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Abstract 

Wireless networks allow communication between multiple devices (nodes) without the 

use of wires.  Range in such networks is often limited restricting the use of networks to 

small offices and homes; however, it is possible to use nodes to forward packets for 

others thereby extending the communication range of individual nodes.  Networks 

employing such forwarding are called Multi-Hop Ad Hoc Networks (MANETS)  

 

Discovering routes in MANETS is a challenging task given that the topology is flat and 

node addresses reveal nothing about their place in the network.  In addition, nodes may 

move or leave changing the network topology quickly.  Existing approaches to 

discovering locations involve either broadcast dissemination or broadcast route discovery 

throughout the entire network.  The reliance on the use of techniques that use broadcast 

schemes restricts the size of network that the techniques are applicable to. 

 

Routing in large scale ad hoc networks is therefore achieved by the use of geographical 

forwarding.  Each node is required to know its location and that of its neighbours so that 

it may use this information for forward packets.  The next hop chosen is the neighbour 

that is closest to the destination and a number of techniques are used to handle scenarios 

where the network has areas void of nodes. 

 

Use of such geographical routing techniques requires knowledge of the destination’s 

location.  This is provided by location servers and the literature proposes a number of 

methods of providing them.  Unfortunately many of the schemes are limited by using a 

proportion of the network that increases with size, thereby immediately limiting the 

scalability.  Only one technique is surveyed that provides high scalability but it has a 

number of limitations in terms of handling node mobility and failure.  Ad hoc networks 

have limited capacity and so the inspiration for a technique to address these shortcomings 

comes from observations of nature. 

 



Page 3 of 169 

Birds and ants are able to organise themselves without direct communication through the 

observation of their environment and their peers.  They provide an emergent intelligence 

based on individual actions rather than group collaboration.  This thesis attempts to 

discover whether software agents can mimic this by creating a group of agents to store 

location information in a specific location.  Instead of requiring central co-ordination, the 

agents observe one another and make individual decisions to create an emergent 

intelligence that causes them to resist mobility and node failures.   

 

The new technique is called a Self Organising Location Server (SOLS) and is compared 

against existing approaches to location servers.  Most existing techniques do not scale 

well whereas SOLS uses a new idea of a home location.  The use of this idea and the self 

organising behaviour of the agents that store the information results in significant benefits 

in performance.  SOLS significantly out performs Terminode home region, the only other 

scalable approach surveyed.  SOLS is able to tolerate much higher node failure rates than 

expected in likely implementations of large scale ad hoc networks.  In addition, SOLS 

successfully mitigates node mobility which is likely to be encountered in an ad hoc 

network. 
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Glossary of Terms 
 

Table 1: Glossary of terms 

Term Description 

AODV Ad-hoc On-demand Distance Vector – an on-demand ad-hoc 

network routing protocol. 

Beacon A packet sent periodically advertising information such as that 

node’s location. 

Delay The time taken for a packet to travel from one node to another. 

DSR Dynamic Source Routing – an on-demain ad hoc network 

routing protocol. 

Edge/face  

Geodesic/geographical 

routing 

Routing a packet using geographical information about the 

destination. 

IETF Internet Engineering Task Force – standards setting body for 

Internet protocols. 

IP(v4/6) Internet Protocol version 4 or 6.  Version 4 is in current use for 

the Internet with 6 being currently rolled out.  IPv6 provides a 

number of enhancements such as a larger address space and 

security. 

Location server A server responsible for storing the location of a node or set of 

nodes so that the information can be accessed to enable 

geodesic routing. 
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MAC Layer The second level of the OSI Seven Layer network model 

whereby data is placed into medium specific packets.  The 

layer also concerns medium specific protocols. 

MFR Most-Forward-within-Radius – a means of forwarding packets 

in a network using location information. 

Neighbour If node A is within wireless communication range of node B, 

then node A is a neighbour of B and vice versus. 

Node A wireless device such as a mobile phone, PDA or laptop. 

Node degree The number of neighbours a node has. 

OLSR Optimised Link State Routing – A proactive ad-hoc network 

routing protocol. 

Overhead Traffic that is used to maintain the function of the network; e.g. 

it is not application data. 

Physical Layer The lowest part of the OSI Seven Layer network model; e.g. 

the physical side of wireless communication; such as, 

modulation, interference, attenuation, etc. 

Quorum A replicated state machine; e.g. a set of servers responsible for 

storing data in the face of server failures. 

RFC Request for Comments – A protocol proposal/standard 

submitted to the IETF. 

Routing The process for deciding on which path messages will take 

through the network. 

Stigmergy The process of a group on entities co-operate by 
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communicating through modification of their environment.   

Void An area with a lack of nodes. 
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1 Introduction 

1.1 Background 

The founder of Microsoft, William H. Gates, had a vision of there being a computer on 

every desk in every home (Gates, 1995).  This vision has come to fruition recently, with 

most homes in Britain owning a personal computer (ONS, 2002).  What he perhaps did 

not predict would be the dependability on computers for modern life and the subsequent 

desire for them to be carried around.  Computers are now carried in the form of mobile 

telephones by a significant proportion of the population and their functions are exceeding 

far beyond their initial design.  For example, many mobile telephones now include as 

standard calendars, games, and recently satellite navigation. 

 

Traditionally computers communicated by using wired networks, requiring each PC to be 

connected by a wire.  Recently, wireless networks have become a viable alternative with 

speeds up to 54Mbps already available and technology enabling speeds for 480Mbps 

being standardised by the IEEE 802.11 Working Group.  Along with recent decline in 

laptop prices, wireless networks have become popular for use of the Internet anywhere in 

the home.  This set up involves purchasing a wireless access point and connecting it to 

your Internet connection point, allowing you to access the internet wirelessly whilst 

within range.  This range has been cited to be up to 300m but within a built up area 100m 

is a more practical expectation (Dynalink, 2004).  If one has a particularly large house 

and wishes to have wireless access beyond this range, then they may install repeater 

access points at strategically placed points around the home.  These access points, like the 

original, must then be manually configured.  The task of connecting to the wireless 

network is much simpler with many client devices connecting and obtaining an IP 

address automatically (through DHCP (IETF, 1997)) when within range.   

 

While this works well for the technically competent home user, those that are not will be 

unable to configure multiple access points and so will stay within range.  More 

interestingly, let us consider a lecture theatre where students have brought their mobile 
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devices.  If the lecturer wishes to share files with the students, or somehow interact with 

their devices, he would have to have previously set up an access point and all students 

would have to be within range.   Equally so, at a large conference, if the organisers were 

to make files available wirelessly, all users would have to be within range of a previously 

configured wireless network.  While this is not unreasonable and there are many 

companies that are now successful offering these services, it is costly and not strictly 

needed. 

 

Consider the situation of a typical park at lunchtime, with a number of people using 

mobile devices whilst eating their lunch.  Two people, person A and person B wish to 

communicate with one another, but they are at opposite sides of the park.  If the distance 

between them is greater than 100m then they are unable to communicate at present. 

Figure 1 illustrates this scenario with node A having a transmission range shown by the 

dotted circle, and B being outside of this range.  A has two neighbours, C and D, which 

are defined as those nodes that are within its transmission range. 

 

 

Figure 1: A simple ad hoc network 

 

The solution to the problem is two fold: that of configuration, and of transmission range.  

In terms of configuration the devices need to agree how to address one another, such as in 

TCP/IP, a popular networking technology, each device is assigned an IP address when 

connecting to an access point based network.  In this scenario however, there is no central 

authority to assign IP addresses and so the nodes need to agree so that they have distinct 

A 

C 

B 

D 

E 

F 
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IP addresses.  When all nodes are in range simply choosing an address and asking if any 

other node is using it, and repeating this until an unused address is found would suffice.  

In larger networks where not all nodes are in range, researchers have proposed multi-hop 

agreement protocols (Thoppian and Prakash, 2006).  Perhaps a more effective means of 

approaching this is that every wireless network device is assigned at manufacture a 

unique 48-bit Media Access Control (MAC) address, and this could be used to derive the 

IP address.  With the current IP version, the maximum address size is 32 bits and so this 

scheme would be mostly ineffective due to the chance of two nodes choosing the same 

address; however, the next version currently undergoing deployment provides 128 bits 

which would allow a fraction of this address space to be set aside for wireless devices, 

using the MAC address to determine the low-order bytes. 

 

If we assume that all devices in the park are agreeing on the same configuration through 

some means, but that they are not within range of all other nodes, the next task is 

communication beyond the transmission range.   One could increase the transmission 

power as GSM mobile phones do when they become distant from the base tower, but this 

has two problems.  Firstly is the issue of output power, the band in which current WiFi 

technology operates has strict legal requirements on Radio Frequency (RF) power output.  

Secondly is the issue of battery conservation, as discussed later nodes may more 

frequently participate in communication than mobile phones due to their routing function 

and so the higher RF output powers will reduce battery life. 

 

If person A wishes to communicate with B but he is out of range then he is currently 

unable to given restrictions limiting the power output, however, he could ask a node that 

is within range to repeat or forward the message.  This forwarding would then happen at 

every device along the path to person B’s device.  Figure 2 illustrates this scenario with 

node A sending a message through two intermediate nodes before reaching B (the dotted 

circles indication transmission range). 
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Figure 2: Illustration of multi-hop forwarding in ad hoc networks 

 

Given the example in Figure 2 the question remains of how one finds the path between A 

and B so that nodes know which node to forward the message to at each hop.  This issue 

is covered in more detail in the literature review but is briefly explained here.  It is worth 

noting that a node can only see that its neighbours and no further, and so cannot see 

where B is or which node to send packets through.  A simple way around this is to ask all 

of its neighbours if they know where B is, if they do not then they also ask their 

neighbours, and so on until eventually a node is reached which is a neighbour to B.  At 

each stage a record of the path has been stored in the search request and so upon reaching 

B it is possible to construct a reply and send it back down the path with the correct hops 

to go through.  This is similar to one of the most popular routing algorithms for ad hoc 

networks, Ad-hoc On-demand Distance Vector (AODV) (Perkins and Royer, 1999). 

 

While the AODV style technique works very well for small networks with low mobility, 

when networks become large and/or mobility increases, the overhead of finding the path 

becomes prohibitively expensive.  An alternative method to combat this is to require each 

node to know its location, that of its neighbours and the destination.  Given this 

knowledge the message can simply be sent to the neighbour which is closest to the 

destination.  This technique is currently the only technique which is highly scalable but 

leaves the question of how to find the location of the destination. 

 

A B 
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The focus of this work is on how to store location information for a particular node in an 

ad hoc network in a fashion that makes the approach scalable to an extremely large 

number of nodes.  A simple technique would be to require every node to periodically 

broadcast its location to all other nodes (Basagni et al., 1998) but with increasing 

numbers of nodes the overhead becomes prohibitively expensive.  The technique 

proposed in this thesis does not require dissemination amongst all nodes or an increasing 

number of nodes as the network size increases, and so is therefore is highly scalable. 

1.2 Inspiration 

Nature is incredibly complex and humanity still does not fully understand it.  Humans 

have evolved from mere proteins over millions of years and are now beginning to 

understand the process which has brought about our being.  If one looks at some of the 

functions that have evolved to make human and animal life possible, they are often 

incredibly intuitive and reliant on a precisely tuned set of events.  Academics in artificial 

intelligence quickly realised that nature perhaps held the key to developing intelligent 

computers with the discovery of neural networks and genetic algorithms.  Neural 

networks were designed to mimic the way neurons in the brain interact and process 

information.  Genetic algorithms were designed to mimic the way life has evolved, taking 

a set of solutions and at each iteration choosing the best performing according to some 

metric and combining them for a new generation.  At progressive iterations more 

effective solutions to the problem evolve.   

 

An interesting phenomenon that we can observe in nature is that of self-organisation 

(Morowitz, 2003), the process by which selfish individuals co-operate or interact to 

achieve a global goal.  Take for example humans in society with selfish goals of power, 

wealth and respect that drive them to interact with others and realise these goals.  

Although we are all individual, with our own desires, we have to co-operate to realise 

them to their fullest extent.  This is observed everywhere in the animal kingdom, from 

birds flocking (Carlson, 2000, Reynolds, 1987) and ants building nests (Johnson, 2001) to 

human society, all are individual beings that have selfish goals but who co-operate to 

realise them.  To further extend this let us examine how they co-operate.  One might 



Page 20 of 169 

initially assume that this is through direct communication through voice or a similar 

mechanism which is so obvious in human society but is only part of the story.  Consider a 

visit to the cinema, you see a handful of seats with jackets placed on them, you 

automatically assume someone is sat there and find another seat.  They have 

communicated with you indirectly which has caused a change in your behaviour.  

Another example is if you see a queue for a counter at a supermarket, you automatically 

walk to the back of the queue rather than to the counter, forming an ordered system to get 

served and maximise efficient service for society.  You have not spoken with the people 

in the queue but you have observed their positions and altered your actions accordingly. 

 

1.2.1 Ant-colonies 

In an ant-colony, each ant acts independently seeking food when leaving the nest.  Upon 

finding some food, the ant returns to the nest laying down pheromone molecules along 

the route.  Other ants sensing this pheromone follow it to the food, and they too lay down 

reinforcing pheromones on their return.  The shortest path to the food is traversed more 

frequently because it is shorter and so becomes more reinforced than the longer paths.  

Although the ants have acted independently, only changing their environment by laying 

down pheromones, they have achieved a global goal of finding the shortest path to food.  

This is an emergent property of their individual and independent actions (Johnson, 2001).   

 

Ants communicate indirectly by modifying their environment by laying pheromones.  

Other ants then sense these pheromones and this information is used to permit indirect 

communication.  This process of modifying one’s environment to permit indirect 

communication is called Stigmergy.  In a human environment, if one leaves a coat on a 

seat in a public area such as a cinema or bar, others assume this seat is taken and alter 

their behaviour by choosing to sit elsewhere (Tummolini and Castelfranchi, 2007).  

 

As expected, most applications of ant colony optimisation have focused upon finding 

paths in networks, from the travelling salesman problem (Puris et al., 2007, Pop et al., 

2007) to routing in communication networks (Zheng et al., 2007). 
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Ants were proposed as a solution to finding shortest paths in ad hoc networks due to their 

efficiency at finding them in nature.   Simulation of such solutions have found them able 

to be highly adaptive, provide multi-path routing and data load spreading (Ducatelle et 

al., 2006, Di Caro et al., 2004).  

 

Algorithms such as Antnet (Dhillon and Van Mieghem, 2007, Tekiner, 2004, Di Caro and 

Dorigo, 1999) and ABC (Rajagopalan and Shen, 2006) sent out virtual ants at regular 

intervals to randomly chosen destinations.  The ants sample paths and assign quality 

whilst updating the routing tables as they pass.  They assign a goodness value to each 

path based upon a virtual pheromone.  For ant-based systems that work on this principle 

to be useful in higher mobility scenarios there must be enough ants moving across the 

network to disseminate and discover routes; however, this incurs a significant overhead 

but attempts to limit repeated path sampling results in the ants losing much of the 

explorative behaviour (Gunes et al., 2002). 

 

1.2.2 Particle swarms 

When birds flock, they observe their neighbours’ direction and velocity.  Using this 

information, the bird can make a decision on its direction and speed.  Typically, the bird 

will introduce a certain amount of randomness in its decision making so that the flock as 

a whole can search for food and not move in just a straight line.  The birds can change 

direction extremely quickly without any apparent central co-ordination; this is because 

there is no central co-ordination and their behaviour is emergent and self-organising.  For 

example, if one observes a predator approach a school of fish, the school will change 

direction very quickly, in a wave like fashion from the closest point to the predator.  

Much like in human crowds, if there is a danger, a small number of people start running, 

others see this and then instinctively run too (Carlson, 2000, Reynolds, 1987). 

 

The behaviour observed in flocks is referred to as an example of Particle swarm 

optimisation (PSO) (Eberhart et al., 2002) and differs from Ant-Colony optimisation in 
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that the entities do not necessarily modify their environment but rely more on observation 

of their peers.  Research interest into PSO’s applications has been largely applied to 

neural network optimisation (Yusiong and Naval, 2006) and also limitedly to routing in 

small ad hoc networks (Rajagopalan and Shen, 2006).  

 

Particle swarm optimisation has been applied to ad hoc networks (Zhang and Xu, 2006, 

Yuan et al., 2006, Rajagopalan and Shen, 2006) in a number of techniques for 

disseminating routing information throughout the network.  

1.2.3 Application of inspiration 

It is indirect communication observed in nature as described in the last section that is the 

inspiration for this thesis.  Communication capacity in a network is limited in wireless 

networks and much of the research literature focuses on ways to reduce overhead.  If it is 

possible to incorporate a form of indirect communication into some of the algorithms 

used, then one can reduce the overhead on the network.  If self-organising entities 

observe each other most of the time instead of directly polling or co-ordinating with one 

another, then this removes a significant overhead burden.  In particular, we want a 

number of entities to co-operate with one another in a self-organising approach through 

indirect communication.  Specifically the thesis will focus on trying to use this idea of 

indirect communication in self organisation to store location information in a network 

whilst incurring the minimum overhead.   

 

1.3 Motivation 

Large scale ad hoc networks have enormous potential in their uses and the list is never 

ending.  Envisage being able to always be in range of a wireless hotspot when you move 

into a new home or visit a conference.  Or consider cellular network providers not 

needing to invest on as much infrastructure and passing the savings onto its customers.  

Perhaps even more encouraging is doing away with cellular networks altogether, and 

eliminating the need for us to pay for a phone calls and Internet access.  While not 

particularly favourable for the cellular companies, they can augment the network by 



Page 23 of 169 

providing extra services or faster Internet access by moving their target market and still 

profit from this development; although it would be up to the user whether to utilise the 

services or not.   

 

Consider disaster areas such as New Orleans where the infrastructure has been destroyed.  

The emergency services would have initially benefited from an ad hoc network for 

communication but now that this stage of the disaster is over, large scale ad hoc networks 

could play a pivotal role in restoring communication to the region.  Equally so, in third 

world countries and villages where communications investment is not profitable, ad hoc 

networks can be beneficial in providing communication for free. 

 

The main motivation for this work is to bring us one step closer to a large ad hoc 

network.  This work solves one hurdle, the provision of location services, which although 

only one step in the path, it is a significant step.  Currently much of the focus in the area 

is on small ad hoc networks although increasingly large scale ad hoc networks are being 

researched.  With the addition of this work, only a few problems remain before we can all 

deploy a truly free network, such as capacity limitations. 

 

1.4 Contributions 

This thesis makes a number of important contributions to the use of geographical routing 

and in particular location servers.  As the thesis is examining storing location 

information, first to be examined will be how beaconing and location age affects the 

forwarding of packets through geographical routing.  If beaconing can be reduced and the 

distance between location updates can be maximised, then the overhead can be reduced 

further. 

 

The main contribution of this thesis is in a self organising location server that uses mostly 

indirect communication to reduce overhead.  For any system to scale in wireless network 

the overhead on the network must be independent of the number of nodes in the network.  

Even if the overhead is dependant upon the number of nodes, then with sufficiently large 
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number of nodes the capacity available will approach zero (Jain et al., 2001).  Examining 

the existing location servers that match this criterion finds that they require the use of a 

region of the network to store information whether there are nodes present.  When nodes 

are not present the system fails and therefore a paradigm shift is proposed to geographical 

points rather than regions, around which the data should be stored. 

 

The next contribution is an examination of the possibility of storing data near a 

geographical point in mobile network and the parameters that affect the proximity to this 

point of a data hosting entity that is able to make migration decisions.  This entity makes 

its own decisions on when to move from node to node (a migration) to try and remain as 

close to this point as possible. The thesis examines what factors affect its performance in 

this endeavour.  It needs to move from node to node if the network is mobile otherwise it 

may become quite distant from the point. 

 

Issues of fault tolerance are addressed and a number of techniques for producing a self-

organising group of entities are examined.  These entities all attempt to remain as close to 

the geographic point as possible but whilst ensuring that there are enough entities to 

survive failures of nodes.  The entities only communicate through modifying their 

environment yet form a global intelligence of co-operation despite their independent 

actions. 

 

Once these entities are able to tolerate mobility and failures of nodes whilst acting 

independently but communicating through observation of one another, the use of them for 

storing data in an ad-hoc network is examined.  Techniques to query the information in a 

similar non-centralised manner are examined along with possible improvements. 

 

The thesis also examines the performance of this data storage technique in storing 

location information for the use in geographical routing.  The technique is compared with 

similar approaches to location servers and is critically analysed. 
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To enable analysis of such an algorithm several simulations were developed.  A complete 

routing layer module was created for two ad hoc simulators. In addition, a prototyping 

simulator was developed to allow rapid testing of ideas allowing many ideas to be 

examined without costly development time. 

1.5 Thesis outline 

Chapter 2 will discuss traditional methods of routing in ad hoc networks and their pitfalls.  

A number of algorithms that provide routing for smaller scale networks will be examined 

and the problem of using them in larger networks explained.  The chapter then explains 

routing for large scale ad hoc networks and the use of geographical routing techniques.   

 

Chapter 3 elaborates on the current literature of large ad hoc networks and examined 

methods of discovering the location of another node.  Geographical routing requires this 

location information and a number of techniques for providing this were examined in 

detail.  

 

Chapter 4 examines the feasibility of the idea of a group of autonomous agents remaining 

near a geographical point.  Methods for theses agents to replicate and co-ordinate whilst 

minimising communication are analysed for later use in storage of information.  The 

technique is termed SOLS and is based upon the ideas of ant colony and particle swarm 

optimisation described earlier. SOLS incurred low overhead and provided high tolerance 

to node failures. 

 

The use of the SOLS technique developed in Chapter 4 is used for storage of location 

information in Chapter 5.  Initially, the task of updating and querying the server is 

examined.  A number of closely related topics were also examined such as location age 

and its effect on routing success, and the performance of various methods for choosing 

when to update.  SOLS was shown to be the only technique providing high failure 

tolerance and high scalability, and performed better in all realistic scenarios against the 

most similar approach, Terminode home region. 
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Finally, given a robust and successful location server using SOLS, Chapter 6 examines 

the implementation on computing devices.  The chapter discusses how SOLS and 

associated routing is implemented in both the application and network layers of the OSI 

model.  Chapter 7 concludes the thesis and discusses future work. 
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2 Routing in Ad-hoc Networks 

2.1 Introduction 

Routing in networks can be thought of as finding the path between two computers in a 

network; much like one finds a route across a road system.  In wired computer networks 

such as the Internet this task is made much easier by IP addresses.  Typically, a group of 

IP addresses will be allocated to a country, and then a subset of that to a region within the 

country, and so on.  This is similar to how a telephone system works with area codes and 

country codes, but in IP networks the geographical segregation is not as distinct as there 

could be several IP ranges for one area depending of who the supplier was.  The network 

can therefore be arranged in a tree-like fashion, with the individual computers at the 

bottom, and increasingly large address ranges as you move up the tree, with the whole 

address space being the head.  For routers to be able to automatically discover this 

information, a HELLO packet is periodically broadcast between neighbouring routers 

containing information on which networks it can see.  This information is recorded by 

receiving routers and sometimes shared with their neighbours. 

