
112

Chapter V
Dynamic Delegation of

Authority in Web Services
David W. Chadwick

Computing Laboratory, UK

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

Delegation of authority (DOA) is an essential procedure in every modern business. This chapter enu-
merates the requirements for a delegation of authority Web service that allows users and services to
delegate to other users and services authority to access computer-based resources. The various models
and architecture that can support a DOA Web service are described. A key component of the DOA service
is the organisation’s delegation policy, which provides the rules for who is allowed to delegate what to
whom, and which needs to be enforced by the DOA service. The essential elements of such a delegation
policy are outlined. The chapter then describes a practical DOA Web service that has been built and
piloted in various grid applications. It concludes by reviewing some related research and highlighting
where future research is still required.

Introduction

Delegation of authority is an essential procedure
in every modern business. A delegate is defined
as “A person authorized to act as representative
for another; a deputy or an agent” (www.diction-
ary.com). Without delegation of authority (DOA),
managers would soon become overloaded. DOA
allows tasks to be disseminated between employ-

ees in a controlled manner. A delegate may be
appointed for months, day, or minutes, for one
task, a series of tasks, or all tasks associated with
a role. DOA needs to be fast and efficient with
a minimum of disruption to others. Delegators
should not need permission from their superiors
for each act of delegation they undertake, or
otherwise their superiors would soon become
overburdened with delegation requests from

 113

Dynamic Delegation of Authority in Web Services

subordinates. Instead, a delegation policy should
be in place so that delegators know when they are
empowered to delegate (i.e., what and to whom)
and when they are not.

The recipient (or service provider) who is asked
to perform a service for a delegate should be able
to independently verify that the delegate has been
properly authorized to act as a representative for
the delegator, before granting the request. If the
delegate has not been properly authorised, the
delegate’s request should be declined. The recipi-
ent will therefore enforce the delegation policy of
its organization and deny service requests from
unauthorized delegates.

In a computing environment there is also a
need for DOA. One computer process may need to
delegate to another computer process. One person
may need to delegate his privileges to another
person in order to allow the later to undertake
the computer-based tasks of the former. Similarly,
in a service-oriented world, computer services
also need the ability to delegate tasks to other
services, so that the latter can perform subtasks
on the former’s behalf. Service providers need
to be able to verify that each service requestor is
properly authorized. If the service requestor has
been dynamically delegated authority by another
authorized entity, service providers need to be
able to verify that this was done in accordance
with their delegation policy.

The objective of this chapter is to present a
model for dynamic delegation of authority in a
Web services world, in which users can delegate
to other users, services to other services, and users
to services. This chapter also describes a current
implementation of this model and compares and
contrasts it with other delegation systems that
only partially implement the model.

Background

In Grid computing today, which is based on Web
services, delegation from a user to his Grid job

is enacted via the process of proxy certificates
(Tuecke, Welch, Engert, Pearlman, & Thompson,
2004). The purpose of these is two fold. Firstly,
it allows a user to start a Grid job, and then leave
it to run in his absence for as long as is required,
without him needing to be there to continually
log in and authorize the use of new Web services
by the job. Secondly, it allows the job to migrate
around the Grid, and to spawn new subtasks to
run on other machines as necessary. These sub-
tasks can themselves authenticate as proxies of
the user and consume Web services (or resources)
that the user is entitled to have. The process
works as follows. The Grid user, who must have
an asymmetric key pair and X.509 certificate,
initializes his Grid job, and during this process
the job creates its own asymmetric key pair. The
user then issues an X.509 proxy certificate for the
Grid job, which certifies the public key of the job.
The proxy certificate also contains the name of
the job (which must be subordinate to the user’s
own distinguished name), the name of the user as
the issuer, and the signature of the user. The Grid
job can now authenticate to any Web service Grid
resource by digitally signing requests using its own
newly created private key, and the Web service can
authenticate the job using the job’s newly created
proxy certificate. Because the name of the Grid
job is subordinate to that of the user, then the Web
service knows that it has to check if the user is
authorized to access this service, and if so, then
the service is to be consumed on behalf of the user.
When a new subtask needs to be spawned, to run
elsewhere on the Grid, the spawned subtask can
generate its own new asymmetric key pair, and
the original Grid job can issue a second proxy
certificate for the spawned subtask, with a name
that is subordinate to its own. In this way the job
can delegate as necessary in order to achieve its
aims. In each case, the Web service checks if the
user, and not the job itself, is authorized to consume
its resources. This is easily achieved because the
name of the job is linked to the name of the user
by being subordinate to it.

114

Dynamic Delegation of Authority in Web Services

Note that in the basic proxy certificate scheme,
determining the user’s authorization rights is left
to the Web service. In Globus Toolkit, a grid map-
file is used to map the user’s authenticated (proxy
certificate) name onto a local user account name,
and the normal operating system mechanisms
are then used to control the access rights of each
user account. Proxy certificates do have a field
(the Proxy Policy field) to contain authorization
information, but no standard mechanisms are cur-
rently defined for what this field should contain,
other than “inherit all” or “independent.” In the
basic proxy scheme, the Proxy Policy field is set
simply to “inherit all,” meaning that the proxy
certificate inherits all the user’s access rights,
whatever they are. The Proxy Policy field may
alternatively be set to “independent,” meaning
that the proxy should be treated as an independent
entity that has its own authorization rights issued
to it, and it inherits no rights of the issuing user,
but we do not believe this latter value is currently
being used much, if at all.

A slightly more sophisticated mechanism has
recently been engineered in the Virtual Organiza-
tion Management Service (VOMS) (Alfieri, Cec-
chini, Ciaschini, Dell’agnello, Frohner, Lorentey,
& Spataro, 2005). This allows a user to delegate
an explicit subset of his roles to his grid job. The
user asks his local VOMS server to issue him
with one or more short lived X.509 attribute cer-
tificates (ACs) which contain (possibly a subset
of) his roles in the virtual organization (VO).
These attribute certificates are then placed inside
the job’s proxy certificate (in a new certificate
extension field—called AC Sequence—defined
specifically for this) and in so doing, the ACs can
be transported around the grid by the job and its
spawned subtasks. The purpose of these ACs is
to delegate to the job a specific (sub)set of roles
held by the user, so that the job only inherits the
(sub)set of permissions assigned to these roles.
Note that VOMS does not use the Proxy Policy
field for this, even though it was designed for this
purpose. This is so that service providers which

do not understand VOMS ACs and the new AC
Sequence certificate extension field, can still
utilize the proxy certificate in the basic way, by
using the Proxy Policy field and assigning all the
user’s permissions to the grid job. Whether this
is good practice from a security perspective or
not is open to debate.

As good as the proxy certificate scheme is,
nevertheless there are a number of problems with
its approach. Firstly, the delegator must have an
asymmetric key pair in order to sign the proxy
certificate. Most users today do not have X.509
certificates and signing keys. Thus, we need a
delegation process that does not mandate that a
delegator has an asymmetric key pair. Secondly,
proxy certificates cannot be revoked. Instead,
they are designed to be relatively short lived. This
means that once the Grid job has started, and its
proxy certificate has been issued, it cannot be
stopped automatically, and neither can any of the
spawned sub tasks. Instead, some form of manual
intervention by the Web service administrators
will be needed to kill the job. To try to limit the
damage, proxy certificates (and VOMS attribute
certificates) are given short lifetimes, typically of
the order of 24 hours, although the actual dura-
tion is application dependent. Ideally, we need a
more proactive way of revoking proxy certificates
after they have been issued and before they have
expired, for example, by re-evaluating their per-
missions at specific intervals or every time new
subtasks are spawned. Finally, the proxy certificate
approach only works for DOA from a user to a Grid
job and from a job to a spawned subtask, and does
not work from user to user. This is a significant
limitation in its applicability. In order to overcome
all these limitations we need a better approach to
DOA, one that is general purpose and can cater
for delegation from person to person, person to
task, task to task, service to service, and so forth,
in which the delegators are not mandated to have
PKI key pairs, and in which the act of delegation
can be revoked prematurely.

 115

Dynamic Delegation of Authority in Web Services

Requirements for Web
Services Delegation of
Authority

As stated above, the first requirement is for a
general purpose delegation of authority service
that can delegate from any type of entity to any
other type of entity (Requirement 1).

Secondly, we need to be able to independently
name the delegator and the delegate. It might be
acceptable in person to job delegation that the job
takes a name subordinate to that of the person, but
in person to person delegation and Web service
to Web service delegation we should not have
to make the delegate assume a principal name
which is subordinate to that of the delegator. For
the reason of prudent accountability, if nothing
more, every principal should authenticate with
its own identity, and not with that of another. So
delegation should be from one named entity to
another, where their names do not need to bear
any relationship to each other (Requirement 2).

In order to build a scalable authorization in-
frastructure, we need to move toward attribute or
role-based access controls, where a principal is
assigned one or more attributes, and the holder
of a given set of attributes is given certain access
rights to certain resources. In this way we can give
access rights to a whole group of principals, for
example, to anyone with an IEEE membership
attribute, or to any member of project X, or any
Web service of a specific type, without needing to
list all the members individually, as there might
be many thousands of them (Requirement 3).

