Black Cats and Coloured Birds — What do Viewpoint Correspondences Do?

Peter F. Linington
University of Kent Computing Laboratory
Canterbury, Kent, UK
pfl@kent.ac.uk

Abstract

The ODP Reference Model is one of a number of speci-
fication frameworks which are based on the definition of a
set of viewpoints that are coupled together by the definition
of correspondences between terms. Wherever a correspon-
dence is declared, any real world entity that is represented
by a term in one viewpoint must also satisfy the require-
ments placed by the occurrence of the corresponding term
in the other viewpoint.

Although this idea represents an intuitively simple and
satisfying way of talking about the design of complex sys-
tems, the idea of a correspondence is not as simple as it
might, at first sight, appear. This paper uses simple exam-
ples to illustrate some of the complexities resulting from the
coupling of object models and examines the consequences
for claims of conformance to the complete system of speci-
fications.

1 Introduction

The ODP architecture [6] [4] [5] defines five viewpoints
and a number of correspondences between them. There
may, in principle, be up to ten distinct correspondences, be-
cause this is the number of possible viewpoint pairings, but
designers will not normally need to populate all of them.

When the RM-ODP architecture was first defined, most
of the examples considered were in terms of simple cor-
respondences of concepts, terms or names, and not much
thought was given to how these correspondences interacted
with the basic ideas of object modelling. Since then, how-
ever, it has become clear that there are a number of sub-
tleties associated with this structure, which this paper aims
to investigate.

To decouple discussion of the nature of correspondences
from any prior assumptions about the ODP architecture and
what its viewpoints do, we look at an artificial viewpoint
structure chosen to illustrate the issues in as simple a way
as possible. We assume that all the viewpoints used are ex-

pressed in terms of metamodels, and hence object models,
in the UML language. The correspondences are also ex-
pressed as UML fragments.

The remainder of this paper is organized as follows. In
section 2 we give some background to the concept of a
viewpoint and its realization in a modelling system. Then
in section 3 we introduce the set of simple viewpoint mod-
els used as a running example throughout this paper. On
this basis, we discuss in section 4 the way viewpoints are
composed, and in section 5 investigate the implications this
has for conformance. In section 6 we see how variations in
the way correspondences are expressed lead to the specifi-
cation of different worlds. Finally, section 7 draws conclu-
sions and indicates some future directions for the work on
viewpoints and correspondences.

2 Background to the viewpoint concept

ODP introduces the concept of a viewpoint to support the
separation of concerns in the design process. When work-
ing on a large enterprise system it is unrealistic to capture
all the necessary constraints and decisions in a single flat
specification, or even in a straightforward hierarchical one
based on successive refinements.

Structuring the specification into viewpoints gives much
more flexibility. For example, an enterprise designer and
a middleware engineer can both work in viewpoints where
the requirements or constraints of the other party are repre-
sented in the simplest, most abstract, form necessary, with
links that establish correspondences between the two view-
points to ensure that all the detail is integrated into a single
consistent working solution. The general concept of view-
points is discussed at length in [3].

In the design of large, long lived systems we need to con-
sider not just the interrelation of viewpoints in a single com-
plete specification, but also the way in which the pieces of
specification interact during development. Changes in one
viewpoint specification during the design lead to inconsis-
tencies with others, and the correspondences declared can
be used to propagate and manage these changes. How this

can be done is discussed in [11] and [12].

A set of viewpoints may not all be expressed in the same
way; the different areas of concern may best be addressed
with different modelling tools and conventions. The cor-
respondences may link terms that are from different lan-
guages, making the unification of the viewpoints a challeng-
ing task for the tool provider.

The form of unification depends on the languages used
and is outside the scope of this paper, but a detailed study of
the formal basis for viewpoint unification mechanisms can
be found in [2]. The definition of consistency used there
is based on observational equivalence, and a set of view-
points is considered to be consistent if there exists at least
one implementation consistent with all the specifications.
However, this paper takes a less formal approach, illustrat-
ing some of the issues that arise by the use of simple exam-
ples and, as a result, comes to a slightly different view of
conformance.

CorrespondenceRule

+expression : Constraint

0.1 0."

CorrespondenceEndpoint

1.7

Term

Figure 1. Correspondence specification con-
cepts.

