
Compact Difference Bound Matrices

Aziem Chawdhary and Andy King

University of Kent, Canterbury, CT2 7NF, UK

Abstract. The Octagon domain, which tracks a restricted class of two
variable inequality, is the abstract domain of choice for many applica-
tions because its domain operations are either quadratic or cubic in the
number of program variables. Octagon constraints are classically repre-
sented using a Difference Bound Matrix (DBM), where the entries in the
DBM store bounds c for inequalities of the form xi´ xj ď c, xi` xj ď c
or ´xi ´ xj ď c. The size of such a DBM is quadratic in the number
of variables, giving a representation which can be excessively large for
number systems such as rationals. This paper proposes a compact rep-
resentation for DBMs, in which repeated numbers are factored out of
the DBM. The paper explains how the entries of a DBM are distributed,
and how this distribution can be exploited to save space and significantly
speed-up long-running analyses. Moreover, unlike sparse representations,
the domain operations retain their conceptually simplicity and ease of
implementation whilst reducing memory usage.

1 Introduction

The Octagon domain [18] is a widely deployed [6] abstract domain, whose pop-
ularity stems from the polynomial complexity of its domain operations [2,9,18]
and ease of implementation [13]. Systems of octagon constraints are conven-
tionally represented [18] using difference bound matrices (DBMs). DBMs were
originally devised for modelling (time) [10,16] differences where each difference
constraint xi´xj ď c bounds a difference xi´xj with a constant c. For a set of
program variables tx0, . . . , xn´1u, an inequality xi ´ xj ď c can be represented
by storing c at the i, j entry of an nˆn matrix, which is the DBM. The absence
of an upper bound on xi ´ xj is indicated by an entry of 8. A DBM thus gives
a natural representation for a system of n2 difference constraints. Moreover, a
Floyd-Warshall style, Opn3q, all-pairs shortest path algorithm can be applied to
check satisfiability and derive a canonical representation.

By working over an augmented set of variables tx10, . . . , x
1
2n´1u and defining

x12i “ xi and x12i`1 “ ´xi, algorithms for manipulating difference constraints can
be lifted to octagonal constraints [18]. Moreover, because of redundancy induced
by the encoding, it is not necessary to deploy a DBM of dimension 2nˆ 2n, but
instead the DBM can be packed into an array of size 2npn ` 1q. Nevertheless,
space consumption is a problem for large n.

Space consumption is not just a space problem: memory needs to be allo-
cated, initialised and managed, all of which take time. Running Callgrind [25]

on an off-the-shelf abstract interpreter (EVA [8]), equipped with the de-facto
implementation of Octagons (Apron [13]) on AES-128 code (taes of table 1) re-
vealed that 36% of all the function calls emanated from qmpq init which merely
allocates memory and initialises the state of a rational number. When working
over rationals, these indirect costs dampen or mask algorithmic improvements
obtained by refactoring [2] and reformulating [9] domain operations.

One solution is to abandon rationals for doubles [14,23], which is less than
satisfactory for the purposes of verification. Another recent trend is adopt a
sparse representation [11,14], sacrificing the simplicity and regularity of DBMs
which, among other things, makes DBMs amenable to parallelisation [3]. Instead,
this paper proposes compact DBMs (CoDBMs) which exploit a previously over-
looked property: the number of different DBM entries is typically small. This
allows common matrix entries to be shared and reused across all CoDBMs, re-
ducing memory pressure and factoring out repeated initialisation. To summarise,
this paper makes the following contribution to the representation of DBMs and
octagonal analysis in particular:

– It reports the relative frequency of read and write to DBMs, as well the
total number of distinct numbers that arise during the lifetime of octagonal
analyses using DBMs. These statistics justify the CoDBM construction.

– It proposes CoDBMs for improving the memory consumption of DBMs,
which does not compromise the conceptual simplicity of DBMs or their reg-
ular structure, important to algorithmic efficiency.

– It provides experimental evidence which shows that the extra overheads in-
duced by reading and writing to a CoDBM are repaid, often significantly, by
the savings in memory allocation and initialisation.

– It analyses the performance gains in terms of the number of memory ref-
erences and percentage of cache misses, explaining why the auxiliary data-
structure used for reading a CoDBM has good locality of reference.