The delegation scheme will benefit from a
hierarchical model for roles and attributes so that
delegators can delegate a subset of their roles/at-
tributes. With hierarchical roles and attributes, a
principal with a superior role (or attribute) inherits
all the permissions of the subordinate roles (or
attributes), and may delegate a subordinate role
rather than the most superior role he holds. For
example, a project manager may be superior to

a team leader who is superior to a team member
who is superior to an employee. Principals should
to be able to delegate any of their roles and attri-
butes to other principals, so that the delegate may
perform on their behalf only those tasks that are
enabled by the delegated attributes. For example,
a project manager should be able to delegate the
subordinate role of team member to an employee
(Requirement 4).

All organizations need to be able to control the
amount of delegation that is possible, in order to
stop “wrong” delegations from being performed.
For example, a project manager should not be able
to delegate his age or name attributes to anyone
else, nor be able to delegate the team member
role to one of his children. So we need to have a
Delegation Policy, and an effective enforcement
mechanism that will control both the delegation
process itself (is this delegator allowed to delegate
these attributes to this delegate?) and the verifica-
tion process by the consuming Web service (is
this delegate properly authorized to access this
service?) (Requirement 5).

We may want very fine grained delegation,
in order to delegate a specific task rather than
attributes or roles, because the latter usually
confer permissions to perform a set of tasks
(Requirement 6).

Users must not be constrained to having a
PKI key pair before they can delegate to another
entity. Users should be able to authenticate and
prove their identity without having to possess a
public key certificate (Requirement 7).

A delegator should be able to prematurely re-
voke an act of delegation, without the delegation
lasting for its originally intended period of time.
When delegation takes place, its effect should
be instantaneous. There are many reasons why
premature revocation may be needed, for example,
the delegator returns early from vacation or sick
leave and wishes to continue in his role himself,
or the delegate proves to be untrustworthy or
incompetent in the delegated role, or the del-

116

Dynamic Delegation of Authority in Web Services

egate moves position in the organization and the
delegation is no longer appropriate, and so forth
(Requirement 8).

Finally, we may wish to make the whole
DOA system Web services compliant, so that it
will integrate nicely with the service-oriented
architectures (SOA) Web services world that is
the subject of this book. (Note, however, that this
last requirement is not a functional requirement
of DOA, because we can map the concepts and
designs onto any underlying infrastructure, such
as IPv6 protocols, CORBA, and so forth. Rather,
it is an implementation requirement to facilitate
integration with the Web services world.) (Re-
quirement 9).

The rest of this chapter is structured as fol-
lows. The next section describes the hierarchical
role/attribute-based access control model, where
principals are given any attributes rather than
simply roles, and these attributes are used to gain
access to resources which are identified by their
attributes. The section after that describes a Web
services-based architecture of a DOA infrastruc-
ture that will allow any principal to delegate any

attribute to any other principal, providing it is in
accordance with the organisation’s Delegation Pol-
icy. The following section describes the features
that are needed in an organisation’s Delegation
Policy in order to allow principals to delegate their
attributes to other principals. The penultimate
section describes one practical implementation
of this DOA Web services infrastructure, and
shows screen shots of a browser interface that al-
lows humans to delegate attributes to and revoke
attributes from other humans. The final section
concludes with a comparison of several other
schemes and indicates where further research is
still needed.

The Hierarchical RBAC/ABAC
Model

Role-based access control (RBAC), our Require-
ment 3, was standardised by NIST and is now
published as an American National Standard
(ANSI, 2004). Figure 1 shows the ANSI RBAC
model. Users are assigned roles via user assign-

Figure 1. The NIST/ANSI RBAC model

 117

Dynamic Delegation of Authority in Web Services

ments (UAs). A user may be assigned zero, one,
or more roles. A user with zero roles currently
assigned will not be able to access any protected
objects.

A role may have zero, one, or more users as-
signed to it at any time, in order to cater for the
natural migration of users between roles in an
organisation. Roles are assigned permissions via
Permission Assignments (PAs). A permission is
the ability to perform an operation on a protected
object or resource, for example, print to a laser-
jet printer, or invoke a Web service. A role may
have zero, one, or more permissions assigned to
it. A permission may also be assigned to a set of
roles, for example, in order to read certain files
of project X, the roles of employee and member
of project X are needed. A user obtains the per-
mission to perform an operation on an object by
being assigned the role or roles that has (have) the
required permission(s) assigned to it (them). Users
are statically constrained from having certain per-
missions by not being assigned the required roles.
For example, in a bank the same person cannot
usually audit transactions and be a teller, so static
constraints will forbid the same user from being
assigned both the teller and auditor roles.

In the ANSI RBAC model, roles may be
organised in a hierarchy to suit the particular
needs of an organisation. The reason for hav-
ing a hierarchy is that senior or superior roles
inherit the permissions assigned to their junior
or subordinate roles, so that the permissions do
not need to be explicitly assigned to the senior
role. This simplifies permission assignment and
provides a solution for Requirement 4. For ex-
ample, say a project manager role is superior to
a team leader role, and the team leader role has
the permission sign off project task assigned to it.
The project manager role automatically inherits
this permission from the team leader role. Role
hierarchies may be general hierarchies in which
there is an arbitrary partial order between all
the roles, or may be limited hierarchies in which
some restrictions apply, for example, the hierarchy

forms a tree structure or inverted tree structure.
An organisation’s general role hierarchy can be a
disjoint set of several hierarchies, in which there is
no single most superior role or most subordinate
role. This allows limited permission inheritance
to propagate between the roles.

By extending the ANSI RBAC model to in-
clude attributes of a user, such as age, name, and
qualifications, in the role hierarchy, we can assign
permissions to attributes as well as to roles, and
migrate toward an attribute based access control
(ABAC) model. Furthermore, by extending RBAC
so that permissions can refer to operations on
classes of objects identified by their attributes
instead of operations on specifically named ob-
jects, we extend the migration to ABAC. Also by
supporting resource class hierarchies, in which
subordinate resource object classes inherit the
attributes of their superior more generic object
classes, we allow permission assignments to
be inherited by subordinate object classes. For
example, a permission assignment that says that
users with the employee role can print on print-
ers, through the process of role and resource
object class inheritance we simultaneously allow
managers (who are superior to employees) to
print on laser jet printers (which are subordinate
to printers).

In order to cater for dynamic constraints, in
which a conflict of interest might arise if a user
acts in multiple roles simultaneously, but not if
a user acts in the roles independently, the con-
cept of sessions is introduced. For example, say
the traveller role is allowed to complete travel
expenses claim forms and the manager role is
allowed to authorise completed forms. People who
are managers are usually travellers as well, but
obviously managers are not allowed to authorise
their own completed travel claim forms. Thus, a
user cannot simultaneously act as a traveller and a
manager in a session in order to complete a travel
claim form and then authorise the completed
form. When a user wishes to use the system he
must activate one or more of his roles in a session,

118

Dynamic Delegation of Authority in Web Services

and the dynamic constraint will not allow him to
activate conflicting roles in the same session. In
the case of the travel claim request scenario, the
user session starts when the travel claim form is
opened and finishes when the user has finished
accessing it.

Applying ABAC to Distributed Web
Services

The ANSI RBAC standard says nothing about
how roles are assigned to users or permissions
are assigned to roles. In this chapter, we assume
that each role and attribute has an administrative
authority that controls the assignment of roles and
attributes to users. We further assume that in a
distributed environment there will be many such
attribute authorities (AAs) that reside in different
domains from each other and from the Web service
that is being accessed. Consequently, it must be
the Web service provider itself that decides who
are the attribute authorities that it trusts to assign
which roles and attributes to which users, and
furthermore, what permissions to confer on each
attribute and role. In this way, each Web service
remains autonomous and in direct control of who
is authorised to access its resources.

Roles (or attributes) are assigned to users in
the form of attribute assertions, or attribute cer-
tificates (ACs), in which an issuer (an AA) asserts
that a holder has a particular attribute. An AC is
a digitally signed or “certified” attribute asser-
tion. Each attribute assertion should contain: the
name (or identity) of the holder, the attributes that
have been assigned to the holder by the issuer, the
name (or identity) of the issuer that is, the AA,
and the period of time the assertion is valid. At-
tribute assertions may also optionally contain the
policy rules of the issuer, for example, limiting the
resources that the assertion may be presented to.
The assertion may be digitally signed by the issuer
to prove or certify that the contents are authentic.
In a distributed environment the digital signature
will always be necessary, unless a trusted path

exists between the issuer and the consuming Web
service. Examples of ACs are: a degree certificate
issued to a graduate by a university, a state reg-
istered nurse certificate issued to a nurse by the
Royal College of Nursing, an employee certificate
issued to a member of staff by the employing
organisation, and a project manager certificate
issued to a person by a VO manager.