 

Routing in ad hoc networks is a different matter altogether as there is no hierarchy to 

reduce complexity.  Although each computer may have an IP address, the computer could 

then move to the other side of the network therefore negating any regional indicator the 

address provided.  A node can only see computers in its transmission range and every 

computer must act as a router relaying packets for every other node.  The routing task is 

flat in comparison to the Internet’s hierarchy and this requires a different approach.   

 

In an ad hoc network, each node needs to be able to discover a path of nodes between 

itself and the node with which it wishes to communicate.  Traditionally in ad hoc 

research, this has been achieved through two methods: proactive and reactive.  The 

proactive approach uses a similar technique to the HELLO messages mentioned earlier 

and information is slow to propagate through the network.   The reactive approach uses a 

flooding style broadcast to discover a route to the destination on-demand. 
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Unfortunately, neither of these approaches are scalable to large scale networks and so an 

alternative method called Geographical Routing was discovered.  This chapter will 

outline the traditional methods, the scalability problem along with geographical routing 

and the need for location servers if large scale ad hoc networks are going to be possible. 

2.2 Traditional Routing 

Traditional methods of routing within an ad-hoc network fall into several categories.  The 

first of these are ‘reactive’ and initiate discovery as and when required. Whilst a proactive 

protocol will actively seek to have knowledge of routes to all possible destinations before 

the information is needed (Johansson et al., 1999, Tseng et al., 2002a). 

 

A reactive protocol performs route discovery only when packets are waiting to be sent to 

a node where the route is not known.  Upon a node generating a packet to such a node, 

the routing layer will queue it and initiate the route discovery process.  In most protocols 

this consists on an n-hop broadcast to find the destination, with a reply being sent back 

once the node is found.  Many of the protocols also have a route maintenance phase to 

maintain routes in the presence of link failures. 

 

A proactive protocol performs route discovery all the time, attempting to maintain a table 

of possible destinations and the routes.  Nodes share routing information amongst their 

neighbours either periodically or in response to topology change and this information is 

disseminated to all nodes.   

 

Choosing a protocol to use depends very much on the application to which it is being 

applied.  Reactive protocols cause a connection initiation delay due to the discovery 

process taking place at that time; however, the route discovered is more likely to be up to 

date.  Proactive protocols often respond slowly to changes in topology as the information 

converges slowly by nodes sharing information.  In addition, proactive protocols incur an 

overhead regardless of whether any communication is taking place in that part of the 

network. 



Page 29 of 169 

 

Generally a routing protocol needs to address three key issues to provide a service in a 

communications networks: 

 

• Route Discovery – This process involves the discovery of the path through the 

network to the destination.  The routing protocol has to establish which nodes 

packets need to be routed through to reach the destination and this path will 

usually fit certain criteria.  These criteria can range from the most common being 

the least number of hops to quality of service parameters. 

• Route Maintenance – In a wired network, a route can become invalid at any point 

due to node failures or changes in network topology; however, in an ad hoc 

network, node mobility is the most common cause of a route becoming invalid 

due to the change in topology.  Therefore, a routing protocol is expected to handle 

this scenario and rediscovery or alter the route as quickly as possible to maintain 

the communication path. 

• Packet Relay – Once a path has been discovered between the source and 

destination, the routing protocol is responsible for passing packets along it.  This 

includes handling dropped packets and sensing link failures so that route 

maintenance may be initiated.  In addition, this part of the protocol is also 

responsible for initiating route discovery when a new packet without a route is 

received or created. 

 

In this sub-chapter, two routing protocols will be described, the reactive Ad-hoc on 

Demand Distance Vector (AODV) protocol, and the proactive Optimized Link State 

Routing (OLSR) protocol.  The advantages of each are laid out and then the reasons they 

are not suitable for large scale networks. 

2.2.1 Reactive – AODV 

Ad-hoc on-demand distance vector (Perkins and Royer, 1999) has currently been 

accepted as an experimental request for comments (RFC) by the Internet Engineering 

Task Force (IETF) Mobile Ad-hoc Networks Working Group (MANET-WG).  A number 
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of other protocols have also been accepted by the group but a number of studies have 

shown AODV to excel especially in stressful situations of high mobility and traffic loads 

(Perkins et al., 2001).  

 

AODV builds routes using a route-request (RREQ) and route-reply (RREP) mechanism.  

A node wishing to discover a route builds a RREQ packet and broadcasts it to all its 

neighbours.  Every node receiving the packet then also rebroadcasts it after recording 

some information.  Each node on receiving the packet, records a backward pointer to the 

source via the previous hop along with a number of other details about the request.  On 

reaching the destination node, a RREP is generated and sent back to the source using the 

backward pointers.  At each hop the RREP is sent by unicast and each hop records a 

forward pointer to the destination via the previous hop of the RREP.  As soon as the 

RREP is received at the source node it may begin sending data having established 

backward and forward pointers on all nodes along the route. 

 

Table 2: Example AODV forward and backward entry 

Source node ID Destination node ID Backward node ID Forward nodeID 

 

The route is considered active as long as packets are being periodically sent along the 

route.  If no packets are sent, then each node along the route will timeout the information 

stored.  If a link fails, perhaps due to node mobility, a route-error (RERR) packet is sent 

by unicast back to the source so that it may reinitiate route discovery. 
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Figure 3: Illustration of AODV route discovery 

 

Figure 3 gives a simple diagram of how route discovery takes place.  S broadcasts a 

RREQ to its neighbours, who then also rebroadcast and so on.  When the RREQ finally 

reaches D, it unicasts a RREP back to the source.  On receiving the RREP at S, a route is 

established and communication can take place.  Should any nodes in the route move from 

its position and compromise the path, then route maintenance will be initiated to correct 

the path by substitution of other nodes. In the example above, the AODV pointer table 

entries at each node would appear as: 

 

Table 3: Example AODV pointer entries 

At node Source Destination Backward Forward 

S S D - A 

A S D S B 

B S D A C 

C S D B D 

D S D C - 

 

During the RREQ phase, only the backward pointers in the above table will be filled.  

When the RREP phase starts then those nodes which are on the route will fill their 

forward pointers.  It is worth noting that all nodes in the network will have a backward 

pointer to the source, even if they are not on the path because the RREQ is sent to all 
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nodes.  Nodes that are not on the path can cache this information as an optimisation for 

later use. 

2.2.2 Pro-active - OLSR 

The Optimized Link State Routing (OLSR) protocol (Clausen and Jacquet, 2003) has also 

been accepted as an experimental RFC by the IETF MANET-WG.  OLSR is an 

optimisation for wireless networks of the typical link-state (McQuillan et al., 1980) 

algorithms used in wired networks.  Link-state routing protocols require a node to flood 

its neighbour information to all other nodes.  Each node then uses the information it has 

received about all other nodes to build routes.  Flooding can be costly in ad hoc networks 

and so OLSR is an optimisation of the flooding used in link-state algorithms. 

 

Consider the example in Figure 4 where A broadcasts its update which is received by B, 

D and E, who then also rebroadcast the update which is received not only by each other 

but also by C who also rebroadcasts the packet.  The cost of this is 5 broadcasts and can 

be greatly optimised to just two.  A could broadcast the packet, then B, having the most 

neighbours, could rebroadcast it.  All nodes have now received the update at a saving of 

more than half. 

 

 

Figure 4: Illustration of redundancy in broadcasting 
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OLSR attempts to minimise the flooding overhead by using a technique similar to this.  

Each node chooses a set of neighbours such that, through them, it is connected to all 

nodes two hops away.  The neighbours in this set are called Multi-Point-Relays (MPRs).  

If only a neighbour’s MPRs rebroadcasts its update, then the overhead can be reduced 

whilst still reaching all nodes.  Each node broadcasts a HELLO packet listing its MPRs 

so that another node knows if it is an MPR for another node, and should rebroadcast its 

packets.   Consider the example in Figure 5, where node A has selected four MPRs that 

connect it to all nodes that are two hops away.  Now an update flood throughout this 

network from node A will reduce the overhead to 5 broadcasts, the initial from node A, 

and then one from each of its MPRs. 

 

 

Figure 5: Illustration of MPR selection in OLSR 

 

The difficulty with this approach is that there will be flooding overhead regardless of 

whether nodes are exchanging packets.  The flooding is still costly and if communication 

is minimal or between a small subset of nodes, then much of the flooding is unnecessary.   

 

On-demand protocols have been found to be more effective than proactive protocols in 

typical scenarios (Royer and Toh, 1999, Johnson, 2001, Perkins and Royer, 1999).  The 
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main reasoning for this is that time between updates can be infrequent and in distance-

vector schemes dissemination can be time consuming.  As a result changes in the network 

take a long time to propagate and in a dynamic network this is not acceptable.   Ad hoc 

networks are generally considered to be highly dynamic with links changing frequently 

and so applying a similar idea to that which works in the Internet is not suitable. 

2.2.3 The scalability problem 

AODV and OLSR both perform adequately for a number of scenarios used by small ad-

hoc networks; however, because they require communication amongst a large set of 

nodes the traffic incurred is therefore related to the number of nodes.  Many of the 

traditional protocols used for ad-hoc networks use a broadcast mechanism for route 

discovery and/or route maintenance (Lee et al., 2003).  Whilst this is manageable for 

small networks, when one starts examining larger networks then the number of broadcast 

packets per discovery increases.  Even if communication is happening only in confined 

sections of the network, the entire network will be involved in the routing process.  One 

paper (Tseng et al., 2002b) has found that this ‘broadcast storm’ can cause the channel to 

be occupied most of the time with the control messages. 

 

One example of an attempt to adapt AODV to function in larger networks is query 

localisation (Castaneda et al., 2002).  This technique adapts AODV so that when a link 

breaks, a rediscovery is performed but within a defined region of the network only.  This 

region is defined as a function of the last known distance to the destination, thereby 

avoiding a network-wide broadcast; however, limiting the discovery range reduces the 

likelihood of discovery success, especially if the node has moved outside of the search 

region.  In spite of this technique adopting locality searches, it is still required to do 

network-wide broadcasts initially to find the node.   Another method is the expanding 

ring technique whereby the search area is increased every time the route discovery fails; 

however, despite reducing the discovery overhead, due a number of initial requests 

failing, the discovery delay can be much larger (Lee et al., 2003). 
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On-demand protocols begin to fail with only a few hundred nodes.  The reason for this is 

that path lengths invariably contain many hops, as a result of this the odd route failure in 

a short path becomes a much greater problem in larger paths due to the much increased 

likelihood of the entire path failing.  In larger networks it is not uncommon for paths to 

be invalid by the time the route discovery is fully completed, or for the RREP to fail to 

complete traverse the return path due to link failures  (Lee et al., 2003).   Figure 6 is a 

graph from their paper illustrating the effect on delivery success that increases the 

network size has. 

 

 

Figure 6: AODV scalability in terms of delivery success (Lee et al., 2003) 

 

In a wired network, such as the Internet, scalability has been addressed by introducing a 

hierarchy.  One can discern from the Internet Protocol (IP) address the paths which the 

packet needs to traverse, with the higher order numbers representing networks higher up 

the hierarchy.  In a wireless network this simply is not possible due to the flat nature of 

the network.  In spite of this, a number of authors have attempted to implement a 

hierarchy in such networks, called cluster-based routing protocols. 

 

Cluster based routing protocols are those that group nodes in a locality together into a 

cluster, and assign one node to be a cluster head that is responsible for maintaining the 

cluster.  Cluster heads then maintain routing information for nodes within the cluster and 
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packets are routed on an inter-cluster basis until the cluster containing the node is found, 

providing better performance than all-pairs routing protocols (Marshall and Erciyes, 

2005, Erciyes and Marshall, 2004).  Consider the example in Figure 7 which consists of a 

number of nodes grouped by locality into clusters, each cluster has elected a node to act 

as a cluster-head (coloured grey). A node A wishing to send a packet to node B in another 

cluster sends it to its cluster head, which then forwards it on to other clusters’ heads until 

a cluster is found with the destination. 

 

 

Figure 7: Example of cluster-based routing 

 

Many algorithms choose the node with the lowest ID to act as the cluster-head, but this 

can result in exhausting of the batteries of such nodes because they take on a more active 

role.  One paper examined a dynamic allocation based upon remaining battery life which 

showed a reduction in this problem (Gavalas et al., 2006). 
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2.3 Geographical Routing 

It is evident that because of mobility in ad-hoc networks, any paths with high hop counts 

will fail with high probability.  Therefore, one must consider that maintaining a list of 

nodes that make up a path is not an appropriate means of tackling large-scale ad-hoc 

networks, which inevitably involve paths with high hop counts.  This chapter examines 

the concept of Geographical Routing, a method of routing packets using knowledge of 

nodes’ locations as opposed to topological information.  Individual algorithms are 

compared and their limitations discussed along with the simple beaconing protocol which 

is adapted in later chapters.   

 

Before one can utilise geographical routing techniques, there needs to be some means by 

which nodes can obtain their location, or relative location to others.  The simplest way in 

which this can be done is by fitting Global Positioning System (GPS) receivers into all 

nodes thereby allowing them to obtain their latitude and longitude to an accuracy of 

approximately 10m (Parkinson and Spilker, 1996).  Recent GPS devices are highly 

sensitive and not only allow fast position acquisition but use in many indoor 

environments (MacGougan et al., 2002).  GPS receivers are now quite inexpensive and it 

is feasible to fit them to most mobile devices without a huge increase in cost; in fact, 

there has been discussion of fitting them into all mobile phones to aid emergency services 

in finding callers (Zhao, 2002).  In the absence of the availability of a GPS, there have 

been several other papers examining techniques where either none or a small number of 

nodes have GPS device.  One such technique is using triangulation, such as that used in 

CRICKET  (Priyantha et al., 2000, Smith et al., 2004) and the Ad-hoc Positioning System 

(Niculescu and Nath, 2001, Niculescu and Nath, 2004) to determine the location from 

nodes who are location-aware, using triangulation. Routing can be achieved without any 

location information held by nodes in the network by allocating virtual-co-ordinates that 

do not necessarily need to reflect the underlying geography, but do reflect the 

connectivity (Jadbabaie, 2004, Rao et al., 2003).  All these techniques provide a means to 

obtain an approximation of one’s location but do not necessarily guarantee the accuracy 

that a GPS device provides, and require increased complexity.  In a large-scale network 
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of constantly changing topology the only means to efficiently provide the location 

accuracy provided is through use of GPS. 

 

Using one’s location to route information has potential privacy implications with anyone 

being able to obtain another’s location.  In light of this a number of techniques have been 

proposed to anonymise location information in such networks (Gedik and Liu, 2005).  

This issue will not be addressed further in this thesis and it is assumed any deployment 

can employ a location anonymisation technique if so required. 

2.3.1 Greedy geographical routing 

Greedy routing differs from traditional routing in the sense that there is no route 

discovery or topology discovery process.  Packets are forwarded from node to node in the 

same fashion except that the geographical location of a hop’s neighbours is used to make 

locally optimal decisions on where to forward the packet.  Many of the techniques 

presented provide high packet delivery rates with no route/topology discovery overhead 

with the exception of that of the location discovery discussed in later chapters 

 

Most Forward in Radius (MFR) (Hou and Li, 1986) is one of the simplest techniques for 

geographical forwarding.  Routing decisions are made locally at each node encountering 

the packet and no global (or even significant local) knowledge of the network is needed.  

All neighbours’ locations are known through information gathered from their beacon 

packets. When a packet is received at a node, it compares the distance to the destination 

between itself ad all of its neighbours.  The neighbour with the smallest distance is 

chosen as the next hop. 
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Figure 9: Illustration of most forward with-in 

radius 

 

Figure 8: Pseudo code for most forward with-

in radius 

ROUTEMFR(p) 

1 bestDist ← DIST(self, pdest) 

2 bestNode ← none 

3 while n in neighbours 

4 d ← DIST(n, pdest) 

5 if d < bestDist then 

6 bestDist ← d 

7 bestNode ← n 

8 if bestNode not equal to none  

9 then forward p to bestNode 

10 else return routing failure 

 

Figure 8 is a listing of the pseudo code for the MFR technique, executed for each packet 

received at each node in the route.  Figure 9 is a diagrammatical illustration of MFR 

showing the choosing by S, of the closest node to D, N3 

 

Unfortunately, whilst MFR performs well in dense networks, there are some limitations 

in networks which do not reach the density requirements.  These limitations will be 

outlined in the next section. 

2.3.2 Limitations of MFR routing 

MFR tends to fail or perform poorly in low density networks due to the inability of the 

algorithm to backtrack when reaching local maxima. Consider the example in Figure 10 

where S sends the packet to the closer node A, who then decides B is the closest 

neighbour and sends it there.  Upon reaching node B, who only has A as a neighbour, B 

finds that A is not closer to the destination and as a result the routing fails. 
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Figure 10: MFR routing failure illustration 

 

One can see by examining the graph that the most suitable route would be via A and C 

but without any more information than local knowledge, A cannot see this.  The only way 

to resolve this situation is to route around the void to discover if there is a closer node to 

D’s last known location.  Using global knowledge this is an easy task and one could have 

avoided the initial local maxima problem but as this is not possible in large scale 

networks a number of approaches have been examined that require only local decision 

making.  The next section will examine these techniques. 

2.3.3 Routing around voids 

2.3.3.1 Right-hand rule 

When a void is encountered, such as the earlier example, the only way to pass it is to 

route around it.  This may also involve a certain amount of backtracking across nodes 

which have already been traversed.  A simple method that satisfies the ability to route 

around with only local knowledge, and to backtrack, is that of the right-hand rule (Karp 

and Kung, 2000). 

 

The right-hand rule states that on receiving a transmission at node B from node A, the 

next chosen hop is the node which is sequentially counter clockwise, about B, from the 

line AB .   
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In the example given in Figure 11, the next chosen hop is D being the next sequentially 

counter clockwise node to the line. The rule will traverse the interior of a closed 

polygonal region in a clockwise edge order.  In the case of an area void of nodes 

illustrated in the last section, the void is considered the closed polygonal region and will 

be traversed in a clockwise manner.  The path taken around the void is called the 

perimeter. 

 

 

Figure 11: Right-hand rule illustration 

 

The right-hand rule does not provide a traversal of all voids and in some cases fails.  An 

example is non-planar graphs where links in the graph cross, which causes the right-hand 

rule to take a degenerate route through the network.  One method to provide success in 

non-planar graphs is to ask nodes forwarding the packet to append their location to it and 

use this information to ignore links at a node which cross links already traversed, which 

the author terms the no-crossing heuristic. The no-crossing heuristic converts the non-

planar graph into a planar one by ignoring selected links; however, ignoring such links 

may partition a small network and not find the possible path, although it finds over 99.5% 

of the n2 routes in a network of n nodes (Karp and Kung, 2000).   

 

Increasing delivery success further still is achievable by using additional decisions in the 

face routing technique, by generating a planar sub graph (Kuhn et al., 2003b, Kuhn et al., 

2003a, Gao et al., 2001, Bose et al., 2001) and the use of face changes (Ryu et al., 2004). 
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2.3.3.2 Other methods of routing around voids 

The Terminode (Blazevic et al., 2002) routing technique aims to find friends along the 

route that can be used to avoid voids.  Nodes build up a table of friends with whom they 

can use to vary the path to the destination.   

 

 

Figure 12: Terminode routing 

 

The path to the destination is anchored at friends along the route that cause the path to 

avoid the voids.  Their work proposes a local protocol that discovers and performs local 

routing, and a global protocol that uses MFR along with the friends to route across the 

network.  Figure 12 illustrates communication between two nodes, A and B, via a friend 

coloured grey that causes the path to avoid the area void of nodes.  The delivery success 

of their scheme is below that of others and incurs additional overhead due to the 

discovery of local routes and of friends, where earlier techniques rely on locally available 

information. 

 

Geo-LANMAR is a geographical hierarchical routing protocol (Zhou et al., 2006).  The 

nodes are divided into groups by proximity.   When routing packets inside the group a 

A 
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link-state algorithm is used, and geographical routing is used for inter-group traffic.  This 

results in there being a tolerance to location inaccuracy where the destination has not 

wandered out of the group.  Routing around voids is achieved by routing the packet to an 

intermediate group that is best placed to pass the packet on.  A combination of local 

proactive routing techniques and geographic routing allows the packets to be routed 

around the void.  The use of the link-state approach creates local overhead that is not 

present in pure geographical techniques that act on local knowledge. 

 

2.4 Conclusions 

Routing in ad hoc networks is a challenging task and whilst traditional methods work 

well for small networks, geographical routing is the only option for larger networks 

(Camp et al., 2002c).  The difficulty with geographical routing, however, is that all 

devices need to have access to a GPS or localisation method.  Fortunately, this is now 

readily available with the upsurge in the use of satellite navigation devices and the 

implementation of such features into mobile phones.  Geographical routing is now a 

feasible alternative to traditional methods and certainly the only scalable method for 

millions of nodes. 

 

The only remaining problem for geographical routing is the discovery of location 

information.  The next chapter surveys the existing literature on location servers and the 

remainder of the thesis describes the new technique for providing this information.  It will 

show the weaknesses with existing schemes and later the new SOLS technique will 

address many of these. 
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3 Location discovery in ad hoc networks  

3.1 Introduction 

As discussed in the last chapter, geographical routing is currently the only feasible 

solution for routing in large scale ad hoc networks.  For this to be successful each node 

needs to be able to discover the location of the node it wishes to communication with.   A 

number of routing protocols assume that location information is available and propose no 

method of obtaining it, with some assuming this is achieved at zero-cost (Camp et al., 

2002b, Karp and Kung, 2000).  This is not a realistic expectation except in simulation or 

static networks and therefore a location server is needed. 

 

The approaches to location services are broadly broken into two categories much like 

routing protocols: reactive and proactive approaches.   Reactive protocols aim to discover 

the information only when needed whilst proactive approaches have a continuous 

overhead in attempting to maintain location information.  These proactive approaches are 

broken further into two subcategories: location databases and location dissemination 

techniques.  Location databases provide a service for looking up a node’s location whilst 

location dissemination schemes attempt to disseminate information amongst all nodes.  . 

 

An early technique for location services was to simply flood the network with location 

information. Distance Routing Effect Algorithm for Mobility (DREAM) is an early 

algorithm that belongs to this category (Basagni et al., 1998).  DREAM improves on the 

basic flooding of the network by dividing the updates into two categories: short-lived and 

long lived.  The short-lived updates are transmitted frequently and travel a certain 

distance from the node and no further while the long-lived updates are transmitted less 

frequently and travel the entire network.  Therefore, the further one is from the node, the 

less accurate the position it knows but when sending location queries to its last know 

location, the query will encounter nodes that are nearer and have a more accurate position 

through the short-lived updates.  The algorithm uses a basic form of prediction based 

upon the node’s last known location, speed and direction from which it can calculate an 



Page 45 of 169 

expected location some time later.  Unfortunately, DREAM is not scalable to large 

networks due to its use of flooding. 

