (or both). λU is not compositional; however, model-checking λU is done on-the-fly
(Uppaal does not construct the product automaton a priori).

The following sections present a summary of our recent work, [12, 14], where we offered alternative
methods to detect Zeno runs and Zeno-timelocks.

5 Strong Non-Zenoness

The absence of Zeno runs in timed automata can be conveniently characterised by Tripakis’ strong
non-Zenoness property [17, 14]. This property is a static check on the guards and resets of a loop,
which guarantees that time will pass at least by d time units (d ∈ N, d ≥ 1) between consecutive
iterations of the loop. Therefore, any run that covers a strongly non-Zeno (SNZ) loop is necessarily
divergent. If every loop in the network is SNZ, actions occur infinitely often only in divergent runs. By
definition, then, Zeno runs (and therefore, Zeno-timelocks) cannot occur.

Strong Non-Zenoness. Let A be a timed automaton, and lp a loop in A. The loop lp is called
strongly non-Zeno (or a SNZ-loop) if there exists a clock x and two transitions t1 and t2 in the loop
(not necessarily different) such that x is reset in t1 and bounded from below in t2. If every loop in A
is SNZ, then A is said to be SNZ. Figure 5 shows an SNZ-loop.

Although strong non-Zenoness is a sufficient-only condition to guarantee the absence of Zeno runs,
it holds in most practical cases. Furthermore, the property is compositional and can be efficiently
checked, and also guarantees the absence of timelocks (if the network is deadlock-free). In [12, 14] we
improved the check for strong non-Zenoness, as originally proposed in [17], by showing that checking
the property on simple loops suffice, and that the network may be free from Zeno runs even if some

10

x:=0
1 2

x<=2 x<=2

a
x>1

b
x:=0

Figure 5: A Strongly Non-Zeno Loop

loops are not SNZ. This is formalised in Theorem 5.1 below ([17] did not make a distinction between
simple and non-simple loops, and required all loops in the network to be SNZ to guarantee the absence
of Zeno runs).

theorem 5.1. Let |A = |〈A1, . . . , An〉 be a network of timed automata. Let HL(|A) be the set of
matching half loops (simple loops), and CL(|A) the set of completed loops (simple loops) in the network,
where

HL(|A) = { (lp, lp′) | ∃ i, j (1 ≤ i 6= j ≤ n) . lp ∈ Loops(Ai) ∧ lp′ ∈ Loops(Aj) ∧
∃ a? ∈ Act(lp). a! ∈ Act(lp′) }

CL(|A) = { lp | ∃ i (1 ≤ i ≤ n) . lp ∈ Loops(Ai) ∧ ∀ a ∈ Act(lp) . a ∈ CAct }

If at least one loop in every pair in HL(|A) is SNZ and every loop in CL(|A) is SNZ, then |A is free
from Zeno runs.

Proof. In [14].

6 Tests on the Product Automaton

When the check for SNZ is not conclusive, a number of other methods can be applied on the product
automaton to confirm the occurrence of Zeno runs and Zeno-timelocks. These methods are more precise
than the compositional application of SNZ, but also more demanding (due to the size of the product
automaton, and the number of loops in it). We will use |A to denote a network of automata, and Π to
denote the product automaton obtained from |A.

6.1 Invariant-based Properties

Theorem 6.1 enumerates some simple static conditions that ensure that a loop cannot participate in
Zeno-timelocks.

theorem 6.1. Let Π be the product automaton for network |A. |A is free from Zeno-timelocks if, for
every simple loop lp ∈ Loops(Π), at least one of the following conditions holds.

• lp is SNZ.

• There is an invariant in lp where no clock is bounded from above.

• There is an invariant in lp, I(l) ,
n
∧

i=1
xi ≤ ci, where xi ∈ Resets(lp) and ci > 0 for all 1 ≤ i ≤ n.

• There is an invariant in lp, I(l) ,
n
∧

i=1
xi ≤ ci, where ci > cmin(xi, lp) for all 1 ≤ i ≤ n.

11

In addition, if every simple loop lp ∈ Π is SNZ, then |A is free from Zeno runs.

Proof. In [14].

6.2 Detecting Zeno Runs in the Product Automaton

We observe that, for a Zeno run to cover a loop, a location in the loop must be reachable with a
valuation s.t. it (a) satisfies all invariants in the loop; (b) satisfies all the guards in the loop; and (c)
assigns zero to every clock that is reset in the loop. Such a valuation can be characterised by the
formula γ(lp),

γ(lp) ,
∧

l∈Loc(lp) I(l)

∧
∧

g∈Guards(lp) g

∧
∧

y∈Resets(lp) y = 0

theorem 6.2. Let lp ∈ Loops(Π). For any l ∈ Loc(lp), ∃3(Π.l ∧ γ(lp)) is satisfiable if and only if a
Zeno run occurs that covers lp.

Proof. In [14].

theorem 6.3. Let |A be a network of timed automata. A Zeno run occurs in |A if and only if there is
a simple loop lp ∈ Loops(Π) s.t. ∃3(Π.l ∧ γ(lp)) is satisfiable (for any l ∈ Loc(lp)).

Proof. In [14].

6.3 Detecting Zeno-Timelocks in the Product Automaton

Given a loop in the product automaton, a formula to characterise the occurrence of Zeno-timelocks
in that loop needs to identify valuations that enable Zeno runs, but which also disallow delays in any
location of the loop, and disable transitions that “leave” the loop (which we call escape transitions). By
definition, Zeno-timelocks cannot occur unless Zeno runs occur, so the reason for the first requirement
is easy to see. The other two requirements ensure that those Zeno runs do not lead to divergent
runs. The following definitions and lemmas justify the reachability formula to detect Zeno-timelocks
(Theorem 6.7).

Local Runs. Let lp be a loop and ρ a run. We say that ρ is local to lp if it only visits transitions of
lp. Formally, ρ is local to lp if Trans(ρ) ⊆ Trans(lp). We use LocalRuns(s, lp) to denote the set of all
runs starting from s that are local to lp.

Local Zeno-timelocks. Let lp be a loop, and s a Zeno-timelock that covers lp. We say that s is local
to lp if, once s is reached, only transitions in lp can be visited (note that, because s covers lp, lp can be
visited infinitely often from s). Formally, a Zeno-timelock s is local to lp if Runs(s) = LocalRuns(s, lp).

theorem 6.4. A Zeno-timelock occurs if and only if a Zeno-timelock occurs that is local to a (simple
or non-simple) loop.

Proof. In [14].

By way of example, Figure 6 (i) shows that the state s = [1, v] (v(x) = 1) is a Zeno-timelock local
to the (non-simple) loop 〈a, b, d , c, d〉. Note that, if a Zeno-timelock is local to some loop lp, then it
also covers lp, but the converse is not always true. s = [1, v] (v(x) = 1) is a Zeno-timelock that covers
the simple loop 〈c, d〉, because every finite run starting from s can be extended to a run that visits c

12

and d infinitely often. However, s is not local to 〈c, d〉; there are runs starting from s that visit a and
b, which are not part of the loop. For the same reason, s is not local to the simple loop 〈a, b, d〉 either.
In some specifications, then, Zeno-timelocks may occur that are only local to non-simple loops.

In contrast, Figure 6 (ii) shows that s′ = [1, v′] (v′(x) = 2), is a Zeno-timelock local to the simple
loop 〈c, d〉; once s′ is reached, neither a nor b are enabled.

b

x:=0
1

a
2

3

x<=1

x<=1x<=1

c

d

x:=0
1

2

3

x<=1

c

dx<=2 x<=2

b
x:=0

a
x<=1

(i) (ii)

Figure 6: Simple Loops, Non-simple Loops and Local Zeno-timelocks

Converged Zeno-timelocks and Maximal Valuations. Let s = [l, v] be a Zeno-timelock. We
say that s is a converged Zeno-timelock if no valuation, other than v, is reachable from s. Formally, a
Zeno-timelock s = [l, v] is a converged Zeno-timelock if ∀ l′, v′. (s

∗
=⇒ [l′, v′]) ⇒ (v′ = v). In addition,

we say that v is maximal w.r.t. Runs(s).

theorem 6.5. From any Zeno-timelock, a converged Zeno-timelock is reachable.

Proof. In [14].