There are two standard formats for attribute as-
sertions, or ACs. The first is the ISO/ITU-T X.509
Attribute Certificate format (ITU-T, 2005), and
the second is the OASIS SAML attribute assertion
format (OASIS, 2005). The primary difference
between the two formats is that the former is a
binary encoding of the assertion, while the latter
is an XML text encoding; furthermore, the digital
signature is mandatory in the X.509 AC format,
and optional in the SAML attribute assertion
format. Both formats are infinitely extensible to
allow for bespoke tailoring by applications and
issuers, for example, to add application specific
policy rules. Both of these token formats can be
used as authorisation credentials by users, and
a Web services infrastructure should be able to
cater for both of these formats as a minimum. If
a user presents an X.509 AC or SAML attribute
assertion to a Web service, the service should be
able to determine from the attribute authorities
that it trusts if the user has sufficient attributes (or
roles) to be granted access to its resources.

A Web Services-Based
Delegation of Authority
Architecture

The ISO Standard 10181-3 (ITU-T, 1995) provides
a general architectural model for controlling ac-
cess to networked resources (see Figure 2). In this
model, the access control enforcement function
(AEF) or policy enforcement point (PEP)—the
terms are synonymous—intercepts an initiator’s
access request and asks the application independ-
ent access control decision function (ADF) or

 119

Dynamic Delegation of Authority in Web Services

policy decision point (PDP)—again the terms are
synonymous—if the initiator is allowed to perform
the requested action on the target resource. The
PDP examines the authorisation credentials of
the initiator and consults its policy—which can
be an ABAC or RBAC policy—to determine if
the initiator has sufficient attributes (or roles) to
be granted access to the target resource. From
this evaluation it returns a granted or denied
response to the PEP. The initiator’s credentials
may be provided by either the initiator in its ac-
cess request, or the PDP can retrieve them itself
from the issuer or a credential repository.

The architectural model (Figure 2) is ideal
for controlling access to Web services. The Web
service endpoint reference is the PEP that traps the
user’s service request. It then forwards the user’s
request to the PDP asking for an authorisation
decision. The PEP and PDP can be collocated,
or distributed, and communicate via an open

protocol such as in Welch, Ananthakrishnan,
Siebenlist, Chadwick, Meder, and Pearlman
(2006). If the PDP returns granted, the user is
allowed to consume the resources of the Web
service, but if the PDP returns denied, the user’s
request will be rejected by the PEP. The complex
task of deciding if the user has the correct set of
attributes for the requested service is handed over
to the application independent PDP to determine.
It is the PDP that will decide if the user has been
properly assigned or delegated the attributes that
are asserted in the user’s credentials according
to the authorisation policy that is written by the
Web service administrator.

Interestingly, we can also utilise the above
model when creating a delegation of authority
(DOA) Web service (see Figure 3). The DOA Web
service will receive a delegation request from a
delegator to delegate an attribute or attributes to
a delegate. The delegator can be any Web ser-

Figure 2. X.812/ISO 10181-3 access control framework

120

Dynamic Delegation of Authority in Web Services

vice, or a human being acting via a Web services
user interface. The delegate can be another Web
service or another human being. In this way, we
achieve the desired objective of person to person,
service to service, person to service, and service
to person delegation of authority (Requirement 1).
The target resource is the Web service software
that is able to issue an authorisation credential,
in the form of an AC, for the delegate, on behalf
of the delegator. This issue AC software should
be capable of creating the attribute certificate in
either X.509 AC or signed SAML attribute asser-
tion format. This issue AC software should have
its own digital signing key pair for this task, so
that future credential recipients can verify that the
issued credential is authentic. Because most users
do not have their own PKI key pairs, they cannot

issue their own ACs. This is why we require the
DOA Web service to sign the credential on the
delegator’s behalf. This solves Requirement 7.

The delegator’s request will be intercepted
by the PEP, and passed to the PDP to ask if this
user is allowed to delegate this/these particular
attribute(s) to this delegate, according to the
organisation’s delegation policy (Requirement 5).
The PDP retrieves the delegator’s current set of
authorisation credentials or roles/attributes from
the local repository, and consults the delegation
policy to see if the requested delegation is allowed
or not. If the policy allows the delegator and del-
egate to be independently named, then this solves
Requirement 2. As a result of evaluating the policy,
the PDP replies granted or denied to the PEP. If
granted, the PEP will ask the Issue AC software

Figure 3. The delegation of authority Web service architecture

 121

Dynamic Delegation of Authority in Web Services

to issue a delegated authorisation credential to
the delegate on behalf of the delegator, and will
then either publish this in the local credential
repository or return it to the requestor, or both.
The delegate will now be able to use the issued
credential to gain access to the service that has
been delegated to him, and may also be able to
further delegate the embedded attribute to other
delegates, if allowed by the delegation policy. If the
local repository stores delegated attributes instead
of credentials, the Issue AC software will still
create the delegated attribute(s) for the delegate,
but not sign them, and the delegated attribute(s)
will be stored in the repository. Subsequently,
the delegate will be able to ask the DOA Web
service to issue a new credential for him, based
on the attributes that are stored for him in the
local repository.

When a delegator makes a Delegate Attribute
request to the DOA Web service, the delegator is
first authenticated to determine who he or she is.
Delegator authentication can be by any suitable
means, and can be via an internal authentication
service or external Web service. This model does
not dictate any particular authentication scheme
(Requirement 7). It is up to an implementation
to determine the most appropriate authentica-
tion mechanism to use. That being said, digital
signatures would be the most appropriate and
secure mechanism for Web service to Web service
authentication, but for authenticating a human
user that is accessing the DOA Web service via
a Web services user interface, a username and
password stored in the local LDAP directory
might be appropriate.

The next step is to optionally map the request-
or’s authenticated name into the authorisation
name that is held in the authorisation credentials.
This step is only needed if the two names are differ-
ent, for example, when proxying is used (this will
be described in more detail in the Implementation
Section) or when the authentication mechanism
uses a different name form to that stored in the
issued credentials. Ideally this step should not

be needed in the latter case, because the authen-
ticated name should be held in the authorisation
credential. If the mapping is needed, how this is
performed is not part of the model, but care will
be needed because a security vulnerability will
be introduced if the mapping is not made in a
secure manner.

Once the PEP has the delegator’s authorisation
name, it asks the PDP if this user is allowed to
delegate this/these particular attribute(s) to the
delegate. If granted is returned, the PEP then
asks the target resource (Issue AC) to issue the
new authorisation credential to the delegate, on
behalf of the delegator. It then publishes the new
credential in the repository or returns it to the
requestor. If the delegate wishes to further delegate
this credential to someone else, then the delegate
will now take on the role of delegator and access
the DOA Web service to request delegation of
this/these attribute(s) to someone else. In this way,
delegation can continue automatically from one
user to another, providing, of course, that each
delegation is in accordance with the organisation’s
delegation policy.

The model supports two different modes of
operation, depending upon whether the repository
stores credentials or attributes/roles. In both cases,
delegation only takes places once, but credential
issuing may take place zero, one, or more times.
When the repository stores credentials, they are
only issued once by the DOA Web service, they
will typically have a relatively long lifetime (the
period of the delegation), and they can be retrieved
at will from the repository by users or by Web
services that wish to validate the authority of a
user to access its service. When the repository
stores attributes/roles, the DOA Web service
can be called repeatedly to issue typically short
lived credentials based on the attributes/roles that
have been delegated and stored in the repository.
When the DOA Web service is only issuing al-
ready delegated attributes, the delegator’s name
is not required, only the name of the delegate.
In both modes of operation the repository will

122

Dynamic Delegation of Authority in Web Services

need to record the validity period of the delega-
tion and any policy conditions that are attached
to it. If credentials are stored, this information is
embedded in the issued credentials, if attributes
are stored, separate fields will be needed in the
repository to record it. When the repository stores
attributes, it has to be strongly secured to pre-
vent tampering with its contents and an attacker
inserting false attributes. When the repository
stores credentials, because the latter are digitally
signed, it is not possible for an attacker to insert
false credentials into the repository without first
gaining access to the private signing key of the
Issue AC service. Even if the repository is only
weakly protected, the worst an attacker could do
would be to remove a user’s credentials, a denial
of service attack.

The Advantages of a DOA Web
Service

Here, we summarise the benefits of using a DOA
Web service instead of each delegator issuing their
own delegated credentials. Firstly, the DOA Web
service can support a fully secure audit trail and
a repository, so that there is an easily accessible
record of every authorization credential/attribute
that has been issued and revoked throughout the
organization. If each delegator were allowed to
independently issue their own credentials, then
this information would be distributed throughout
the organization, making it difficult or impossible
to collect, being possibly badly or never recorded
or even lost.

Secondly, the DOA Web service can be pro-
vided with the organization’s delegation policy,
and apply control procedures to ensure that a
delegator does not overstep her authority by is-
suing greater permissions to delegates, or even
to herself, than the organization’s policy allows.
For example, a delegator may have an attribute
that they are allowed to delegate to others, but
not allowed to assert themselves. Without proper
controls a delegator may delegate the attribute to

himself so that he is then allowed to assert the
attribute. A well constructed delegation policy
and PDP enforcement mechanism can ensure that
this does not happen.