2 The Octagon Domain and its Representation

An octagonal constraint [2,17,18] is a two variable inequality of the syntactic
form xi ´ xj ď c, xi ` xj ď c or ´xi ´ xj ď c where c is a constant, and xi
and xj are drawn from a finite set of program variables tx0, . . . , xn´1u. This
class includes unary inequalities xi ` xi ď c and ´xi ´ xi ď c which express
interval constraints. An octagon is a set of points satisfying a system of octagonal
constraints. The octagon domain over tx0, . . . , xn´1u is the set of all octagons
defined over tx0, . . . , xn´1u.

Implementations of the octagon domain reuse machinery developed for solv-
ing difference constraints of the form xi ´ xj ď c. An octagonal constraint over
tx0, . . . , xn´1u can be translated [18] to a difference constraint over an aug-
mented set of variables tx10, . . . , x

1
2n´1u, which are interpreted by x12i “ xi and

2

x0 ď 3
x1 ď 2

x0 ` x1 ď 6
´x0 ´ x1 ď 5

´x0 ď 3

x10 ´ x11 ď 6
x12 ´ x13 ď 4
x10 ´ x13 ď 6
x12 ´ x11 ď 6
x11 ´ x12 ď 5
x13 ´ x10 ď 5
x11 ´ x10 ď 6

»

—

—

–

x1
0 x1

1 x1
2 x1

3

x1
0 8 6 8 6

x1
1 6 8 5 8

x1
2 8 6 8 4

x1
3 5 8 8 8

fi

ffi

ffi

fl

x10

x11x12

x13

6

6

5

6

6

4

5

Fig. 1: Example of an octagonal system and its DBM representation

x12i`1 “ ´xi. The translation proceeds as follows:

xi ´ xj ď c ù x12i ´ x
1
2j ď c ^ x12j`1 ´ x

1
2i`1 ď c

xi ` xj ď c ù x12i ´ x
1
2j`1 ď c ^ x12j ´ x

1
2i`1 ď c

´xi ´ xj ď c ù x12i`1 ´ x
1
2j ď c ^ x12j`1 ´ x

1
2i ď c

xi ď c ù x12i ´ x
1
2i`1 ď 2c

´xi ď c ù x12i`1 ´ x
1
2i ď 2c

A difference bound matrix (DBM) [10,16], which is a square matrix of dimension
nˆn, is commonly used to represent a systems of n2 (syntactically irredundant
[15]) difference constraints over n variables. The entry mi,j that represents the
constant c of the inequality xi ´ xj ď c where i, j P t0, . . . , n ´ 1u. Since an
octagonal constraint system over n variables translates to a difference constraint
system over 2n variables, a DBM representing an octagon has dimension 2nˆ2n.

Example 1. Figure 1 serves as an example of how an octagon translates to a
system of differences. The entries of the DBM correspond to the constants in
the difference constraints. Note how differences which are (syntactically) absent
from the system lead to entries which take a symbolic value of 8. Observe too
how that DBM defines an adjacency matrix for the illustrated graph where the
weight of a directed edge abuts its arrow.

The interpretation of a DBM representing an octagon is different to a DBM
representing difference constraints. Consequently there are two concretisations
for DBMs: one for interpreting differences and another for interpreting octagons,
although the latter is defined in terms of the former.

Definition 1. Concretisation for rational pQnq solutions:

γdiffpmq “ txv0, . . . , vn´1y P Qn | @i, j.vi ´ vj ď mi,ju

γoctpmq “ txv0, . . . , vn´1y P Qn | xv0,´v0, . . . , vn´1,´vn´1y P γdiffpmqu

where the concretisation for integer pZnq solutions can be defined analogously.

3

»

—

—

–

x1
0 x1

1 x1
2 x1

3

x1
0 11 6 11 6

x1
1 6 11 5 9

x1
2 9 6 11 4

x1
3 5 11 16 11

fi

ffi

ffi

fl

»

—

—

–

x1
0 x1

1 x1
2 x1

3

x1
0 0 6 11 6

x1
1 6 0 5 9

x1
2 9 6 0 4

x1
3 5 11 16 0

fi

ffi

ffi

fl

»

—

—

–

x1
0 x1

1 x1
2 x1

3

x1
0 0 6 11 5

x1
1 6 0 5 5

x1
2 5 5 0 4

x1
3 5 11 16 0

fi

ffi

ffi

fl

Fig. 2: DBM after shortest path, closed DBM and strongly closed DBM

Example 2. Since octagonal inequalities are modelled as two related differences,
the DBM of figure 1 contains duplicated entries, for instance, m1,2 “ m3,0.