Converged Zeno-timelocks denote valuations with some particular features, which makes them easier
to identify. For some loop in the automaton, we want to determine whether a converged Zeno-timelock
may occur, which is local to this loop. Let us refer to such loops as Zeno loops.

Zeno Loops And Maximal Valuations. We say that a loop lp is a Zeno loop if there exists a state
s reachable in lp, s.t. once s is reached, lp can be covered by local runs, but none of these runs can
pass time. Formally, lp is a Zeno loop if there exists a reachable state s = [l, v], where l ∈ Loc(lp), s.t.
LocalRuns(s, lp) ∩CoveringRuns(s, lp) 6= ∅, and v is maximal w.r.t. LocalRuns(s, lp). We refer to such
v as a maximal valuation of lp.5

The syntactic structure of Zeno loops plays a role in the reachability of maximal valuations. Indeed,
if lp is a Zeno loop and v is a maximal valuation of lp, the following conditions hold.

1. v satisfies all invariants and guards of lp (lp can be visited infinitely often).

2. v(x) = 0, for every clock x that is reset in lp (once v is reached, no clock can ever decrease).

3. v reaches at least one upper bound in every invariant of lp (once v is reached, no clock can ever
increase).

By way of example, Figure 7(i) shows a Zeno loop, 〈b, c〉 where a number of converged Zeno-
timelocks may occur. For instance, s = [2, v] (v(x) = v(y) = 1, v(z) = 0) is a converged Zeno-timelock
that is reached if transition a is performed as soon as possible.

5Note that, if v is a maximal valuation of lp, then s′ = [l′, v] is reachable, for any l′ ∈ Loc(lp).

13

On the other hand, the converged Zeno-timelock s′ = [2, v′] (v′(x) = 1, v′(y) = 2, v′(z) = 0) is
reached if a was performed as late as possible. Note that, in this loop, the possible maximal valuations
are represented by the set { v | v(x) = 1 ∧ 1 ≤ v(y) ≤ 2∧v(z) = 0 }. In general, many different maximal
valuations may be reachable in a loop; hence different converged Zeno-timelocks may be local to the
same loop.

x<=1 x<=1,
z<=1

1 2 3

x:=0,
y:=0,
z:=0

y<=1

a
x:=0,
z:=0

b
y<=2

c
z:=0

e

4

d
x=1

x<=1 x<=1,
z<=1

1 2 3

x:=0,
y:=0,
z:=0

y<=1

a
x:=0,
z:=0

b
y<=2

c
z:=0

(i) (ii)

Figure 7: Zeno loops, Converged Zeno-timelocks and Maximal Valuations

Zeno loops are responsible for Zeno runs that cover the loop; these runs are possible once a maxi-
mal valuation has been reached in the loop. Zeno-timelocks may occur only if maximal valuations are
reachable, but the converse does not necessarily hold; for instance, maximal valuations may enable di-
vergent runs, or may denote time-actionlocks (in neither case a Zeno-timelock would occur). However,
if a maximal valuation does not represent a Zeno-timelock local to the loop, then it must enable some
transition outside the loop. This motivates the definition of escape transitions.

Escape transitions. Let lp be a loop in Π. We will say that a transition l
a,g,r
−−−→ l′ is an escape

transition of lp if l ∈ Loc(lp) and l
a,g,r
−−−→ l′ /∈ Trans(lp). We use Esc(lp) to denote the set of escape

transitions from lp.

Figure 7(ii) shows that 〈b, c〉 is a Zeno loop, with maximal valuations in {v | v(x) = 1∧ 1 ≤ v(y) ≤
2 ∧ v(z) = 0}. Transition d is an escape transition that is enabled by any maximal valuation of the
loop. Zeno loops and maximal valuations do not necessarily determine the existence of Zeno-timelocks:
any run visiting the loop 〈b, c〉 can be extended to a divergent run that visits e infinitely often.

theorem 6.6. A Zeno-timelock occurs in Π if and only if there is a Zeno loop lp in Π, s.t. some
maximal valuation of lp is reachable that does not enable any escape transition of lp.

Proof. In [14].

If a maximal valuation is reached and escape transitions are not enabled at this point, a Zeno-
timelock occurs. On the other hand, Zeno-timelocks may occur even if escape transitions are enabled
by maximal valuations. Consider again Figure 6 (i), and the Zeno loop 〈c, d〉. Transition a is an escape
transition from this loop, which is enabled by any of its maximal valuations (which satisfy v(x) = 1).
Therefore, there is no Zeno-timelock that is local to the loop 〈c, d〉. However, a Zeno-timelock occurs
that is local to the non-simple loop 〈a, b, d , c, d〉.

A Reachability Formula to Characterise Local Zeno-Timelocks. Let lp ∈ Loops(Π) (not
necessarily a simple loop), and Loc(lp) = {l1, . . . , ln}. Let P = Clocks(l1)× . . .×Clocks(ln). We assume
that all invariants in lp are either true-invariants or right-closed invariants, and lp cannot be considered
safe according to Theorem 6.1.

14

The formula Θ(x, l) (where x ∈ Clocks(lp) and l ∈ Loc(lp)) holds whenever x has reached its smallest
upper bound, and such a bound is enforced by the invariant of l.

Θ(x, l) ,

{

x = cmin(x, lp) if x ≤ cmin(x, lp) occurs in I(l)
false otherwise

Using Θ(x, l), the formula sub(lp) denotes a valuation that has reached at least one smallest upper
bound in every location of lp.

sub(lp) ,
∨

(x1,...,xn)∈P

∧n
i=1 Θ(xi, li)

Using sub(lp), the formula α(lp) denotes a maximal valuation of lp,

α(lp) ,
∧

l∈Loc(lp) I(l)

∧
∧

g∈Guards(lp) g

∧
∧

y∈Resets(lp) y = 0

∧ sub(lp)

1 2

x<=1,
y<=2

d

4 3

5

6

z<=2,
y<=3

y<=2,
w<=1

t<=0

a
z>1

b
w:=0

e
x=1,
w=1

f
x=1,
w<=1

c
y=2
t:=0

b

1

2

3

dx<=2 x<=2

4 5
f

g

x<=2,
y<=2

z<=0

c
x>1

e
y=1
z:=0

a
y<1,
y:=0

(i) (ii)

Figure 8: Zeno loops and Escape transitions

By way of example, we show below the values of Θ(X,L) and α(lp), for lp = 〈a, b, c, d〉 in Figure 8(i).

Θ(X,L) =

clock X / location L 1 2 3 4

t Θ(t, 1) = false false false t = 0

x x = 1 false false false

y y = 2 false y = 2 false

z false z = 2 false false

w false false w = 1 false

α(lp) = (x ≤ 1 ∧ y ≤ 2) ∧ (z ≤ 2 ∧ y ≤ 3) ∧ (y ≤ 2 ∧ w ≤ 1) ∧ (t ≤ 0)
∧ (z > 1 ∧ y = 2)
∧ (t = 0 ∧ w = 0)
∧ ((x = 1 ∧ z = 2 ∧ y = 2 ∧ t = 0) ∨ (x = 1 ∧ z = 2 ∧ w = 1 ∧ t = 0)∨

(y = 2 ∧ z = 2 ∧ y = 2 ∧ t = 0) ∨ (y = 2 ∧ z = 2 ∧ w = 1 ∧ t = 0))

Note that once a valuation that satisfies α(lp) is reached, and provided the execution does not leave
the loop, every location can be visited (first conjunct), every transition can be performed (second con-
junct), and clock values cannot decrease (third conjunct), or increase (fourth conjunct). Equivalently,
α(lp) characterises the maximal valuations of lp.

15

Let t , l
a,g,r
−−−→ l′ denote an escape transition, and v a valuation. As we know, v enables t if

v |= g and r(v) |= I(l′) (i.e., the invariant in the target location holds from v, after resets have been
performed). By definition, r(v)(x) = v(x) if x /∈ r, and r(v)(x) = 0 if x ∈ r.

In our timed automata model, invariants do not impose lower bounds, thus resets cannot invalidate
invariants. We can safely claim that r(v) |= I(l′) if and only if v satisfies all conjuncts in I(l′) that do
not refer to clocks in r.

Correspondingly, we define the formula Target(l′, r) to extract those conjuncts in I(l′) that do
not refer to clocks in r. Then, with Target(l′, r) as an auxiliary formula, we define the formula
IsEnabled(g, r, l′) to check whether a transition is enabled (where g, r and l′ are the guard, reset
set, and target location, respectively).