 

The Routing Internet Protocol  (Hedrick, 1988) requires routers to share information with 

one another on networks they can reach.  Much like proactive ad hoc network routing 

protocols, its aim is to dissemination information amongst all routers.  The Simple 

Location Service (Camp et al., 2002b) is similar to RIP and proactive ad hoc routing 

protocols in that it aims to dissemination information about all nodes’ locations to all 

other nodes.  In a small static network this scheme permits quick location discovery and 

minimises delay; however, like the routing protocols in this group, highly dynamic 

networks present difficulty in that changes are slow to disseminate through all nodes.  In 

large networks, the overhead on each node and update cost is O(N) where N is the 

number of nodes in the network.  Such a scheme therefore does not scale to very large 

networks and is best suited to smaller less dynamic networks. 

 

Reactive routing protocols were successful because information was always recent and 

overhead was only incurred when necessary.  Drawing upon this to develop a location 

server, a number of authors have proposed approaches that are similar to their cousin 

routing protocols.  The Reactive Location Service (Camp et al., 2002a, Fußler et al., 

2001, Lochert et al., 2003) is similar to AODV (Perkins and Royer, 1999) in its 

technique.  A node shares its location with its neighbours through hello messages so they 

can make local forwarding decisions.  When a node wishes to find the location of another 

node, it launches a broadcast search to all nodes in the network for the information.  The 

advantage of this technique is that the information is always up-to-date and recent which.    

The overhead in any broadcast search is O(N) and although this can be reduced 

marginally through optimistic broadcast schemes (Fehnker and Gao, 2006, Ryu et al., 

2004) it inevitably places a limit on the scalability of the network. 

 

Using a proactive dissemination or reactive discovery protocol both require participation 

of all nodes, or a large number of nodes in the network.  Subsequently, the overhead 

increases with the number of nodes and when nodes have limited communication 
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capacity this will result in a network which does not scale.  The only remaining scheme is 

the location database and is examined next. 

 

In these techniques, a subset of nodes is chosen by each node according to a set of criteria 

that will be used as its location servers. These techniques impose an overhead on a subset 

of nodes within the network rather than requiring the participation of all nodes.  

Typically, these nodes store the location information and are updated frequently so they 

may be queried by other nodes.  This chapter will examine a number of location database 

location services as these are the only methods that have potential to scale to very large 

numbers of nodes. 

 

3.2 Quorum system background 

Before examining specific location servers it is important to briefly cover quorum system 

theory, upon which many of the techniques are based.  Quorums are a tool for increasing 

the availability of data through replication.  The data is replicated in some fashion to 

servers so that the failure of one or more servers does not necessarily result in the loss of 

the data.  A quorum system is made of two sets of servers, a update/write set (U) and a 

query/read set (Q), whereby in a strict quorum system the two sets always intersect.  The 

read set is a set of servers that are queried for the information, and assuming this set 

intersects with the write set that was sent the information, then there will be a server in R 

that can return the information (Amir and Wool, 1998).    

 

Consider that the universe is a set of servers S, and a quorum is made up of two sets, 

SUQ ⊆, .  Updates are sent to a server Uu ∈  and queries are sent to Qq ∈ .  In a strict 

quorum system, Ø≠∩UQ  with certainty while in a probabilistic quorum system they 

only intersect with high probability (ε).  A quorum system where the two sets intersect 

with ε probability is referred to as a probabilistic quorum system, or ε-intersection 

quorum system, and is studied extensively in (Abraham et al., 2004). 

 

Quorums are traditionally assessed on three criteria: 
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• Fault tolerance – the ability of the quorum to deal with server failures (Barbara 

and Garcia-Molina, 1986). 

• Load – the amount of communication required between the servers (Naor and 

Wool, 1998). 

• Failure probability – the probability that the system is disabled when individual 

severs crash independently (Barbara and Garcia-Molina, 1987, Peleg and Wool, 

1995). 

 

Two types of faults may occur; a crash fault is a failure of the system such that it may no 

longer respond in any fashion; a Byzantine failure (Lamport et al., 1982) is one whereby 

the system is not functioning according to its specification which maybe due to a 

malfunction or malicious intent. 

 

There is a trade off between load and failure probability/fault tolerance with it being 

impossible to achieve optimality for both (Abraham et al., 2004).   Systems with higher 

overhead will provide higher fault tolerance and vice versus. 

 

Strict quorum systems, whilst providing guarantees on queries and updates are difficult to 

implement in highly dynamic environments (Haas, 1997).  This is due to the frequent 

membership changes of the update and query sets.  Ad hoc networks are highly dynamic 

in nature and implementing strict quorum systems is not possible as it incurs prohibitively 

high overhead.  Therefore, we can only examine probabilistic quorum systems as 

solutions to the problem. 

 

Probabilistic quorum systems may give out of data due to their probabilistic approach to 

intersection (Karumanchi et al., 1999).  As intersection is not guaranteed queries or 

updates may not complete fully and therefore return out of date information; however, it 

is worth noting that out-of-date location information is not necessarily a cause of routing 

failure.  In fact, geographical routing systems can tolerate some inaccuracy in location 

and so it is important to ensure that this incomplete update is within these bounds. 
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3.3 Home-region 

The virtual home-region (VHR) was originally proposed as part of the Terminode project 

(Blazevic et al., 2001, Giordano and Hamdi, 1999) to provide location information for 

their large-scale network protocol. 

 

Server Selection: A certain geographical area of the network for each node is designated 

as a home-region.  The nodes within this region are then required to act as servers, storing 

location updates from the node and answering queries for the information from others.  In 

the Terminode approach (Figure 13), nodes within a radius R of a designated point CVHR 

are required to act as servers.  The region is defined by a publicly known hash function 

( )nodeIDHCVHR =  of the node identifier; however, this function is not defined.  Nodes 

leaving this region lose their responsibility to store the location of the node who’s VHR 

they were in. 

 

The radius, R, is adjusted depending upon the node density to ensure that there are a 

certain number of nodes within the region, not so few as to be unable to maintain the 

information, and not too many so as to have high communication overhead; however, the 

author does not define how R is adjusted. 

 

Querying location server:  Assuming a node, A, wishes to communicate with another, 

B, then A calculates B’s home region using the hash function H.  A then sends a query 

towards B’s home region and the nodes within the VHR reply with the last recorded 

location; A and B then enter into direct communication using geographical routing. 

 

Updating the location server: If B wishes to update its location server it will send a 

location advertisement to the VHR.  Nodes in the VHR will store this information for any 

nodes requesting it. 
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Figure 13: Home-region location server 

 

The authors do not describe the mechanism for updating or querying the location server, 

nor do they provide a definition for the hash function.  No mechanism is proposed to 

handle node mobility or failure and no simulation results are provided to indicate the 

performance of such a scheme.  However, assuming a correctly chosen function H, and a 

sufficient distribution of nodes, such a technique would scale having fixed 

communication overhead relating to the size of the VHR.  The only part of the system 

that may increase with the number of nodes is that of the number of hops to the VHR, 

assuming that the geographical size of the network increased with total nodes. 

 

3.3.1 Improvements to Terminode’s home-region 

A number of authors have attempted to improve on the Terminode approach to home-

regions.  One author (Wu, 2005) proposes improving the approach by subdividing the 

VHR into seven hexagonal sub-regions.  When updating the location server as a whole, 

the update packet is broadcast only once in each sub-region.  This is opposed to the idea 

of every node in the VHR re-broadcasting the update and hopes to reduce the redundancy 

in flooding of the VHR. 

 

Each sub-region will have a diagonal equal to the transmission range of the nodes.  Given 

the diagonal of a sub-region (r), then the diagonal of the VHR will be R given as: 
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This provides for 7 sub-regions inside the VHR.  When a periphery node receives an 

update, it acts as a proxy, adding its sub-region number to the message and re-

broadcasting it.  Each node that receives it will not rebroadcast unless it is in a different 

sub-region not listed in the packet.  This has the effect of there being only one broadcast 

per sub-region, and so in the scenario above the update overhead is seven broadcast 

packets.  A query is achieved in much the same way searching for a node containing the 

information and is similar to that of a sequential paging system used in cellular networks 

(Rezaiifar and Makowski, 1997).  When a query is received by a sub-region, it searches 

the other sub-regions sequentially until the information is found.  The author proposes 

several means to improve system robustness but these are limited to increasing the 

number of servers participating in the VHR, and not to methods of recovery developed in 

this thesis. 

 

An examination of a clustering technique for home region systems was undertaken by 

(Sivavakeesar and Pavlou, 2004).  The technique requires each node to assess its 

association to the virtual home region by measuring the amount of time that it remains in 

it.  Using this metric, and others such as its closeness to the centre the nodes elect a 

cluster head in a centralised or decentralised manner, depending on whether the present 

cluster head is available.  This ensures that the cluster head has uniform coverage or is a 

bounded number of hops away and so can ensure efficient updating.  Each cluster head 

monitors members in the region and periodically generates location updates for nodes 

who share the same VHR elsewhere, so that the number of location updates is minimised; 

however, this is only used for nodes with low mobility, others must generate their own 

updates.  In addition, neighbouring cluster heads share information to aid resilience and 

to cope with the scenario of the home region being void of nodes.  The authors compare 

their work with the Grid Location Service (GLS) described in section 3.5 of this thesis.  

Their approach performs significantly better than GLS in the scenarios they examined 

although they only examined the effect on increasing node count and not the effect of 

node speed which arguably is the most important factor.  Their scheme is significantly 

different in design to GLS and their comparison is questionable because GLS stores 
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information network wide and provides location search schemes that do not depend on a 

hash function.  In light of this, their approach would be expected to out perform GLS 

given that the traffic is mostly localised. 

 

Scalable Location-based Routing Protocol or SLURP (Woo and Singh, 2001) is one of 

the earlier improvements to the home-region.  The terrain is divided into a grid with equal 

size squares, and each of these squares can be a home-region for a set of nodes.  The 

approach proposes that a node update its home region when it crosses square boundaries, 

and that the node informs its old region and new region of this movement.  Informing 

other nodes about location changes is achieved by broadcasting the information.  To 

handle areas that are void of nodes, the authors propose using neighbouring squares when 

the target square is vacant. 

 

3.4 Horizontal/Vertical quorum (HVQ) location server 

The horizontal and vertical quorum (Das et al., 2005, Liu et al., 2006, Stojmenovic, 1999) 

is similar to the home-region but provides a means to discover the server without the use 

of a hash function.  A column of certain thickness is chosen within the network, and all 

nodes within this column become location servers; to query these servers, one simply 

sends a packet in both horizontal directions in the hope that it will intersect the column. 

 

 

Figure 14: Horizontal and vertical quorum location server 
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Location Server Selection: A node creating its quorum sends two creation packets, one 

north and one south.  Each node receiving the packet becomes a location server and 

forwards the packet on in the north/south direction.  A parameter p is set defining the 

thickness of the quorum, where in the above example p=1.  When p=2, any node 

receiving the packet also broadcasts it before forwarding it on, and every node receiving 

the broadcast also becomes a location server.  For values of 3≥p this process is repeated 

at each node receiving a broadcast. 

 

One problem with the above method is that the northernmost node maybe only locally 

most northern.  To avoid such a scenario, FACE routing (Bose et al., 2001, Datta et al., 

2001) is used to route around the problem, and then standard geographic routing is 

resumed.  The drawback of this is that if the node is infact the northernmost node, then 

FACE routing will cause the packet to traverse the perimeter of the network.  This will 

impose higher traffic demands on them. 

 

Location Server Query: A node, S, trying to send data to a node, D, first checks its 

location cache to see if it has a recent location for D, and if so, begins sends data directly.  

If no location for D is known, or the location is out of date, the node initiates a broadcast 

search to nodes at most q hops away, so that any server q+1 hops away will be found.  If 

D or D’s server is not found within this range, then the search continues in an easterly 

and westerly direction.  At each hop, the search packet is updated with the most recent 

location information available but the search continues until reaching the most easterly or 

westerly node.  Once these nodes are reached, the strategy changes, and S starts a search 

for D based on the best information retuned during the q-hop search by routing a packet 

towards it.  In addition, the most easterly and westerly nodes also route a packet towards 

D using the best information obtained during their search. 

 

Location Server Update: An update is performed in the same manner as the deployment 

of the quorum.  A node updates its quorum once a threshold number of links with its 

neighbour have broken, or new neighbours have been discovered. 
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Performance: The scheme exhibits near perfect load balance across the network with 

every node taking on near-equal responsibility.  This is because updates are always sent 

in x or y dimensions, regardless of where the node is. When moving to mobile networks 

overhead remains approximately the same, whereas GLS’s overhead almost doubles (Das 

et al., 2005).  Therefore, this scheme is more scalable than the GLS. 

 

Benefits: In a static network the technique provides an almost guaranteed way to 

discovering the location.  In mobile networks the performance depends upon the 

deployment technique of the quorum, and increasing the thickness can improve this 

(Mauve et al., 2001). 

 

Problems:  Node mobility may cause the nodes within the column to leave, therefore 

making the data inaccessible through inability to discover it.  The authors recognise this 

and propose the technique as a way to provide “almost guaranteed” location discovery in 

networks where all nodes are static, or moving in the same direction at the same speed.   

 

Another problem is that of the locally northernmost identification problem.  How can the 

algorithm determine that it has passed packets to the northernmost point and not to a local 

maxima if no more nodes are visible in that direction.  Typically, perimeter routing will 

be used when encountering no more northern nodes to determine if it can be routed 

around; unfortunately, if indeed it is the most northern node, then this packet will be 

routed around the entire perimeter of the network.  This causes extra load on these nodes 

and in the case of deployment of a quorum for every node, then each node on the 

perimeter will periodically encounter an update for every node in the network unless 

some means is employed to mitigate this.  In a mobile network, this is not an easy task as 

it is frequently necessary to determine if the node is in fact the northernmost. 

 

The nodes around the perimeter of the network are encountered during deployment due to 

the use of FACE routing and this can cause nodes around the perimeter to represent all 

nodes within the networks causing them to have traffic and memory capacity problems.   
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Also, in large networks, of tens of thousands of nodes, the cost of deployment and update 

can be exceptionally high due to the large number of nodes within the column.  In 

addition, the number of hops required to traverse before encountering the column during 

discovery maybe excessive. 

 

3.5 Grid Location Server (GLS) 

The grid location server (Cheng et al., 2002, Li et al., 2000), also known as SLALoM, is 

a set of servers defined by a geographical grid and a predefined order of node identifiers.  

The system is composed of three components: location server selection, location query, 

and location update. 

 

The area is first divided into a hierarchical grid that is assumed to be known by all nodes. 

The grid is such that an order-two square is composed of four order-one squares, and an 

order-three square is composed of four order-two squares, and so on.  There is no overlap 

of squares, and so a node in any order-n square is a member of only one order- )1( +n  

square, not four.  This ensures that each node is a member of only one order-n square, for 

any n.   
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Figure 15: Grid location service 
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LS Query: The query process is initiated on-demand like other location services in its 

category.  A node (A) wishing to communicate with another (B) will forward its location 

query to the node with the lowest ID which it is acting as a location server for.  The node 

receiving this repeats this process until a node which is B’s server is reached at which 

point the query succeeds. 

 

This technique assumes that nodes are able to scan all nodes with in any order-n square; 

in fact this is not necessary as nodes can update and create their location servers without 

knowing the identities of the servers.  Let us take the example of B trying to recruit a 

server in an order-n square.  B sends a message towards the square and on being received 

by a node it is forwarded on in the same fashion as the query, with location servers being 

recruited in each order-n square. 

 

Nodes within an order-one square use a local routing protocol to share information on 

their locations with one another in that square.  Nodes can then recruit servers in their 

order-one square, and once this is complete, then nodes may then recruit servers in the 

order-two square.  The only requirement before recruiting servers in an order- )1( +n  

square is that servers have been successfully recruited in the order-n squares. 

 

Query failures:  The authors describe two types of failures.  The first occurs when a 

node receiving a query has no information on other nodes’ locations due to the last update 

failing and the information being timed-out.  This occurs rarely and can be overcome by 

using old-information in a “last-ditch attempt.”  The second occurs when a node that the 

query is being forwarded to has moved outside of the square which it was previously 

know to reside.  Upon leaving the square, the node broadcasts a forwarding pointer to all 

nodes within the old square, that they record and use to forward information to the new 

square. 

 

Update period: To avoid excessive updates in mobile networks the author defines an 

update-scheme based on distance travelled.  A threshold distance d is defined so that a 
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node updates its order-one square after travelling this distance, and its order-two square 

after travelling a distance of 2d.  In general, a node updates its order-n square after 

travelling a distance of d
n 12 − .  Therefore, updates are sent to closer servers more 

frequently than those farther away.   

 

Caching:  Nodes maintain two tables, that of locations for various node identifiers that it 

is a server for, and that of a cache containing nodes’ respective locations for updates 

overheard.  The cache table is used only when initiating a query and so the information is 

timed-out quicker than the recommended period. 

 

Performance:  Their analysis using the ns-2 simulation showed that the query success 

ranged from near 98% at 1m/s to approximately 90% at 50m/s when using the Random 

Waypoint Mobility Model.  Overhead was measured as two to three protocol packets per 

second per node in all scenarios in contrast to DSR which ranged from less than one with 

a 100 node network to 25 packets/sec with a 500 node network.  CBR delivery ratio fell 

from 98% with a 100 node network to 85% with a 600 node network, whilst DSR fell 

from 95% to 25% respectively.  The scheme tends to exhibit higher load in the centre of 

the network due to some updates being sent across the network in diagonal grids (Das et 

al., 2005). 

 

Problems: In large networks, discovery path lengths can be very long and a failed 

location server can result in discovery failure. The authors propose no approach to handle 

node failure and mobility.  Additionally, because the approach requires an increasing 

number of servers as the network size increases, the approach is not scalable to a large 

number of nodes. 

 

A scalability study (Philip et al., 2004) indicates that GLS performs marginally better 

than the home location system SLURP in terms of delivery success but incurs 

significantly higher overhead as one would expect. 
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3.5.1 Improvements to Grid location server 

Elf is an approach that proposes to replace the idea of near and far servers with 

forwarding and terminal servers (Philip and Qiao, 2003).  A number of servers are elected 

as primary servers, whilst the remainder are forwarding servers that forward the query to 

primary servers.  Their technique outperforms GLS in the average case by reducing 

signalling overhead. 

  

An adaptive version of the grid approach (Seet et al., 2005) permits the system to 

dynamically choose how many location servers it will have based upon demand for the 

information.  The authors propose that the system always maintains at least one location 

server, but that when requests arrive from areas which currently do not have one in their 

order-n square, then one will be created to reduce overhead.  In addition, the 

improvement permits the use of more than one square at borders of the network due to 

the often lower than average node density, although this is often an artefact of using the 

Random Waypoint Model in simulation; however, in a city lower densities are expected 

outside of the centre so the same applies.  The simulation of these improvements suggests 

significant performance benefits in terms of delivery success and update cost over 

SLALoM and SLURP; however, the latency was larger than SLALoM due to the initially 

longer discovery paths. 

3.6 Other location servers 

The literature proposes many approaches to the problem of location servers with the 

above three being the most successful.  Outlined in this section are a selection of a few 

other location services that are based upon similar concepts. 

3.6.1 Location tracking quorum 

A location tracking approach using quorum systems was proposed by (Lee et al., 2003).  

Their approach proposes four methods for choosing quorums for storing location 

information in an ad-hoc network.  Queries are sent to the query quorum Q, and on 

receiving a reply from all nodes Qq ∈ , the query is said to be complete.  Updates are also 

performed in a similar manner, by sending it to all nodes Uu ∈ in the update quorum U.  
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As the quorum is only updated by the node whose location it is serving then simply time 

stamping updates will enable the quorum to distinguish new information from old.  The 

four methods used to choose the quorum used for updates and queries are as follows: 

 

1. Grid Bi-quorum (SQ1):  This system is very similar to the Horizontal 

and Vertical (HVQ) quorum presented in section 3.4.   The network is divided 

into a grid n x n  that is know globally, assuming n is the number of nodes in 

the network.  The columns of the grid are used for sending updates, and the rows 

are used for sending queries.  Nodes are placed and remain immobile, so that 

there is one in each intersection and thereby guaranteeing intersection of the row 

and column. As with the HVQ this system is not highly scalable, and may suffer 

low fault tolerance as node failures result in no guarantee of the intersection 

property.  Quorums will be of size n . 

2. Strict Quorum Construction with Increased Intersection (SQ2): This 

is the same as SQ1, except all the nodes in the column and row are used as 

location servers, rather than just the column. The quorums are then of 

size 12 −n . 

3. Using Unreachable Nodes List (SQ3):  All nodes maintain a list those 

nodes who are unreachable (Unreachable Node List: UNL) and use this 

information heuristics to choose the quorum: 

a. Eliminate quorums containing nodes in UNL, and choose a 

quorum randomly from those remaining (Eliminate-then-Select: ETS). 

b. Choose a quorum at random, and remove nodes from the quorum 

that are members of the UNL (Select-then-Eliminate: STE). 

c. A hybrid using ETS for updates and STE for queries.  This hybrid 

approach is denoted SQ3. 

4. Dynamic Quorum (DQ):  Quorums are chosen independently by uniformly 

random selection from the network, excluding those nodes in the UNL, to form a 

quorum of size k where k is an input parameter to the system.  When quorum 

members are not responding, other nodes are repeatedly tested for reachability 

and if found they replace it. 
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The authors simulate their system using ns-2 with a network of 100 nodes, 25 of which 

participate in the quorum system. Their key findings were: 

 

• Larger quorums do not necessarily result in higher correctness; although this was 

attributable to network partitions, and the scenarios simulated were only small. 

• Topology change has a significant impact on the performance of the quorum 

systems. 

• SQ performed better in connected networks due to increased intersection. 

• DQ performed better in all scenarios. 

 

Overall, they found that a dynamic quorum system performs better in all scenarios tested 

for all measured parameters.  Although their simulations were of small scale, their work 

highlights the impact node mobility and link failures can have on quorum systems, and 

any successful system will need to appropriately handle these. 

3.6.2 Uniform Quorum System 

Uniform Quorum Systems have been used for managing mobility in ad hoc networks, 

along with randomised databases (Haas, 1997).  The authors propose creating several 

strict quorum systems connected by a backbone that nodes may use to obtain and update 

location servers.  The quorums contain the location information, while the backbone is 

the interconnection of these quorums to aid discovery.  A node wishing to discover or 

update its quorum sends the request to the nearest node participating in the backbone, 

which forwards it to the relevant quorum.  The authors propose that the backbone is 

discovered using flooding to find nodes most suitable; however, the precise details of 

this, and maintenance of the backbone were outside the scope of their work.   