Operations on a DBM representing an octagon must maintain equality between
the two entries that share the same constant of an octagonal inequality. This
requirement leads to the notion of coherence:

Definition 2 (Coherence). A DBM m is coherent iff @i.j.mi,j “ m̄,̄ı where
ı̄ “ i` 1 if i is even and i´ 1 otherwise.

Example 3. Observe from figure 1 that m0,3 “ 6 “ m2,1 “ m3̄,0̄. Coherence
holds in a degenerate way for unary inequalities, note m2,3 “ 4 “ m2,3 “ m3̄,2̄.

Care should be taken to preserve coherence when manipulating DBMs, either
by carefully designing algorithms or by using a data structure that enforces
coherence [17, Section 4.5], as realised in the Apron library [13]. Finally to check
if a DBM represents a satisfiable octagonal system, we have the following notion:

Definition 3 (Consistency). A DBM m is consistent iff @i.mi,i ě 0.

2.1 Definitions of Closure

Closure properties define canonical representations of DBMs, and can decide
satisfiability and support operations such as join and projection. Bellman [5]
showed that the satisfiability of a difference system can be decided using shortest
path algorithms on a graph representing the differences. If the graph contains
a negative cycle (a cycle whose edge weights sum to a negative value) then
the difference system is unsatisfiable. The same applies for DBMs representing
octagons. Closure propagates all the implicit (entailed) constraints in a system,
leaving each entry in the DBM with the sharpest possible constraint entailed
between the variables. Closure is formally defined below:

Definition 4 (Closure). A DBM m is closed iff

– @i.mi,i “ 0
– @i, j, k.mi,j ď mi,k `mk,j

4

x11

x10

x12

x13

x11

x10

x12

x13

4 8 4 8

6

6

Fig. 3: Two representations of the same octagon constraints x0 ď 2, x1 ď 4

Example 4. The DBM of Figure 1 is not closed. By running an all-pairs shortest
path algorithm the left DBM of figure 2 is obtained. Shortest path algorithms
derive all constraints implied by the original system. Notice the diagonal has
non-negative elements implying that the constraint system is satisfiable. Once
satisfiability has been established, the diagonal values are set to zero to satisfy
the requirements of closure, giving the middle (closed) DBM.

Closure by itself is not enough to provide a canonical form for DBMs rep-
resenting octagons. A stronger notion is required called strong closure [17,18]:

Definition 5 (Strong closure). A DBM m is strongly closed iff

– m is closed
– @i, j.mi,j ď mi,̄ı{2`m̄,j{2

The strong closure of DBM m can be computed by propagating the following
the property: if x1j´x

1
̄ ď c1 and x1ı̄´x

1
i ď c2 both hold then x1j´x

1
i ď pc1`c2q{2

also holds. This sharpens the bound on the difference x1j´x
1
i using the two unary

constraints encoded by x1j ´ x1̄ ď c1 and x1ı̄ ´ x1i ď c1, namely, 2x1j ď c1 and
´2x1i ď c2. Note that this constraint propagation is not guaranteed to occur with
a shortest path algorithm since there is not necessarily a path from a mi,̄ı and
m̄,j . An example in figure 3 illustrates such a situation: the two graphs represent
the same octagon, but a shortest path algorithm will not propagate constraints
on the left graph; hence strengthening is needed to bring the two graphs to
the same normal form. Strong closure yields a canonical representation: there
is a unique strongly closed DBM for any (non-empty) octagon [18]. Thus any
semantically equivalent octagonal constraint systems are represented by the same
strongly closed DBM. Strengthening is the act of computing strong closure.

Example 5. The right DBM of figure 2 gives the strong closure of the middle
DBM of the same figure.

Thus the overall algorithm for computing the strong closure of an octagonal
DBM is to first run a closure algorithm, check for consistency by searching
for a negative entry in the diagonal, and then apply strengthening [9,18]. These
closure algorithms are not detailed for reasons of brevity; they are a (long) study
in their own right [2,9,18], and the CoDBM representation, and its relationship
to a DBM, can be followed without detailed understanding of these algorithms.