Target(l′, r) , {x ≤ c |x ≤ c occurs in I(l′) and x /∈ r }

IsEnabled(g, r, l′) , g ∧
∧

conj ∈Target(l′,r)

conj

Let lp be a loop, and Esc(lp) = {l1
a1,g1,r1

−−−−−→ l′1, . . . , ln
an,gn,rn
−−−−−→ l′n} be the set of escape transitions of lp.

We define β(lp), which checks whether the current valuation enables some t ∈ Esc(lp).

β(lp) ,
∧n

i=1 ¬ IsEnabled(gi, ri, l
′
i)

Now, with α(lp) and β(lp), we can use reachability analysis to characterise (precisely) the Zeno-
timelocks local to lp. This is formalised in Theorem 6.7.

theorem 6.7. Let lp be a loop in Π, and s = [l, v] be a reachable state (for some l ∈ Loc(lp) and
valuation v). Then, s |= ∃3(Π.l ∧ α(lp) ∧ β(lp)) if and only if s is a converged Zeno-timelock local to
lp.

Proof. In [14].

Corollary 6.8. Let Π be a timed automaton. A Zeno-timelock occurs in Π is there is some loop lp
s.t. ∃3(Π.l ∧ α(lp) ∧ β(lp)) is satisfiable for any l ∈ Loc(lp).

By way of example, consider the loop lp = 〈c, d〉 in Figure 8(ii). Formulae Esc(lp), α(lp) and β(lp)
are shown below (expressions have been simplified).

Esc(lp) = {1
a, y<1, {y}
−−−−−−−→ 2, 3

e, y=1, {z}
−−−−−−−→ 4}

α(lp) = x = 2
β(lp) = ¬ (y < 1 ∧ x ≤ 2) ∧ ¬ (y = 1)

Depending on the reachable valuations, 〈c, d〉 may or may not contain a local Zeno-timelock. For
example, ∃3(A.1 ∧ α(lp) ∧ β(lp)) is satisfiable if any state in {[1, v] | v(y) > 1} is reachable. If so, a
converged Zeno-timelock occurs, s = [1, v], v(x) = 2, v(y) > 1, with

s |= ∃3(Π.1 ∧ x = 2 ∧ ¬ (y < 1 ∧ x ≤ 2) ∧ ¬ (y = 1))

Note that, escape transitions a and e are not enabled (v(y) > 1). On the other hand, 〈c, d〉 does not
contain a (local) Zeno-timelock if any state in {[1, v] | v(x) > 1∧v(y) = 0} is reachable. When v(x) = 2
is reached, v(y) < 1 necessarily holds, and a is enabled by any maximal valuation of the loop. In
addition, any reachable state in {[1, v] | v(x) > 1 ∧ v(y) = 0} is a Zeno-timelock local to 〈a, b, d , c, d〉
(e is not enabled); and no state in {[1, v] | v(x) > 1} is a Zeno-timelock local to 〈a, b, d〉 (c is enabled).

16

7 On the Structure of Loops in the Product Automaton

Ultimately, Zeno runs and Zeno-timelocks depend on the structure of loops in the product automaton.
However, although the unsafe component loops do not provide all the information one would like to
have, they provide a “template” for the structure of those loops in the product that may be problematic.
This section describes the relationship between components’ loops and loops in the product automaton,
and provides a number of lemmas to justify the results of the following sections.

7.1 Loop Generators

Let lpπ be a loop in the product automaton. We define the generator of lpπ as a set of simple loops in
the network, G(lpπ), which satisfies the following conditions.

1. Every action of lpπ is derived either from a completed action or from two matching actions in
loops in G(lpπ).

2. Every action of a loop in G(lpπ) generates an action of lpπ.

Many loops in the product automaton may have the same generator. However, all these loops have
a similar structure and may differ only in some components of the location vectors (those components
that are not represented by loops in the generator) or in the permutations of transitions (i.e., due to
interleaving of actions). The following lemmas can be justified by construction of the product automaton
and definition of generator (we omit the proofs).

Lemma 7.1 says that every loop in the product has a generator. Lemma 7.2 says that every loop
in the product can be “shrinked” so that its generator contains either one completed loop, or only half
loops, but not both. In other words, some loops in the product may represent interleaved cycles of
non-communicating components.

lemma 7.1. Let lpπ be a loop in the product. There exists a set of component loops L = {lp1, . . . , lpn}
s.t. L = G(lpπ).

lemma 7.2. Let lpπ be a loop in the product. There exists a loop lp′π s.t. Locs(lp′π) ∩ Locs(lpπ) 6= ∅,
G(lp′π) ⊆ G(lpπ), and G(lp′π) either contains only half loops, or just one completed loop.

Lemma 7.3 formalises the structural similarities between a loop in the product automaton and its
generator (where γ(lp) is as defined in § 6.2).

lemma 7.3. Let lpπ be a loop in the product automaton. Let B1, . . . , Bm the components in the network
that are not represented in G(lpπ). Then, locations l1 ∈ B1, . . . , lm ∈ Bm exist s.t. li is a component of
every location vector of lpπ (1 ≤ i ≤ m), and γ(lpπ) =

∧

lp∈G(lpπ) γ(lp) ∧
∧m

i=1 I(li).

Corollary 7.4. Let lpπ be a loop in the product, and lp ∈ G(lpπ), s.t. all locations of lp share the
same right-closed invariant, Ilp . Then, Ilp is a conjunct in every invariant of lpπ.

Corollary 7.5. Let lpπ be a loop in the product, and lp ∈ G(lpπ) s.t. all locations of lp share the
same right-closed invariant, Ilp ,

∧

i xi ≤ ci. Assume that at least one transition in lp can only be
enabled by valuations that maximize Ilp (i.e., a valuation v s.t. ∃ i. v(xi) = ci). Then, if v is a maximal
valuation of lpπ, v also maximizes Ilp .

Lemma 7.6 formalises the following observation: If at some point in the execution of the network a
component (or a number of synchronising components) engages in cyclic behaviour, then the concurrent
evolution of other components in the network does not interfere with such behaviour. We use lp′π =
lpπ[li → l′i] to denote that the loop lp′π is obtained from lpπ by substituting l′i for li in every location
vector of lpπ.

17

lemma 7.6. Let lpπ be a loop in the product, and t an escape transition from lpπ that is not derived
from any component in G(lpπ). Let li

a−→ l′i be the completed action in the ith component that generated

t (or, instead, consider the pair of matching actions li
a?−−→ l′i and lj

a!−−→ l′j). Then, there exists a loop
in the product, lp′π, s.t. G(lp′π) = G(lpπ) and lp′π = lpπ[li → l′i] (resp. lp′π = lpπ[li → l′i][lj → l′j]).

7.2 Synchronisation Groups

Intuitively, a synchronisation group (or sync group, for short) denotes a set of non-SNZ simple loops s.t.
each loop belongs to a different component in the network, and all loops may synchronise together. Syn-
chronisation groups generate those loops in the product automaton (which are not generated exclusively
from completed loops) that may be involved in Zeno runs and Zeno-timelocks.

Synchronisation Group. Let |A = |〈A1, . . . , An〉 be a network of timed automata. A synchronisation
group is a set of non-SNZ simple loops in the network, S = {lp1, . . . , lpm}, which satisfies the following
conditions.

1. Any half action, in any loop in S, finds a matching action in some other loop in S.

∀i (1 ≤ i ≤ m), a ∈ HAct(lpi).∃j (1 ≤ i 6= j ≤ m). ā ∈ HAct(lpj)

2. Loops in S do not share half actions.

∀ i, j (1 ≤ i 6= j ≤ m).HAct(lpi) ∩ HAct(lpj) = ∅

3. No proper subset of S satisfies the above conditions.

1

2

3

4|| ||

5

6

<1,3,5>

<2,4,5>

|| =>a!

a?

b

da? c

lp1 lp2

lp0

<2,3,5>

c

a

b

<1,4,6>

<1,3,6>

a

bd

Product Automaton (fragment)

Figure 9: Two Synchronisation Groups

Figure 9 shows three loops, lp0, lp1 and lp2, which can only synchronise pair-wise with lp0. As a
result, the analysis would identify two sync groups: S1 = {lp0 , lp1} and S2 = {lp0 , lp2}. Each Si can
be thought of as representing all loops in the product automaton that can be derived exclusively by
synchronising loops in Si (if synchronisation is at all possible). For example, S1 denotes the loops 〈a, b, c〉
and 〈a, c, b〉, while S1 denotes the loops 〈a, b, d〉 and 〈a, d, b〉 (the possible interleaving of completed
actions is what determines the number of loops in the product automaton that can be derived from the
sync group).