 

The above approach is a form of strict quorum system as defined in 3.2 and as such may 

suffer from low availability in dynamic systems. Also, due to the use of flooding, and the 

maintenance of a backbone, this scheme is thought not to be scalable due to the high load 

potential on the backbone as the number of nodes increases, along with the proposal of 
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flooding the network for backbone discovery, which is not scalable in large-scale ad hoc 

networks.  Their work examines a theoretical model of their system and provides no 

simulation or real data on the performance. 

 

An improvement on the above scheme is (Karumanchi et al., 1999) which uses 

probabilistic quorum systems to tolerate node failures and uses multiple quorums to try to 

solve partitioning, but as noted in 3.2 this may result in old data being returned and 

accessibility cannot be guaranteed when the network is completely partitioned.  They also 

keep track of nodes that are unreachable. 

3.6.3 Atomic memory and distributed storage 

Distributed atomic memory is an approach whereby one can simulate a memory device 

over a distributed set of devices.  For example, one typically addresses memory in a PC 

by use of the memory address, the byte offset from the beginning of memory.  This 

memory is only available to that computer and so unless one specifically writes software 

to share the memory then no other PC can access it.  It is not unusual for several 

programs to be running on a computer that share access to a section of memory, termed 

shared memory, and use this to collaborate or operate on the same data set.  If one wished 

to write software that worked in this fashion in a distributed scenario then extra software 

would have to be written for other PCs to access the shared memory.  Consider the 

scenario where there is a hundred computers all wishing to have access to and potentially 

modify the same data, but if they rely on one node in an ad-hoc network to serve up this 

data this not only causes extra load on that node, but if it fails then all the data is lost.  An 

alternative to this is distributed atomic memory, one still retains the idea of an address 

that points to a byte offset for the data, but instead of this offset being used it is passed to 

a hash function.  This hash function will then return the node within the network that 

contains the data, and in effect this function simply maps byte offsets to nodes.  There is 

an address space like traditional memory, but instead of looking at a byte offset we use a 

hash function to determine which node in a network holds the information.   If any node 

fails then ideally their data would have been replicated at neighbouring nodes, and if not, 

then only that section of memory is lost. 
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There are several challenges with distributed atomic memory, the most pivotal of which 

is the hash function.  In static networks, a hash function can be defined easily on creation 

of the network, but where the network is dynamically changing this becomes more 

difficult. 

 

Researchers at Massachusetts Institute of Technology have looked at several approaches 

to provide data storage in ad-hoc networks.  Their first proposal, GeoQuorums (Dolev et 

al., 2005a), provided atomic memory by assigning a fixed geographical point as a storage 

location for a particular datum. They present the details of their technique and a 

discussion of the expected performance; however, no simulation or real data is presented.  

Their next technique, titled Virtual Mobile Node (Dolev et al., 2005b), proposed a virtual 

node containing the datum that is able to move around the network, jumping from node to 

node.  Finally, Virtual Stationary Automata (Dolev et al., 2006) are virtual immobile 

nodes distributed across the network in a uniform fashion.  These immobile nodes may 

contain automations and data and may be interacted with by real nodes.  Their systems 

propose means of providing atomic memory in ad-hoc networks and their technique 

could be used for location discovery; however, their focus is not on location discovery 

and their work provides only theoretical descriptions of the service with no simulation or 

real data. 

3.7 Updating location servers 

All the methods presented in previous sections provide a means to store location 

information.  As a node moves this location information becomes out of date and so a 

node must update its location server so that the information retrieved remains useful.  A 

location server needs to be updated frequently enough so that the information allows the 

routing protocol to be successful in delivering packets.  Updating the location server 

continuously satisfies this criterion but clashes with the requirement to reduce the 

overhead on the network.  An optimal update frequency is needed that minimises the 

overhead while maximising the usability of the data stored at the server.   
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Ideally the location server would be sent an initial position and an exact mobility profile 

of the node so that the node’s location can be accurately predicted.  Attempts at 

addressing this have been proposed in a number of papers from using neural networks 

(Capka and Boutaba, 2004) to model a user’s behaviour and other user profiling 

techniques (Kwon et al., 2005) to using a node’s speed and direction to estimate its 

current location (Rezaiifar and Makowski, 1997).  Unfortunately, predicting a user’s 

location is a difficult task and an incorrect prediction will result in total routing failure to 

that node. 

 

Total routing failure is not an acceptable option in any communications network and 

small downtimes are often intolerable to users.  Although mobility prediction techniques 

could be used to a certain extent, a backup or contingency is necessary should this fail.  

One method would be to have the node predict its current position given the profile stored 

at the location server, and if this differs significantly then to perform another update. 

 

In this section, the methods for updating the location server without mobility prediction 

are briefly examined given that any mobility prediction scheme will be heavily dependant 

on the scenario that it is deployed in.  These are broken down into two categories, 

unintelligent fixed periodic updates and those which take some element of the node’s 

behaviour or environment to determine when an update is suitable. 

 

3.7.1 Periodic updates 

This is the simplest, and by far the most common approach used within the literature 

whereby a node periodically sends updates to its location server (Blazevic et al., 2001).  

Assuming an update-interval of time u seconds, and the current time t seconds, the next 

update will be at tu + seconds.  Typically a jitter is also introduced so that neighbouring 

nodes that happen to send updates at the same time, do not continue to do so and 

therefore avoid continued collisions. 
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The disadvantage of this approach is that updates will be sent regardless of the node’s 

mobility.  If the entire network is static, nodes will still send updates imposing an 

unnecessary overhead.  Likewise, if the network is highly mobile then the chosen interval 

may not be sufficient and the network could experience total routing failure. 

 

This technique is however popular due to its simplicity and when examining location 

servers’ performance when node behaviour is strictly controlled it will succeed. 

3.7.2 Distance 

As previously stated, the time between updates should be dependant upon the nodes’ 

mobility.  If a node is moving quickly it should update more frequently than when it is 

moving slowly to allow routing to succeed.  The distance-based approach (Blazevic et al., 

2001) requires a node to update its location server once it has travelled a set distance d.  

This is usually achieved such that given a node n sending an update at time t, and the 

node’s location (nx(t+c), ny(t+c)) at time t+c, where c is a time between updates 

dependant on speed and direction, an update is sent if the following criteria is met: 

 

( ) ( ) dtnctntnctn yyxx ≥−++−+
22

)()()()(  (2) 

 

A node frequently calculates the Euclidean distance between the last position sent to the 

location server and its current location, and if this is above or equal to a threshold d, then 

an update is sent.  The value of c will therefore vary depending on the node’s speed and 

direction. 

 

This approach is slightly more complicated than the periodic approach but not 

significantly so and memory requirements are of the order of a few bytes.  This method is 

therefore preferred over the periodic approach when node mobility is not strictly 

controlled. 
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3.8 Conclusions 

A number of schemes were described in this chapter for serving up location information 

in ad hoc networks.  The focus of this thesis is on large scale ad hoc networks, those 

networks that could scale to millions of nodes.  The broadcast schemes become 

prohibitively expensive when networks are large, with every node needing to know the 

whereabouts of every other.  The alternative is to store the information on a subset of 

nodes in a way that anyone can determine those likely to have it.  Two schemes, Grid and 

Horizontal/Vertical quorum provide a method for discovering the location of the location 

servers but their overhead increases with network size, which means due to limitations in 

capacity they cannot scale very large numbers of nodes.   

 

The only scheme examined which provides scalability to an large number of nodes is that 

of the Terminode home-region.  A set of nodes in a circular region are utilised to store the 

information, and the location of them can be determined by use of a hash function; 

however, their approach does not address issues that will cause discovery failure in ad 

hoc networks.  These include node failures and mobility, leaving the system likely to fail 

in realistic scenarios.  In addition, when a network contains areas void of nodes, and the 

hash function returns a location inside the void, then the system fails. 

 

SOLS, described in the next chapter, will solve many of these limitations addressing them 

specifically using a novel nature inspired approach. 
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4 SOLS: A Self-Organising Location Server 

4.1 Introduction 

This chapter will outline the proposal for a form of home-location server that differs from 

those already existing in a number of ways.  One can draw similarities between this 

system and that of the home-region approach as it attempts to maintain the server in a 

particular location; however, this is where the similarity ends.  The home-region 

approach broadcasts the data to be held to all nodes within a radius of a particular point in 

the hope that should anyone wish to query the server, these nodes would still be in the 

same location holding the same data.  This chapter makes no such assumption and 

attempts to improve upon the home-region approach in the following ways: 

 

• Fault Tolerance: Firstly, one cannot assume that nodes do not fail and can hold the 

information for an indefinite period of time.  Therefore, this approach will address 

issues of fault tolerance. 

• Mobility:  Secondly, one can also not assume that nodes will remain in the same 

location whilst participating in an ad-hoc network.  It is possible that a number of 

nodes will remain fixed but generally the worst case is that all nodes are moving 

at high speed. 

• Overhead reduction:  The home-region approach is not particularly costly in 

overhead, only generating a number of broadcast packets within the home-region 

per update: however, traditional quorum systems can require constant monitoring 

of a quorum’s servers and so this approach attempts to reduce this by adopting a 

probabilistic quorum system whereby non-failure is not guaranteed. 

• Self-organisation:  Ad-hoc networks are inherently self-organising and distributed 

in nature because any node may leave, join, or move within the network.  

Therefore, using an approach that relies on nodes to perform management 

functions is not feasible unless the failure of that node to perform the function can 

easily be recovered from. 
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Initially, the inspiration is drawn from self-organisation observed in nature such as ants 

and birds.  Ants do not communicate directly with one another but are able to perform 

complex tasks by modifying their environment to influence the behaviour of other ants.  

Ants lay pheromones as they roam which signal indicators to fellow ants on paths to 

food.  Similarly in flocking behaviour observed in birds, the birds do not communicate 

directly but instead observe one another to make decisions.  The birds observe each 

others’ position and direction and use this information to choose their own path; they too 

communication indirectly. 

 

Ad hoc networks have limited capacity and it is important to keep overheads to a 

minimum if more capacity is to remain for data.  If ants and birds can communicate 

without direct communication it should be possible to enable a group of agents (Franklin 

and Graesser, 1997) carrying data to co-operate to remain in a particular area and to 

survive.  If there is no central organisation, and each agent can only observe its local 

environment, then already the need to communicate is reduced.  The challenge is turning 

that local self organising behaviour into something useful, and in this thesis it is 

successfully used to reliably store data at a specific point in an ad hoc network. 

 

The system comprises a number of agents, each of which is independent and can move 

from node to node deciding by itself when and where to move to.  These agents are 

assigned a geographical home-location (HL) and attempt to remain as close to this point 

as possible by moving from node to node.  Upon reaching this location, they are able to 

serve up location information about the node which created them; however, because the 

failure of the node which the agent is currently on would result in loss of the data, then 

the agent creates clones, each of which too acts individually but they remain on 

neighbouring nodes.  A group of agents, all serving up information for the same node, are 

called a Group of Location Agents (GLA).  Two agents of the same group cannot be 

present on the same node, and so they observe their environment before making decisions 

on where to move so as to satisfy this criterion. 

 

 



Page 67 of 169 

In this approach, a location server will be made up of a number of agents.  Consider 

Figure 16 where there are five nodes, two of which have created a GLA for themselves 

and assigned them differing HLs (indicated by different colours).  Each GLA should 

reside on nodes around its HL and the diagram shows that there are three agents in each 

GLA and they all remain on the closest nodes to it.  GLAs are independent of one another 

and as a result two agents of differing GLAs may reside on the same node and be 

unaware of each other.  In addition, an agent is only able to observe agents of the same 

GLA on other nodes.  

 

 

Figure 16: Two GLAs 

 

To observe one another, each agent modifies its host node’s beacon packet.  In the packet 

it places the identifier of the node that created it.  As each node stores every beacon it 

receives for a period of time, the packets are made accessible to the agents so that they 

can find out which agents are on which neighbouring nodes.  It has been shown (Fußler et 

al., 2001, Chawla et al., 2006) that it is not necessary to use beaconing to facilitate 

geographical routing, so a justification for its use in large-scale ad hoc networks is 

provided in appendix section 8.1. 

 

This chapter will examine the feasibility of the system outlined above and determine a 

possible implementation.  Initially, how close the agents are able to get to the 

geographical point will be examined, because if agents are too far from it then nodes 

looking for the information will be unable to find them.  How agents will self-organise to 

achieve their common goal of surviving and serving information will be examined along 

with methods of implementation.  The number of agents required to successfully mitigate 
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node failure and a technique for determining this to minimise overhead without co-

operation will also be examined.  

 

The terminology and notation used through out the thesis is described in appendices 8.1 

and the simulation parameters are described in 8.2.  

4.2 Proximity to home location 

As described in the introduction, the agents need to be as close to the HL as possible to 

avoid the need to perform broadcast searches to discover the information.  Therefore, it is 

important that the distance an agent is able to get to the HL is determined.  This section 

will examine how close an agent is able to get to a particular geographical point, and its 

ability to remain within the vicinity (Owen and Adda, 2005) over time.   

4.2.1 Implementation 

For a server to be queried with no more than a one-hop search, an agent must be within 

the maximum transmission radius of the geographical point.  The agent’s identifier is 

defined as aID..  If the agent is to store information about a node’s location (nx, ny), then 

the data payload will be as follows: 

 

( ), ( ), ( )ID ID x ya n n t n t=  (3) 

 

Whenever the agent detects a change in its hosting node’s beacon table, or when it 

migrates to a new node, it executes the MIGRATECHECK() method.  A node’s beacon table 

will change when a neighbouring node has moved from it, or a new neighbour has moved 

into the communication range.  The function examines all the node’s neighbours to see if 

there is a node closer to the HL and if there is one then the agent will migrate to that 

node.   

MIGRATECHECK() 

1 dist ← ∞ 

2 closest ← none 

3 for each n in neighbours 
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4 if DIST(n, HL) < DIST(self, HL) then 

5 dist ←  DIST(n, HL) 

6 closest ← n 

7 if dist != ∞ then 

8 MIGRATETO(closest) 

9 return true 

10 else return false 

Figure 17: Check whether a migration is needed 

 

The object self refers to the current node, and DIST() calculates the Euclidean distance 

between two nodes.  The code will cause the agent to move from node to node to try and 

remain as close as possible to the HL.  The function looks for the closest neighbour to the 

HL if one exists and then a call to MIGRATETO() is performed, which sends the agent to 

it.  A value of true or false is returned from the function indicating whether the agent 

migrated or not, and this value will be used in later parts of the algorithm. 

 

 

Figure 18: Migration of agents 

 

Figure 18 illustrates an agent migrating when another node becomes closer to the home 

location.  The simulation will examine the average distance of the agent to the HL by 

recording the location of the hosting node.  Each node generates a server agent and 

allocates it a uniformly random home location where it is to reside.  The parameters are 

varied to examine what effect speed and beacon rate have on the distance to the point and 

the overhead incurred in migrations. 
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4.2.2 Simulation results 

Figure 19 shows the results obtained when speed and beacon rate were varied.  The 

beacon rates were chosen to clearly illustrate the variance in distance and are an arbitrary 

choice. Beacon rate affects the accuracy of the information nodes hold about their 

neighbours, and lower beacon rates will result in less accurate information.  This is 

illustrated in Figure 19 where lower beacon rates result in the agents being less able to 

remain near their home location.  According to the results, for networks where the speed 

may reach 10m/s, a beacon rate of less than five seconds will allow the agent to remain 

within the maximum transmission radius of 100m.  Using a beacon rate of one second 

resulted in the agent being less than 50m from the geographical point. 
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Figure 19: The effect of beacon-rate on distance from the centre 

 

Figure 20 shows that with more frequent beaconing, the migration overhead is greater.    

When beacon rate is frequent the number of changes in the node’s beacon table occurs 

frequently and therefore the agents migrate more often.  When the beacon rate has low 

frequency then agents migrate less frequently and as a result are often further away from 
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the HL.  The figure shows that with the least frequent beacon rates, the number of 

migrations levels off at quicker speeds; the reason for this is that with less beacon table 

changes agents do not have the information necessary to make informed migration 

decisions.  This is an undesirable situation as agents can become quite distant from the 

HL. 
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Figure 20: Measurements of migrations per minute 

 

Overall, the simulation has shown that if low beacon rates are used, such as the one 

second, then the agents are able to remain with a transmission range of the HL.  In 

addition, the overhead is sufficiently low to be negligible because the agent sizes are 

small.  Agents consist of the location information, the node identifier and the program 

code; however, as all agents have the same code, this can be removed from the agent and 

placed on the node to reduce overhead associated migrations by only transmitting the 

agent’s state. 

4.3 Replication 

When one considers that a node containing an agent may fail at any time then that agent 

would be lost.  If a node’s GLA only consists of one agent, then the location server is lost 

and it is not possible to discover that node’s location. This loss can be reduced through 
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replicating the information to a quorum of nodes; however, in traditional quorum 

systems, there is usually a co-ordinating server (a master) and several slaves ready to take 

over should the master fail and this structure requires maintenance communication.  

Unfortunately, ad-hoc networks are highly dynamic and attempts to create traditional 

quorum systems for such networks fail (Luo et al., 2004). 

 

In an ad-hoc network, a node failure will often be a result of battery failure or a node 

crash, and so the node may not come back online at all, or if it does then it may be in a 

different location (such as someone’s phone battery becoming exhausted, and them 

returning to their house to recharge it sometime later).  Therefore, any system needs to be 

highly dynamic and adaptable to mobile and failing nodes.  The last section examined 

how one can handle mobility, by agents repeatedly migrating to maintain themselves 

close to a geographical point.  This section will examine how to clone agents and 

maintain them as close to the point, and how to recover when an agent is lost (Owen and 

Adda, 2006b). 

4.3.1 Mobility with multiple agents 

In the previous section, agents migrated independently of one another and it was perfectly 

possible for two agents, of the same GLA, to reside on the same node.  If this becomes 

the case, then despite having several replica agents, if they all reside on the same node 

and that node fails then the GLA as a whole will fail.  Therefore, before making a 

migration decision, an agent needs to consider whether this will place it on the same node 

as another agent of the same GLA.  At present, the only way an agent can do this is to 

initiate communication with each neighbour which would consist of at least two packets 

(request and reply).  Earlier, the thesis described the idea of ants who modify the 

environment and stated that the idea would be applied to this system.  In an ad hoc 

network, what nodes see are their neighbours’ beacon packets and to them this is gives an 

indication of the environment.  To avoid the need for agents to communicate with their 

host node’s neighbours directly, the agents modify their environment, or in this case, the 

beacon packet to provide information to fellow agents. 
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The beacon packet is modified so as to give information about the agents residing on a 

particular node and which GLA they belong to so that the agents on neighbouring nodes 

can decide whether it is a suitable migration target.  All that is required is for the addition 

to the beacon packet of a list of the agents’ IDs, and then agents on neighbouring nodes 

can simply inspect their node’s beacon cache to determine where fellow agents are. The 

beacon packet now looks as follows, with <ns(t)> representing the list of agent IDs on a 

node n at time t. 

( )><= )(),(),(,)( tntntnntB SyxIDn  (4) 

 

In practice, the list size will depend on the number of agents on that node, and the size of 

the node identifier which will be discussed later.  Methods of calculating the expected 

number of agents on a node and subsequently the size of the list will be examined later in 

this chapter. 

 

Given this new information, the MigrateCheck() function must now be modified so that 

agents remove nodes which have agents of the same GLA from the migration eligibility 

list.  An extra condition is added to the conditional statement requiring the agent to 

examine the node’s location cache for agents of the GLA. 

 

MIGRATECHECK() 

1 dist ← ∞ 

2 closest ← none 

3 For each n in neighbours 

4 if DIST(n, HL) < DIST(self, HL) and 

5 a.id is not element of <nS> then 

6 dist ←  DIST(n, HL) 

7 closest = n 

8 if dist != ∞ then 

9 MIGRATETO(closest) 

10 return true 
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11 else return false 

Figure 21: Check whether a migration is needed.   

 

The set nS is the node n’s beacon cache.  The effect of this is that an agent will never 

migrate to a node that already has an agent from the same GLA.  Given a group of agents 

then they will all reside on nodes around the HL, residing on the closest set to it. 

4.3.2 Agent Cloning Techniques 

Having established techniques to allow multiple agents to migrate without two agents 

from the same GLA migrating to the same node, it is now important to discuss how the 

agents will clone themselves.  So far, agents do not communicate directly and rely on 

observation of their environment to move around.  Keeping with this philosophy inspired 

by nature, duplication should be performed in the same manner.  Typically in quorum 

systems, a central agent would control and monitor copies through regular 

communication. The beacon packet contains information about the number of agents on 

neighbouring nodes and so this can be used to determine the need to clone. 

  

The GLA is created by the formation of one agent containing the information to be 

stored.  This agent then migrates towards the HL, where upon arriving, the GLA is set up 

by the closest agent cloning itself to other nodes to form several copies. 

 

Overall, the GLA system must perform three main actions to counter mobility and node 

failure: 

1. Migrate:  Agents must periodically examine the neighbours of the node it resides 

on, and if there is a node who is closer to the geographical point, then it must 

migrate there assuming a agent is not already residing there. 

2. Replicate:  Agents must replicate themselves to other nodes, so that node failures 

do not result in loss of the data. 

 

Any agent making a replication decision must have a good idea on the number of other 

agents so that the number of agents can be kept optimal. Information is available by 
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inspecting the beacon packets of neighbours, so therefore the agent that makes replication 

decisions must ideally be the one that can see all, or most, of the beacons of nodes 

holding agents for that GLA, so that it may count them.  This is likely to be the agent that 

is closest to the HL, as any clone agents are likely to be on adjacent nodes. Therefore, if 

an agent discovers that it is on a node that has no neighbours closer to the HL than it, then 

it shall elect itself as the master of the GLA and undertake the additional task of 

replication.  Likewise, if an agent discovers that neighbours are closer to the HL and have 

agents of the GLA, then it shall assume the role of slave and no longer participate in the 

replication task.  Figure 22 illustrates two GLAs with different home locations indicated 

by different colours. The master (double circled) is on the closest node to the home 

location, and the slaves (single circled) are on neighbouring nodes. 

 

 

Figure 22: Two servers with different 

home locations.  

 

If a two or more nodes hosting agents are of equal distance from the HL then the agent on 

the node with the highest ID becomes the master.  If the master is unable to see a 

complete picture of the GLA because some agents are on nodes out of range, then it may 

incorrectly count the number of agents.  If this happens then the master may clone itself 

unnecessarily. 

  

For example, consider Figure 23 where one agent is on a node that is out of 

communication range of the node with the master agent.  The master agent may count the 

number of slaves as two because that is all it can see, and if two is below the cloning 

threshold, it will duplicate even though this is unnecessary as the distant agent will 

quickly migrate to a closer node.  This now leaves the scenario where we may have more 
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agents that is necessary and so pruning becomes essential, especially if this situation 

happens frequently because the number of agents can grow rapidly. 