Thirdly, we don’t get cascading revocations.
In a traditional certificate chain, such as a PKI
certificate chain, if any superior certificate in the
chain is revoked, then all the subordinate certifi-
cates are also automatically revoked. Thus, if a
delegator issued her own ACs, and her delegates
then issued their own ACs, then if her AC was
subsequently revoked, then all the delegates’ ACs
would also become immediately invalid. We typi-
cally don’t want this to happen in an organization.
For example, if a manager delegates various roles
to members of staff in her department, and is then
replaced and her role is revoked, we don’t want
all the delegated roles to be immediately revoked
as well, or the department might grind to a halt.
This does not happen with a DOA Web service.
Because all the ACs are issued and signed by the
DOA Web service, then a delegator’s AC can be
revoked without causing any of the delegate’s ACs
to be automatically revoked. Note however, if we
record the name of the delegator in each issued
AC, we are still able to implement cascading
revocations if we require them.

Fourthly, the complexity of AC chain valida-
tion is significantly simplified. When delegators
issue the ACs themselves, the AC chains can be-
come arbitrarily long. When the DOA Web service
issues the ACs to delegates, the AC chain length
will always be a maximum of two, depending upon
who the relying party trusts. If the relying party
trusts the administrative authority that operates
the DOA Web service and the former has delegated
the issuing of ACs to the latter, then the chain
length will always be two (trusted authority) 
(AC of DOA Web service)  (AC of delegate). If
the relying party trusts the DOA Web service as
a root of trust, then AC chain lengths are reduced
to just one, the AC of the delegate issued by the
trusted DOA Web service.

 123

Dynamic Delegation of Authority in Web Services

Finally, a delegator does not need to hold and
maintain her own private signing key, which
would be needed if the delegator were to issue and
sign her own ACs. Only the DOA Web service
(the Issue AC component) needs to have an AC
signing key.

The only disadvantage of using a DOA Web
service is that the AC signing key must be per-
manently online and ready to be used to sign ACs
when requested. In some highly secure systems
and applications, this will be unacceptable.

Revocation of Authority

There are several different approaches that have
been taken to the complex issue of revocation of
authority, and of informing remote relying parties
when revocation has taken place. Relying parties
in our context refers to Web service providers who
consume the issued credentials. The primary ob-
jective of revocation is to remove a credential (and
all its copies, if any) from circulation as quickly
as possible, so that relying parties are no longer
able to use it. If this is not possible, a secondary
objective is to inform the relying parties that an
existing credential in circulation has been revoked
and should not be used or trusted. The latter can
be achieved by requiring either the relying parties
to periodically check with the credential issuer,
or the credential issuer to periodically notify the
relying parties. Of these, requiring the relying
parties to periodically check with the credential
issuer is preferred, because it places the onus on
the relying parties rather than on the issuer, be-
cause in general an issuer may not know who all
the relying parties are, but the latter will always
know who the issuer is.

The simplest approach, that used by X.509
proxy certificates (Tuecke et al., 2004), VOMS
ACs (Alfieri et al., 2005), and SAML attribute
assertions (OASIS, 2005), is to never revoke a
credential, and instead to issue short lived delega-
tion/ authorisation credentials that will expire after

a short period of time and thus be effectively and
automatically removed from circulation within a
fixed period. The assumption in this case is that
it is unlikely that authorisations will need to be
revoked immediately after they have been issued
and before they have expired. Because they are
only valid for a short period of time, the opportu-
nity to inflict damage through the illegitimate use
of the authorisation credentials is short lived. Of
course, the amount of damage that can be done in
a short period of time can be huge, so short lived
credentials are not always the best solution. Con-
sequently, SAML attribute assertions also have
the optional feature of containing a “one time use”
element, which means that the consuming Web
service can only use the attribute assertion once
to grant access, and then it should never be used
again. Instead, a new attribute assertion should
be obtained from the attribute authority each time
the user requests access to the Web service. This
feature could be used in our DOA architecture,
either at delegation time, in which case it would
allow a delegator to delegate an attribute for one
time use only by the delegate, or at issuing time
(if attributes are stored in the repository) in which
case the short lived ACs would be flagged for
one time use.

An advantage of short lived credentials is that
they effectively remove a credential from circula-
tion after a short period of time, and consequently
they mandate that users or service providers must
frequently contact the credential issuer in order
to obtain new freshly minted credentials.

The main disadvantage of short lived cre-
dentials is knowing how long to issue them for.
They should be valid for the maximum time that
anyone is likely to need them for, or otherwise
one of the later steps of a user’s task may fail to
be authorised before the task has been completed,
which could lead to the task being aborted and all
the processing lost. This is a current well-known
problem with proxy certificates. On the other hand,
the longer they are valid, the greater their period

124

Dynamic Delegation of Authority in Web Services

of vulnerability to misuse without any direct way
of withdrawing them from circulation. This has
caused some researchers to suggest that proxy
certificates should be revocable!

A second disadvantage of short lived creden-
tials is that the bulk of the effort is placed on the
issuer, who has to keep reissuing the short lived
credentials. This could become a bottleneck to
performance. A better solution should put the bulk
of the processing effort onto the relying parties,
because these are the ones who want to use the
issued credentials.

A different approach to achieving the second-
ary objective of revocation is to notify the relying
parties when revocation has taken place by issuing
revocation lists. A revocation list is a digitally
signed list of revoked credentials, usually signed
by the same authority that issued the original
credentials. Revocation lists have an expiry time
and are updated and issued periodically. Relying
parties are urged to obtain the next issue of the
revocation list before the current one has expired,
in order to keep as up to date as possible. The lat-
est revocation list can be sent by the user along
with his credentials, to prove that his credentials
have not been revoked, or the relying party can
independently download them from the issuer’s
repository. The use of certificate revocation lists
(CRLs) is the approach standardised in X.509
(ITU-T, 2005) and is most frequently used by
X.509 public key infrastructures. Revocation
lists ensure that relying parties are eventually
informed when a credential has been revoked, no
matter how many copies of the credential there
are in circulation, but revocation lists have several
big disadvantages. Firstly, there is always some
delay between a user’s credential being revoked
and the next issue of the revocation list appearing.
This could be 24 hours or even longer, depending
upon the frequency of issue of the CRLs. Thus,
in order to reduce risk to a minimum, a relying
party would always need to delay authorising
a user’s request until it had obtained the latest
CRL that was published after the user issued his

service request, which of course is impractical for
most scenarios. If the relying party relies on the
current revocation list, then the risk from using
a revoked credential equates, on average, to half
that of using a short lived credential, assuming
the validity period of a short lived credential is
equal to the period between successively issued
CRLs. This reduced risk comes at an increased
processing cost.

CRLs can put a significant processing load on
both the issuer and the relying party. CRLs have to
be issued at least once every time period, regard-
less of whether any credentials have been revoked
or not during that period. In a large system the
lists can get inordinately long containing many
thousands of revoked credentials. These have to
be reissued every time period, distributed over
the network, and read in and processed by the
relying parties. Delta revocation lists (ITU-T,
2005) have alleviated this problem, but again by
increased processing complexity. Consequently,
few people, if any, today are using revocation lists
with authorisation credentials.

An alternative approach to notifying relying
parties is to use the online certificate status proto-
col (OCSP) (Myers, Ankney, Malpani, Galperin,
& Adams, 1999). Rather than a relying party peri-
odically retrieving the latest revocation list from
the issuer’s repository, the OCSP allows a relying
party to ask an OCSP responder in real time if a
certificate (i.e., credential) is still valid or not. The
response indicates if the certificate is good, or has
been revoked, or its status is unknown. Because
most OCSP responders base their service on the
latest published revocation lists, the revocation
status information is no more current than if the
relying party had consulted the latest revocation
list itself; thus the risk is not lessened. But what
an OCSP responder does do is reduce the amount
of processing that a relying party has to undertake
in order to validate a user’s credential/certificate.
This reduced cost to the relying parties is offset
by the cost of setting up and running the OCSP
service.

 125

Dynamic Delegation of Authority in Web Services

We can see that none of the above approaches
to revocation is ideal. Delegation of authority
might last for a long period of time, especially
when humans delegate roles that are meant to last
for months or even years. We could issue long
lived credentials, but the use of CRLs for revo-
cation has many disadvantages. We could issue
short lived credentials, but there is an inherent
conflict between long lived delegation and short
lived credentials that needs to be resolved. In the
proposed architectural model this can be resolved
by storing delegated attributes in the repository,
along with the validity period of the delegation,
and then repeatedly issuing short lived credentials
as and when they are required until the delega-
tion period has expired. Early revocation of the
delegation is then achieved by removing the user’s
attributes from the repository. This approach is
viable, but we are still left with the problem of
determining the validity period of the short lived
credentials.