Interestingly, finding the sync groups in a network improves on the SNZ analysis suggested by
Theorem 5.1. By way of example, Figure 10 shows three synchronising loops, where only one of them is
SNZ. An analysis that pairs non-SNZ loops (Theorem 5.1) would fail to recognise that the second and

18

SNZ Non−SNZ Non−SNZ SNZ

1

2

3

4

||a!
x:=0

||

5

6

a? b! b? c!

x<=2

c?
x>1

x<=2

a
x:=0

b

c
x>1

x<=2

x<=2 x<=2

<1,3,5>

<2,4,5> <2,3,6>

|| =>

Figure 10: Exploiting Synchronisation in Strong Non-Zenoness

State1

State2
t4<=90

State1
t1<=50

State1

State2
t3<=90

State1

State2
t2<=5

play
t2=5

Place1 Place2 Sink
State0
t1=0

Source

sourceOut !

t1=50
sourceOut !
t1:=0

sourceOut ?
t4:=0

sourceOut ?
t3:=0

sinkIn ?
t2:=0sinkIn !

t4>=80
sinkIn !
t3>=80

Figure 11: Timed Automata Specification of the Multimedia Stream

third loop, which are non-SNZ loops, can only synchronise together with the first (SNZ) loop, which
guarantees that the interaction is free from Zeno runs.

It is reasonable to ask whether the definition of synchronisation group actually covers all possible
synchronisation scenarios in timed automata models (assuming binary synchronisation as in Uppaal).
The answer is no. However, those cases that are not considered are rare.

For instance, it is unusual to find models where loops that are meant to synchronise together share
half actions. In general, specifications that share half actions tend to model selective communication
(e.g., when a sender may transmit a message to one of many receivers, as in actions Sender.sourceOut!
and Place1/Place2.sourceOut? in the multimedia stream example, Figure 11). Even when broad-
cast/multiway synchronisation has to be modelled with binary synchronisation (as in Uppaal), this
is typically achieved by a sequence of (uniquely labelled) urgent output actions in the sender compo-
nent, each label identifying the corresponding receiving component (e.g., as in actions Medium.cd1!,
Medium.cd2!, Station1.cd1? and Station2.cd2!, in the CSMA/CD example, Figure 12).

Therefore, in this paper, we assume that all unsafe synchronisation scenarios that may occur in
the network under analysis can be characterised by synchronisation groups. Lemma 7.7 describes the
relationship between synchronisation groups and Zeno runs.

lemma 7.7. Let S be the set of sync groups in the network |A, and Cnz be the set of non-SNZ complete
loops in |A. The following conditions are equivalent.

1. A Zeno run occurs in |A.

2. Either (a) there exists a synchronisation group S ∈ S, and a reachable valuation v that simul-
taneously satisfies all guards and invariants, and assigns 0 to all clocks reset in loops in S, and

19

||

Station1

Retry

Transmitting
x1<=782

begin1!
x1:=0

cd1?
x1<=26

Station2

Retry

begin2!
x2:=0

Transmitting
x2<=782

Idle

Collision
y<=26

Next2
y<=26

Next1
y<=26

cd1!

cd1!

cd2!

cd2!

begin2?
y<=26
y:=0

begin1?
y<=26
y:=0

begin1? y:=0

begin2? y:=0

end1? y:=0

end2? y:=0

Active

Medium

cd2?
x2<=26

Figure 12: An Uppaal Model For The CSMA/CD Protocol (fragment)

which allows all synchronisations in S to occur at least once; or (b) there exists a loop lp ∈ Cnz ,
and a reachable valuation v that simultaneously satisfies all guards and invariants, and assigns 0
to all clocks reset in lp.

Proof. (sketch)

((1) ⇒ (2)) Suppose a Zeno run occurs in the network. Then, a Zeno run occurs that covers some
simple loop lpπ in the product automaton. By Lemma 7.2, we can assume the existence of another lp′π
with a minimal generator, such that G(lp′π) contains either one completed loop, or a number of half
loops (but not both completed and half loops). Moreover, lpπ and lp′π are related in such way that
we can infer that Zeno runs also cover lp′π. Clearly, the valuation that witnesses such Zeno runs must
enable all transitions, satisfy all invariants, and reset all clocks that are reset by any loop in G(lp′π);
finally, it is easy to see that either G(lp′π) = {lp}, with lp ∈ Cnz , or G(lp′π) = S.

((2) ⇐ (1)) If condition (2) holds, then there exists lpπ in the product s.t. the reachability formula
∃3(Π.l ∧ γ(lpπ)) is satisfiable. In turn, this implies the existence of Zeno runs that cover lpπ [14].

8 Compositional Detection of Zeno Runs

In this section we show that we do not need to build the product automaton to determine the occurrence
of Zeno runs, and that we can better exploit the outcome of the compositional check for SNZ simple
loops. The occurrence of Zeno runs in non-SNZ completed loops can be determined by application of
Theorem 6.2. For non-SNZ half loops we obtain sync groups, and build a “template” loop from each
sync group (templates reflect the structure of loops in the product automaton, which can be obtained
when all loops in the sync group synchronise together). Then, again by application of Theorem 6.2, we
determine the occurrence of Zeno runs in each template.

Compared with Uppaal’s current detection method, our method requires basic reachability analysis,
instead of the more involved unbounded-liveness analysis (as characterised by the test automaton +

20

leadsto formula). There is a cost in loop detection, but this is attenuated if we consider that this
detection is realised at the components level, and is initially performed to check for SNZ. Therefore,
since SNZ holds frequently in practice, it is likely that only a few loops (if any) would have to be analysed
using reachability. Furthermore, by attempting to build sync groups, we can rule out many non-SNZ
half loops as safe, which the simple pairing method of Theorem 5.1 may miss (see our motivating
example in Figure 10).

Finally, we also present an alternative compositional method to detect Zeno runs, which is based
on annotations of the original network. The idea is to modify the network by adding a new integer
variable and clock, which together can be used to determine whether all loops in the sync group can
synchronise together, and they can do so without forcing a valuation to change.

Although the evaluation and comparison of these alternatives is subject of ongoing work, we predict
that building templates would be more efficient (annotations are not needed, and verification will not
have to deal with extra variables). However, the reachability formula that is derived from templates
works on the assumption that the loops under consideration do not have guards that depend on data
variables. With this assumption, the occurrence of Zeno runs can be reduced to finding valuations
which simultaneously enable all actions in the loops. As data variables can be updated instantaneously,
the valuation may change even during Zeno runs.

On the other hand, the reachability formula derived from annotations only checks that time has
not passed in the current run, independently of how data variables may have changed in the process.
This formula, however, assumes that one complete traversal of the relevant loop in the product suffices
to determine that Zeno runs can occur. This is not true in general, when we consider data variable
interactions that bound the number of iterations of the loop. Nonetheless, it seems that some extension
of the current annotation method would make the theory general enough to deal with this cases.

8.1 Detecting Zeno Runs in Completed Loops

For completed loops, the occurrence of Zeno runs can be determined by the formula,

φzrcomp(lp) , ∃3(Ai.l ∧ γ(lp))

where lp is the completed loop under consideration, lp ∈ Loops(Ai), l ∈ Locs(lp), and γ(lp) denotes all
valuations that simultaneously satisfy all invariants and guards in lp, and assigns 0 to all clocks reset
in lp, i.e.,

γ(lp) ,
∧

l∈Locs(lp)

I(l) ∧
∧

g∈Guards(lp)

g ∧
∧

y∈Resets(lp)

y = 0

theorem 8.1. Let lp be a completed loop. φzrcomp(lp) is satisfiable if and only if there exists lpπ s.t.
G(lpπ) = {lp}, and Zeno runs occurs that cover lpπ.

Proof. (Sketch) By Lemma 7.3, and because locations in timed automata cannote be entered unless the
current valuation satisfies the location’s invariant, φzrcomp(lp) holds if and only if φzrcomp(lpπ) holds.
By Theorem 6.2, φzrcomp(lpπ) denotes precisely the occurrence of Zeno runs in lpπ.