 

 

Figure 23: Agent out of range of master 

 

Therefore, every agent performs pruning when it detects that there are more agents in the 

GLA than the cloning threshold.  They will test this condition when they detect new 

beacon information on the hosting node, and if true they will delete themselves.  In 

addition, this action will only be performed with a certain probability, as several agents 

could detect this condition at the same time and all delete themselves.  The manner in 

which this probability is calculated is described later. 

 

To allow replication a little more information is needed to facilitate co-operation.  An 

extra field is added to each agent’s data payload so that it can determine its role in the 

GLA.  This field is a one bit Boolean field indicating whether the agent is the master or 

not, and is used solely by the agent so that it may determine if it needs to perform 

replication functions. 

  

( ), ( ), ( ), ( )ID ID x ya n n t n t role t=  (5) 
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Each agent of the same GLA represents the same node and the only field that may differ 

between agents is that of the role.  The master will have a different value for the role field 

than the slaves. 

 

Given the current information, agents can now be described as having four actions that 

they may perform (Owen and Adda, 2006c, Owen and Adda, 2006d): 

1. Election: Each agent tests to see if the current node is the closest to the 

geographical point, and if so changes its role to master.  Otherwise, if there are 

closer nodes holding agents, the role changes to slave. 

2. Migration: Each agent checks to see if it is on the closest node to the HL, and if 

there is a closer node not hosting an agent of the same GLA it will migrate to it. 

3. Replication (master only): The master periodically examines the beacon packets 

of neighbouring node and counts the number of agents; if this number has fallen 

below a threshold a replication function is executed. 

4. Pruning (slaves only): Each agent examines the beacon packets of neighbouring 

nodes and if the number of agents is above a threshold, then it deletes itself with a 

certain probability P. 

 

P is chosen so that approximately the correct proportion of agents is deleted. This can be 

calculated as follows, given the desirable number of agents threshold, and the counted 

number count: 

count

threshold
P −= 1  (6) 

 

The final function that agents run every time the node’s beacon cache changes is 

described in MANAGEAGENT() function.  This function is executed when a node receives 

new information about the environment, such as new beacons being received and beacons 

timing out. The object neighbours is an array containing all the beacons received from the 

node's neighbours and P is the probability of an agent elected for pruning being deleted. 

 

MANAGEAGENT() 
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1 count ← 0 

2 role ← master 

3 for each n in neighbours 

4 if self.id is element of <nS> then  

5 count ← count + 1 

6 If DIST(n, HL) < DIST(self, HL) then 

7 role ←  slave 

11 if MIGRATECHECK() then return 

12 if role = master and count < threshold then  

13 REPLICATIONFUNCTION(self, count) 

14 else if role = slave and count > threshold and RAND() < P then  

15 DELETESELF() 

Figure 24: MANAGEAGENT(a) function. 

 

The REPLICATEFUNCTION() is an arbitrary method of replication.  The next subchapter 

will describe several methods of replication and compare their performance. 

4.3.3 Replication methods 

Several methods for performing replication are examined.  Evidently performing accurate 

replication and pruning in a highly dynamic environment is not possible so several 

techniques are examined to find the one providing optimal performance. 

1. Unicast: When the master discovers that there is less than the threshold number 

of agents then the function unicasts a new clone to a neighbour that does not 

already have one.  If the count falls below the threshold by more than one, then 

the replication is performed again at the next invocation of the function (when 

beacon cache changes).  This allows the process of replication to be performed 

slowly avoiding most excessive replication.  The function below simply finds the 

first neighbour without an agent and then sends a clone there. The 

CLONESELFTO() function clones the agent and sends the clone to the node 

specified. 
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UNICAST() 

1 for n in neighbours 

2 if n.id is not element of <nS> then 

3 CLONESELFTO(n) 

4 break 

Figure 25: Unicast replication pseudo code 

 

2. Broadcast:  Unicast recovers from more than one node failure slowly, so if 

several nodes fail then it will take several function invocations to restore the 

server to previous strength.  An alternative to this is to broadcast new copies to all 

neighbours in the master’s vicinity so that a loss is quickly recovered from.  This 

may bring the number of agent significantly above the threshold, and so relies on 

the pruning to reduce the GLA size to the correct number. 

 

BROADCAST() 

1 CLONESELFTO(all neighbours) 

Figure 26: Broadcast replication pseudo code 

 

3. Hybrid: Both of the above methods have advantages and disadvantages, and the 

hybrid approach attempts to gain the best of both.  If the number of agents is less 

than 50% of the threshold, then the broadcast technique is used to quickly restore 

the GLA to good strength.  If the number of agents is above or equal to 50% of 

the threshold, then the unicast approach is used to more slowly restore the GLA. 

 

HYBRID(count) 

1 if count ≥ ½ threshold then UNICAST() 

2 else BROADCAST() 

Figure 27: Hybrid replication pseudocode 

 

4. Multicast:  The multicast technique is an attempt to restore the GLA quickly 

without taking the number of agents over the threshold.  Upon sensing a lower 
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than threshold number of agents the master calculates the exact number of agents 

needed. It then examines the beacon cache to find the correct number of 

neighbours needed that are not hosting agents of the same GLA.  A multicast 

cloning packet is then sent with these neighbours’ addresses thereby restoring the 

server to full strength without exceeding the threshold.  If the number of vacant 

neighbours is less than the number of agents needed, then clones will be sent to all 

neighbours that do not have one.  The function MULTICASTCLONETO() clones the 

agent and sends it to the agents listed in the parameter. 

 

MULTICAST(count) 

1 <multicastList> ← () 

2 for each n in neighbours 

3 if n.id is not element of <nS> then 

4 <multiCastList>.ADD(n.id) 

5 if |multicastList| > (count – threshold) then break  

6 if |multicastList|> 0 then 

7 MULTICASTCLONETO(multicastList) 

Figure 28: Multicast replication pseudo code 

 

4.3.4 Simulation results 

A simulation is set up to evaluate the four methods proposed above.  A total of 50 GLAs 

are deployed at random points in the area and the threshold for duplication is set at five 

for the initial experiments and analysed later to determine a suitable value.  Three 

characteristics are measured: failure tolerance, overhead, and node occupancy.  Overhead 

is the average number of packets sent per minute by each server and node occupancy is 

the average number of agents a node holds.  Perhaps most importantly of these though is 

failure tolerance, which is the likelihood of a GLA surviving in the face of failures of 

nodes.  This is most important because if the GLA is lost then no location information 

can be discovered for the node which owned it.  Therefore, the simulation is run for 30 

minutes so that long term failure tolerance can be examined. 
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Node failures are simulated by requiring every node to draw, every five seconds, a 

random number between [0,1], and if this number is smaller than a certain number (p), 

then the node will fail.  One can therefore calculate the number of node failures per 

minute (f) given the number of nodes (n), as: 

 

pnpnf 12
5

60
==  (7) 

 

Figure 29 shows the failure tolerance of the four approaches.  The failure tolerance is 

measured by counting the number of GLAs which are lost over the 30 minute simulation.  

The broadcast approach has the greatest tolerance but this is because it often has a larger 

number than the present threshold of slaves due to the inability to precisely control the 

duplication process.  The unicast approach had the least tolerance due to its inability to 

recover quickly from a number of node failures. Hybrid and multicast performed between 

the unicast and broadcast approaches because both more accurately maintain the current 

number of agents, rather than too few or too many. In spite of this, all the techniques 

survive exceptionally well.  When every node in the network fails at least once a minute 

20% of the servers are able to survive for thirty minutes with the unicast approach, whilst 

80% survive with broadcast.  Also worth noting, is that the GLA is likely to be updated 

more often than every 30 minutes and so this update process could recover from total loss 

in exceptionally harsh conditions.  In real scenarios failure rates this high are not 

expected because mobile devices often have hours or days of battery life.  In addition, 

their owners regularly anticipate battery failure and recharge them before this stage is 

reached. 
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Figure 29: Failure tolerance 

 

Figure 30 shows the number of packets incurred per minute for each of the agent 

replication methods.  The poorest performing was the unicast approach due to its single 

packet single duplicate approach, whereas the hybrid performed the best.  This is unusual 

at first glance as one would expect the multicast to outperform the rest as it performs 

duplication accurately by specifying the exact numbers of clones to create to reach the 

threshold.  However, on further analysis it was discovered that the hybrid performs better 

because it broadcasts when the number of agents falls too low which quickly recovers 

and this rarely requires further cloning to reach the threshold.  Pruning then takes care of 

the excess number gradually.  But, given this line of thinking one would expect the 

broadcast approach to outperform as it always uses broadcast packets.  This is not the 

case because broadcasts are used even if the count falls below the threshold by only one 

which results in a much larger number of clones on average.  Pruning eventually takes 

care of this but undesirable behaviour is observed that is described in section 4.3.5. 
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Figure 30: Packets per GLA per minute 

 

Figure 31 shows the average number of agents that a node would hold when there are 50 

GLAs in the network.  The expected number of agents per node assuming the algorithm 

maintains the exact numbers of agents per GLA is nqc ; where n is the number of nodes,  

q is the number of GLAs and c is the number of agents per GLA. 

 

The predicted number for the scenario simulated is 1.5 (q=50, c=6, n=200) agents per 

node which we see accurately predicts the number for the unicast approach.  The 

multicast is not significantly different from the unicast because it too attempts to 

accurately maintain the correct number of agents; however, the hybrid and broadcast have 

slightly large values because they are both less able to control the number of agents due 

to the use of broadcast. 
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Figure 31: Average number of agents on each node 

 

All the above scenarios use the arbitrarily chosen value of five for the number of 

duplicate agents (threshold).  But it is important to examine the best choice for the 

threshold value and this is undertaken here.  The simulation is set up the same as above 

with the exception that the threshold value is also varied along with the node failure rate.  

The threshold maximum will be the number of neighbours the master has because it is 

unable to duplicate if there are no nodes without any agents remaining.   

 

Provided nodes are uniformly distributed, one can calculate the expected number of 

neighbours (d) using the following equation, given the number of nodes (n), the 

transmission radius (r), and the total area of the simulation (a2): 

 

1
2

2

−=
a

rn
d

π
 (8) 
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In the case simulated here, the expected number of neighbours is about 5 (n=200, 

r=100m, a
2
=1000

2), and so one would expect the improvements caused by increasing the 

threshold would begin to taper off around this value. 

 

Only the hybrid approach is examined here as this is adopted throughout the rest of the 

thesis due to its performance in the previous set of results over the alternatives in terms of 

overhead and failure tolerance. 

 

Figure 32 illustrates the varying threshold has on the performance of the system.  As one 

can see, when setting the value to around 5-7 duplicates the performance increase is not 

very significant as the master has fewer chances to increase the server population. 
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Figure 32: Failure tolerance of the hybrid approach with various threshold values 

 

Figure 33 illustrates the overhead measured over the simulation of the fifty GLAs in total 

packets sent.  The value chosen for number agents per GLA is chosen in increments of 

two to illustrate clearly the difference in performance. The setting of this value is crucial 
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in minimising overhead as larger numbers increased overhead significantly, with seven 

having almost twice the overhead of one.  
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Figure 33: Overhead of the hybrid approach with varying threshold 

 

Given the above results a threshold value of five provides the best survival as expected.  

The performance varies significantly with the threshold setting and so it is important it is 

chosen correctly, and so this will be examined in section 4.4. 

4.3.5 Broadcast replication: The expand-and-collapse problem. 

During simulations of the broadcast technique a phenomenon that is termed the 

Broadcast Expand and Collapse Problem (BECP) is noticed.  If the GLA size drops one 

below the threshold a broadcast replication is initiated which may take the number of 

agents significantly above the threshold. When pruning then takes effect, the GLA size 

quickly decreases, but inevitably one or more agents that do not have an accurate beacon 

cache also delete themselves. This brings the GLA size below the threshold which then 

results in another broadcast replication.  The result is that the GLA repeatedly broadcasts 

and prunes and this phenomenon was observed repeatedly throughout simulations.  The 

hybrid approach solves this problem by the selective use of broadcast and unicast.  
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4.4 Adaptive Threshold Control 

4.4.1 Introduction 

Evidently one needs to customise the cloning threshold based upon the failure rate of the 

nodes and the average number of neighbours in the network.  The average number of 

neighbours can easily be calculated to indicate the maximum value for the threshold.  The 

node failure rate is more difficult to calculate in reality although it is easily set and 

observed in simulation.  Nodes can only observe the neighbours around them to 

determine what this rate may be and its primary source of knowledge is timeouts of 

beacon information.  Unfortunately, this beacon information regularly times out because 

of node mobility in addition to node failures and so a scheme is needed to determine 

between the two. 

  

Throughout this thesis it has been assumed that node failures are a result of battery failure 

that could not be predicted.  The reasoning for this is that it simulates the worst case 

scenario by trying to recover from unpredictable failures. Many mobile devices measure 

the voltage output from their battery and use this successfully to predict failure.  As a 

result, before the device reaches a critical level, it could send out a message indicating 

failures to its neighbours which would not only allow the algorithm to move agents to 

more suitable nodes, but also to determine the node failure rate.  However, this is an ideal 

case and cannot be guaranteed.  For example, the user could simply unplug his device’s 

battery or it could crash. 

4.4.2 Determining the likelihood of failure 

This section will examine the possibility of determining failure probability a node in the 

network, assuming all nodes have the same probability of failure.  Each node beacons 

every second and keeps a record of the set of nodes it receives beacons from (Nt).  Each 

node also retains the record of nodes whose beacons it received one second ago (Nt-1) so 

that it can determine the nodes which are no longer beaconing or in range.  Dt contains all 

the nodes whose beacons were not received within the next one second time slot and so 

they can be assumed to have either failed or moved out of range.  
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)( 11 tttt NNND ∩−= −−  (9) 

 

The list of nodes for which we are no longer receiving beacon packets for contains both 

those that have failed and those that have moved out of range.  Assuming a uniform 

transmission range (R), we can calculate if a node (d) has moved out of range of node n if 

it broadcasts its speed (ds) and direction of travel (dd) along with its location (dx, dy).   

 

Rndddnddd ydsyxdsx <−++−+ 22 )cos()sin(  (10) 

 

The set
tt DF ⊂  contains those nodes from Dt that satisfy the above condition.  Therefore, 

all nodes in Ft can be presumed to have failed. 

 

The failure rate is calculated as an average of all observed failures since the node has 

been active.  Calculating based upon one observation is not accurate as with high beacon 

rates no neighbours may fail in that period.  Therefore, a node calculates the average 

observed failure rate (nf) as shown below: 
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 (11) 

 

To examine whether this approach is capable of detecting the failure rate accurately, 

several simulations are run with varying failure rates and the analyses of the nodes are 

recorded after five minutes.  All 200 nodes may move at a random speed between 0.1m/s 

and 10m/s and the transmission radius is fixed at 100m. 

 

The figures below present the observed failure rates as a percentage of nodes which held 

that belief.  Figure 34 illustrates the scenario with a failure rate of 1% of nodes failing 

every five seconds.  The observations are normally distributed with 2.0%,99.0 == σµ , 

showing the mean observation to be almost exactly correct.    
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Figure 34: Failure rate analysis with rate = 1% 

 

Figure 35 illustrates the nodes’ analysis when the failure rate is 0.1, and the analyses are  

normally distributed with 35.0%,3.9 == σµ . 
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Figure 35: Failure rate analysis with rate = 10% 
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Figure 36 illustrates the nodes’ analysis with a failure rate of 0.2, which is also normally 

distributed with 5.0%,4.18 == σµ . 
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Figure 36: Failure rate analysis with rate = 20% 

 

The results from the simulation show a slight underestimation in the failure rate which 

increases with the failures.  The error (c) can be calculated given the actual failure rate (f) 

and the node’s observations (nf) where || denotes a positive value of the equation 

enclosed: 

 

f

nf
c

f−
=  (12) 

 

While overestimating the failure rate would only incur extra overhead and increase 

system failure tolerance, an underestimation may result in the loss of the system due to 

insufficient slaves being created.  The errors observed in simulation using the above 

equation are: 
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Table 4: Predictions of failure rates by nodes 

f nf Error percentage (c) 

1% 0.99% 1% 

10% 9.33% 6.7% 

20% 18.41% 8% 

 

A slight underestimation in the failure rate has been observed and this is easily catered for 

by adjusting for the error. 

4.4.3 Implementing Adaptive Threshold Control 

This section details methods of adjusting the threshold based on observation of the failure 

rate.  Evidently, one must have at least one duplicate of the agent to ensure survivability; 

even when observing a zero failure rate, it is recommended to have at least one in case of 

an unexpected failure.  Therefore, the threshold value, h, will be in the range 

dh ≤≤2 where d is the number of neighbours of the master’s node.  As stated earlier, 

with one-hop duplication it is not possible to duplicate to more than d neighbours.  This is 

a potential improvement to the scheme in exceptionally high failure networks but does 

restrict the monitoring the master can do of all the agents and may require a higher 

overhead and central co-ordination.  In any case, failure rates of this level are not 

expected in the applications for which this system is proposed. 
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Figure 37: Threshold that maximises survivability for various failure rates 

 

Figure 37 shows the minimum threshold value that maximises survival.  Examining data 

from the experiments of how threshold affects failure, one can plot the minimum 

threshold required to provide maximum tolerance to failures.  Therefore, the data is 

plotted and fitted to a standard polynomial equation )( 2 CBxAxy ++=  which fits with a 

value of R
2=0.95.  This equation can be used in simulation along with failure rate 

prediction to determine a threshold value so that overhead is minimised but survival is 

maximised: 

  

3167.10738.00089.0 2 +−= ffthreshold  (13) 

 

Figure 38 shows the pseudo code used in simulation to determine the threshold.  The 

threshold value is restricted in the limits [1, NEIGHBOURCOUNT()] for two reasons.  

Firstly, using a threshold of zero will provide no slaves and hence no failure tolerability 

should the unexpected happen.  Secondly, the threshold is capped at the number of 

neighbours because the master is unable to create any more slaves than this, and 

repeatedly attempting to will increase the overheads unnecessarily.   
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Each node stores two global variables, Failure and FailureCount which are used to 

determine the failure rate.  At each beacon interval, the algorithm examines the current 

list of neighbours, and that from the last invocation of the function to determine those that 

are no longer neighbours (Lines 3-4).  Of those nodes, each is tested to see if its expected 

location (n.expectedLoc) is outside the limits of communication range (Line 5), and if so 

it is assumed to have failed.  The percentage failed is added to the number of neighbours 

and is added to Failure, while FailureCount is incremented by one (Lines 6-7).  This 

provides two global variables that are updated frequently with the latest information on 

failures to provide a value f that converges on to the true failure rate.  Using the 

previously mentioned equation and limits, the threshold can then be determined (Lines 8-

12). 

 

DETERMINETHRESHOLD() 

1 define globalVars Failure, FailureCount 

2 lost ← 0 

3 foreach n in oldNeighbours 

4 if n not in neighbours and  

5 DIST(thisNode, n.expectedLoc) < radioRange then lost++ 

6 Failure ←  Failure + lost / size(oldNeighbours) 

7 FailureCount++ 

8 ntFailureCouFailuref ←  

9 3167.10738.00089.0 2 +−← ffthreshold  

10 if threshold < 1 then threshold ←  1 

11 else if threshold > NEIGHBOURCOUNT()  

12 then threshold ← NEIGHBOURCOUNT() 

13 oldNeighbours ← neighbours 

Figure 38: Pseudo code for threshold determination 
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To assess the effectiveness of this failure prediction and adaptive threshold the algorithm 

is simulated with the above additions. The simulator only varies the failure probability 

and all other variables remain static, with nodes moving between 1 and 10m/s. 
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Figure 39: Survival with failure prediction and adaptive threshold 

 

Figure 39 shows the results obtained from the simulation.  One can see that the system is 

able to maintain near maximum survivability up until failure rates around 20%.  This is 

quite promising as failure rates that high are unexpected in real world networks and show 

that for these scenarios the system is able to adaptively maintain near total survival.  For 

example, one can calculate the average battery life (b) in hours given the failure 

probability (f), where 5 is the interval between failures, using the following equation: 

 

5 1

3600 720
b

f f
= =  (14) 

 

Given the example of f=0.2 (20% failure probability) then the expected battery life of the 

device would be just 25 seconds and failure rates of f=0.01 (1%) would be a battery life 

of just 8 minutes 20 seconds.  
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Figure 40: Packets per minute with adaptive threshold selection 

 

Figure 40 illustrates the overhead of the system and that the adaptive threshold selection 

is working by the increase in overhead to compensate for increasing failure rates.  The 

overhead peaks at failures of 20% where the maximum threshold is reached and then 

drops off as GLAs are lost. 

 

This technique for determining the threshold makes the assumption that nodes have 

similar failure rates and examining situations where this is not the case is outside the 

scope of this thesis.  The results are applicable to any size of network as long as the node 

density remains the same. 

4.5 Conclusions  

This chapter examined storing data using agents at nodes near the HL and found that with 

sufficient node density this was possible and incurred negligible overheads.  A method of 

determining the number of agents necessary was explored so that overheads could be 

altered based upon the likelihood of node failures.  It was found to be possible to 

accurately predict network node failure rates and to calibrate the number of duplicates of 

the data to maintain fault tolerance.  Adaptive threshold selection is imperative in real 

networks where the failure probability is not known.  Performing the task incurs memory 
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overhead of an extra neighbour table, one floating point number and an integer number.  

The network overhead is kept to an appropriate minimum and survival is maximised.  

 

In conclusion, this chapter has shown that it is possible to store data at a static point in the 

face of node mobility and failures.  In the next chapter, the task of querying and updating 

the GLA will be examined in terms of use as a location server. 
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5 SOLS as a location server for large ad hoc networks 

5.1 Introduction 

Ultimately this thesis has focussed on location servers in ad hoc networks as this is the 

most prominent problem for data storage in large scale networks; although this work 

could be used to store data for other reason, location servers is the primary focus of this 

chapter’s analysis. 

 

Figure 41 illustrates how a GLA will function in a large scale ad hoc network at serving 

location information for routing.  Node S is wishing to communication with node D, and 

so S sends a query to D’s home location, then an agent receiving the message replies with 

the information.  This allows S to route packets to D using its last recorded location.  

 

 

Figure 41: Illustration of server system 

 

This chapter will examine how the SOLS scheme described in the last chapter will be 

implemented in a large scale ad hoc routing protocol.  Unless otherwise stated perimeter 

routing is used when MFR fails so as to maximise delivery success. 
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SOLS is implemented exactly as described in the previous chapter.  Specifically, this 

chapter sets out how the GLA is queried, updated, and incorporated into the routing 

protocol.  The performance as a location server is compared with other location servers to 

examine the benefits.  Finally, recommendations for its implementation into existing 

technologies are proposed. 