Consequently, we propose an alternative
scheme that we believe is superior to short lived
credentials, CRLs, and OCSP servers. We believe
that the optimum approach to credential issuing
should have the following features. A user’s cre-
dential should be issued just once and stored in
the issuer’s repository with its own unique URL.
The credential should be valid for as long as the
delegation is required, which can be a relatively
long or short period of time. This minimises the
effort of the credential issuer (and the delegator).
A credential should be able to be used many times
by many different service providers, according to
the user’s wishes, without having to be reissued.
This mirrors the situation today with our plastic
credit cards and other similar types of credential.
A credential should be capable of being revoked
at any time, and the revocation should be instant.
This can be achieved by the issuer simply deleting
the credential from its repository and requiring
relying parties to contact the issuer’s repository
periodically, using the URL of the credential,
to check if the credential is still present or has

been revoked. This period can be determined by
the relying party according to its risk mitigation
strategy. This period can vary per application or
per user request, and is set by the relying party
as appropriate, and not by the issuer, which is
putting the responsibility where it belongs. Ide-
ally, a relying party should contact the repository
when the credential is first used, and then periodi-
cally during the life of the authorisation session
according to its own risk assessment. In order to
strongly bind the repository to the credential, the
credential’s URL is embedded in the credential,
so that the relying party knows where to go to
check for the revocation status of the credential.
This design minimises the processing effort of the
issuers and the relying parties, because issuers do
not need to continually mint new credentials, and
relying parties do not need to process potentially
large revocation lists. A secure network lookup,
for example using TLS (Dierks & Allen, 1999) to
bind to the repository URL, is all that is needed
to ensure that a credential is still valid and has
not been revoked. A simple bitwise comparison of
the initial validated credential with subsequently
retrieved copies is all that is needed to ensure that
the credential is still the same one. Finally, there is
little possibility of the credential expiring before
the user’s task has been completed, because it is
likely to be long lived, which is not the case with
short lived nonrevocable credentials.

The Delegation Policy

In essence, the delegation policy needs to say
who (i.e., the delegator) is entitled to delegate
what (i.e., which roles and attributes and if
fine grained delegation is also required, which
tasks or permissions as well) to whom (i.e.,
the delegate), and under what constraints. The
process of delegation forms a directed acyclic
graph (DAG), with the initial attribute holders
that is, initial delegators, as the sources of the
graph (see Figure 4). Intermediate nodes in the

126

Dynamic Delegation of Authority in Web Services

graph represent delegates who subsequently act
as delegators and further delegate their attributes
(or permissions) to others. Sink nodes represent
delegates who have not further delegated their
attributes (or permissions) to others. Edges in
the graph represent the attributes or permissions
that have been delegated from the delegator to the
delegate. Successor edges must always represent
the same or less attributes and permissions than
the union of their predecessor edges; otherwise
a delegator will have delegated more privileges
than he himself possessed. The graph is acyclic
because a delegator should not be able to delegate
to herself or to a predecessor (e.g., edges 14 and
17 in Figure 4). Rationally, there is a reason for
this; a delegate should never need to delegate to
an entity that previously delegated directly or
indirectly to it. But there is also a security reason
for this. There is a potential security loophole if a

delegator, who is allowed to delegate a privilege
but not to assert it, does subsequently delegate it
to herself, as then she would be able to assert the
delegated privilege (see later).

The delegation policy specifies the schema for
this directed acyclic graph, thereby controlling
which entities can be sources, sinks, and interme-
diate nodes, and what the attribute relationships
between the nodes are.

A simplified form of the directed graph is a
delegation tree, in which there is only one source
or root node which holds all the attributes that can
be delegated, and each act of delegation creates a
separate delegate subordinate node. If a delegate
receives attributes from two or more delegators in
separate acts of delegation, such as edges 7 and 12
in Figure 4, then these are represented as separate
edges and nodes in the tree, without merging the
delegate nodes together. The purpose of this is

Figure 4. An example delegation directed acyclic graph

 127

Dynamic Delegation of Authority in Web Services

to forbid such a delegate from combining their
various attributes together and delegating them
to another delegate in a single act of delegation,
such as in edges 8, 10, or 11 of Figure 4. Instead,
multiple separate acts of delegation must take
place, thereby maintaining the tree structure.
The reason for this is that subsequent delegation
and revocation become cleaner and easier to
determine. In the case of delegation it is easier
to prevent cycles from occurring. For example,
in Figure 4, should the delegation from David
to Fred take place in edge 17? The answer is no
if it contains attributes from edges 6 or 4, but
yes if it only contains attributes from edge 12.
Consequently, determining which delegation is
allowed and which is not can be quite complex in
a DAG, but it is much easier in a tree. The process
of revocation is to remove a delegation edge from
the DAG and any consequential edges dependent
upon the revoked edge. When delegation forms a

tree, revoking an edge simply removes the whole
subtree in a single act of revocation. With a DAG,
there may be multiple incoming edges to a del-
egate node (from the same or different delegator
nodes, as in edges 4 and 6 to Joe or 7 and 12 to
David, respectively), and multiple outgoing edges
to further delegates. If one of the incoming edges
is revoked, the process of determining which
outgoing edges and further delegate nodes should
be deleted and which should remain becomes
much more complicated. Thus, delegation trees
significantly simplify delegation DAGs.

Concerning what can be delegated from a
delegator to a delegate, this can be determined
by reference to the role hierarchy. A delegator
should be allowed to delegate any of the roles or
attributes that he possesses or any of their junior
roles from the role hierarchy. We have already
described the role hierarchy in the fourth sec-
tion, which specifies the partial order relationship

Figure 5. Combining permissions with the role hierarchy to determine what can be delegated

128

Dynamic Delegation of Authority in Web Services

between the attributes and roles, but we can also
add the permissions that each role or attribute has
been granted into this hierarchy as well, making
them the leaves of the delegation role hierarchy
(see Figure 5). In this way the holder of an at-
tribute (represented by a large circle in Figure 5)
can delegate this particular attribute or any of its
subordinate attributes from the role hierarchy or
any of their associated permissions (represented
by small circles in Figure 5), to a delegate in the
DAG or delegation tree. For example, referring
to Figure 5, a person holding the project manager
role should be able to delegate this role, or any
of its subordinate roles, for example, Quality
Engineer, or any of the associated permissions,
for example, Update Project Plans, to a delegate.
This gives the delegator fine grained control
over what he is able to delegate (Requirement
6). In the delegation DAG, a successor edge in
the delegation graph must contain the same or
less attributes/permissions than the union of its
predecessor edges, with reference to the role and
permissions hierarchy.

Note, however, that there is one significant
difference between the roles and the permissions
in Figure 5. The roles are assigned by the attribute
authorities in one domain, while the permissions
are assigned to the roles by the service provid-
ers in possibly different domains. Furthermore,
different service providers may assign different
permissions to the same role/attribute. For ex-
ample, you might posses an American Express
credit card, and find that it is not valid in one shop,
is valid for any purchases in another shop, and is
only valid for purchases over £5 in a third shop.
The attribute has not changed, but the permission
assigned to it has, according to the policy of the
service provider. Thus, in order to achieve fine
grained authorisation at the permission level,
the attribute authority will need to closely liaise
with the various service providers in order to add
these permissions to its delegation role hierarchy.
Note that we can achieve the same fine grained
control over delegation if we create new uni-per-

mission roles as the leaves of the role hierarchy,
where each new uni-permission role is assigned
just one of the permissions of the superior “real”
role, for example, we can create an AccessPrinter
role subordinate to the Employee role in Figure
5 to replace the Access Printer permission. This
uni-permission role will not be assigned to a per-
son initially, but it may be delegated to another
entity dynamically. However, for this dynamic
fine grained delegation of authority to work in a
Web services world, the service provider that has
assigned the permission to the role, for example,
Access Printer to the Employee role, will now need
to update its access control policy and add the new
uni-permission role, for example, AccessPrinter
to its role hierarchy. Service providers may be
reluctant to make these changes to their RBAC
policies, in which case permissions instead of
uni-permission roles will need to be delegated.

There are additional policy rules that may need
to be included in the delegation policy, such as:
is a delegate allowed to delegate the credential
again, that is, is the delegation process recursive
or not, and if it is recursive, how many times
can the delegation recurse, an infinite number
of times or a limited number of times? We also
need to consider if a delegator is empowered to
assert the attributes and tasks that he is delegat-
ing, or is only allowed to delegate them, and if
an attribute can be asserted, is there a control on
where it can be asserted, that is, with only a subset
of service providers? Consider, for example, an
airline manager who is assigning a duty roster to
pilots. The manager is delegating permission to
fly an aircraft (say the “on flight duty” attribute)
during certain periods of the day to pilots (the
delegates). Clearly, the manager should not be able
to invoke this permission himself, and empower
himself to fly one of the aircraft, and thus the role
(or task) may be delegated but not asserted by the
airline manager. (Note that there is an alternative
way of modeling this, by requiring a person who
is authorised to fly an aircraft to have two attri-
butes, say “on flight duty” and “qualified pilot,”

 129

Dynamic Delegation of Authority in Web Services

and to only give the airline manager permission
to delegate the “on flight duty” attribute. Then,
the airline manager would only be able to fly the
aircraft if he was a qualified pilot. But in order
to make our model flexible enough, we see that
it is an advantage to have an assertion flag in
our delegation policy.) A delegation policy may
also contain conditions that a candidate delegate
must fulfil before delegation can take place. For
example, before a person can be delegated the
fire officer role they must first have obtained a
first aid certificate. Many of these conditions
can be expressed in terms of attributes or roles a
candidate delegate must possess before the new
attribute or role can be delegated to them.