8.2 Using Templates to Detect Zeno Runs in Half Loops

Building the product automaton can be expensive, but it shows the full syntactic structure of loops.
However, how much of this structure do we really need to infer the occurrence of Zeno runs?

21

First of all, in order to determine whether a sync group S is involved in Zeno runs, we only need
to consider those loops in the product automaton that can be generated by S. Let lpπ be any one of
such loops. In our previous work [14], we have shown that Zeno runs occur in this loop if and only if
the formula ∃3(Π.l ∧ γ(lpπ)) (l ∈ Locs(lpπ)) is satisfiable.

The formula γ(lpπ) conjoins all guards and invariants of lpπ, and tests whether all clocks that are
reset by lpπ are currently 0. Except for invariants, which depend on location vectors, the information
that is required to express γ(lpπ) is already available at the components level. Consider the following
formula:

γ(S) ,
∧

lp∈S

γ(lp)

Due to unknown invariants (which belong to components that are not represented in S), it may be
the case that only a subset of valuations denoted by γ(S) satisfy γ(lpπ). In other words, we can easily
prove that γ(lpπ) ⇒ γ(S), but the converse does not hold. However, valuations that satisfy γ(S) but
not γ(lpπ) are not reachable in any l ∈ Locs(lpπ), because any such location vector will be constrained
by the same unknown invariants. Thus, we can prove:

∃3(Π.l ∧ γ(lpπ)) if and only if ∃3(Π.l ∧ γ(S))

This means that, if it was not for the fact that we do not know the location vectors of lpπ, we
could detect Zeno runs solely based on the information extracted from S. Here is where the structural
relationship between the loops in S and the generated loops from S helps. Suppose that, disregarding
other components in the network, we construct a loop, lpT , which reflects one possible joint synchro-
nisation of all loops in S. Any loop lpπ in the product, generated by S, will differ from lpT only in
that the location vectors of lpπ will contain extra component locations (which belong to components in
the network that are not represented by loops in S), and in that the transitions of lpπ may occur in a
different order from those in lpT (however, only those transitions originated by completed actions may
differ in order, while the relative ordering is the same for transitions generated by synchronisation).

Template. Let S be a sync group. A template of S is any loop lpT that can be constructed s.t.

• Locations of lpT are vectors of the form 〈l1, . . . , ln〉, where li ∈ Locs(lpi), lpi ∈ S.

• Every action of lpT is derived either from a completed action or from a pair of matching actions
in loops in S.

• Every completed action and pair of matching actions of loops in S generates an action of lpT .

lemma 8.2. For any sync set S and template lpT of S, γ(lpT) = γ(S).

Proof. Follows from the definitions of template, γ(lpT) and γ(S).

Let S be a sync set, and lpT be a template of S. Let lT = 〈l1, . . . , ln〉 ∈ Locs(lpT), where li ∈ Locs(Ai)
for some Ai. We define φzr (S, lT) as follows.

φzr (S, lT) ,

n
∧

i=1

Ai.li ∧ γ(S)

theorem 8.3. Let S be a sync set. The following holds.

22

1. Let lpπ be a loop in the product, generated by S. If ∃3(Π.l ∧ γ(lpπ)) holds for any l ∈ Locs(lpπ),
then ∃3φzr (S, lT) holds for any template lpT of S, and any lT ∈ Locs(lpT).

2. Let lpT be a template of S. If ∃3φzr (S, lT) holds for any lT ∈ Locs(lpT), then there exists some
loop lpπ in the product, generated by S, s.t. ∃3(Π.l ∧ γ(lpπ)) holds for any l ∈ Locs(lpπ).

Proof. (Sketch) Follows from Lemmas 7.3 (S = G(lpπ)) and 8.2.

Corollary 8.4. Let S be a sync group, and lpT a template derived from S. ∃3φzr (S, lT) holds for
any lT ∈ Locs(lpT), if and only if there exists lpπ in the product, generated by S, s.t. Zeno runs occur
that cover lpπ.

By way of example, Figure 13 shows the possible loop templates, T1 and T2, for S = {lp0 , lp1}
(Figure 9).

||

||

1

2

a? c

lp1

3

4

a! b

lp0

5

6

lp2

a?

c
a

b

<1,3,_>

<2,3,_><2,4,_>

d

Loop Templates for S={lp0,lp1}

c

a
b

<1,3,_>

<2,4,_> <1,4,_>

T1 T2

Figure 13: Loop Templates for S = {lp0 , lp1}

An Algorithm to Construct Templates. The algorithm presented below attempts to construct
a template lpT for the given sync group S, if any such template exists. The algorithm will return a
complete location vector lT it can find for lpT . Note that, by Corollary 8.4, any template of S, and
any location vector of that template, suffice to determine the occurrence of Zeno runs in loops in the
product generated by S.

Starting on the “empty” location vector, the algorithm will choose an initial pair of matching actions
in S (i.e., reflecting a possible synchronisation between any two loops in S), and will obtain a new (more
complete) location vector. From there, from every component location i that is present in the location
vector, it will visit all completed actions of the corresponding i-th loop in S, until the new location
vector can only be evolved further by another synchronisation. Thus, the algorithm works in two-step
cycles, matching half actions and visiting all completed actions until next match. This is repeated until
there are no more matches left to visit, in which case the resulting location vector is reported.

Sometimes, when there are several possible matches available at the current location vector, the
algorithm may need to backtrack if the chosen match has lead to a vector where no more matches can be
performed from there, but there are half actions in S that have not been matched. After backtracking
has been exhausted, if half actions remain to be matched but those matches are no possible, then there
is no possible way in which the loops in S may synchronise together (i.e., no template exists for S, and

23

consequently S cannot be involved in Zeno runs). The algorithm is described below, and illustrated in
Figure 15.

INPUT: S, a sync group.
OUTPUT: lT = 〈l1, . . . , l|S|〉 ∈ Locs(lpT), for some template lpT of S

If S has no templates, return null.
ALGORITHM:

Chose some (act1||act2) ∈ allMatches(S);
lT := findVector (S,match((act1||act2), 〈〉), {(act 1||act2)});

where 〈〉 denotes an empty location vector, allMatches(S) is the set of all pairs of matching actions
in S, and the main function, findVector (S, lT , V), is defined as shown in Figure 14. We have used the
following auxiliary elements.

• lT denotes the current location vector, V is the set of matches in S visited so far (since the initial
call to findVector ()), and C is the (local) set of matches that have been chosen so far, in the
current activation of findVector (). temp is a (local) variable to keep the previous value of lT ,
which will be reused after backtracking.

• The function match((act1||act2), lT) returns an updated copy of lT , s.t. components li, lj are

replaced by l′i, l
′
j in lT , if lT = 〈. . . , li, . . . , lj , . . .〉, act1 = li

a!−−→ l′i and act2 = lj
a?−−→ l′j . If lT = 〈〉

(i.e., the empty vector), then the function returns 〈. . . , l′i, . . . , l
′
j , . . .〉.

• The function visitCompletedActions (S, lT) returns an updated copy of lT , where every component
location li ∈ lT is replaced by l′i, where l′i is the source location of the next half action in lpi ∈ S
after li.

• The function possibleMatches(V,C, S, lT) returns the set of all pairs (act1||act2) of matching
actions in S with source in lT , s.t. (act1||act2) /∈ V ∪ C.

function findVector (S, lT , V)

lT := visitCompletedActions(S, lT);
temp := lT ;
C := ∅;
while (possibleMatches(V,C, S, lT) 6= ∅) do

Choose (act1||act2) ∈ possibleMatches(V,C, S, lT);
C := C ∪ {(act1||act2)};
lT := findVector (S,match((act1||act2), lT), V ∪ {(act1||act2)});
if (lT 6= null) then { return lT ; } else { lT := temp; }

if (|V | = |allMatches(S)|) then { return lT ; } else { return null; }

Figure 14: An Algorithm To Find Location Vectors of Loop Templates

24

||
lp1 lp2

3

4

a! 5

b!

d!

6

7

8b?

d?

c?

1

2

a? c!

lp3

<1,3,6> <2,4,6>

<2,5,7><1,5,8>

a

b

c

d

Algorithm
(starting on a?||a!)