5.2 Updating a GLA 

5.2.1 Update technique 

A node must periodically update its GLA so that nodes wishing to contact it have recent 

information on its whereabouts.  To update the GLA a simplistic minimal knowledge 

approach is used that continues with the theme of avoiding central organisation.   A node 

n N∈ wishing to update its GLA (Owen and Adda, 2007) creates an update packet UID(t) 

which contains the node’s ID (nID), and its current location (nx, ny) at time t.  In addition, 

the time the update was created (t) is added to the packet to ensure that delayed updates 

do not rollback the GLA’s information after a later update has been sent.  So that the 

version difference can be determined, the agent also records the agent version (at). 

 

( )( ) , ( ), ( ),ID ID x yU t n n t n t t=  (15) 

 

Once the update packet has been created then it must be sent to the GLA, which resides at 

the home location.   The home location can be calculated from the hash-function ( )IDH n  

described in the literature review, or where the location is not defined by the function 

then extra fields can be included.   The packet is sent using perimeter routing where 

necessary to the home location.  Any node receiving the packet then executes the 

following function: RECVUPDATEPACKET(UID(t)).  

 

RECVUPDATEPACKET(u) 

1 a ← GETAGENT(uID) 

2 if a is not null and u.t >  a.t then 

3 UPDATEAGENT(a, u) 



Page 99 of 169 

4 BROADCAST(u) 

5 else if u was unicasted to this node then 

6 ROUTETOHL(u) 

Figure 42: Pseudo code for update packet handling 

 

Initially, the function checks to see whether the current node hosts an agent of the GLA 

which belongs to the source node.  If an agent is present (aID = uID), and it has location 

information that is older than the update packet’s, then it performs two actions: update the 

agent’s information (UPDATEAGENT()) and broadcast the update packet to all neighbours.  

Otherwise, the packet is forwarded toward the home location by the ROUTETOHL() 

function.  This update procedure results in the following behaviour: 

 

1. Forward update to the home location until the closest node is reached. 

2. Update any agents encountered on route, and broadcast update to their neighbours 

(who also execute the function). 

3. Only nodes with agents that have old data will rebroadcast the packet.  This 

results in a self limiting broadcast that does not travel beyond the GLA. 

 

Broadcasting updates only when encountering an agent with an older version results in an 

optimal broadcast scheme.  If one agent broadcasts the packet which updates all other 

agents, then no more broadcasts will be sent.  In the worst case, the number of broadcast 

updates will be equal to the number of agents in the GLA. 

 

This approach does not rely on central co-ordination to update the GLA and is entirely 

decentralised; however, it does not guarantee a complete update or indeed an update at all 

because of the following reasons: 

 

• The GLA may have been carried away from the home location due to node 

mobility.  But, because the agents migrate automatically this should be unlikely.  

If area around the home location is void of nodes, then the use of perimeter 

routing should mitigate this problem. 
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• The update may not reach all agents in the GLA if some agents are more than one 

hop away, such as in Figure 23. Upon an agent re-broadcasting the update, the 

broadcasts may not reach all members of the server due to node mobility; 

however, as agents do migrate this should be minimised.   

 

Lack of update is unlikely as the GLA constantly attempts to remain around the home 

location.  Even where there is a void present the GLA will sit around the perimeter where 

the use of perimeter routing will find it, as examined in section 5.4.   

 

Incomplete updates could be mitigated by the application of mobility prediction or 

similar schemes, allow.  In addition, the effect of out of date information has on delivery 

success is not overly significant because later results (section 5.2.3) demonstrated that 

small error in the position accuracy does not result in routing failure. 

 

To determine the likeliness of incomplete updates the results from simulation measuring 

these is shown in the next two figures.  Updates are most likely to be incomplete in low 

node densities where nodes travel out of range of the GLA.  Therefore, the simulation 

varies radio range from 50m to 350m to simulate different node densities.  Agents were 

updated every ten seconds in a 1000 second scenario and the simulator examined all 

GLAs’ agents’ data versions in between updates.  The percentage of agents that had 

failed to receive an update is shown in Figure 43.  The node density is calculated as the 

expected number of nodes (d) in a transmission radius (r) given the area (A2) and the 

number of nodes N: 

 

2

2

N r
d

A

π
=  (16) 

 

Figure 43 shows the percentage of agents of a GLA updated successfully each time, 

averaged over all GLAs.  Node densities are calculated based upon radio ranges used 

earlier in the thesis. 
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Figure 43: Update completeness 

 

As one can see node density appears to be the only influencing factor on update 

completeness.  With low node densities update completeness is very low but this is due 

entirely to the disconnected state of the network and the inability for the update to reach 

agents on disconnected nodes.  As the density increases to a fully connected network then 

updates approach completeness regardless of mobility speed. 

 

The age of data of the agents which did not receive an update is measured next to 

establish how useful their information is.  The age is measured in terms of revisions, with 

the initial data having a revision of zero, and each subsequent update increasing the 

revision by one.  The results shown in Figure 44 demonstrate that with low node densities 

where connectivity is extremely low then one can expect data to be in most cases 

unusable, although increasing node mobility does reduce this as the network connectivity 

changes frequently; however, even at 10m/s the data is still over 30 revisions old which 

may not be useful.  Once node density increases to provide a mostly connected network 

then the age of the data drops to between 1 and 2 revisions.  In the scenario tested this 

would make the data between 10 and 20 seconds older than the last update which may 

render it still useful especially in networks with low mobility. It is worth noting though 

that this data is being returned by less than 15% of the agents and the rest are returning 
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current information. Finally, with densities which provide high connectivity then updates 

are complete and so the age of data is always zero revisions old. 
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Figure 44: Age of data in agents that failed to update 

 

In conclusion, with the exception of poorly connected networks which are likely to result 

in delivery failure anyway, updates complete fully with high probability and even in 

cases where the update is not complete the data returned by that small section of the sever 

is still potentially usable (see section 5.2.3).  One could implement a multiple agent query 

to mitigate the problem of old data from the minority of agents.   

 

To illustrate the likely density in a city-wide network two cities are compared using 

population density.  The average population density of the UK was 383 people per square 

kilometre in 2001 according to the 2001 Census.  If each person has a wireless device 

then the node density will be d=12 with r=100m, which would provide update 

completeness according to the results.  Cities have much higher population density 

(London 4699/km² d=148) which are the most likely application area of large scale ad 

hoc networks and so the results show that in the average case updates are near complete. 
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5.2.2 Determining when to update 

As discussed in section 3.7, several techniques exist to determine when to update a 

location server: Distance and Timer-based schemes 

 

In this section, several experiments are analysed to ascertain the technique that provides 

the highest delivery success and the lowest communication overhead.    Ten nodes are 

chosen at random and paired with one another; they then send packets bidirectionally 

which are routed using Most-Forward-within-Radius. The location server is simulated as 

a zero-cost globally accessible database of nodes’ locations.  This server is updated 

according to the scheme used in the following subsections. 

5.2.2.1 Timer-based update 

In this scheme the information is updated at regular intervals dictated by the update 

interval.  Each node creates its GLA and then sends an update after waiting a specified 

number of seconds.  After each update, the node then waits the specified time again and 

sends another update.   

  

Figure 45 illustrates the delivery success of the timer-based scheme. As expected lower 

update intervals will result in higher delivery success.    
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Figure 45: Delivery success of timer-based update scheme with one second beacon rate 

 

Figure 46 illustrates the number of updates sent per minute with those observed in 

simulation.  There is a slight variation due to the introduction of jitter when sending 

updates.  This is to avoid synchronised nodes transmitting at the same time and causing a 

collision. 
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Figure 46: Timer-based update overhead  

 



Page 105 of 169 

 

5.2.2.2 Distance-based update scheme  

This scheme requires that node update their location server once they have travelled a 

certain distance.  The reasoning for this is that if a node has not moved then there is little 

point in sending an update.  When the timer-based scheme was used then the update 

would be sent every period regardless of the node’s movement.  Therefore, using a 

scheme based upon distance can provide an adaptive way to controlling overhead based 

on network mobility.  Lower speed networks will incur lower overheads.  In addition, this 

is further supported by later results showing that geographical routing can tolerate small 

errors in location.  To examine the performance of distance based update scheme, a 

simulation is performed similar to the last subchapter, but varying the distance threshold 

between updates. 

 

Figure 47, examines the distance at which one should set the threshold to.  The radio 

ranges are chosen arbitrarily based upon ease of implementation and are not significant 

choices. One can see that a 10m interval is almost indistinguishable from the perfect 

scenario where the location server is updated constantly.  Increasing the distance causes 

the performance to drop off as expected. 
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Figure 47: Distance-based update with one second beacon rate 

 

Figure 48 illustrates the number of updates per minute required for various thresholds. 
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Figure 48: Distance-based update overhead 

 

Previous authors (Thomas et al., 1988, Wu, 2005) have estimated the time between node 

updates given the node’s speed and assuming that it moves in a random fashion.  The 
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time a node stays within a region is distributed exponentially with the mean t (Wu, 2005), 

given the area A, perimeter L and average speed v:  

 

vL

A
t

π
=  (17) 

 

Therefore, one can deduce the time that a node stays within a circular region with a radius 

d equal to its distance threshold, will be defined as exponentially distributed with mean 

td,v: 

 

v

d
t vd

2
,

π
=  (18) 

 

Therefore, this can be used to predict number of updates per minute and verify the 

simulation.  The number of updates per second is given as: 

 

vd

vd
t

u
,

,

60
=  (19) 

 

To confirm that this method does indeed provide a close approximation of the number of 

updates sent, the results from earlier simulations are compared with a plot of the 

theoretical equation above.  . 
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Figure 49: Distance-based overhead: predicted and observed 

 

Figure 49 shows the comparison and demonstrates that the equation provides a close 

approximation.  There is a slight difference due to the randomness introduced in 

simulation, but both predictions follow the same trend. 

5.2.3 Tolerating Location Inaccuracy 

The location stored in the GLA maybe out of date because it may have been some time 

since the last update was received.  This is unavoidable, as even if a node sends an update 

every second then a query could return a result just below a second old.  This is 

unavoidable due to the discreet nature of networks and so therefore it is important that the 

effect this has is examined, then the location inevitable as even a small amount of time 

will have passed in the situation where the information is received immediately after the 

update has completed.  The question remains how MFR and perimeter routing will cope 

in the face of a small position error, and just how much error is tolerable before routing 

failures occur. 

 

To examine this, a simulation with parameters described in section 8.2 is created.  

Location information is provided at zero cost so as to eliminate any other causes of 

failure.  An artificial error is introduced into the location returned and this error is 
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constant amongst all nodes in the network.  To eliminate the case where the routing 

techniques successfully handle a fixed position offset, such as to the bottom right by 50m, 

the value chosen is either added or subtracted from the x and y value of the nodes’ 

location  The method is chosen randomly from the four possibilities, where the (x, y) 

denotes the multiplication of the error for each axis: (+1, +1), (+1, -1), (-1, +1) and (-1, -

1). 

 

Only radio ranges that guarantee a connected network are chosen to eliminate 

disconnectedness as the cause of failure.  Initially, MFR routing is compared and the 

results are presented in Figure 50 and it is observed for small accuracy errors there is 

little or no difference in delivery success. 
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Figure 50: MFR routing only 
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Figure 51 demonstrates the effect of position error when perimeter routing is enabled.  

The delivery success drops off much later than MFR alone. 
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Figure 51: Perimeter routing 

 

Both sets of results are plotted in Figure 52 as delivery success against the error as 

fraction of the radio range.  The results above show that perimeter routing does improve 

tolerance to location accuracy by approximately two-thirds.  MFR routing required nodes 

to be within 60% of the radio range’s distance of the expected location, whilst perimeter 

could tolerate 100% of the transmission radius.   
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Figure 52: Position error as a fraction of radio range 

 

Figure 53 is an illustration of why perimeter routing is more tolerable to location 

inaccuracy.  The large dotted circle is the radio range of a node S, who is sending a 

message to node D.  Node D has moved from the location S believes it is at, which is 

shown as a dashed circle.  When S is unable to route the packet any closer to the believed 

location, then it assumes there is a void and employs perimeter routing.  Node A is 

chosen as to route around this void which knows the true location for D from the beacons 

it has received.  The packet is the sent to D and recorded as being received. 

 

 

Figure 53:  Perimeter routing's tolerance of location inaccuracy. 
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Using the results above we can estimate the minimum time (tMFR) between updates 

required for MFR to succeed as a function of velocity (v) and radio range (r) for random 

motion by rearranging the equations for time between updates from section 5.2.2: 

 

v

r

v

r
rvtMFR

10

3

2
),( 5

3 ππ
==  (20) 

 

Equally so, the time for perimeter routing is given as tperimeter below: 

 

v

r
rvt perimeter

2
),(

π
=  (21) 

 

Both provide high tolerance of location inaccuracy, and when a node’s range is 100m and 

it is moving at 10m/s (the worst case simulated in this thesis) then updates are required 

only every 9.15 (MFR) and 15.8 (perimeter) seconds.  In the best-case scenario used of 

1m/s then updates would be required every 94 and 157 seconds respectively.   Figure 54 

illustrates this graphically showing the required number of updates per minute against the 

node speed. 
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Figure 54: Updates required per minute vs. speed 
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This chapter has shown that the system is tolerable of large location inaccuracies and so 

failed updates to the location server are not necessarily detrimental to routing success. 

5.3 Querying the server 

The GLA is now able to store data at or near a specific point in an ad hoc network and so 

it is now necessary to be able to query this information.  Firstly, one must know where a 

node’s GLA is so it can be achieved through a variety of methods show below; however, 

this is only mentioned to give context to our work and the focus of the thesis is not on 

home location discovery. 

 

1. Hash function:  Given a node ID, one performs a function H(nID) which returns 

the home location.  In an ad hoc network, this could simply map home locations 

in a grid like fashion, with each location being equidistant from neighbouring 

locations, so as to maximise the load distribution across the network.  This of 

course assumes that the location of the network is known and will not change. 

2. Discovery methods:  Broadcast search and other more optimal search schemes 

have been proposed for discovering location servers; however, none consider how 

a discovery mechanism with a flat, or indeed hierarchical (Wolfgang et al., 2004), 

approach would work with millions of nodes. 

3. Social dissemination: Mobile phone numbers are disseminated by two main 

processes: Social dissemination and Telephone number lookup services.  For 

personal mobile phones, social dissemination is by far the most used means for 

sharing phone numbers, where individuals pass their number of to people. 

 

Much of the literature concentrates on techniques for discovering the home location for a 

particular node ID; but, if someone wishes to communicate with another, what node ID 

does he use if he only knows the person by name?  VoIP applications on the Internet 

typically use social dissemination and a telephone lookup service.  So, in reality, the 

problem of discovering the node ID is the same as that of discovering the home location, 

and one could potentially substitute node IDs for home locations.  If one is considering 

the application of a cellular network, then social dissemination for the most part, and an 
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Internet or telephone-based lookup service would suffice because the home locations 

would not change.  One could consider implementing a distributed database to allow ad 

hoc network lookups, but as home location information will not change, this would place 

unnecessary load on the network for a service that would be best provided elsewhere. 

 

Throughout the remainder of the thesis it is assumed the HL is known.  A query consists 

of two messages.  Initially a node will create a request for the information (GET), and 

when the server receives it, it should create a reply and send it back to the requesting 

node. 

 

Two messages are defined for communication with a location server.  A querying node 

( Ns ∈ ) will issue a GET packet, and the server will reply with a REPLY packet.  When 

sending a request, the information needed to be known is: the querying node’s ID (sID), 

its location (sx, sy) for sending the reply, and the ID of the node for which we’re 

requesting information (nID).  In addition, the location of the HL can be included if this 

cannot be calculated globally, but here it is assumed to be known.  The reply packet 

needs to contain a requesting node’s information so the reply can be routing (sID, sx, sy), 

and the information requested (nID, nx, ny). 

 

( )
( ))(),(,),(),(,)(

)(),(,,)(

tntnntstssnREPLY

tstssnnGET

yxIDyxIDID

yxIDIDID

=

=
 

(22) 

(23) 

 

Using these packets the next section will examine how the GLS is queried. 

5.3.1 Querying process 

Querying of the GLA is achieved by sending a GET packet towards the home location, 

routing it by the most suitable scheme (e.g. perimeter routing where necessary).  Along 

the packet’s route to the home location, it should encounter a node hosting an agent of the 

desired GLA.  If the packet reaches the closest node to the home location, and has not 

met any nodes hosting agents then the query fails, or some other method must be used to 

find an agent (e.g. localised broadcast search).  Upon encountering a node with an agent, 
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a REPLY packet is created and routed back to the requesting node.  This has the effect 

that slave agents are queried most often as usually the master is surrounded by slaves in 

all directions.   When a node receives the get packet (p), it executes the 

RECEIVEQUERYPACKET(p) function.  This function retrieves the agent from the desired 

GLA if it exists and creates a reply; if no agent exists the packet is forwarded toward the 

HL. 

 

RECEIVEQUERYPACKET(P) 

1 a ← GETAGENT(p.nID) 

2 if a is not null then 

3 ROUTETOHL(p) 

4 Else 

5 INITIATEQUERYREPLY(a) 

Figure 55: Receive Query Packet function 

 

Figure 56 illustrates the number of queries that are answered by slaves using the query 

scheme described above.  In the simulation results below (Figure 56),  80-90% of queries 

are answered by a slave which is due to the slaves surrounding the master in most cases.  

Certain node arrangements or high numbers of nodes in the locality (more than the 

number of agents) will leave a path through the slaves to the master in some 

circumstances which accounts for the 10-20% of queries to it.   
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Figure 56: Percentage of queries that are received by slaves 

 

Probabilistic quorums, such as the one proposed here, are known to return out-dated 

information (Abraham et al., 2004). Therefore, the results of queries to the GLA are 

examined to find what percentage of queries return old information.  The reason this may 

happen is due to an incomplete update which will be caused by some slaves being out of 

range of others.  The higher the speed the more likely this situation is likely to occur.  

Figure 57 shows the number of queries which returned old information and illustrates that 

this increases slowly with speed.  At slow speeds around three percent of queries return 

old information, although this does not necessarily have a significant effect on delivery 

success as discussed earlier in the thesis. 

 

The update success of the GLA was examined in an earlier section, and the age of data 

held by agents that had failed to update.  The results here differ in that they show the age 

of data returned which may differ from the previous results if, for example, the failed to 

update agents are always queried due to the query method.  To measure the age of data 

returned by the GLA, a definition is first established of correctness rate for queries:  
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Definition: The Correctness rate (Cr) for a GLA Q, is a measure of the number of up-to-

date queries (Qu) against total number of queries (Qt).  The correctness rate is therefore 

defined as: 

t

u

Q

Q
QCr =)(  (24) 

 

Correctness rate indicates the percentage of queries that return current information.  To 

examine this, a simulation with the standard parameters is configured and the age of data 

returned in queries is measured.  Figure 57 is a plot of the results showing that even at 

high speeds over 90% of results are current. 
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Figure 57: Percentage of queries returning old data 

 

The results above differ slightly from the examinations of GLA update success which is 

attributable to update packet loss due to the nature of the wireless environment. 
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Figure 58: Age of old data returned by query 

 

Figure 58 shows the age of queries that returned old data.  The age is measured in 

revisions, where an age of one indicates that the query returned information from the 

update before the current one.  The results show that for low speeds the age can be 

approximately one revision.   Again, this is the age of data returned by the few agents that 

returned old information. 

5.4 Handling voids 

5.4.1 Non-convex voids 

The Terminode home-region approach is unable to work when the home region is void of 

nodes; however, because the SOLS approach does not rely on a region but instead on a 

geographical point indicating the intended home it is able to cope with voids.  Let us take 

the example in Figure 59, the area around the HL is void of any nodes.  D wishing to send 

an update, or set up the server routes the packets towards the point.  On encountering any 

void the algorithm switches to a perimeter routing strategy such as those described in 

section 2.3.3.  The packet is routed around the perimeter and upon finding the node 

around the void to the HL, it sets up the GLA there.  All the agents continue to attempt to 

move closer and should the void disappear or shrink then the GLA will move closer to 
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the HL.    To query the GLA, S sends the query to the HL and upon reaching a void 

perimeter routing is employed and will traverse the perimeter until the GLA is 

encountered.  Irrespective of how big the void is, or even if the geographical point is 

outside of the network area because the server will always migrate to the closest point on 

the perimeter employing perimeter routing will provide query success. 

   

 

Figure 59: Handling voids when querying and updating the GLA 

 

To examine the tolerance of voids by SOLS, the scenario illustrated in Figure 60 is 

simulated.  This represents the worst case scenario when the centre of the network, where 

most of the traffic is routed through, is void of all nodes.  Consequently some of the home 

location points will also fall within the voids and so the servers should locate themselves 

around the perimeter of the void.   
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Figure 60: Simulation set-up for tolerance of void scenarios.   

 

Before the scenario is simulated it is necessary to address a problem that SOLS 

encounters called the ‘convex void problem’.  This problem is outlined and countered in 

the next section. 

5.4.2 Convex void problem 

The convex void problem is encountered when the home location is inside an area void of 

nodes, which is bounded by a convex polygon.  The reason this happens is illustrated in 

Figure 61 and the two steps that cause it are illustrated 1 and 2.  At step one, the agent M 

reaches the closest point, assumes the role of master and clones itself to the nearest 

node(s).  At point 2, one of the slaves sees a node which is closer than itself to the point 

and does not contain an agent.  The slave then migrates there and can not see anyone else 

closer to the point and so assumes the role of master.  This agent then initiates a cloning 

phase creating more slaves. 

 

a 

a 

b 

b 
VOID 
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Figure 61: Illustration of the convex void problem 

 

Figure 62 shows a simulation snapshot, with empty nodes as black dots, nodes with a 

master being purple and nodes with a slave being blue (circles indicate radio range of 

master).  As one can see, this problem of slaves migrating closer and assuming the master 

role and subsequently replicating again has caused three masters to be created around part 

of the void’s perimeter.  Whilst this is good for failure tolerance, the task of updating the 

server becomes more costly and potentially incomplete should the three sections part.  

Therefore, this must be eliminated and can be achieved by attaching slaves to their 

master, rather than to the geographic point. 
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Figure 62: Simulation snapshot of the convex void problem 

 

New slaves’ target location to migrate to is set as the current location of the master.  In 

addition, the slave also stores the home location; however, this is ignored initially.  When 

the master is lost, a slave quickly migrates into its place and assumes the role of master.  

At this point, the new master retrieves the stored home location and sets this as its 

destination.  Making this simple modification solves the void problem by preventing 

slaves from migrating away and attaching them to the nodes that are the closest to the 

master.  If the void should disappear, one may wonder if the slaves would stay at the 

suboptimal point.  This would not be the case as each agent in turn would move into the 

master’s old position, be elected as master, and then follow the migration process to the 

home location.  On reaching the home location, they would realise that they are not the 

closest to the point and resume the role of a slave.  As replication only happens on 

reaching the closest point to the home region and this is never attained by the slaves they 

do not enter the replication phase. 