A flexible delegation policy language will al-
low the policy writer to specify the delegators and
delegates by their attributes or roles, as well by
specifically naming them. For example, we should
be able to say “heads of department may delegate
the fire officer role to members of staff within their
department” as well as “Joe can delegate the fire
officer role to David.” The former allows whole
groups of users to be delegators and delegates, the
latter only allows specifically named individuals.
In order for a person to delegate the fire officer role
under the first policy rule, this person must have
been assigned the assertable head of department
role and the assertable or nonassertable fire officer
role (depending upon whether he can act as a fire
officer himself or only delegate this role) and the
delegate must have been assigned the member of
staff role and have the same department attribute
as the delegator. In order for the latter policy rule
to take effect, user Joe only needs to have been
assigned the fire officer role and user David needs
to exist. Note that the first policy rule on its own
does not constitute a complete delegation policy.
In order to be complete, a delegation policy must
always specify which users are the delegation
sources of authority in the DAG, that is, named
individuals or services, and what attributes they
are allowed to assign to whom. Otherwise, the
PDP will not be able to determine if a particular

delegation is allowed or not. For example, if we
only have the former policy rule, and Joe attempts
to delegate the fire officer role to Fred, then the
PDP will not know if Joe is a head of department
or not, or who is allowed to say that Joe is a head
of department and who is allowed to say that Fred
is a member of staff. If we only have the latter
policy rule, the PDP will not know who is allowed
to say that Joe is a fire officer. Without additional
policy rules the PDP will not be able to determine
if the delegator or possibly the delegate are bona-
fide. Thus, delegation source of authority (SoA)
policy rules are needed. These SoA rules may
be completely general, and say, for example, that
Person X is the trusted source of authority who
may issue any credentials to anyone containing
any attributes or permissions, or they may be much
more specific and say, for example, that Person
X is trusted to assign the head of department
attribute to anyone in the organisation, but may
not assert this attribute himself. With these SoA
rules in the place the PDP is then able to make
authorisation decisions.

To summarise, a delegation policy needs to
be able to:

1.	 Specify the delegation process in terms
of a delegation directed acyclic graph (or
a simplified delegation tree). This is done
by specifying the rules for the delegation
relationships that can exist between pairs
of nodes in the DAG.

2.	 Identify the delegator and delegate nodes
in the DAG by their attributes or roles or
unique names/identifiers.

3.	 Specify trusted sources of authority of the
DAG by their unique names/identifiers.

4.	 Specify what can be delegated in terms of
an attribute/role hierarchy.

5.	 For very fine grained delegation optionally
include the various attribute permissions
as the leaf nodes in the attribute/role hier-
archy.

David Chadwick
Note
1. Delete the before place

130

Dynamic Delegation of Authority in Web Services

6.	 Specify whether delegator nodes in the DAG
can or cannot assert the attributes that they
are allowed to delegate.

7.	 Control the depth of the delegation graph
(length of delegation chains).

8.	 Optionally specify other policy rules that
can control when, where, or how delegates
may assert the privileges that have been
delegated to them.

9.	 Optionally place conditions on candidate
delegates that must be fulfilled before del-
egation can take place.

Implementing a Practical DOA
Web Service

One can see that building a dynamic DOA Web
service is reasonably complex and many compet-
ing choices have to be made. Primary choices

are: should the DOA Web service repository
store attributes or credentials? Should the issued
credentials be short lived or long lived? If long
lived, then how should revocation be performed?
As stated in the fifth section, there are two main
modes of operation that can be envisaged for the
DOA Web service.

In the first mode of operation, the repository
is an internally trusted component of the system
and stores attributes rather than credentials. It is
assumed that the repository cannot be tampered
with by attackers, and therefore the attributes
within it are safe. The DOA Web service issues
short lived credentials to clients on demand. Con-
sequently, no revocation is necessary. Users can
delegate their attributes to other users according
to the delegation policy. Clients can make repeated
requests to the service for short lived credentials
to be issued to users based on the attributes held
by the users.

Figure 6. A practical delegation of authority Web service

 131

Dynamic Delegation of Authority in Web Services

In the second mode of operation, the repository
is accessible to the outside world in read mode
via secure links and stores relatively long lived
credentials which are tamperproof. Users delegate
these credentials to other users, and the DOA Web
service has write access to the repository. Clients
retrieve the credentials by contacting the reposi-
tory directly using the URLs of the credentials.
Credentials are revoked by removing them from
the repository. Relying parties (service providers)
must periodically check the repository to see if a
credential is still there or not, according to their
own risk assessments.

We have chosen to implement the second mode
of operation because of its various advantages
given in the fifth section. In our first version, we
have used an LDAP server as the credential reposi-
tory, and in the second version we are adding an
Apache WEBDAV server (Goland, Whitehead,
Faizi, Carter, & Jensen, 1999).

Delegation Policy Enforcement

The most complex and crucial component in a
DOA Web service is the PDP that can support
the organisation’s delegation policy. The PDP
essentially has two complementary functions to
perform.

•	 Firstly, it must validate a delegator’s claim
to have the necessary set of attributes that
it wishes to delegate and then validate if
the chosen delegate has the necessary set
of attributes to qualify as a delegate (this is
the process of attribute or credential valida-
tion).

•	 Secondly, it must determine if the delega-
tor is allowed to delegate these attributes to
the chosen delegate (i.e., determine if the
delegation request conforms to one of the
delegation policy rules).

XACML (OASIS-2, 2005) is an OASIS
standard for an access control policy language

in XML, and an open source implementation
of an XACML PDP exists, written by Sun, and
available from http://sunxacml.sourceforge.net/.
XACML provides a rich language for specify-
ing who is allowed to do what. Access control
subjects, resources, and actions are specified in
terms of their attributes. If we make the delega-
tor the access control subject and the delegate
the access control resource, while to delegate is
the access control action of an XACML access
control rule, then an XACML PDP can decide
if a delegator with a given set of attributes is
allowed to delegate some of these attributes to
a potential delegate who possesses another set
of attributes. This is the second of the functions
described above. Consequently, an XACML PDP
should work very well in the first mode of opera-
tion where the repository stores user attributes,
and the attributes do not need to be validated
(because their presence in the trusted repository
is sufficient to say they are valid).

However, XACML does not support creden-
tial validation, and therefore on its own cannot
be used by either service providers that receive
delegated credentials, or a DOA Web service
that stores credentials instead of attributes. An
XACML PDP works on the assumption that it is
given a valid set of subject, resource, and action
attributes upon which to make its access control
decision. This can only work at a service provider
site which directly trusts the issuers of all received
credentials, so that there are no delegation chains
to follow. An XACML PDP cannot determine if
the credentials possessed by a delegated subject
are valid or not. Consequently, an XACML
implementation on its own is unable to enforce
our delegation policy at the service provider site
or in our DOA Web service that stores credentials,
without significant enhancements, specifically the
addition of a credential validation service (CVS).
For this reason, we chose not to use an XACML
PDP in our first implementation.

PERMIS (Chadwick & Otenko, 2003) is an-
other open source PDP implementation that sup-

David Chadwick
Note
2. Add a second reference here:
David W Chadwick, Sean Anthony. “Using WebDAV for Improved Certificate Revocation and Publication”. In LCNS 4582, “Public Key Infrastructure. Proc of 4th European PKI Workshop, June, 2007, Palma de Mallorca, Spain. pp 265-279

132

Dynamic Delegation of Authority in Web Services

ports RBAC policies in XML. A PERMIS PDP
comprises two components, a credential validation
service (CVS) that validates users credentials, and
a PDP that makes access control decisions. The
PERMIS policy says who is entitled to assign
which attributes to whom and whether delegation
is allowed or not, as well as which attributes are
needed to access which resources. Furthermore,
PERMIS policies have an integer to control the
depth of delegation. Thus, a PERMIS policy can
be used to create an organisation’s delegation
policy, as well as enforce it as a service provider’s
site. PERMIS can be configured to either pull a
user’s credentials from an external repository,
or to have them presented by the PEP, and so is
ideal for our delegation scenario where the user
does not have to present his existing credentials
in order to request the delegation of attributes
to a delegate. The credential format primarily
supported by PERMIS is the X.509 attribute
certificate, and so this is the format we adopted
for our delegated credentials. LDAP repositories
support the storage and retrieval of X.509 attribute
certificates, and so we chose to use LDAP as our
credential repository. PERMIS also supports the
no assertion flag and does not allow delegators to
delegate attributes to themselves.