Synchronisation group
S={lp1,lp2,lp3}

Loop Template
for S={lp1,lp2,lp3}

<>

<2,4,_>

<2,5,7> <1,4,8>

<1,5,8>

{b,d} impossible to match
BACKTRACK

all matches successful
DONE

u = <1,3,6>

START
a

b

c

d

c

Figure 15: The Algorithm Working on S = {lp1 , lp2 , lp3}

8.3 Using Annotations to Detect Zeno Runs in Half Loops

The idea is to derive a reachability formula for a sync group S, s.t. this formula is satisfiable if and
only if (a) there exists a loop lpπ in the product, generated by S, and (b) a constant valuation can
be reached that allows one complete traversal of lpπ. Then, Lemma 8.5 below guarantees that lpπ is
covered by Zeno runs.

lemma 8.5. Let lp be a non-SNZ loop. If a constant valuation can be reached that allows one complete
traversal of lp, then lp is covered by Zeno runs.

Proof. (sketch) Let v be such a constant valuation. Then, v allows all locations in lp to be entered and
all transitions in lp to be performed. In addition, because be have assumed that lp is non-SNZ, this
valuation also accounts for the effect of resets in lp (i.e., ∀ y ∈ Resets(lp). v(y) = 0). Hence, once v is
reached, nothing prevents lp from being traversed infinitely often, while the valuation remains constant.
By definition, this proves the occurrence of Zeno runs that cover lp.

Let m be the number of matches between loops in S (by definition of S, m corresponds to the
number of output actions in S), and c the number of completed actions in all loops in S. We will add a
new shared integer variable to the network, synchro, and annotate the loops in S (and possibly other
loops in the network) so that any reachable valuation v, v(synchro) = m + c, denotes that there exists
a loop in the product, lpπ, which is generated by S, and where v is reachable if and only if the current
execution has completely traversed lpπ a number of times. In addition, a new clock z is introduced to
check whether such a valuation v has remained constant during the last complete traversal of lpπ. We
modify the network as follows.6

1. Let lp ∈ S, Afirst be the network component s.t. lp ∈ Loops(Afirst), lfirst ∈ Locs(lp), and t ∈

6We will use functions for readability purposes, although this is not strictly necessary in Uppaal (where we could use
in-line update expressions instead).

25

Trans(lp) be an outgoing transition from l that is labeled with an output action. We modify t to
update synchro and z via the function firstSync(), defined as follows.

void firstSync(){ z:=0; synchro:=1; }

For all other output and completed actions in loops in S, we update the variable synchro with
the function nextSync(),

void nextSync(){ if (synchro>0) synchro++; }

These annotations have the effect of incrementing synchro once per successful synchronisation and
visited completed action, and resets synchro every two consecutive rounds of synchronisations.

2. We reset synchro (synchro:=0) in all transitions in the network that are labelled with input
actions that may match with output actions in S, but which do not belong to S. This avoids runs
that synchronise some loops in S with other loops that are not in S (in Uppaal, when a pair of
input/output actions synchronise, the updates of the output action are performed first).

3. For all escape transitions in S, we update synchro:=0. This avoids runs that leave the loops in
the product that are generated by S.

With these annotations, the formula φsync(S) below characterises all states s = [lfirst , v], where v is a
valuation that witnesses the existence of a loop lpπ generated by S, which can be completely traversed
any number of times without changing the current valuation. (A′

first refers to Afirst after the annotations)

φsync(S) , A′
first .lfirst ∧ z = 0 ∧ synchro = m + c

We define,

φzrsync(S) , ∃3φsync(S)

theorem 8.6. Let S be a sync group. φzrsync(S) is satisfiable if and only if there exists lpπ in the
product, generated by S, and Zeno runs occur that cover lpπ.

Proof. (sketch) The existence of lpπ can be justified by the updates enforced on the variable synchro

(at any state where A′
i.l, v(synchro) = m+ c if and only if all loops in S have synchronised together in

the current run, and this run has visited all transitions in all loops in S). Moreover, any such v that,
in addition, satisfies v(z) = 0, has remained constant during a complete traversal of lpπ. Note that, by
definition of S, lpπ is necessarily non-SNZ. By Lemma 8.5, Zeno runs occur that cover the composite
loop.

Figure 16 illustrates the annotation of the sync group S = {lp0 , lp1} (from Figure 9). Note that
a? in lp2, which does not belong to S, resets synchro. This avoids considering the loop 〈a, b, d〉 in the
product. In this example, the loop is covered by Zeno runs, but in general, runs that escape from loops
generated by S may be false witnesses for the satisfiability of φsync (for instance, it may be the case
that iterations of different SNZ loops are used to increment synchro). Clearly, this cannot happen if
synchro is reset in escape transitions and input actions that may conflict with those in S (such as a?
in lp2).

26

||

||
<1,3,5>

<2,4,5> <2,3,5>

c

a

b

<1,4,6>

<1,3,6>

a

bd

Product Automaton (fragment)
1

2

a? c

lp1

nextSync()

3

4

a! b

lp0

nextSync()

5

6

lp2

synchro:=0

nextSync();
synchro:=0

nextSync()

nextSync()

nextSync()

e
synchro:=0

e
synchro:=0

e
synchro:=0

a?
x>1

d
x:=0

firstSync()

firstSync()

Figure 16: Annotation for S = {lp0 , lp1}

9 A Reachability Formula to Detect Zeno-timelocks

In what follows, the loops under consideration are simple loops that we have proved are covered by
Zeno runs.

9.1 Zeno-timelocks in Completed Loops

A key to distinguishing Zeno runs from Zeno-timelocks is the existence of valuations that enable Zeno
runs in a loop, but which, in addition, maximize all invariants and disable all escape transitions in the
loop. In [14], we have shown that a sufficient-and-necessary check for Zeno-timelocks is possible, via
reachability formulae, if we analyse the loops in the product automaton. What are the challenges that
we face when we work at the level of components?

We have shown (§8) that the occurrence of Zeno runs can be determined from component loops.
However, in general, maximal valuations depend not only on component loops, but also on the invariants
that other components are subject to when the unsafe loops are being traversed. Simply put, maximal
valuations can only be inferred syntactically from unsafe loops in the product automaton, where all
relevant invariants are available in location vectors.

|| ||

x<=1

21
a? y>1

3 4
a!

5

c

6

w<=2

b
w<=1

Product Automaton

<1,3,5,6>

x<=1,
w<=2

<2,4,5,6>
a y>1

b
w<=1

b
w<=1

cc

w<=2

Figure 17: Uncertainty in Maximal Valuations

Figure 17 shows examples of component loops for which the occurrence of maximal valuations cannot
be statically inferred, but which are involved in Zeno-timelocks when constrained by other components
in the network. The first two components in the network synchronise on a, and the other two are
independent. However, synchronisation on a is not possible, given the guard y > 1 for a? and the

27

invariant x ≤ 1 in location 3. As a result, when v(x) = 1 (v(x) = v(y) = v(w)), the loops 〈b〉 and
〈c〉 produce Zeno-timelocks. Note that, the maximal valuation v(x) = 1, which is responsible for the
Zeno-timelocks, could have not been inferred statically from these loops (indeed, at first glance, neither
loop seems to be responsible for Zeno-timelocks).

These examples motivate the following restriction, which ensures that Zeno runs can only occur at
maximal valuations that can be guessed from loop’s invariant (Corollary 7.5).

(Res1). Let lp be a simple loop in some network component. We assume that all locations
in the loop are assigned the same right-closed invariant, Ilp , and that at least one transition
in lp is only enabled by valuations that maximize Ilp .

Other restrictions are necessary and concern escape transitions. In general, if escape transitions are
labeled with half actions, it is difficult to determine (statically) if synchronisation is possible once
maximal valuations are reached. Even if the loop has no escape transitions of its own, it is likely that
the generated loop (in the product automaton) has escape transitions derived from other components,
which may lead to divergent runs.

This scenario is illustrated by Figure 18: The loop 〈c〉 seems to cause a Zeno-timelock when v(x) = 1,
however, the first component always provides a reset for x and thus ensures the existence of divergent
valuations from every reachable state.

||21 3

x<=1

a
x:=0

c
x=1

b
x:=0

c
x=1

c
x=1

Product Automaton

b
x:=0a

x:=0
<1,3> <2,3>

x<=1 x<=1

Figure 18: Uncertainty in Escape Transitions

Restriction (Res2) ensures that, once a maximal Zeno run occurs in the loop, divergent runs are
possible only if some of the loop’s escape transitions are enabled (by Lemma 7.6). Restriction (Res3)
allows us to determine whether an escape transition is enabled, based on the escape transition’s guard,
reset set and target location’s invariant.