One of the first things to establish is how linkages be-
tween models are to be expressed.

In the recently defined UML profile for ODP [7] corre-
spondences are defined as separate specification fragments
called correspondence specifications. Each of these con-
nects a particular pair of viewpoints and itself consists of a
set of correspondence links which may themselves have as-
sociated correspondence rules giving additional constraints.
Each link joins two correspondence endpoints, and each of
these carries a UML tag containing a set of terms in the
appropriate viewpoint. The metamodel for this structure is
illustrated in figure 1.

It is important to allow each tag to reference a set of
terms, rather than a single term, because the correspondence
may well associate features in specifications expressed us-

ing different levels of abstraction, so that the linkage of
terms is not necessarily one to one.

Tags are used here rather than direct associations because
doing so maintains the independence between the various
model fragments. Indeed, associating textual representa-
tions of terms with the tags takes the details of the linkage
semantics out of the modelling language used for the frag-
ments, so that issues of name resolution and even of incom-
patibility of modelling notation between viewpoints do not
impact on the preparation of the model fragments or place
constraints on the tools used to do this. A particular tool
is concerned with just one viewpoint or correspondence at
a time. However, correspondence rules must be able to in-
corporate constraint expressions that are written in terms of
the viewpoint linked to, and so the representation of the cor-
respondence rules needs to encapsulate them; such expres-
sions follow the conventions of the viewpoint language, and
are opaque terms in the correspondence language. The in-
tegration tools that combine viewpoints must, of course, be
aware of the format and interpretation of all the elements
they need to manipulate.

This paper does not look in detail at the techniques for
implementing the integration of viewpoint specifications,
but discussion of the kind of tool framework needed can
be found in [1], and a transformational approach to corre-
spondences is proposed in [9].

3 A zoological example

As indicated in the introduction, the examples presented
here are deliberately artificial, leaving aside technological
issues to avoid unnecessary digressions on the basis of com-
mitment to different methodologies or schools of thought on
design technique. We want to concentrate here on how the
models interact and how different modelling choices have
diverging conformance implications.

For this reason, the examples are expressed in simple
UML, in term of classes and associations, and do not fol-
low the strict ODP conceptual framework. The correspon-
dences between viewpoints are complex enough, without
adding the particular conventions for expressing, for exam-
ple, composition and binding, defined in [7]. In the interests
of readability, we also talk about a viewpoint defining some-
thing, rather than using the fuller, strictly correct, formula-
tion of a system specification from a particular viewpoint
defining it.

In this example, we consider a system specification
formed by the combination of two domain-specific models,
together with two other models concerned with the descrip-
tion of some broad properties of entities. The specific do-
main is zoological; we consider the description of a simple
ecosystem in which a number of species compete.

First, there are two domain specific views. One defines

{child.ocIType = parent.oc|Type}

0,2[+parent

. Creature | ieats
=

+child
* | +isEatenBy

{eats.oclType <> isEatenBy.ocIType}

El F E

Figure 2. Creatures viewpoint.

three kinds of creature: cats, birds and fish. Relations be-
tween individuals are restricted to the description of a fam-
ily structure and of a part of the food chain. The most basic
domain model describes creatures, and is shown in figure
2. One association in this model represents parentage, with
an attached OCL [10] constraint that ensures that species
breed true; parents and children must be of the same type.
Another association represents some link in the food chain,
with its own constraint that prohibits cannibalism by ensur-
ing that the types linked by the association are different.

Creature |*inhabitant _ +habitat [yapijtat

A

’ desert | ’ woodland |

ocean

Figure 3. Habitats viewpoint.

The second domain-specific viewpoint describes the as-
sociation of creatures with the habitats they are adapted to.
This view focuses on the properties of the habitat and takes
an unspecific view of how creatures are categorized (see fig-
ure 3).

The remaining two viewpoints represent generic proper-
ties of entities. Firstly, the fact that entities have a colour is
represented in a reusable way by defining a separate view-
point concerned only with colour and colour constraints. To
express constraints, the colour of one entity can be con-
strained by the colour of two other entities by declaring a
ternary association called mingle, although the nature of the
constraint to be applied is not declared in the viewpoint it-

self. Pairs of sufficiently dissimilar colours are identified
by a simple symmetric association called clashesWith. The
model underlying this viewpoint is illustrated in figure 4.