5

i

j

0 1 2 32n´ 1

2n´ 1

...

...

3

2

1

0 0

2

4

8

...

. . .

. . .

1

3

5

9

...

. . .

. . .

6

10

...

. . .

. . .

7

11

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 4: Half-Matrix Representation of a DBM

2.2 Apron Library

The Apron library is the most widely used Octagon domain implementation
[13]. The Apron library is implemented in C, with bindings for C++, Java and
OCaml. The library implements the box, polyhedra and octagon abstract do-
mains. Various number systems are supported by the Apron library, such as
single-precision floats and GNU multiple-precision (GMP) rationals. Numbers
are represented by a type bound t, which depending on compile time options
will select a specific header file containing concrete implementations of opera-
tions involving numbers extended to the symbolic values of ´8 and `8. Every
bound t object has to be initialised via a call to bound init, which in the case
of GMP rationals will call a malloc function and heap allocate space for the
rational number.

DBMs are stored in memory by taking advantage of the half-matrix nature
of octagonal DBMs which follows by coherence. A (linear) array of bound t

objects is then used to represent the half-matrix, as shown in figure 4. If i ě j
or i “ ̄ then the entry at pi, jq in the DBM is stored at index j ` ti2{2u in the
array. Otherwise pi, jq is stored at the index location reserved for entry p̄, ı̄q. A
DBM of size n requires an array of size 2npn` 1q which gives a significant space
reduction.

However, DBMs are still not compact: if a rational occurs repeatedly in a
DBM then each occurrence of that number is heap allocated separately.

3 Compact DBMs

The rationale for compact DBMs (CoDBMs) is to redistribute the cost of mem-
ory allocation and initialisation, and do so in a way that is sensitive to the

6

0

6

5

5

6

0

5

11

0

6

4

0

8 0 1 6 4 5 11

Fig. 5: Example illustrating the difference between DBMs and CoDBMs

relative frequency of DBM reads to DBM writes, whilst improving locality of
reference.

CoDBMs are difference bound matrices where the entries are identifiers,
rather than numeric values, and the identifiers are interpreted and maintained
with the aid of two arrays, namely values and sorted. Conceptually, CoDBMs
differ from DBMs by storing numbers in a common shared array, and elements
in the DBM refer to these rather than storing the numeric bound itself, as shown
in figure 5.

The array values has size elements and has elements of type Q Y t8u. The
values array is used to map an identifier, which is an integer, to its value. It
is used when reading an entry in a CoDBM. Dually, the array sorted is used
when writing an entry to a CoDBM. This array is indexed from 0, contains
size records, where each record has value and id fields of type Q Y t8u and N
respectively. This array records of all CoDBM entry values which have been
seen thus far, including 8, with their identifiers. The records are arranged in
strictly ascending order, using the value field as the key. The ordering provides
an efficient way of searching to determine whether a value has been encountered
previously. If found, the id field gives the corresponding identifier.

An identifier of 0 is preassigned for the symbolic value 8. This is achieved by
initialising the values and sorted arrays so that valuesr0s “ 8, sortedr0s.value “ 8
and sortedr0s.id “ 0. Finally, identifiers are allocated in increasing order, and next
is used to record the next available unused identifier; it is initialised to 1, since
0 is used to identify 8.

3.1 CoDBM data-structure invariants

The next, size and values and sorted arrays are maintained to satisfy the following
invariants:

– valuesr0s “ 8

7

(1) function get id(value: Q)
(2) begin
(3) lower Ð 0;
(4) upper Ð next - 1;
(5)
(6) while (lower ď upper)
(7) begin
(8) mid Ð(lower + upper) div 2;
(9) if (value ă sorted[mid].value) upper Ð mid - 1;
(10) else if (value ą sorted[mid].value) lower Ð mid + 1;
(11) else return sorted[mid].id;
(12) end
(13)
(14) if (next ě size)
(15) return lower;
(16) else
(17) begin
(18) for (i = next; i ą lower; i Ð i - 1)
(19) begin
(20) sorted[i].value Ð sorted[i - 1].value;
(21) sorted[i].id Ð sorted[i - 1].id;
(22) end
(23)
(24) sorted[lower].value Ð value;
(25) sorted[lower].id Ð next;
(26) values[next] Ð value;
(27)
(28) next Ð next + 1
(29) return sorted[lower].id;
(30) end