 

A further problem is foreseeable, whereby nodes hosting the agents move in opposite 

directions away from the home location, leaving a void in its place.  The agents would sit 

at different points on the perimeter and replicate.  Such a scenario is unlikely in 
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simulation because the random movement of nodes means that voids are unlikely to form, 

or if they do, they do not last any significant amount of time.  However, if this were to 

happen, the use of perimeter routing when attempting to get close to the home location 

would solve the issue, as agents would enter close proximity again on traversing the 

perimeter.   

 

 

Figure 63: Simulation of solution to convex void problem 

 

Figure 63 illustrates the effect adding these two techniques to the algorithm have on the 

void scenario.  Simulation of voids with these two techniques was unable to replicate the 

earlier problem of multiple masters forming, even when duplicating the original 

scenarios. 

 

A comparison on Terminode and SOLS in countering the void problem is simulated in 

the section 5.7.4. 

5.5 Overhead comparisons 

This subchapter will compare the overhead experienced with SOLS and a number of 

other location servers.  It is important this overhead is kept to a minimum and is 

independent of the number of nodes in the network, so that it may scale.   
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A number of the theoretical analyses of the other location servers are taken from (Das et 

al., 2005).  SOLS has a fixed creation overhead that is not dependant on the number of 

nodes in the network.  It simply attempts to create a minimum number of agents and so 

therefore the overhead is presented as O(1).  Equally so, updates and queries have fixed 

overhead and are also not dependant on the number of nodes merely attempting to query 

one or a number of agents and to update all.  The only task that is influenced by an 

outside variable is that of system maintenance that makes sure a GLA survives in a 

reachable location.  The maintenance overhead increases linearly against velocity and so 

is proportional to ( )vO . 

 

This overhead is similar to the overhead encountered by Terminode with the notable 

addition of maintenance overhead; however, SOLS only utilises a small fixed number of 

nodes to store data whereas Terminode requires all nodes in an area to be utilised.  

Terminode is the most similar scheme to SOLS that is examined as it stores location in a 

particular area / region.  The difference is that SOLS provides high fault tolerance by 

actively attempting to recover from failures where as Terminode relies on the survival of 

at least one server. 

 

The horizontal and vertical quorum’s overhead is ( )nO  because it requires a horizontal 

and vertical column of nodes to be occupied.  Whereas the grid location service is 

proportional to )(lognO  because the number of servers used reduces the further you are 

from the node.  The DREAM approach has overhead proportional to ( )2nO  due to the 

flooding technique used it requires every node to broadcast to every other. 

 

To compare the failure tolerance of the schemes, a simple definition is established to 

differentiate between them, as follows:  
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Low: No attempts are made to recover from failed nodes / node mobility.  The limited 

failure tolerance is derived purely from several copies of the data being available, 

although in a mobile network the data is likely to move away from the expected location.  

 

Medium: No attempts are made to recover from failed nodes / node mobility; however, 

the system uses such a large number of nodes and they are likely to be reachable even 

sometime after the last update. 

 

High: Active attempts made to mitigate failed nodes, node mobility and poor data 

accessibility. 

 

The relative overheads and failure tolerance are expressed in the following table: 

 

Table 5: Overhead comparisons 

 Creation Maintenance Update Query Failure 

tolerance 

Hash 

function 

SOLS O(1) O(v) O(1) O(1) High Yes 

Terminode O(1) n/a O(1) O(1) Low Yes 

Horiz/Vert 

quorum 

( )nO  n/a ( )nO  ( )nO  Low No 

DREAM ( )2nO  n/a ( )2nO  O(1) Medium No 

Grid 

Location 

Service 

)(lognO  n/a )(lognO  )(lognO  Low No 

 

As the table illustrates, SOLS and Terminodes are the only approaches which scale due to 

their fixed overheads for each node.  Of the two schemes, SOLS provides fault tolerance 

and although incurring higher overhead due to maintenance, it is expected it will incur 

less overhead when other factors are taken into consideration; for example, Terminodes 

may fail when then the update frequency is insufficient, and so requires frequent updates 

even if the node is immobile whereas SOLS does not.  Where SOLS incurs an overhead 
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of less than 10 packets per minute, each update to Terminode incurs an update overhead 

equal to the number of nodes in the region.  In the scenarios simulated in this thesis the 

node density was approximately 6 per 100m2, which provides nearly complete 

connectivity (Ryu et al., 2004).  As Terminodes is the only approach that scales, it is used 

for comparison throughout the rest of the chapter. 

5.6 Implementation 

The Terminode papers lack details on implementation of their home region and so this 

section will describe its implementation for comparison.  A number of other techniques 

are used to optimise both algorithms performance such as location caching and they are 

described too. 

5.6.1 Terminode’s home-region 

Although the authors of the Terminode’s home-region infer the implementation of their 

system in their papers, they do not describe it explicitly.  Therefore, the the 

implementation used for comparison is defined below. 

  

Creation / Update 

On creation of the network, each node chooses its home-region according to a globally 

known hash function.   It then sends a packet to towards the home region and when a 

node inside the region receives the packet it will broadcast it.  Any receiving node within 

the region that has not already seen the packet also broadcasts it.  This ensures that all 

nodes inside the region receive a copy of the data and incurs an overhead equal to the 

number of nodes in the region. 

 

To update the server, the same process is used but each update includes a unique 

sequential update number.  This number is used by nodes receiving a broadcast to 

determine whether they have already received the update and if they have not then they 

will rebroadcast it.  The packets used are equal to the data payload of the SOLS scheme. 

 

Query 
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Nodes wishing to query the server simply send a query packet to the home-region, and on 

encountering the first node in the region with the data, then a reply is created with the 

information that node contains, and routed back to the querying node.  The query packet 

is equal to that used in SOLS. 

 

The home-region radius R is set at 100m, the same as the nodes’ transmission radius.  If 

the node density is six then one would expect six nodes to participate in the home-region. 

5.6.2 Location caching 

A location caching technique is used to optimise simulation of both Terminode and 

SOLS.  If node A wishes to communicate with B, it first queries B’s location server for 

its location.  This location is then cached at A with an expiry time of the expected next 

update to the location server from B.  A then sends packets to B and includes its own 

location in the packet header.  B extracts A’s location from the header and puts it in its 

location cache with an expiry equal to the A’s server update frequency (this is globally 

known in simulation but maybe added to the packet).  When B wishes to reply, it first 

checks its cache for A’s location and if it has expired it queries A’s location server.  B 

then attaches its own location to the packet and sends it to A, who updates its location 

cache with the information. 

 

This avoids the situation where nodes are querying location servers for every single 

packet they send.  As the two nodes maybe in constant communication, attaching location 

information to packets allow the nodes to continually update one another to their location 

whilst still periodically updating the location server for others who may wish to 

communicate with it. 

5.6.3 Transport of packets 

As routing uses location information and this is different from any previously envisaged 

transport protocol, the transport protocol must be modified to include differing 

information.  IP packets typically contain source and destination fields that denote the ID 

of the nodes concerned, in this scheme the packet will also include x and y co-ordinates 
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for the destination and source node.  Here is the header of all transport packets (P) used 

in simulation: 

 

( ), ( ), ( ), , ( ), ( ),header ID x y ID x y IDP s s t s t d d t d t P=  (25) 

 

P is the packet itself with the header denoted by Pheader.  The header contains information 

(ID, x, y) about the source node Ns ∈ , and the destination Nd ∈ .  In addition, a unique 

identification number is included PID that distinguishes the packet from any other in the 

simulation.  In a TCP/IP packet this would typically be a sequence number along with 

source and destination fields but for simulation it is a unique number so that it is possible 

to isolate duplicate packets from inclusion in results. 

 

Including this information in the header is necessary to allow forwarding nodes to make a 

decision on which neighbour the packet is to be sent to, rather than requiring each hop to 

discover the location information independently.  This reduces location discovery 

overhead.   

5.7 Results 

Delivery success is the key indicator on the success of the system and this is primarily 

examined along with overhead (Owen and Adda, 2006a).  As overhead is negligible, it 

will not have an effect on throughput and delay and so these variables are not examined.   

In these schemes, delay reflects the number of hops that query packets and data packets 

traverse which is not altered by either scheme. Use of multiple servers could reduce 

delays due to the increased likelihood of a server being closer to the querying node but 

will increase other overheads, and so is left for future work. 

 

Three variables were isolated as most likely to have an effect on delivery success for both 

schemes.  Speed, when coupled with update interval affects the accuracy of information 

stored at the location server.  In addition, speed will move nodes participating in the 

location server away from the home location.  Failure rate will result in the loss of nodes 

participating in the location server and high failure rates cause complete failure.  Existing 
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approaches rely on frequent updates to handle most of these factors but when mobility is 

low these frequent updates incur unnecessary overhead; therefore, both schemes are also 

compared with varying update intervals.  

5.7.1 Failure Tolerance 

Most existing schemes, including Terminode, fail to address mitigation methods for fault 

tolerance.  Therefore, it is important to examine the performance of the Terminode 

approach against SOLS with varying levels of failure rates.  Both speed and update 

interval are also varied to determine their effect. 

 

Figure 64 shows the effect of node failure on delivery success with varying update 

intervals.  The choices for failure rate and node speed are arbitrary and have been chosen 

to reflect low and high failure/mobility but whilst still maintaining some survival.  For all 

likely failure rates in real networks, SOLS outperforms Terminode by a significant 

margin; however, when failure rates are high then Terminode shows greater performance.  

Considering SOLS attempts to actively mitigate failures this is surprising.  The reason is 

that Terminode effectively creates a new server with every update and one can see when 

the update frequency increases to 60s, then SOLS is only marginally outperformed by 

Terminode.  If updates were more infrequent then Terminode would fail significantly 

earlier than SOLS. 
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Figure 64: Delivery success measurements whilst varying failure probability (v=1m/s) 

 

Figure 65 shows the overhead in packets per location server per minute for the above 

scenario.  SOLS always has higher overhead because Terminode’s overhead consists of 

only updates, whilst SOLS attempts to adapt to the changing environment.  In either case, 

the overhead is negligible for modern wireless networks. 
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Figure 65: Overhead measurements whilst varying failure probability (v=1m/s) 
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Figure 66 shows delivery success for the above scenarios, but with a higher speed of 

9m/s.  Again for all likely failure rates SOLS outperforms Terminode, but this time by a 

much more significant margin.  This is because of SOLS attempts to mitigate mobility. 
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Figure 66: Delivery success measurements whilst varying failure probability (v=9m/s) 

 

Figure 67 shows overhead per server per minute for the above scenario.  SOLS incurs 

higher overhead than Terminode for likely failure rates, and this is again due to its 

attempts to mitigate mobility and failure in addition to update overhead; however, the 

overhead is much higher than the scenario with lower mobility and this is because GLS 

agents need to migrate more frequently. 
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Figure 67: Overhead measurements whilst varying failure probability (v=9m/s) 

 

5.7.2 Mobility Tolerance 

The purpose of this section is to examine the mobility tolerance of Terminode and SOLS 

given that mobility is likely to be present in a wireless network.  Figure 68 presents a 

comparison of the two schemes’ delivery success with an update interval of 10 seconds.  

SOLS outperforms Terminode for all speeds examined by a significant margin.  This is 

due to SOLS’s attempts to migrate GLS agents back to the home location where they can 

be discovered; Terminode makes no such attempt.  
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Figure 68: Delivery success measurements whilst varying speed (u = 10) 

 

Figure 69 illustrates the overhead for the above scenario.  Terminode has fixed overhead 

regardless of speed whilst SOLS’ overhead increases with speed to mitigate mobility.  

SOLS’ overhead with high failure rates is slightly below that of Terminode but this is 

because it is struggling to maintain the GLS with enough agents. 
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Figure 69: Overhead measurements whilst varying speed (u = 10) 
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Figure 70 and Figure 71 show delivery success and overhead respectively for the above 

scenario, but with update interval set to 60 seconds.  Again SOLS outperforms 

Terminode at all speeds but also incurs higher overhead for reasons previously stated. 
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Figure 70: Delivery success measurements whilst varying speed (u = 60) 
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Figure 71: Overhead measurements whilst varying speed (u = 60) 
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5.7.3 Effect of update interval 

As Terminode relies on frequent updates to maintain the location server it is important to 

vary the update interval to show how SOLS performs better.   

 

Figure 72 and Figure 73 show the delivery success and overhead respectively, when 

update interval and failure probability are varied with nodes travelling at 1m/s.  Delivery 

success of SOLS is above that of Terminode and drops off less quickly when update 

interval is high.  With higher failure rates Terminode and SOLS perform similarly with 

Terminode slightly outperforming SOLS with higher update intervals.  This is due to 

Terminode completely recreating the server at each interval. 
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Figure 72: Delivery success measurements whilst varying update interval (v=1m/s) 
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Figure 73: Overhead measurements whilst varying update interval (v=1m/s) 

 

Figure 74 and Figure 75 show the delivery success and overhead respectively for the 

above scenario but where nodes are moving more quickly.  In this scenario SOLS 

significantly outperforms Terminode in all scenarios.  Terminode performs particularly 

poorly due to nodes quickly moving outside of the area shortly after an update, whereas 

SOLS actively mitigates this through migration.  SOLS again incurs the highest overhead 

but when the update frequency is low, the overhead is similar to that of Terminode but 

the delivery success is higher. 
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Figure 74: Delivery success measurements whilst varying update interval (v=9m/s) 
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Figure 75: Overhead measurements whilst varying update interval (v=9m/s) 

5.7.4 Voids 

The ability of SOLS to handle networks with areas that are void of all nodes was 

explored in Section 5.4.  In this section, Terminode and SOLS are compared in terms of 

delivery success when confronted with such a network.  Just as in Figure 60, an area void 

of nodes is created of varying size in the centre of the network.   
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The scenario employs a static network with no mobility so that failures will be primarily 

due to inability to route around the void or due to location server discovery or 

deployment problems.   
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Figure 76: Comparison of ability of Terminode and SOLS to handle scenarios with voids 

 

Figure 76 shows that the performance of Terminode drops of quickly as the void size 

increases.  SOLS however maintains above 90% delivery success and the failures are due 

to the inability of the right-hand rule to route around the void.  Even with very small void 

sizes (100x100m), Terminode’s performance drops below 80%. 

5.8 Conclusions 

SOLS outperformed Terminode in most scenarios examined and in many case by a 

significant margin.  Terminode had the advantage in that at each update interval the 

location server was created at full strength at the desired point; however, this benefit was 

mostly realised when the update frequency was high.  When the update frequency was 

low and mobility or failure high SOLS excelled by a significant margin. 
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SOLS was rarely out-performed by Terminode and only in scenarios that are unlikely to 

be encountered such as exceptionally high failure rates.  The overhead was consistently 

higher than Terminode but this is attributable to it having equivalent update cost with the 

addition of maintenance overhead. 

 

Delivery success is the key indicator for a location server as it reflects the accuracy of the 

information returned, and the survival and accessibility of the server.  SOLS attempts to 

mitigate both of these whereas Terminode relies purely on high update intervals to 

frequently renew the server.  Failure rates simulated in the thesis are not likely to be 

encountered in the realistic scenarios envisaged and P=50 represents a single node failing 

every ten seconds of average.  Below this failure rate SOLS always performed better in 

terms of delivery success than Terminode and because of this it can be considered to be 

the superior location server. 
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6 Implementation 

6.1 Introduction 

This section will examine the possibility of developing a large scale ad hoc network using 

the location server provided.  It will examine how a large scale ad hoc network would be 

deployed and how the proposed service would be implemented with existing 

technologies. 

 

We must agree upon what kind of ad hoc network we would be examining and the 

technology that we expect to deploy the work of this thesis in.  There are a number of 

technologies currently used in the systems in which large scale ad hoc network 

technology could be useful, such as: 

 

• Large sensor networks: Networks of small devices used for distribution sensor 

information, such as climate conditions.  They typically use 802.11 wireless LAN 

technology, or Bluetooth (Sweeney, 2001). 

• Cellular telephone network: Consist of cellular telephone towers, or base stations, 

that mobile telephones access using a radio transceiver.  These towers then 

forward the calls to the tower nearest the destination, at which point the call is 

then transmitted to the destination phone.  These technologies use GSM cellular 

networks in Europe and most countries around the world (Short, 1999). 

• Wireless VoIP: Recently, Voice-over-IP has become quite popular with the 

commercialisation of consumer accessible software such as Skype (Khamsi, 

2004).  With the advent of Skype software, a number of manufacturers have 

started developing Wireless VoIP phones, that use a nearby wireless network to 

access the Internet and make telephone calls.  These technologies use 802.11 

wireless LAN technology. 

 

Large scale ad hoc networks could be deployed in any of these to augment or replace the 

need for fixed infrastructure.  Two of the examples above use 802.11 wireless LAN 
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technology which is cheap and accessible, and most importantly easier to modify.  Take 

for example a PDA, one can access the wireless LAN interface and change the 

networking behaviour of the device; however, with GSM the software running of the 

phones is often proprietary and add-on applications are usually unable to access the 

underlying GSM receiver; although they can usually access the Bluetooth subsystem but 

its range is quite limited. 

 

This chapter will focus primarily on implementing a large scale ad hoc network, and in 

particular the location server presented in this thesis, over a 802.11 wireless LAN, using 

PDAs or Laptops.  It is assumed that the device has access to the Global Positioning 

System, which is not improbably given a number of manufacturers already make devices 

with this integrated, such as the O2 Orbit XDA and Mio A710 (partly due to the upsurge 

in satellite navigation usage). 

 

Creating a system that is easily added to existing technology is important as requiring 

significant changes will hinder adoption.  For example, if modification of an operating 

system kernel is required then co-operation from manufacturers and updating existing 

hardware is required, without which no implementations can be realised.  Therefore, in 

this chapter, only techniques which can be implemented at the application layer will be 

examined where the application uses OS API calls that are available on operating systems 

such as Microsoft Windows XP/Vista, MacOS, GNU/Linux and UNIX *BSD variants.  

To achieve this it is assumed that an application will incorporate all of the functionality 

described and use standard API calls. 

6.2 Beaconing 

To perform geographical routing in a beacon scheme, one must regularly transmit its 

location to its neighbours in a broadcast packet.  This permits neighbours within range to 

make local decisions about where to send packets. 

 

The beacon packet contains the node’s identifier and its location.  The identifier can be 

any number that uniquely distinguishes the node from others, such as an IP address or 
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telephone number.  The Internet Protocol is currently the most widely used transport 

protocol, due to its use in the internet.  The current version (v4) is limited to 32-bits for 

the IP address and as such the remaining IP addresses are beginning to run out.  The next 

incarnation is IPv6 which permits 128-bits for the address and is currently being rolled 

out across the Internet.  As such, an IPv6 IP address is used to uniquely identify nodes in 

the beacon packet. 

 

The co-ordinates need to be able to identify any geographical location to an accuracy of 

at least half the node’s transmission range within the network area.  In this thesis it has 

been assumed that a large scale network could be deployed across a city.  Requiring the 

users to define the network area in advance defeats the objective of ad hoc networks and 

so it is therefore assumed that a node could occupy any location on the surface of the 

Earth.  

 

The number of bits needed to identify a location with certain precision varies depending 

upon the node’s latitude.  At the equator, the more bits are needed than at the poles.  The 

standard World Geodetic System 84 is used to represent the location which provides two 

values: latitude and longitude. Latitude describes the north and south axis which ranges 

from -90 to +90 degrees and longitude describes the east-west axis which varies from -

180 to +180 degrees.  The origin (0,0) is the point where the Greenwich meridian line 

crosses the equator.  As one moves north or south from the equator, the circumference at 

that latitude decreases and so less precision is required to represent longitude. 

 

A standard equation for calculating distance between two points across a sphere is shown 

below given the radius of the Earth (R), and the latitude and longitude of the two points A 

(ϕA, λB) and B (ϕA, λB). 

 

( ))cos(coscossinsincos),,,( 1

BABABABBAA Rd λλϕϕϕϕλϕλϕ −+= −
 (26) 

 

Using this equation we can find the smallest value needed to represent the required 

precision for any latitude.  By rearranging this equation, making λϕ the subject, which is 
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the smallest value in longitudinal degrees required to represent a distance of d metres at a 

latitude of ϕ. 
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The transmission range used in this thesis has been 100m and for MFR routing to succeed 

there needs to be a precision of 60m.  Figure 77 indicates the smallest value of longitude 

that needs to be represented at each latitude to guarantee 60m accuracy. 
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Figure 77: Precision required for 60m accuracy 

 

The equator needs the most accuracy and this can be achieved by using fixed point 

numbers of 20bits in size.  Figure 78 indicates the level of precision afforded by 20bits at 

varying latitudes, where the equator gives the least accuracy. 
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Figure 78: Accuracy provided by 20bit fixed point numbers 

 

The latitudinal lines are equidistant apart regardless of location and so precision can be 

provided by 19bits, exactly half of that required by the longitudinal co-ordinate; however, 

to reduce computational complexity this is increased to 20bits to provide a set of co-

ordinates 40bits in length that sit on a byte boundary. 

 

Therefore, we can deduce the size of the packet to be 168 bits (21 bytes) as illustrated 

below with the list of agents added.  The size of the agent ID list can be calculated using 

the packet size and deducting the size of the other fields. 

 

0 128 148 168 

 nID  

(128) 

Latitude (20) Longitude (20)  

 

 Agents’ GLA IDs (128bits each)  

Figure 79: Beacon packet size 

 

The easiest method to implement this beaconing is to simply have an application layer 

process that sends out periodic UDP broadcasts.  This can therefore be implemented by 
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installation of a user application and requires no modification of the device’s software 

communications stack.   

6.3 Routing 

Routing in large-scale ad hoc networks requires the use of geographical information to 

make decisions.  The traditional implementation in TCP/IP is to use a routing table which 

maps IP address ranges to particular interfaces, or particular routing devices.  An 

operating system kernel will maintain this table and on receiving a packet will lookup the 

destination in this table matching the destination IP address to the most suitable output 

interface.   A network is defined by a range of IP addresses and the gateway is a remote 

routing device that knows a path to the network.  When the network is attached to the 

local device then there is no gateway to connect to that network.  The table below 

indicates a typical company intranet where the device is connected to a LAN, but has an 

entry for another of the company’s subnets, routed through another device on the local 

interface. 

 

Table 6: Example routing table 

Network Subnet mask Gateway Interface 

192.168.0.0 255.255.255.0 - Card 1 

192.168.1.0 255.255.255.0 192.168.0.1 Card 1 

 

The difficulty is in intercepting packets in the TCP/IP stack so that they can be buffered 

whilst a route or location is found for the destination.  In addition, packets arriving at a 

node that does not know the next-hop will often be dropped.  Linux allows the use of the 

netfilter interface to intercept packets and in Windows CE, a mobile operating system, the 

creation of a driver can intercept packets (West, 2003).  