) clashesWith
ColouredThing +input2
1 1
+colour +input1
+result |1
mingle

Figure 4. Colour viewpoint.

The second general property is expressed in another
small viewpoint expressed by associating a size with each
entity. The size attributes of two entities can be related by
an ordering relation with endpoints larger and smaller that
represents a partial ordering on the set of entities modelled.
This is illustrated in figure 5.

MeasuredThing
+larger

+size : double

+smaller

{larger.size > smaller.size}

Figure 5. Size viewpoint.

A complete specification might be established by first
defining one correspondence between the class Creature in
the Creatures viewpoint and the class ColouredThing in the
Colour viewpoint, and another between the class Creature
and the class MeasuredThing in the Size viewpoint.

The final correspondence that must be declared is be-
tween the two domain specific viewpoints. Although both
these viewpoints contains a class Creature, these are in dif-
ferent models and hence different namespaces, and so an ex-
plicit correspondence must be declared between them. So,
in summary, we have the following set of constraints equat-
ing classes in different viewpoints:

e Creatures.Creature = Habitats.Creature

e Creatures.Creature = Colour.ColouredThing

o Creatures.Creature = Size.MeasuredThing

Without any additional constrains, these specify a model
for a Universe of Discourse of creatures which can be cats,
birds or fishes, each of which has an unconstrained colour
and an unconstrained measurable size, and each of which
can live in any habitat.

4 Independence and Composition of Models

The four viewpoint models defined above are indepen-
dent. That is to say, they are each formed from a separate
set of interrelated concepts, but no model makes direct ref-
erence to terms in any other model in the collection. To
make this clear, we have assumed that each model is formed
at the outer level as a distinct package, so that, although
names within the scope of each package may have the same
textual form, they are initially unrelated.

Correspondences are expressed in a separate model for
each pair of viewpoints, as in the UML4ODP standard [7],
with each correspondence defining a series of linking items
between two endpoints. Each endpoint includes a tag ex-
pressing the references by naming something in one of the
models being linked by the correspondence; each corre-
spondence will generally include a rule to give some as-
sociated constraints on it.

]]

viewpointVa ViewpointVb

E&————E@p(ﬂdﬂoe————

Unified Model

Figure 6. Translating correspondence to
shared inheritance model.

By considering the correspondences one at a time, we
can, in each case, construct a single model from the two
models being linked and the correspondence itself. In one
such combination, all the references in the correspondence
are satisfied by items in one or other of the viewpoint mod-
els being linked, and so the tags can be flattened into com-

mon shared classes or associations (so long as the same no-
tations are in use; if not, a more complex linguistic transla-
tion process is needed as part of the unification). The result
of this process is one model subsuming the previous two
models and their correspondence; where some other model
had correspondences with both the merged models, these
will need to be merged to give just a single correspondence
from any other viewpoint to the merged model.

If we wish to unify the class structures, this process can
be expressed in terms of a multiple inheritance pattern, so
that correspondences between classes can be mapped by the
insertion of a single resultant class inheriting from a class in
each viewpoint definition. This transformation is illustrated
in figure 6.

We can repeat this composition process until we have
one large model derived from all the viewpoint models and
all the correspondences. If the model composition opera-
tions are associative, we can also apply a rewriting to flatten
the result at each stage, so that, although an iterative compo-
sition would naturally create a deep binary inheritance tree,
this can be replaced with a broader but flatter tree in which,
in the most complex case from the example (the Creature
Class), there is inheritance from four contributors.

Creature

2\
T ColouredCreature

ColouredThing

JA

’ Cat ‘ ’ Bird ‘ ’ Fish ‘

Figure 7. Multiple inheritance is not the right
answetr.

This works fine for isolated classes, but what about gen-
eralizations and associations? First, consider generaliza-
tion. Creature generalizes Cat, Bird and Fish; if we in-
clude these in the picture, the naive approach above would
give figure 7, in which cats have no colour, which is not
what was intended. In our particular example, we could
achieve the right result with a non-commutative merge in
which Creature becomes a refinement of the other three
corresponding classes; that is to say Creatures.Creature in-
herits from Habitats.Creature, Colour.ColouredThing and
Size.MeasuredThing. However, this only works if just one
viewpoint has additional complexity; adding further struc-
ture below any of the other classes would then still reintro-
duce the problem.