One may doubt the veracity of this claim, since we do not know how the target location’s invariant
may be constrained in the product automaton. However, it turns out that any such “hidden” constraint
is irrelevant. This constraint would already be in place in the escape transition’s source location (other
components will not change locations when the escape transition is performed). Furthermore, this
constraint is satisfiable by the maximal Zeno run, and thus (and because local clocks are assumed) it
cannot be invalidated when the escape transition is performed.

(Res2) Clocks in the network are local to components.

(Res3) Let lp be the loop under consideration. All escape transitions in lp are labeled with
completed actions.

With these restrictions in place, the formula φztcomp(lp) denotes the occurrence of Zeno-timelocks in
completed loops,

φztcomp(lp) , ∃3(Ai.l ∧ α(lp) ∧ β(lp))

28

where lp ∈ Loops(Ai) and l ∈ Locs(lp), α(lp) denotes valuations that maximize all invariants of lp,
enable all transitions of lp, and accounts for all resets in lp, and β(lp) denotes valuations that disable
all escape transitions of lp.

theorem 9.1. Let lp be a completed loop in |A. φztcomp(lp) is satisfiable if and only if a Zeno-timelock
occurs that only covers loops generated by {lp}.

Proof. (Sketch) Assume (Res1), (Res2) and (Res3).

(⇒) Let lpπ be any loop in the product with G(lpπ) = {lp}, and s = [〈. . . , li = l, . . .〉, v] a state
reachable in lpπ s.t. v |= α(lp) ∧ β(lp) (i.e., s witnesses the satisfiability of φztcomp). By definition of
generator, lpπ and lp are similar modulo location vectors and permutations of transitions. Then, since
v |= α(lp) (see also Corollary 7.4), v maximizes all invariants of lpπ, enables all transitions of lpπ, and
accounts for all resets in lpπ. Hence, once s is reached, Zeno runs occur that cover lpπ and no delay is
possible in any location of lpπ, and only transitions that belong to other components can be performed
(because v |= β(lp)).

By Lemma 7.6, any run starting from s can be extended to a run that covers some loop lp′π that
is also generated by {lp}; thus finite runs from s can always be extended to Zeno runs. In addition,
runs starting from s can only traverse loops in G(lpπ), or transitions that connect loops in G(lpπ), but
which cannot reset any clock in Ai. This implies that any valuation v′ that is reachable from v satisfies
v′ = r(v), where r is a subset of all clocks that can be reset in components Aj, j 6= i. Thus, there
are no divergent runs starting from s. By definition, s is a (converged) Zeno-timelock that only covers
loops generated by {lp}.

(⇐) Conversely, let s be a (converged) Zeno-timelock that only covers loops generated by {lp}. Then
(by Corollary 7.4), we can assume s = [〈. . . , li = l, . . .〉, v], where 〈. . . , li = l, . . .〉 is some location
vector of some loop lpπ, generated by {lp}. By definition of converged Zeno-timelock, v is a maximal
valuation of lpπ. By definition of generator and Corollary 7.5, it must be the case that v |= α(lp). By
Lemma 7.6, v disables all escape transitions from lpπ that are derived from escape transitons in lp, and
so v |= β(lp). Hence, s witnesses the satisfiability of φztcomp .

Corollary 9.2. If there is no completed loop lp such that φztcomp(lp) holds, Zeno-timelocks can be
caused only by half loops in the network, or by non-simple loops.

9.2 Zeno-timelocks in Half Loops

The problem is to determine whether a given half loop, which we know allows Zeno runs to occur, may
cause Zeno-timelocks. Unlike completed loops, the half loop alone does not provide all the information
we need to derive a suitable reachability formula. We also need to know which other loops synchronise
with this half loop during Zeno runs, as such loops may contribute their own set of escape transitions.
Thus, we need to consider sync groups.

Let S be the sync group under consideration (have in mind that our purpose is to infer whether
any loop lpπ in the product, generated by S, may cause Zeno-timelocks). We assume that all loops in
S are covered by Zeno runs (otherwise, no lpπ generated by S could possibly cause a Zeno-timelock).
As for completed loops, and for the same reasons, we restrict our analysis to networks where all clocks
are local to components (Res2), and we impose the following structural condition on S.

(Res4) For any loop lp ∈ S, all locations in lp share the right-closed invariant Ilp , and all
escape transitions in lp are labeled with completed actions. In addition, there exists a loop in

29

S that contains at least one transition which is permanently disabled until execution reaches
the invariant’s upper bound.

We now derive the reachability formula to check for Zeno-timelocks caused by loops in S. Again
(§8), we find a location vector lT in some template of S, and use the formula φzr (S, lT) to check for
valuations that enable Zeno runs. The difference here is that (Res4) ensures that such valuations are
also maximal. In addition, in order to account for escape transitions, we define the formula φnoescape (S)
to denote the set of all valuations that simultaneously disable all escape transitions of loops in S.

φnoescape (S) ,
∧

lp∈S

β(lp)

Finally, the complete formula to detect local Zeno-timelocks in S is defined as follows, for some
template lpT of S and lT ∈ Locs(lpT).

φztsync(S, lT) , ∃3(φzr (S, lT) ∧ φnoescape (S))

theorem 9.3. Let S be a sync group, and lpT be a template of S. φztsync(S, lT) holds for any lT ∈
Locs(lpT), if and only if a Zeno-timelock occurs that only covers loops generated by S.

Proof. (Sketch) By Corollary 8.4, ∃3φzr (S, lT) if and only if there is a loop lpπ, generated by S, that
is covered by Zeno runs. Such Zeno runs are maximal, by (Res4). The remaining of the proof can be
constructed along the lines of Theorem 9.1.

Corollary 9.4. If there is no S, o template lpT for S, lT ∈ Locs(lpT) s.t. φztsync(S, lT) holds, Zeno-
timelocks can be caused only by completed loops in the network, or by non-simple loops.

Using Annotations to Detect Zeno-timelocks. As an alternative to building a template, we can
annotate the model with clock z and variable synchro (§8), and use the following formula to detect for
Zeno-timelocks.

φztsync(S) , ∃3(φsync(S) ∧ φnoescape (S))

theorem 9.5. Let S be a sync group. φztsync(S) is satisfiable if and only if a Zeno-timelock occurs
that only covers loops generated by S.

Proof. (Sketch) By Theorem 8.6, ∃3φsync(S) if and only if there is a loop lpπ, generated by S, that is
covered by Zeno runs. Such Zeno runs are maximal, by (Res4). The rest of the proof can be constructed
along the lines of Theorem 9.1.

Corollary 9.6. If there is no S s.t. φztsync(S) holds, Zeno-timelocks can be caused only by completed
loops in the network, or by non-simple loops.

9.3 Non-simple Loops

Corollaries 9.2 and 9.4 (resp. Corollary 9.6) suggest a sufficient-and-necessary condition to detect Zeno-
timelocks, provided (a) the model satisfy the necessary restrictions (Res1-4), (b) the different synchro-
nisation scenarios in the network could be represented faithfully with synchronisation groups, and (c)
that non-simple loops in the product cannot be the only cause of Zeno-timelocks.

30

We have justified the restrictions (Res1-4); it seems that we cannot do better when we work at
the component level. Similarly, we have explained that synchronisation groups are likely to cover most
models in practice, so hypothesis (b) seems a reasonable one to adopt. However, in this case, more
comprehensive definitions of synchronisation groups could be derived.

As for hypothesis (c) (and assuming that restrictions are in place), non-simple loops that may cause
Zeno-timelocks must be generated from a combination of sync groups. We believe the results presented
here could be adapted to deal with non-simple loops.

9.4 Sufficient-only Conditions

This section shows that sufficient-only conditions can be derived to check for the occurrence of Zeno-
timelocks, if we weaken the set of restrictions imposed on the model.

Corollary 9.7. Let lp be a completed loop. Assume that all clocks in the network are local, and
that all escape transitions of lp are labelled with completed actions. If φztcomp(lp) is satisfiable then a
Zeno-timelock occurs that only covers loops generated by {lp}.