One of the limitations of PERMIS is that its
delegation policy does not support the specifica-
tion of delegators and delegates by any of their
attributes, but rather only by the naming domains
of which they are members. Naming domains are
specified using LDAP/X.500 distinguished names.
This means that we cannot specify a delegation
policy such as “heads of department can delegate
the fire officer role to senior members of staff in
their department.” Instead, we have to name the
individual heads of department, and specify the
naming domain that potential delegates reside in,
for example, cn=John Smith,o=myorg,c=gb can
delegate the fire officer role to principals who are
from the naming domain “ou=deptA,o=myorg,
c=gb.” This means our PERMIS delegation poli-
cies will be more restrictive or less efficient than

ones we could write in the XACML language,
but we are able to fully enforce them, while with
XACML we can write richer delegation policies
but we are not able to fully enforce them because
XACML cannot validate (delegated) credentials.
Consequently, in our first DOA Web services
implementation we chose to use PERMIS on it
own, but in the next implementation we plan to
investigate the combination of the PERMIS CVS
functionality with the XACML policy decision
functionality.

Client Access

Our implementation of the DOA Web service
is written in Java, and runs inside a Tomcat ap-
plication server and Apache AXIS SOAP server.
Consequently, it can be invoked through SOAP
calls. The DOA Web service (actually the con-
taining Tomcat server) has its own X.509 public
key certificate, and requires the requesting Web
service to have one as well. These certificates
are used to open a secure SSL (https) connec-
tion with the DOA Web service using mutual
authentication. All other types of authentication
method or connection are rejected. We chose to
use SSL certificate-based mutual authentication
rather than XML signed SOAP messages due to
SSL’s superior performance and ubiquity. The SSL
client must either be the entity directly making
the request (i.e., the requestor), or a trusted proxy
acting on its behalf. In the latter case the name of
the requestor is taken from the first parameter of
the Web services operation (except the storeAC-
forMe and revokeACforMe operations, which
cannot come from a trusted proxy). The names of
the trusted proxies are read in at initialisation time
from a configuration file. We have implemented
an Apache server as a trusted proxy, using LDAP
username-password authentication of the users,
and this will be described later.

The DOA Web service publishes a standard
WSDL file that allows other Web services to

David Chadwick
Note
3. its

 133

Dynamic Delegation of Authority in Web Services

determine how to access its services. It supports
five operations:

•	 delegateForMe, whose arguments are: the
distinguished name (DN) of the requestor
(the delegator), the DN of the delegate, the
attributes to be delegated, the validity time
of the delegation (from and to), whether
the delegated attributes can be asserted or
not (yes/no), and how many more times the
attributes can be delegated (the delegation
depth, an integer). If the delegator is allowed
to delegate this attribute to this delegate, an
X.509 AC is created, with the DOA Web
Service set as the credential issuer and the
delegator’s name placed in the IssuedOnBe-
halfOf field. The latter is a standard X.509
AC extension defined in the 2005 edition of
X.509.

•	 revokeForMe, whose arguments are: the
distinguished name (DN) of the requestor
and the set of credentials that should be
revoked. Each credential is identified by
the DN of the holder, the DN of the issuer,
and the serial number of the credential. This
method allows the requestor to revoke many
credentials at the same time (in one request).
The DOA Web Service has built in rules for
who is allowed to request the revocation of
a credential. The allowed revokers are: the
holder of the credential (i.e., the delegate
himself), the issuer of the credential (which
is usually the DOA Web Service but could
be the delegator), who the credential was
issued on behalf of (usually the delegator but
could be blank), the source of authority of
the delegation graph, or anyone who could
have issued this credential. The rationale for
allowing the latter category of revocation
requestor was purely one of expediency. It
was reasoned that if revocation was deemed
to be necessary, then it should be able to be
done fast by anyone in authority, in order
to minimise the risk of damage from use

of an unauthorised credential. If a user
has the authority to issue a credential, and
could have issued it, even though she did
not actually issue it, then she should still
be allowed to revoke it. While this does
provide a minimal chance for a denial of
service attack by a person in authority, the
risk from this was deemed to be less than
allowing a credential that should be revoked
to remain in circulation longer than it should
have been, say because the actual delegator
was not available to revoke it.

•	 storeACforMe, whose argument is a fully
formed digitally signed X.509 AC, sent as
a base64 encoded string. This is a reposi-
tory service for an external user who has
the ability to sign and issue credentials
herself, but does not have write access to
the credential repository. The requestor must
be authenticated via SSL client authentica-
tion and have the same name as the issuer
of the credential. The DOA Web Service
checks if the issuer is allowed to delegate
this credential according to the delegation
policy, and if so, stores the credential in the
delegate’s LDAP entry in the repository and
reports success to the requestor. Otherwise,
it reports unauthorised to the requestor and
discards the credential.

•	 revokeACforMe, whose argument is the
X.509 AC that is to be revoked, encoded as
a base64 string. The DN of the requestor
is taken from the client certificate of the
established SSL connection and must be
one of the allowed revokers, according to
the rules presented in revokeForMe above;
otherwise the revocation request is rejected.
If the requestor is allowed to revoke the
credential, then the AC is removed from the
delegate’s LDAP entry.

•	 searchRepository, whose arguments are
the DN of the requestor and the DN of the
delegate. The authenticated SSL client must
be the trusted proxy or the requestor. This

134

Dynamic Delegation of Authority in Web Services

service searches through the repository for
credentials issued to the delegate. The ser-
vice then checks if the requestor is authorised
to view the retrieved credentials. This is
determined from a configuration parameter,
which can be set to either anyone or revokers.
If anyone, all the retrieved credentials are
returned, and there is no privacy protection
on viewing a user’s credentials. If revok-
ers, each credential is checked to see if the
requestor is allowed to revoke it, using the
same rules as in revokeForMe above. The
procedure removes from the result all those
credentials that the requestor is not autho-
rised to revoke. In this way, the privacy of the
delegate’s credentials is protected, because
only those requestors who are authorised to
revoke the credentials are allowed to search
for them and retrieve them.

When Apache is acting as a trusted proxy on
behalf of a human delegator, the human is pre-
sented with the Web page shown in Figure 7. In
order to access this page, the user must first be au-
thenticated by Apache. Any type of authentication
supported by or plugged into Apache can be used.
We have chosen to use standard Apache LDAP
authentication, using usernames and passwords
stored in our organisation’s LDAP server, because
this is the authentication mechanism used by all
our users to access the university’s network and
services. The displayed delegation page invites the
user to search through the organisation’s LDAP
service to find the user he wishes to delegate to,
for example, be entering the surname. A pick-
ing list of users who match the entered criteria
is displayed, and the user chooses the correct
person. The user then selects the attributes that
he wishes to delegate to this person, fills in the
validity time of the delegation (from and to), and
can then choose if the person should be allowed to
further delegate these attributes or not. If further
delegation is selected, the user can set the depth

of further delegation and choose between allow-
ing or forbidding the user to assert the roles that
have just been delegated to him. Finally, the user
presses the Issue Attribute button and if everything
is in accordance with the delegation policy, the
delegation is allowed. If the user has tried to do
something counter to the delegation policy, one
of two things might happen, according to the
downgradeable configuration parameter of the
delegation service. If the infringement is minor,
for example, setting the validity period too long,
and downgradeable is true, the delegation is still
allowed to go ahead but the user’s parameters are
overridden by ones that conform to the policy. If
downgradeable is false, or the infringement can-
not be downgraded, for example, the delegator is
trying to delegate to someone not allowed by the
policy, then the delegation is rejected.

The delegator (and all other allowed revokers)
can revoke the issued credential at any time by
entering the Revocation Service Web page. Again,
the requestor must be authenticated by Apache
before the revocation page is displayed. Upon
entering the revocation page, the requestor is
again invited to search through the organisation’s
LDAP service to find the delegate he wishes
to revoke an attribute from. After entering the
search criteria, a list of users is displayed. Upon
choosing one of them, the system invokes the
searchRepository Web service and one of three
responses will be displayed, either: a list of the
user’s credentials that are visible to the requestor,
or a message saying that this user does not have
any attributes, or an error message saying that
the requestor is not allowed to search and view
this user’s attributes.

This DOA Web service has been piloted in
various grid applications by the National e-Sci-
ence centre at the University of Glasgow, and
details of these trials can be found in Sinnott,
Stell, Chadwick, and Otenko (2005), Sinnott,
Watt, Jiang, Stell, and Ajayi (2006), and Watt,
Sinnott, Jiang, Ajayi, and Koetsier (2006).

 135

Dynamic Delegation of Authority in Web Services

Conclusion and Future
Trends

Comparison with Other Work

VOMS (Alfieri et al., 2005) is a Web services-
based credential issuing service, but it is not a
delegation service. It only implements part of the
model specified in the fifth section, specifically
the Issue AC and repository services. A user can
make repeated requests to a VOMS service, for
it to issue short lived X.509 attribute certificates
derived from a subset of the attributes held in the
user’s repository entry. The user must be in pos-
session of an X.509 public key certificate (PKC)
in order to utilise the VOMS service, because the
holder field of the credential points to the public
key certificate of the user (PKC issuer and serial
number) rather than the distinguished name of the
user. The repository holds the various attributes of
the users, but these can only be inserted into the
repository by the VO manager. Users are not able
to delegate their attributes to other users. They
must ask the VO manager to insert attributes into

other user’s entries for them. The VOMS service
therefore places a high administrative and main-
tenance load on the VO manager, because he is
responsible for all delegations and revocations,
and this task cannot be dynamically delegated
to the VO users.