So the multiple inheritance approach does not work;
we need an approach that distributes the derived proper-
ties across the elements of the models being linked, and
this will involve a much more radical approach involving
rules for rewriting them. Unfortunately, most straightfor-
ward rewriting strategies seem to lead to embarrassing com-
plexity. For example, propagating the correspondence down
to the leaves of the inheritance tree yields a leaf for each
member of the power set of the contributing choices. Alter-
natively, contracting the tree into a labelling attribute (crea-
tureKind) avoids this problem but at the cost of an explosion
of guards if the specializations have extended the base class
in any significant way. Further work is needed to identify a
more satisfactory target pattern to use.

A similar problem applies for associations. Forming a
correspondence between associations leads to implied cor-
respondences between the instances linked by the associa-
tion, and hence with the classes describing them.

Another problem is that multiple correspondences be-
tween classes may lead to unsatisfiable constraints on as-
sociations, particularly where fixed multiplicities are spec-
ified. An example of a malformed pair of related view-
points is given in figure 8. Here, creating the correspon-
dences has made it impossible to satisfy the multiplicities in
the two viewpoints simultaneously (note that classes in the
viewpoints are abstract, so it is only the implied inheriting
classes that can be instantiated). This is because the corre-
spondences lead to an implied pair of concrete classes, X_Y
and A_B, such that instances of the classes will be required
to participate in both a 1:1 and a 1:2 association. Since,
by default, the association endpoints in UML form a set, so
that instances must be distinct, there is cardinality conflict
in the example.

[viewpoint 2

y A

1

[viewpoint 1

|
X % __ |correspondence " __
]

I
I
I
I
I
I
I
! I

A L __ __correspondence
k-
[

—_ —_ —- — = =

—_ —_ —- — = =

Figure 8. An inconsistent viewpoint corre-
spondence.

Although we are considering UML examples in gen-
eral, it is worth noticing here that the creation of a corre-
spondence between classes will, in general, imply that the
classes in the individual viewpoints are intended to be ab-
stract, and that instances can only have a concrete expres-
sion if the constraints from all relevant viewpoints are sat-
isfied. This has implications for the theory of conformance
in multi-viewpoint systems, which we examine next.

5 Well-Formedness and Conformance

The previous example illustrated that we need to be con-
cerned with the issues of well-formedness in families of
viewpoints, and that this is distinct from the issues of con-
formance to the set of specifications. Well-formedness is
related to absence of contradiction in the specifications, and
conformance is related to the absence of contradiction be-
tween the specifications and some proposed implementing
situation in the real world. We discussed at length the nature
of the implementation relationship in [8] and this analysis
applies equally but separately to all the viewpoints involved.

We can consider two approaches to conformance to a set
of viewpoints. These are:

1. to unify the viewpoints in order to produce a single
model and then to check conformance of the observed
behaviour of some proposed implementation to that
unified model;

2. to check conformance of each viewpoint separately,
and while so doing to mark the roles each element of
the implementation plays in satisfying the specifica-
tion; effectively, this corresponds to labelling the im-
plementation elements with terms in the specification
that apply to them. Once this process is complete, we
can check that the labellings with respect to each of the
viewpoints are consistent with the correspondences de-
clared between the viewpoints (note that the labelling
may involve asserting that an element definitely plays
arole, or definitely does not play a role, or has an unde-
fined status with regard to a particular role labelling).

It was noted above that correspondence tags represented
sets of terms. In fact, this is itself problematical, because,
although it does allow a correspondence to be made to the
components of some fine grain composite that reflects a
more abstract element in another viewpoint, the tag content
is unstructured; what is needed is not just a set of terms, but
the conditions under which they form some pattern equiva-
lent to the implied abstract concept that is being matched.

Thus, for example, suppose an abstract action in one
viewpoint corresponds to a specific piece of behaviour,
made up of a sequence of finer grain actions, in another
viewpoint. The fact that the fine grain actions do indeed

form a sequence is a necessary and significant part of the
correspondence. The same actions in a different sequence
will not do. Ideally, therefore, the terms in the tag should be
associated with roles in a pattern refining the abstract ele-
ment being matched, and the tag needs to convey all of this
information.