Fig. 6: Searching and extending the sorted and values arrays (with idealised arithmetic)

– 1 ď next ď size
– @0 ă i ă next.psortedri´ 1s.value ă sortedris.valueq
– @0 ď i ă next.D0 ď j ă next.psortedrjs.value “ valuesris ^ sortedrjs.id “ iq

3.2 CoDBM algorithms

Figure 6 presents the get id function which maps its single argument, value, to
an identifier. If value has been encountered previously, its identifier is returned,
otherwise a fresh identified is allocated and returned, and the arrays values and
sorted adjusted to compensate.

The get id function applies applies binary (or half-interval) search [26] on
lines 3-12. Line 8 assigns mid to the semi-sum of lower and upper using in-
teger division, which rounds towards 0. The while loop will terminate within

8

(1) procedure set ddbm entry(ddbm: N˚, i: N, value: Q)
(2) begin
(3) ddbm[i] Ð get id(value);
(4) end
(5)
(6) function get ddbm entry(ddbm: N˚, i: N)
(7) begin
(8) return values[ddbm[i]];
(9) end

Fig. 7: Reading (getting) and writing (setting) an entry of a CoDBM

rlog2psizeqs ` 1 iterations, either returning the identifier of value, or exiting at
line 14 with lower “ upper`1. To see this, let lower1 and upper1 denote the values
of these variables on loop exit, and their unprimed counterparts denote their val-
ues at the start of the last iteration. Hence lower ď upper and lower1 ą upper1. If
upper1 “ mid´1 then mid´1 “ upper1 ă lower1 “ lower ď mid hence lower “ mid
whence upper1 “ mid´ 1 “ lower´ 1 “ lower1´ 1. Conversely if lower1 “ mid` 1
it likewise follows that lower1 “ upper1 ` 1.

The exit condition lower “ upper ` 1 indicates where to insert a new record
for value in sorted. Observe that if 0 ď i ă lower then sortedris.value ă value
and conversely if upper ă i ă next then sortedris.value ą value. In particular
sortedruppers.value ă value ă sortedrlowers.value indicating that the value record
needs to be inserted at position lower of sorted, once the record at this position
and the higher positions are all shuffled along. The for loop commencing at
line 18 enacts the shuffle and lines 24 and 25 adjust the record at position lower
record value and its identifier next. Line 26 updates values to map the identifier
next to value. The next counter is updated at line 18 and the identifier for value
returned at line 29.

The check at line 14 detects whether the capacity of the arrays values and
sorted are exceeded. Suppose this line is reached. Because values and sorted are
initialised to store the value8 (coupled with the 0 identifier) it follows value ‰ 8
hence value P Q. Thus there exists a recorded value (even if it is 8) which
is strictly larger than value and indeed value ă sortedrlowers.value. Moreover
sortedrlower ´ 1s.value “ sortedruppers.value ă value hence lower is the identifier
for the smallest value strictly larger than value. This provides a way to update a
CoDBM entry with a relaxed value when one does not want to resize the arrays.
This, in effect, widening the CoDBM in a way that is sensitive to space capacity.
For completeness, figure 7 shows how the entries of a CoDBM are read and
written, where for a CoDBM of dimension n, i is in index into the linear array
of identifiers, hence 0 ď i ă 2npn` 1q.

Finally to remark on complexity, the set ddbm entry function resides in Opnq,
where n is the size of the value and sorted arrays, because of the potential for
copying in the get id function. The get ddbm entry function is in Op1q.