 

Each packet needs to carry extra information as described in 5.6.3 and this is achieved 

through the use of the IP options field, or by encapsulation of the packet. 
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6.3.1 SOLS 

SOLS is an integral part of the routing protocol as it is used for discovering location 

information.  The routing layer must be modified to support geographic routing and the 

interception of packets to unknown destinations as above; however, SOLS itself can be 

implemented at the application layer. 

 

The advantage of implementing SOLS at the application layer is a generic application 

that can be easily ported to multiple platforms without relying on operating system 

specifics.  If SOLS were to be implemented at the network layer then much of the code 

may need to be rewritten for the specific operating system rather than a generic Java 

implementation.  

 

Sending packets from the application layer may require them to be sent using UDP which 

incurs extra overhead although is only a few bytes; however, many OSes may allow the 

sending of IP packets without UDP encapsulation from the application layer. 

6.4 Conclusion 

Implementation of SOLS and associated routing on most modern devices is possible with 

many providing driver hooks for packet interception.  Some platforms may not support 

such integration into the network layer and will require manufacturer co-operation.  

Without this co-operation, it is still possible to implement SOLS routing at the 

application by requiring applications to use a proxy.  Much of the SOLS algorithm can be 

implemented at the application layer to simplify multiple platform deployments. 

 

Beacon packets were shown to be small and the beaconing scheme may also be 

implemented at the application to support easier deployment.  For example, the 

beaconing application could be implemented in Java and would then require no 

modifications to be supported on platforms which have a Java runtime. 

 

Overall implementation of SOLS can be easily achieved on most mainstream operating 

systems without difficulty. 
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7 Conclusions 

The thesis proposed and examined a self organising location server (SOLS) based upon a 

novel concept.  SOLS was shown to be fault and mobility tolerant unlike competing 

technologies, whilst still maintaining low overheads.  When used as a location server, 

SOLS performed significantly better than the closest competitor in most scenarios and 

was able to provide delivery success where Terminode was not.   

 

Implementation on many existing devices is entirely feasibly without modification of the 

existing operating source code.  The use of an application layer program to either modify 

the routing table or to encapsulate the packet and forward it locally over say UDP is 

easily implemented on most mainstream operating systems.   

 

Ad hoc networks will with little doubt become a leading technology in the next decade as 

more users demand ubiquitous internet access.  In addition, wireless has the potential to 

significantly reduce cabling costs and is only limited by range and capacity.  This work, 

along with others’ on multi-hop ad hoc networks has addressed the issue of range and 

routing overhead, with the only challenge remaining being capacity.   

 

The next section discusses future work for SOLS and for the field of large scale ad hoc 

networks. 

7.1 Future work 

7.1.1 SOLS specific 

This subsection will discuss some improvements specific to SOLS.  Firstly, SOLS 

employs only one GLA for each node wishing to store its location.  Whilst this will work 

fine in smaller networks, when networks become larger and a node is potentially 

hundreds of kilometres from its GLA, then the update path will be long.  To mitigate this, 

when a node moves a certain distance from its first GLA, it could create a second GLA 

that is closer and require the first GLA to refer nodes to the second.  This would then 

result in the node having to send updates along a much shorter path. 
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SOLS consists on a one hop duplication scheme which provided good tolerance to failure 

in the simulations examined.  However, in less dense networks a master may only have a 

few neighbours and so only create a few slaves increasing the likelihood of failure.  

Future work could examine the possibility of using a multiple hop duplication and 

monitoring scheme. 

 

SOLS assumes that node failures cannot be predicted or known in advance as this is the 

worst case; however, many mobile phones and PDAs are able to determine time left until 

battery failure.  This information could be used to hand-off agents to other nodes when a 

battery failure is eliminated thereby removing the need to have as many agents in the 

GLA.  If this could be relied on all the time then only one agent would be needed, but as 

this is unlikely a minimum of two agents is prudent. 

 

The adaptive failure threshold scheme described in section 4.4 assumed that all nodes 

would have the same failure rate.  This is a reasonable expectation given that many 

phones and mobile devices have similar battery life and that the scheme would make no 

changes to the threshold when the failure rate is in terms of hours. however, for high 

failure systems it maybe necessary to investigate the situation where devices have vastly 

different failure rates. 

 

The final results used an interval-based update scheme rather than the superior distance 

based scheme; however, because the speed was uniform amongst nodes the results are 

still applicable and transferable over to the distance based scheme.  The situation that was 

not examined is where nodes are travelling at significantly different speeds and this is 

where the distance based scheme is expected to excel.  Therefore, future work should 

examine the performance of the system with nodes having differing node speeds and 

using the distance based update scheme. 



Page 149 of 169 

7.1.2 Internet augmentation 

Nodes within an ad hoc network have limited communication bandwidth and whilst 

increasing the bandwidth available through new radio transmission techniques will offset 

these limitations, it will not cure the fundamental problem.  Given a set of nodes 

distributed across a few square kilometres, who all communicate with other nodes at 

random, the nodes in the centre of the network will be responsible for forwarding more 

packets than those at the periphery.  Assuming the nodes in use are mobile phones, the 

majority of phone users’ usage is to those who are within proximity of the current city, 

although a small percentage of calls maybe long distance especially in the case where the 

user maybe away from his or her home city.  Therefore, we can assume that given a 

country-wide network most of the communication would be localised.  While the national 

or international traffic maybe small in comparison, with larger nodes in the network this 

begins to exhaust the capacity of nodes located centrally. 

 

We are now beginning to examine the idea of replacing the cellular network with a large-

scale ad hoc network; however, the increase in the number of homes who use wireless 

access point provides an excellent opportunity to make this a reality.  Driving through a 

city one can pick up hundreds of wireless networks (Hal, 2004).  We could use these 

wireless networks for routing of national and international traffic, or traffic that has to 

traverse a significant number of hops.  Upon determining that a node is a certain distance 

away, one could opt to route traffic through the ad hoc network (if not within range) to 

the nearest access point, the traffic would then traverse the internet to the nearest access 

point to the destination, at which point it would exit the internet and back onto the ad hoc 

network to the destination.  There are several problems that need to be examined for this 

to be a reality.  These are how does one determine the nearest access point, and equally 

so, how does one determine the exit access point that is nearest to the destination.  If 

these problems can be solved, possibly by use of an overlay network, then large-scale ad 

hoc networks can become a reality and ubiquitous internet accessibly almost anywhere 

would be possible. 
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7.2 Potential and current applications 

The purpose of this section is to discuss potential applications of the work described in 

this thesis.  Ad-hoc networks have wide applicability and were initially envisaged as 

being used in emergency disaster areas and military applications.  In both of these 

scenarios ad hoc networks would be immensely useful due to the lack of communications 

infrastructure.   

 

Where the work would be particularly important is when networks tend to stay in an area 

so that home locations can be permanently defined.  Consider a village where Internet 

connectivity is not readily available to all homes but where a local company has obtained 

a high speed link through either fixed line or satellite.  This company would wish to 

supply, for a fee, Internet access to villagers and installation of cabling would be 

prohibitively expensive.  Initially one may consider that the company could host a 

location server for all nodes, but this will result in a single point of failure and high 

overhead if there are tens of thousands of villagers.  Each villager would set up their own 

SOLS location server with their home location being their house.  As many of the 

villagers may wish to talk/communicate with one another this avoids the need to route 

through the company and potentially avoids the fees.  Villagers may then roam around 

the village and still be contactable by updating their home location regardless of whether 

they have a wireless device running inside their homes.   The villagers then have an 

autonomous network that is independent of the company but where the company provides 

a service to the network users, and therefore also allows competition or expansion from 

other service providers.  A similar scenario would work for university campuses, with 

staff’s offices being their home location. 

 

At the moment most customers pay a fee to a cellular telephone operator for their service 

and if a local cell tower fails then they lose the use of their phone.  The use of the location 

server in this thesis, with a large ad hoc network, and augmentation from wireless access 

points could potentially replace a cellular network.  Whilst undoubtedly there would be 

resistance from cellular operators, this would provide users with a resilient free 

alternative to making local calls.  Telephone operators could change their business model 
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to augment the network, providing coverage and connectivity in rural areas and data 

services.  With augmentation from the operators the network could become national or 

international and significantly reduce their costs in cellular infrastructure.  Users would 

benefit from the free local calls whilst paying for national or calls to rural areas. 
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8 Appendices 

8.1 Terminology and notation 

This subchapter will describe the terminology and notation used throughout the thesis.  A 

number of other terms and notation will be used but these will be described when the 

terms are introduced. 

 

Time:  Time is represented by t and a number of variables will be denoted as a function 

of time to indicate that their value changes throughout the simulation. 

 

Node: A node is a network device equipped with a wireless radio.  The node is carried by 

a human being and is therefore mobile.  The set of all nodes is designated by N, and a 

single node is designated as Nn ∈ .  A node has a unique identifier nID, and a co-ordinate 

(nx, ny). 

 

Neighbour: A neighbour is described from the point of view of a node.  A neighbour of a 

node is any other node which is in communication range. 

 

Agent: An Agent is a software program, with a data payload, that can act independently 

and move from node to node.  The agent contains data on the location of the node which 

created it and can be queried by any other node.    

 

GLA:  A Group of Location Agents that all contain information on the same node.  The 

ID of a GLA is that of the node which created the first member.  

 

<mylist>: A list of items. 

 

|A|: The number of items in set A. 
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8.2 Simulation environment 

8.2.1 Introduction 

Simulations are used throughout the thesis to analyse the performance of various aspects 

of the proposal and to determine the best practice before moving forward.  Simulation is 

widely used in the ad-hoc networks research community due to the high complexity of 

modelling such scenarios mathematically (Naoumov and Gross, 2003).  Additionally it is 

prohibitively expensive to provide real world analysis and so simulation is a feasible 

alternative. 

 

When designing a simulation environment one must consider the real world expected 

application of any technique.  In this thesis, it is assumed that the technique will be used 

in a large-scale consumer network such as replacing the cellular network or large ad hoc 

WiFi networks in cities.  Therefore, most nodes will be phones, PDAs and laptops carried 

in pockets of their owners and so will be mobile.  If we were to consider a network in a 

city it could feasibly contain millions of nodes, which is not possible to simulate due to 

memory and computation limitations.   

 

8.2.2 Simulator 

A number of simulators exist for wireless networks such as DARPA ns-2, Jist/SWANS 

(Barr, 2004) and Glomosim (Zeng et al., 1998).  Each provides an approximation of a 

wireless ad hoc network simulating radio frequency propagation, MAC protocols, node 

mobility, etc.  Initially, much of the algorithm was developed in Glomosim due to its 

ability to process larger numbers of nodes than similar products.  Unfortunately, due to 

lack of garbage collection the use of the simulater involved significant development 

times.  Therefore, Jist/SWANS, a Java-based simulator with automatic garbage collection 

was used for collection of all the results in the thesis; however, the results were compared 

with output from the existing Glomosim modifications to confirm the validity of the 

simulation. 
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The ad-hoc network simulators require significant development time for algorithms due 

to the need to use simulator API calls and incorporation into the simulator methodology.  

Therefore, their use for initial prototyping was not desirable due to the considerable 

development time.  As a result, an in-house simulator was developed to quickly prototype 

ideas and give indication as to their prospects.  This simulator was a discrete time step 

Java simulator that did not consider RF interference or MAC layer protocols.  Each node 

was represented by a Java class and the simulator cycled repeatedly through all nodes 

asking them to perform any tasks they had.  The simulator calculated radio 

communication probability and approximated mobility by the use of the Random 

Waypoint Model.  This simulator was used for prototyping and all results presented in the 

thesis use Jist/SWANS so as to more closely approximate reality.  The results produced 

by the in-house simulator served as indication only to the expected outcome of the final 

simulations. 

 

Jist/SWANS is a Java simulator designed specifically for fast simulation times of larger 

networks.  Earlier simulators such as Glomosim and ns-2 are slow when simulating 

networks of several hundred nodes and due to the lack of garbage collection memory 

leaks are frequent problem in slowing development (Zeng et al., 1998).  Jist/SWANS 

implements a realistic MAC layer and predictive radio propagation based upon the two-

ray model (Iskander and Yun, 2002).  The simulator therefore provides a close 

approximation to a real world ad hoc network and is appropriate for use in this thesis.   

 

The algorithm is implemented at the network layer and the code introduced into 

Jist/SWANS entirely replaces any other routing algorithm.  As discussed in earlier 

sections, certain parts of the technique could be implemented at the application layer 

although this is immaterial in simulation. 
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8.2.3 Simulation Parameters 

As the technique proposed is not influenced by network size, simulation of small 

numbers of nodes will be adequate.  As such, a network of 200 nodes in a one kilometre-

squared area is used, approximating that of a town centre. 

 

Each node moves and so one must determine how the node moves so that it maybe 

simulated.  The Random Waypoint Model (Johnson, 2001) is almost uniformly used in 

the research literature due to its simplicity and approximation of human movement.  

Although there are a number of more complex models, each is specific to a certain 

situation and as it is impossible to determine exactly the movement of nodes, the random 

waypoint model is a close approximation (Rojas et al., 2005).  In a town centre, the node 

speeds will consist of those walking (1-5km/hr), cycling (20-30km/hr) and travelling by 

motor vehicle (30-40km/hr).  Typically in the literature a speed between 1m/s and 10m/s 

is chosen and this suits the needs of this thesis covering all three of the possible scenarios 

(2-36km/hr).  When the speed is random, it is important that the minimum is not set to 

zero as all nodes will converge to slow long walks (Yoon et al., 2003) and therefore the 

minimum speed is set at one metre per second rather than zero. 

 

Finally, one needs to discuss the radio range of nodes as this is one of the key factors in 

ad hoc network performance.  Typically WiFi cards available today (Sept 2007) can offer 

up to 350m outdoors and 100m indoors (Dynalink, 2004).  Using a radio range of 100m 

provides near complete connectivity with the network of the parameters described above 

(Krishnamachari et al., 2003), with the exception of the occasional node who is travelling 

near the periphery.  Therefore, choosing 100m provides connectivity and is a realistic 

expectation of real-world scenarios. 

 

Table 7: Simulation parameters 

Area 1000 x 1000 m Simulation time 3 minutes 

Transmission 

Radius 
100m 

Bidirectional flows 

(allocated 

randomly) 

5 
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Number of nodes 200 

Simulation 

repeated for 

verification 

10 times 

Mobility Model 

Random Waypoint 

v = 1 – 10m/s; 

Pause time = 0s. 

Number of agents 

used for SOLS 

(master + slaves) 

6 

Propagation model Two-ray Terminode R value 100m 

Beacon rate 1 second 
Location Server 

Update interval 
10 seconds 

 

A number of other parameters in Table 7 will be described when used.  Whilst a number 

of these parameters will be varied between simulations to determine their effect, if a 

parameter is not specified it is assumed to be set as described above. 

8.2.4 Presentation of results 

Most of the results presented in this thesis are presented in scatter graph form with lines 

of best fit to demonstrate trends.  Ten simulations are performed of any combination of 

parameters to ensure validity of the results.  The result of these simulations is then 

presented on the graph as one point.  A line of best-fit consists of several points and so 

each line will be a result of several tens of simulations with each set of ten having 

different parameters. 

 

When measuring against time it is often possible to obtain enough data from a single 

simulation to plot a line; however, in all the scenarios in this thesis no measure is taken 

against time.  It is not possible to vary the failure or speed of nodes during a single 

simulation without providing inaccurate results or significantly increased simulation 

complexity.  These are the reasons that each possible set of parameters is simulated as a 

one simulation and repeated for validity. 
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Lines of best-fit are either Linear or Polynomial (with varying orders) depending on the 

one with the highest R
2 value.  Each graph indicates the type of best-fit used in the 

legend. 

8.3 Case for beaconing 

8.3.1 Introduction 

The purpose of this subsection is to outline beaconing and to justify it over beaconless 

schemes.  Beaconing is a process whereby nodes periodically broadcast information 

about themselves to their neighbours.  In geographical routing, as a minimum this 

contains the node identifier and its geographical or relative position.  By beaconing in this 

fashion nodes can make decisions on where to route packets using information on the 

whereabouts of their neighbours; however, the rate at which nodes beacon can affect the 

network performance and also the accuracy of information stored at neighbours. 

 

))(),(,(, tntnnB yxIDtn =  (28) 

 

When forwarding a packet there are several delays involved between sender and receiver.   

Assuming the path is known and there is no discovery delay the delay from sender to 

receiver can be described as follows.  The first is the processing delay where each node in 

the path is deciding where to forward the packet and is typically of the order of 

microseconds, and here is considered negligible.  The second and most significant delay 

is the retransmission delay whereby the time taken to transmit the packet is added at each 

hop.  Finally, the propagation delay is the delay incurred in transmitting the packet 

through the air or medium.  This is usually near the speed of light. 

 

The transmission time, t(S,D), between two nodes, S and D, in an ad-hoc network can be 

calculated as a function of the number of hops (h), the packet size (L), the transmission 

rate (R), the processing delay at each hop (p), the distance travelled (d) and the speed of 

light (c) as follows: 

 



Page 165 of 169 

c

d
p

R

L
hDSt +








+=),(  (29) 

 

The above scheme requires that we know the path and in geographical forwarding that 

each hop knows the location of is neighbours, through a mechanism such as beaconing.  

Beaconing can be undesirable as it requires that nodes periodically transmit packets, 

which while not having a significant effect on throughput when the beacon rate is low, 

does prevent nodes entering sleep mode to conserve power.  It is worth considering that 

beaconing need not be performed by the main processing unit it could be implemented in 

hardware thereby negating the sleep disadvantage.  Figure 80 illustrates the effect 

beaconing has on throughput on a single link between nodes, with a link capacity of 

2Mbps and a beacon packet size of 100bytes, with both nodes beaconing.  The graph 

shows negligible effect, but if the two schemes are to be compared accurately then the 

reduction in link capacity must be established.  Averaging the reduction up until the link 

reaches saturation results in a reduction in capacity of 0.096kbps. 
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Figure 80: Effect of beaconing on a single link 

 

Beaconless schemes (Fußler et al., 2001) were proposed to eliminate the need for nodes 

to beacon thereby allowing them to enter sleep mode.  The proposed solution is that a 
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node wishing to forward a packet simply broadcasts it.  Each node receiving the packet 

estimates its distance to the destination node of the packet.  This delay is such that closer 

nodes to the destination choose smaller delays, whilst those that are further away choose 

longer delays.  After the delay the node broadcasts a packet indicating that it will forward 

the packet.  The nodes whose delays were longer will receive the packet and this will 

cause them to discard the original data packet.  The net effect is that the node closest to 

the destination will broadcast a forward inhibit message first and then proceed to forward 

the message; therefore sending the packet as close to the destination at each hop as 

possible.  The disadvantage of this technique, other than incurring extra delay, is that not 

all potential forwarding nodes will receive the forward inhibit packet, and so a number of 

duplicate packets may be forwarded at each hop in the network.  This in turn can increase 

the load of the network and in the original work it was indicated that each packet could 

have a number of duplicates reaching the destination. 

 

This extra delay is indicated by adding it to the delay as a processing delay where Dx/Dy 

are the location of the destination, nx/ny are the location of the neighbour and T is the 

maximum delay such that ],0[),( TDnd ∈ .  It is assumed the maximum delay is set at 

45ms in accordance with the experiments carried out by Fußler. 
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The node density will have an effect on the delay at each hop as in more dense networks 

there is a higher probability of a node being closer to the extreme ranges of the 

broadcasting node’s transmitter.  This node, being closer, will draw a smaller delay than a 

more distant node.   

8.3.2 Comparison of beaconing and beaconless 

Fußler carried out experiments to measure the average delay in the beaconless scheme 

experienced at each hop.  When the node density is four, a delay of 0.45T was found, and 
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when the node density is 16 nodes, a delay of 0.22T is found.  A link capacity is chosen 

of 2Mbps with the appropriate reduction in capacity included for the beaconing scheme.  

Nodes have a distance of 50m between them and signals travel at the speed of light. 
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Figure 81: Delay in beaconing and beaconless routing schemes 

 

Figure 81 shows a theoretical comparison of a beaconing scheme according to the 

equation and the beaconless scheme with varying node densities described in the earlier 

equation.  As one can see the delay is significantly less than that of the beaconless 

scheme which causes delays that would be noticeable using video or voice after only 10-

20 hops, far less than those expected in large networks. 

 

If using a beaconless scheme is not acceptable for large scale ad hoc networks, then one 

must examine how often beaconing will be required to provide high delivery success.  An 

examination is performed in Jist/SWANS with a network of 200 nodes in a 1000x1000m 

area, and a transmission radius of 100m.  The node speed is varied so that the effect this 

has on the required beacon rate can be examined.  When nodes are moving more quickly 

it is important nodes beacon more frequently to allow their neighbours to make sensible 

routing decisions. 
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Figure 82: MFR routing success vs. beacon rate 

 

Figure 82 shows the results on delivery success when the beacon rate was varied.  With 

low mobility beacons at a rate as low as one per minute suffice but when node speeds 

become similar to that of city traffic at 10m/s, then beaconing at one packet per second 

becomes inadequate to maintain greater than 90% delivery success.   

 

It is important to determine the effect that beacon rate will have on the capacity of the 

network.  To test this scenario a simulation of a network of 200 nodes moving according 

to the Random Waypoint Model (v=1 to 10m/s; 0 pause time).  Each node is assigned 

another at random to send constant bit-rate traffic to and the aggregate traffic of all flows 

is indicated in the graph. 

 

Figure 83 shows the results obtained from simulation and the beacon rates have been 

chosen arbitrarily to ease implementation and have no special meaning.  Beacon rates as 

low as 51.2 second had no measurable effect on throughput and decreasing the rate to 0.4 

seconds had only a marginal effect.  Increasing the rate by an order of magnitude to 0.04 

seconds had a significant effect on throughput reducing packets received to 70% at low 

aggregate throughputs.  Therefore, values above 0.4 seconds can be considered to have 

negligible effect on throughput; however, in spite of this due to simulation complexity, 

only beacon rates of 1 second and above are examined in this thesis.  As a result of this, 

delivery successes shown in the thesis can be considered a small underestimate of those 

that could be expected with higher rates. 
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Figure 83: Effect of beacon rate on throughput 

 

8.3.3 Conclusions 

Typically hops in a large network will be long and include tens, hundreds or even 

thousands of hops.  Inevitable longer paths will incur more delay but it is important that 

delay for average hops is kept to a minimum or below that which is likely to have a 

noticeable effect on video and voice applications.  Equally important is that nodes must 

conserve their battery life otherwise a loss of a number of nodes can result in poor routing 

success.   

 

Beaconing can be performed without switching the entire system into sleep mode by 

implementing a distinct hardware entity to perform the function.  Another concern is that 

beaconing could impair throughput but as shown in Figure 82 the frequency of beacons is 

of the order of seconds, not the milliseconds required to impair throughput. 

 

Based upon the evidence presented in this subsection it is concluded that beaconing is 

essential in ad hoc networks if delays are to be kept to an acceptable minimum.  The 

reduction in throughput is negligible at low beacon rates. 

  