6 Constraining with correspondences

At the end of section 3, we gave a minimal set of cor-
respondences that gave our example coherence. Here we
want to look at the way the correspondences can be used to
place additional constraints, thereby restricting the freedom
of choice available in a conforming implementation.

The complete set of correspondences being discussed
here is summarized graphically in figure 9. We will build
up the full figure in a number of stages illustrating different
kinds of correspondence.

6.1 Finer scale class correspondences

Instead of associating Creature with ColouredThing di-
rectly, we can introduce specific correspondences for each
of the refinements of creature. We can then associate a lim-
itation on the permitted colour with each via a correspon-
dence rule. Now we can have a world populated by, say,
black cats, yellow birds and silver fish. Alternatively we
can restrict our creatures not just to one colour each, but to
restricted ranges of colour. Similarly, we can attach a char-
acteristic colour to specific habitats.

Note that placing these constraints in the correspondence
gives a cleaner separation than placing the constraint in ei-
ther of the viewpoints themselves, since the constraints nec-
essarily refer to terms in both viewpoints. The separation
of concerns is not perfect, but restricting the leakage to be
within the correspondences gives an effective tool to man-
age it, since it is then easier to see what terms are referenced
in the correspondence rules and so what couplings exist.

6.2 Association correspondences

Correspondences between associations allows differ-
ent features to be correlated. For example, making the
eats/isEatenBy association on Creature correspond to the
larger/smaller association on MeasuredThing leads to a re-
quirement that creatures only eat smaller members of a dif-
ferent kind from themselves. Perhaps cats eat sparrows, but
eagles eat cats.

It may be more appropriate to make the correspondence
between association endpoints than between associations,
particularly where the structure of the associations is differ-
ent in two viewpoints. Thus, for example, to express the

way breeding influences colour, we can make one corre-
spondence between endpoint child in Creature and endpoint
result in Colour:mingle and others between parent in Crea-
ture and the inputl and input2 in Colour:mingle. This gives
the framework for expressing some kind of Mendelian con-
straint on colour. However, the lack of semantics for min-
gle in the example so far makes this an empty constraint
at present. Two further constraints would be needed to
complete the picture, one giving the genetic rules, and one
the colour combination rules, and these could be imported
from the respective viewpoints, assuming the availability of
a suitable parameterized constraint structure for rules.

It should also be possible to negate the correspondence.
For example, the ColouredThing association clashesWith
could be defined as being required not to correspond to the
Habitat association inhabits, because creatures that are not
camouflaged get eaten.

Thus, by careful choice of constrained correspondences,
quite complex systems can be modelled starting from our
simple viewpoints while still maintaining separation of con-
cerns.

6.3 Behavioral correspondences

The example given here concentrates on the static classi-
fication structure, but in practical cases it is likely that a very
large number of the correspondences will be concerned with
actions and aspects of composite behavior. Here, in particu-
lar, there will be a need for correspondences between terms
at different levels of abstraction, and the difficulties associ-
ated with inheritance of behaviour will be conspicuous.

The running example used so far does not have the non-
trivial behaviour needed to illustrate the problems, but one
might consider, for example, the composition of an applica-
tion with a reliable transport protocol or a transaction man-
ager. The application might declare an invariant that is true
for all successful communication, but the supporting mid-
dleware can have hidden recovery actions such that, once
the viewpoints are combined, the invariant is violated dur-
ing what, to the application, had previously been seen as
atomic communication actions. Thus the system specifi-
cation as a whole has changed from having an invariant to
having a condition which is true only when a guard for com-
pletion of communication is true.