9

(1) function get id(value: Q)
(2) begin
(3) lower’ Ð 1;
(4) upper’ Ð next;
(5)
(6) while (lower’ ď upper’)
(7) begin
(8) mid’ Ð lower’ + ((upper’ - lower’) div 2);
(9) if (value ă sorted[mid’ - 1].value) upper’ Ð mid’ - 1;
(10) else if (value ą sorted[mid’ - 1].value) lower’ Ð mid’ + 1;
(11) else return sorted[mid’ - 1].id;
(12) end
(13) lower Ð lower’ - 1
.
(31) end

Fig. 8: Searching and extending the sorted and values arrays (with machine arithmetic)

3.3 Binary search with machine arithmetic

By way of a postscript, figure 8 gives a revised version of get id which is sensitive
to the limitations of machine arithmetic. Since natural numbers are used for iden-
tifiers it is natural to employ unsigned integers. However, if lower “ upper “ 0
then mid “ 0 hence mid´1 will underflow at line 9. The listing in figure 8 avoids
this adding a positive offset of 1 to lower and upper to give lower1 and upper1

which is duly compensated for at line 13. Overflow will not occur on mid1 ` 1
at line 10, however, if size, hence next, is strictly smaller than the largest rep-
resentable number. Another subtlety is that the semi-sum plower ` upperq div 2
on line 8 of Figure 6 can overflow [22]. Hence the alternative formulation of
lower1 ` ppupper1 ´ lower1q div 2q in figure 8.

4 Experiments

The abstract interpretation plugin for Frama-C, EVA [8], was used for gather-
ing salient statistics on octagons, and then comparing CoDBMs against DBMs.
The statistics were gathered on a Linux box equipped with 128GB of RAM
and dual 2.0GHz Intel Xeon E5-2650 processors. EVA has options to use the
Apron library [13], a widely-used numerical domain library, with implementa-
tions of polyhedra, boxes (intervals) and octagons. EVA is a prototype analyser
for C99, and as such does not provide state-of-the-art optimisations such as au-
tomatic variable clustering [12] or access-based localisation [4]; which precludes
the analysis of very large programs. Therefore, table 1 lists modestly sized pro-
grams drawn from the Frama-C open source case studies repository (github.
com/Frama-C/open-source-case-studies), which were used for benchmark-
ing. The case studies repository was designed to test the default value analysis

10

github.com/Frama-C/open-source-case-studies
github.com/Frama-C/open-source-case-studies

Abbrv Benchmark LOC Description

lev levenstein 187 Levenstein string distance library
sol solitaire 334 card cipher
2048 2048 435 2048 game
kh khash 652 hash code from klib C library
taes Tiny-AES 813 portable AES-128 implementation
qlz qlz 1168 fast compression library
mod libmodbus 7685 library to interact with Modbus protocol
mgmp mini-gmp 11787 subset of GMP library
unq unqlite 64795 embedded NoSQL DB
bzip bzip-single-file 74017 bzip single file for static analysis benchmarking

Table 1: Benchmarks

Abbrv #Ids #Entries #Reads #Writes DBM Time CoDBM Time Speedup

lev 900 795345356 221230162 76969699 14.18 10.59 25%
sol 2161 3044202788 565119059 258963325 45.44 33.70 25%
2048 358 1919995058 445261291 144479736 24.44 16.53 32%
kh 196 30165440 8465749 3640830 1.37 1.32 3%
taes 140 106396722938 - - 803.30 505.90 37%
qlz 10 69126 17216 13742 1.32 1.41 -7%
mod 3627 45157313792 1921289169 661225970 336.22 214.10 36%
mgmp 126 101752918 22603122 8805323 2.01 1.56 22%
unq - - - - 1.50 1.56 -4%
bzip 262 373715276692 - - 591.85 196.69 66%

total 1821.63 983.36 46%

Table 2: Experimental Statistics (tabulated)

plugin of Frama-C, and not the EVA plugin, and in fact some of the case studies
did not terminate using the EVA plugin with the octagon domain.

4.1 Execution Time

Table 2 reports the headline results, giving both the key statistics, and timing
information. The #Ids and #Entries columns give, respectively, the total number
of identifiers allocated using CoDBMs, and the exact number of matrix entries
required across all DBMs. The former details how many rationals need be stored
for CoDBMs; the latter for DBMs. The upper graph of figure 9 illustrates these
numbers, showing that the reduction in memory allocation and initialisation is
typically by three orders of magnitude. The #Reads and #Writes columns report
the total number and reads and writes to the difference matrices (which is the
same for both DBMs and CoDBMs). The lower graph of figure 9 illustrates these
as proportions, showing that there are typically 2 and 3 times as many reads

11

Fig. 9: Experimental Statistics (visualised)

as writes to the difference matrices entries over the lifetime of an analysis. The
exception is unq. (Statistics are omitted for runs with excessively long traces.)