Signet (McRae, Nguyen, Cohen, & Vine,
2004) and Grouper (see http://middleware.inter-
net2.edu/dir/groups/grouper/) from the Internet2
consortium are developing software that will
allow users to assign permissions and delegate
privileges between each other. The system is ar-
chitecturally much simpler than the one depicted
in Figure 3. It is designed for human users and is
Web server rather than Web services based. The
user interface is any standard Web browser, and
the server functionality is written as Java servlets
and jsp which can run in any container such as
Tomcat. The repository is a RDBMS with SQL
interface which stores a user’s group member-
ships (or roles) and individual permissions (for
fine grained control) along with their validity
times and other policy related information such
as prerequisites before a privilege can be granted

Figure 7. Web-based front end to our delegation service

136

Dynamic Delegation of Authority in Web Services

and conditions on its use after it has been granted.
Consequently, there is no PDP holding the delega-
tion policy as a separate entity. Rather, the policy
is distributed throughout the repository in the
various tables. Signet does not issue credentials,
and this functionality has to be provided by an
external plugin that retrieves and packages the
data from the repository in an appropriate way,
for example, as a SAML assertion.

Work has been on going since 2004 in OA-
SIS to add support for delegation of authority to
XACMLv2 (OASIS, 2007). This work is designed
to allow the setting of access control policies
to be delegated between administrators, and is
complementary to the DOA work described here.
Unfortunately, the DOA work in XACML has
progressed rather more slowly than originally
anticipated, and at the time of writing it is not
clear what the outcome will be. In parallel with the
OASIS work, we devised a mechanism whereby
the PERMIS CVS could be incorporated with
a XACMLv2 PDP at a service provider site, in
order to provide valid attributes to the PDP from
delegated credentials. The valid attributes can then
be fed into the XACML PDP for it to make access
control decisions. This work is described fully in
Chadwick, Otenko, and Nguyen (2006).

Future Work

We have developed a secure audit Web service
(SAWS) which allows events to be securely audited
in a tamperproof log (Xu, Chadwick, & Otenko,
2005). We propose to incorporate this into a
future version of the DOA Web service so that
every delegation decision can be securely logged
for future reference. This might be important, for
example, when trying to retrospectively trace
how a person became authorised, or when he was
revoked and by whom.

We are currently building a WEBDAV reposi-
tory to replace the existing LDAP repository, so
that individual credentials can be uniquely identi-
fied by their URLs. A disadvantage of using LDAP

repositories is that a URL can only usually refer
to all the credentials of a particular user, rather
than to individual credentials. This is because a
set of ACs are usually all held together as a set of
values within a single LDAP attributeCertificate
attribute. This makes it impossible to retrieve a
single credential of a user.

We are currently adding the ability to perform
fine grained delegation based on individual per-
missions rather than attributes. As pointed out
above, a number of complexities are introduced
when this occurs in a multiple domain environ-
ment, due to the fact that a permission that is
understood and valid in one domain may not be
recognised in another domain. We are address-
ing this problem at the attribute level by adding
role/attribute mappings to our service provider
PDP policies. This will allow an attribute that is
issued in one domain to be recognised in a service
provider domain. Extending this mapping to per-
missions would allow fine grained authorisations
to be understood between domains.

While oursystem currently only supports
credentials in X.509 attribute certificate format,
it will be relatively easy to add signed SAML
attribute assertions as well due to the modular
construction of PERMIS. Once the performance
of signed SAML assertions improves, this addi-
tion will be made.

Finally, we are investigating how best to
combine the PERMIS CVS functionality with the
XACML policy decision functionality to allow
richer delegation policies to be specified through
the identification of delegators and delegates by
their attributes rather than by their membership
of a specific domain.

As a general trend, we expect to see more Web-
based interfaces being gradually introduced to
allow users to delegate authority to other users, and
more willingness on the side of administrations
to empower users to delegate among themselves,
providing they can specify adequate delegation
policies to control this. We also expect to see
users and Web services dynamically delegating

David Chadwick
Note
6. You can add the previous reference here again ie. David W Chadwick, Sean Anthony. “Using WebDAV for Improved Certificate Revocation and Publication”. In LCNS 4582, “Public Key Infrastructure. Proc of 4th European PKI Workshop, June, 2007, Palma de Mallorca, Spain. pp 265-279

David Chadwick
Note
4. Tuan-Anh Nguyen, David Chadwick, Bassem Nasser. “Recognition of Authority in Virtual Organisations”. Presented at 4th International Conference onTrust, Privacy & Security in Digital Business, September 3 - 7, 2007, Regensburg, Germany

David Chadwick
Note
5. Add space after our

 137

Dynamic Delegation of Authority in Web Services

authority to subordinate Web services to do work
on their behalf, so that work flows can be auto-
mated and distributed throughout and between
organisations. We also expect to see much richer
functionality to be gradually introduced into
the Web front ends and the back end delegation
policies. We have taken the first tentative steps
along this path, by allowing dynamic delegation
of authority between users and Web services, and
we fully expect more sophisticated and richer
mechanisms to follow.

Acknowledgment

We would like to thank the UK JISC for funding
this work under the DYVOSE project.

References

Alfieri, R., Cecchini, R., Ciaschini, V., Dell’Agnello,
L., Frohner, A., Lorentey, K., & Spataro, F. (2005).
From gridmap-file to VOMS: Managing authori-
zation in a Grid environment. Future Generation
Computer Systems, 21(4), 549-558.

ANSI (2004). Information technology: Role-based
access control. ANSI INCITS 359-2004.

Chadwick, D.W., & Otenko, A. (2003). The PER-
MIS X.509 Role-based privilege management
infrastructure. Future Generation Computer
Systems, 19(2), 277-289.

Chadwick, D.W., Otenko, S., & Nguyen, T.A.
(2006, October 19-21). Adding support to XACML
for dynamic delegation of authority in multiple
domains. In Proceedings of the 10th IFIP TC-6
TC-11 International Conference, CMS 2006,
Heraklion, Crete, Greece (pp. 67-86). Springer-
Verlag.

Dierks, T., & Allen, C. (1999). The TLS Protocol
Version 1.0, RFC 2246.

Goland, Y., Whitehead, E., Faizi, A., Carter, S., &
Jensen, D. (1999). HTTP extensions for distributed
authoring – WEBDAV. RFC 2518.

ITU-T. (1995). Security frameworks for open
systems: Access control framework. ITU-T Rec
X.812 | ISO/IEC 10181-3:1996.

ITU-T. (2005). The directory: Public-key and at-
tribute certificate frameworks. ISO 9594-8 (2005)
/ITU-T Rec. X.509.

McRae, L., Nguyen, M., Cohen, A., & Vine, J.
(2004). Signet functional requirements. Retrieved
June 3, 2007, from http://middleware.internet2.
edu/signet/docs/signet_func_specs.html

Myers, M., Ankney, R., Malpani, A., Galperin,
S., & Adams, C. (1999). X.509 Internet public key
infrastructure: Online certificate status protocol
– OCSP, RFC 2560.

OASIS. (2005). Assertions and protocol for the
OASIS Security Assertion Markup Language
(SAML) V2.0, OASIS Standard.

OASIS. (2007). XACML v3.0 Administrative
Policy Version 1.0, working draft 15. Retrieved
June 3, 2007, from http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=xacml

OASIS-2. (2005). eXtensible Access Control
Markup Language (XACML), Version 2.0. OA-
SIS Standard.

Sinnott, R.O., Stell, A.J., Chadwick, D.W., &
Otenko, O. (2005). Experiences of applying
advanced grid authorisation infrastructures. In
Proceedings of the European Grid Conference
(EGC), Amsterdam, Holland.

Sinnott, R.O., Watt, J., Jiang, J., Stell, A.J., & Ajayi,
O. (2006). Single sign-on and authorization for
dynamic virtual organizations. In Proceedings of
the 7th IFIP Conference on Virtual Enterprises,
PRO-VE 2006, Helsinki, Finland.

Tuecke, S., Welch, V., Engert, D., Pearlman, L.,
& Thompson, M. (2004). Internet X.509 Public

138

Dynamic Delegation of Authority in Web Services

Key Infrastructure (PKI) proxy certificate profile.
RFC3820.

Watt, J., Sinnott, R.O., Jiang, J., Ajayi, O., & Koet-
sier, J. (2006). A Shibboleth-protected privilege
management infrastructure for e-science educa-
tion. In Proceedings of the 6th International
Symposium on Cluster Computing and the Grid,
CCGrid2006, Singapore.

Welch, V., Ananthakrishnan, R., Siebenlist, F.,
Chadwick, D., Meder, S., & Pearlman, L. (2006).
Use of SAML for OGSI Authorization, GFD.66.
Retrieved June 3, 2007, from http://www.ggf.
org/documents/GFD.66.pdf

Xu, W., Chadwick, D., & Otenko, S.(2005). A
PKI-based secure audit Web service. IASTED
Communications, Network and Information
Security CNIS, November 14 - November 16,
Phoenix, AZ.