7 Conclusions

This paper has introduced an approach to the interpreta-
tion of correspondences based on permissible extensions -
that is to say, possible worlds in which all the viewpoints
are satisfied by using sets of term labellings that are con-
sistent with the correspondences. This approach provides

‘ ___________________ ~
| {child.ocIType = parent.ociType} __ |
— = ~_c — — — _
| /| 0,2|+parent— _ - =~ o : ~
T ~
I / Creature [~ ecats =~ o - > ~
* ~
I +child ~ o
[/ P T ~
+isEatenBy ~

/ - |

I - N

| / _ {eats.oclType <> |sEaten3y.ocIType) |

/ Ve

| /

- E-

| | | =~ =~

{ R l\ ___________ _

~ - _\' - - < ____________

| \ N o =

I \ N} I

| \ MeasuredThing |

! \ ize : doubl :

size : double
| \ + ul / I
| AN +smaller , |
N

| ~ L |

| >~ N {larger.size > smaller.size} |

[T [

[T T

\ @ L L L L L L J

7| Creature

+inhabitant +habi Habitat

/ Ay

/
AN

\ +input2
1\
+inpu

+colour

+result

- - mingle

~ - - — = =

Figure 9. The full set of constraints.

a reference semantics for assessing the correctness of pro-
posed techniques for unifying viewpoint models. As such,
it is an approach which is more likely to result in a robust
and stable base for viewpoint specification than attempting
to provide an operational semantics based on the specifica-
tion of transformations that manipulate viewpoint models
directly to produce a notional complete system model.

However, the next step in the exploration of this ap-
proach needs to be a debate amongst experts on the cor-
rectness and completeness of larger and more directly rel-
evant examples than the slightly whimsical artificial ones
used for illustration here. Hopefully, the discussions pre-
sented in this paper will initiate this process and thereby
clarify the requirements for tool support for viewpoint man-
agement and unification.

Acknowledgements

The author would like to acknowledge the contribution to
the initial development of the ideas presented here made by
discussion in the ISO SC7 WG19 on Techniques for Speci-
fication of IT Systems.

References

(1]

(2]

(3]

(4]
(5]
(6]
(7]

(8]

D. Akehurst. Proposal for a Model Driven Approach to cre-
ating a tool to support the RM-ODP. In Workshop on ODP
for Enterprise Computing (WODPEC 2004), In conjunction
with EDOC 2004, pages 65-68, Monterey, California, Sept.
2004.

M. Bowman, H. Steen, E. A. Boiten, and J. Derrick. A for-
mal framework for viewpoint consistency. Formal Methods
in System Design, 21(2):111-166, Sept. 2002.

M. GroBe-Rhode. Semantic Integration of Heterogeneous
Software Specifications (Monographs in Theoretical Com-
puter Science). SpringerVerlag, 2004.

ISO/IEC IS 10746-2, Information Technology - Open Dis-
tributed Processing - Reference Model: Foundations, 1996.
ISO/IEC IS 10746-3, Information Technology - Open Dis-
tributed Processing - Reference Model: Architecture, 1996.
ISO/IEC IS 10746-1, Information Technology - Open Dis-
tributed Processing - Reference Model: Overview, 1998.
ISO/IEC 19793 Information Technology - Open Distributed
Processing - Use of UML for ODP system specifications.
Moscow, May 2007. FDIS.

P. F. Linington and W. F. Frank. Specification and imple-
mentation in ODP. In J. Cordeiro and H. Kilov, editors,
Proceedings of the 1st Workshop on Open Distributed Pro-
cessing: Enterprise, Computation, Knowledge, Engineering
and Realisation, pages 69-80, Setubal, Portugal, July 2001.
ICEIS Press.

(9]

(10]

[11]

J. R. Romero, N. Moreno, and A. Vallecillo. Modeling
ODP correspondences using QVT. In Model-Driven En-
terprise Information Systems, Proceedings of the 2nd In-
ternational Workshop on Model-Driven Enterprise Informa-
tion Systems, MDEIS 2006, In conjunction with ICEIS 2006,
pages 15-26, 2006.

J. B. Warmer and A. G. Kleppe. The Object Constraint
Language: Precise Modeling with UML. Addison-Wesley,
1999.

N. Yahiaoui, B. Traverson, and N. Levy. Adaptation man-

agement in multi-view systems. In 2nd International Work-
shop on Coordination and Adaptation Techniques for Soft-
ware Entities (WCAT 05), pages 99-105, Glasgow, UK,
2005.

[12] N. Yahiaoui, B. Traverson, and N. Levy. A new viewpoint

for change management in RM-ODP systems. In 2nd In-
ternational Workshop on ODP for Enterprise Computing
(WODPEC 2005), pages 1-6, Enschede, The Netherlands,
2005.