The table also reports the total execution time, in seconds, for the DBM and
CoDBM analyses to parse their input, reach the fixpoint, and then output their
results (which were identical). The last row totals the execution times over all
benchmarks. CoDBMs are faster than DBMs on the longer-running analyses.
The unq benchmark is a surprising corner case which does not produce any two
variable constraints, and thus does not create any difference matrices. This gives
an inexplicable slowdown, possibly due to an increase in code size. CoDBMs
give a modest slowdown for unq, presumably because of the higher proportion
of writes to reads; elsewhere CoDBMs give a significant speedup.

4.2 Memory Consumption

Table 3 shows end-to-end memory consumption statistics of each Frama-C bench-
mark. Memory consumption was measured using the GNU time utility which
returns the maximum resident set size of the process during its lifetime. The

12

Benchmark DBM CoDBM Reduction (%)

lev 3317872 2531096 23.71
sol 11694896 7538160 35.54
2048 6389484 3584856 43.89
kh 284776 198656 30.24
taes 35453276 32361744 8.72
qlz 332252 331788 0.14
mod 51832508 31831468 38.59
mgmp 443932 236236 46.79
unq 207332 208560 -0.59
bzip 11047816 5781492 47.67

Total 121335932 84604056 30.27

Table 3: Memory Usage Statistics (in Kb)

results show that memory consumption is reduced in all but one of the bench-
marks. Memory consumption is most notably reduced for the longer running
benchmarks, with bzip showing the greatest reduction. Overall, the results show
that the CoDBM representation has a positive effect in reducing the memory
usage of the Apron library.

4.3 Cache Behaviour

Modern processors have become reliant on caching as the speed of the core has
steadily outstripped the clock frequency of the memory bus and the performance
of RAM. For example, the 2.0 GHz Xeon (Sandy Bridge) E5-2650 has a separate
level 1 instruction cache and level 1 data cache, and unified caches at level 2 and
3. The latency of the level 3 cache is 28 cycles, whereas the latency of RAM
is 28 cycles plus 49 nanoseconds [21], which equates to 28 + p49 ˆ 10´9q ˆ

p2ˆ109q = 218 cycles. This underscores the importance of reducing cache misses,
even by small percentages, and the role of temporal and spatial locality to the
performance of DBMs and CoDBMs. Reading an element from a CoDBM incurs
an extra layer of indirection compared to a DBM and writing to a CoDBM can
incur multiple memory references, so one might expect these additional memory
references to put pressure on the cache and worsen memory performance. This
section thus investigates the memory behaviour of CoDBMs.

Table 4 summarises memory and cache statistics for CoDBMs and DBMs
gathered with Cachegrind [19]. Cachegrind simulates a theoretical architecture
with a first-level data (D1) cache, first-level instruction (I1) cache and a last-level
(LL) unified data and instruction cache. LL hints at the way Cachegrind ab-
stracts a three cache architecture: it auto-detects the cache configuration (cache
size, associativity and line size) and sets LL to model the L3 rather than the L2
cache. This is because missing L3 has more effect on runtime than missing L2.
Although Cachegrind abstracts the cache structure of a Xeon, it nevertheless
reports accurate counts for the total number of memory references.

13

activity lev sol 2048 kh teas qlz mod mgmp unq bzip

D refs r 22b 14b 63b 825m 696b 358m 379b 3b 5b 1125b
w 17b 11b 48b 559m 511b 207m 285b 2b 3b 918b
t 39b 25b 111b 1,384m 1,207b 566m 665b 6b 8b 2044b

D1 misses r 1.8% 2.1% 2.0% 2.0% 2.0% 1.9% 1.9% 1.9% 1.4% 2.5%
w 1.6% 1.9% 1.6% 2.0% 1.6% 2.5% 1.6% 2.0% 2.9% 1.8%
t 1.7% 2.0% 1.8% 2.0% 1.8% 2.1% 1.8% 2.0% 2.0% 2.2%

LL misses r 0.1% 0.1% 0.1% 0.0% 0.5% 0.o% 0.1% 0.0% 0.1% 0.2%
w 0.5% 0.7% 0.5% 0.3% 0.6% 0.3% 0.8% 0.3% 0.1% 1.1%
t 0.1% 0.1% 0.1% 0.1% 0.5% 0.1% 0.2% 0.1% 0.1% 0.3%