Let S be a sync group. Assume that, in at least one loop in S, say lp, all locations share the same
right-closed invariant, Ilp =

∧

i xi ≤ ci. Define,

φ′
ztsync(S, lT) , ∃3(φsync(S, lT) ∧ φnoescape (S) ∧

∨

i

xi = ci)

Corollary 9.8. Let S be a sync group. Assume that all clocks in the network are local, that all escape
transitions of all loops in S are labeled with completed actions, and that, in at least one loop in S, lp, all
locations share the same right-closed invariant, Ilp . If φ′

ztsync(S, lp) is satisfiable, then a Zeno-timelock
occurs that only covers loops generated by S.

10 Conclusions

We have shown that it is possible to improve on the detection of Zeno runs and Zeno timelocks: We do
not need to build the product automaton to obtain suitable reachability formulae. This was achieved
by observing that much of the relevant information is already available from synchronisation groups
(sets of unsafe loops that may synchronise together to form loops in the product automaton). We are
currently adding these methods to our Zeno Checker tool [14, 12].

If the occurrence of Zeno-timelocks is to be detected by simple reachability analysis, the reachability
formula needs to detect that maximal valuations can be reached that disallow all escape transitions in a
loop. Unfortunately, there does not seem to be a way to infer maximal valuations and escape transitions
when working at the level of components, unless a number of syntactic restrictions are imposed on the
network under analysis. Nonetheless, for most cases, we would expect to guarantee timelock freedom
simply by asserting absence of Zeno runs.

10.1 Future Work: Dealing with Data Variables and Parameters

Consider a process in a timed automata model for Fischer’s mutex protocol [5], shown in Figure 19
(left). k is an integer constant (k > 0), x is a clock, pid is an integer parameter (pid > 0), and id is an
integer variable. The loop involving locations req and wait is non-SNZ, but it is free from Zeno runs.
This can be determined by observing the following: For the loop to engage in Zeno runs, id should
change from pid to 0 arbitrarily fast, but this is not the case as the only reset of id to 0 occurs in a
SNZ loop (note that id:=0 is part of the loop which includes the lower bound x>k and reset x:=0).

31

As another example, consider the automaton shown in Figure 19 (right). This is a fragment of a
component in a model for a Train Gate Controller [5], which removes the first element of the array
list, and shifts all remaining elements one position down in the list (i.e., this implements the removal
of the head element of list, which is interpreted as a queue). The (local) integer variable len holds
the size of the queue (the number of elements currently stored in it), while the (local) integer variable
i is the iteration variable for the loop in location Shiftdown.

The loop in Shiftdown is non-SNZ, and it can be traversed arbitrarily fast. However, note that the
bound on i disallows (in principle) infinite iterations. Therefore, Zeno runs cannot occur unless the loop
involving rem! may synchronise with a non-SNZ loop (allowing i to be reset arbitrarily fast, infinitely
often). Note that, the locality of both len and i makes this scenario the only possible one in which
Zeno runs may happen. Otherwise, we would have to look for non-SNZ loops (in other components)
which can also update i and len; however, the essence of the test is the same as for local variables.

cs wait

req
x<=k

id==0
x:=0

id:=0

x>k,
id==pid

x<=k
x:=0,
id:=pid

id==0
x:=0

Shiftdown

Start

i<len
list[i]:=list[i+1],
i++

len==i

list[i]:=0,
i:=0

len>=1
rem!
len--,
i:=0

Figure 19: A Process in Fischer’s Protocol (left) and a Queue Handler in a Gate Controller (right)

Currently, our theory cannot guarantee that such models are safe; however, our static analysis of
SNZ could be easily extended to consider these data interactions. For instance, if a loop is found to be
non-SNZ, we could check for data patterns such as those shown by Figure 19, which would guarantee
the absence of Zeno runs. Although more complex interactions would require more elaborate checks,
we have not yet found such complexity in the many case studies available in the literature.

Interestingly, our static SNZ analysis (as currently implemented in the Zeno Checker), and its
extension to deal with data variables, permits the non-Zenoness analysis of parameterised models. For
instance, our SNZ analysis could determine that the model of Fischer’s protocol is safe (free from Zeno
runs) for any number of processes, just by dealing with generic process automaton (which in Uppaal
is called a “template”). On the other hand, model-checkers such as Uppaal, Kronos and Red, have to
instantiate a network of n processes (for some fixed n ∈ N), and then verify the liveness property that
characterises absence of timelocks.

References

[1] L. Aceto, P. Bouyer, A. Burgueño, and K. Larsen. The power of reachability testing for timed
automata. Theoretical Computer Science, 1-3(300):411–475, 2003.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235,
1994.

[3] R. Alur and P. Madhusudan. Decision Problems for Timed Automata: A Survey. In M. Bernardo
and F. Corradini, editors, Formal Methods for the Design of Real-Time Systems. International
School on Formal Methods for the design of Computer, Communication and Software Systems,

32

SFM-RT 2004. Revised Lectures, number 3185 in LNCS, pages 200–236, Bertinoro, Italy, 2004.
Springer.

[4] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In W. Reisig and
G. Rozenberg, editors, Lecture Notes on Concurrency and Petri Nets, LNCS 3098. Springer, 2004.

[5] G. Berhmann, A. David, and K. Larsen. A tutorial on uppaal. In M. Bernardo and F. Corradini,
editors, Formal Methods for the Design of Real-Time Systems. International School on Formal
Methods for the design of Computer, Communication and Software Systems, SFM-RT 2004. Re-
vised Lectures, LNCS 3185, pages 200–236. Springer, 2004.

[6] T. Bolognesi, F. Lucidi, and S. Trigila. Converging towards a timed LOTOS standard. Computer
Standards & Interfaces, 16:87–118, 1994.

[7] S. Bornot and J. Sifakis. On the composition of hybrid systems. In Hybrid Systems: Computation
and Control, LNCS 1386, pages 49–63. Springer, 1998.

[8] S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In Compositional-
ity: The Significant Difference, International Symposium, COMPOS’97, Bad Malente, Germany,
September 8-12, 1997. Revised Lectures, LNCS 1536, pages 103–129. Springer, 1998.

[9] H. Bowman. Modelling timeouts without timelocks. In ARTS’99, Formal Methods for Real-
Time and Probabilistic Systems, 5th International AMAST Workshop, LNCS 1601, pages 335–353.
Springer-Verlag, 1999.

[10] H. Bowman. Time and action lock freedom properties for timed automata. In M. Kim, B. Chin,
S. Kang, and D. Lee, editors, FORTE 2001, Formal Techniques for Networked and Distributed
Systems, pages 119–134, Cheju Island, Korea, 2001. Kluwer Academic.

[11] H. Bowman and R. Gomez. Concurrency Theory, Calculi and Automata for Modelling Untimed
and Timed Concurrent Systems. Springer, January 2006.

[12] H. Bowman and R. Gomez. How to stop time stopping. Formal Aspects of Computing, 8(4),
December 2006. In press.

[13] B. Gebremichael, F. Vaandrager, and M Zhang. Analysis of a protocol for dynamic configuration
of IPv4 link local addresses using uppaal. Technical Report ICIS-R06XX, Radboud University,
Nijmegen, The Netherlands, 2006.

[14] R. Gomez. Verification of Real-Time Systems: Improving Tool Support. PhD thesis, Computing
Laboratory, University of Kent, 2006.

[15] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time systems.
Information and Computation, 111(2):193–244, 1994.

[16] S. Tripakis. The analysis of timed systems in practice. PhD thesis, Universite Joseph Fourier,
Grenoble, France, December 1998.

[17] S. Tripakis. Verifying progress in timed systems. In ARTS’99, Formal Methods for Real-Time and
Probabilistic Systems, 5th International AMAST Workshop, LNCS 1601. Springer-Verlag, 1999.

[18] T. Tsoronis. Formal specification and verification of real time systems with the timed automata
based tools Kronos and Uppaal. Master’s thesis, Computing Laboratory, University of Kent,
Canterbury, Kent, UK, September 2001. (Available from Howard Bowman).

33

[19] F. Wang. Model-checking distributed real-time systems with states, events, and multiple fairness
assumptions. In Proceedings of the 10th International Conference on Algebraic Methodology and
Software Technology, AMAST 2004, volume 3116 of LNCS, pages 553–568. Springer, 2004.

[20] S. Yovine. Kronos: A verification tool for real-time systems. International Journal of Software
Tools for Technology Transfer, 1(1-2):123–133, 1997.

34