D refs r 16b 8b 35b 681m 512b 205m 200b 2.5b 5b 234b
w 9b 5b 20b 407m 258b 104m 106b 1.4b 3b 92b
t 25b 13b 55b 1,088m 771b 310m 306b 4b 8b 326b

D1 misses r 0.7% 1.2% 0.7% 1.6% 0.3% 2.4% 0.4% 1.2% 1.4% 0.4%
w 0.9% 1.4% 1.1% 1.9% 0.5% 2.3% 0.8% 1.9% 2.9% 0.6%
t 0.8% 1.3% 0.9% 1.7% 0.4% 2.4% 0.5% 1.4% 2.0% 0.4%

LL misses r 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0%
w 0.0% 0.7% 0.5% 0.3% 0.2% 0.5% 0.5% 0.2% 0.1% 0.0%
t 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.1% 0.0%

Table 4: Cachegrind statistics: DBMs upper-half; CoDBMs lower-half

While data handling is determined by the programmer in the design of the
data-structures, the compiler itself will generate the low-level instructions, and
normally do so in way that aids spacial and temporal locality. Indeed the I1
statistics for the DBM and CoDBM code are almost identical, and therefore not
discussed further.

Number of memory references Table 4 focuses on D1 and LL misses, and
the number of memory references (D refs). The table presents the total number
of D refs (t), as well as the number of reads (r) and writes (w), where k, m and
b respectively denote the multipliers 103, 106 and 109. The table also details the
number of cache misses for D1 and LL, expressed as a percentage of the total
number of memory references. These statistics are augmented with percentages
for the number of misses on read and write. The upper portion of the table
presents the statistics for DBMs; the lower for CoDBMs.

The main result is that, with the exception of unq, the number of reads and
writes to memory are both reduced with CoDBMs. For 2048, mod and bzip in
particular, the difference to the number of writes is considerable and reflects the
CoDBM design which factors out shared sub-structure in the difference matrix.
Specifically, each distinct number is allocated and initialised exactly once over
the lifetime of the whole analysis. Thus, when a fresh CoDBM is created, in
contrast with a DBM, it is not necessary to allocate fresh memory for each
rational stored in the CoDBM: only those few, if any, which have not been
encountered previously. In fact, the most common use-case for CoDBM creation

14

involves merely allocating the matrix of identifiers and then setting each cell of
the matrix to the identifier for8. This initialises the matrix to represent a system
of vacuous difference constraints. CoDBM creation thus saves many memory
references, particularly writes, relative to DBMs. Copying a CoDBM likewise
avoids multiple memory allocations and initialisations, since only the matrix of
identifiers need be created and then copied over one-by-one, again saving many
memory references, mainly writes, relative to the equivalent operation on a DBM.

Furthermore, although reading an entry of a CoDBM requires one extra
memory reference per read, for an incremental closure algorithm [9], the total
number of reads is actually is only linear in the size of the matrix which, in turn,
is quadratic in the number of program variables. Moreover, incremental closure
is the most frequently applied domain operation, after the creation and copying
a difference matrix. In fact, with code hoisting, the inner loop of incremental
closure (which dominates the overall cost) requires just read operation per itera-
tion [9]. Hence the increase in memory references though the reads of incremental
closure is more than compensated by the reduction obtained by factoring out
matrix sub-structure, and the subsequent reduction in memory allocation and
initialisation.

As a final check, taes was again instrumented with Callgrind, which revealed
that the number of calls to gmpq init drops from 36% of the total using DBMs
to 12% using CoDBMs. This is not reduced to zero because of the need to store
intermediate rational numbers in various domain operations.

Locality of the memory references The D1 and LL misses reported in ta-
ble 4 act as a proxy for temporal and spatial locality and suggest that, despite the
extra reference incurred on each read, there is an overall, sometimes dramatic,
improvement to locality. The significant result here is that in the majority of
cases the number of LL misses reduce to 0%. We suspect that locality is im-
proved, in part, because a CoDBM is denser than the equivalent DBM so that
a single cache line stores more CoDBM entries than DBM entries. Moreover,
the values and sorted arrays are often much smaller than a moderately sized
CoDBM, which is itself much smaller than the corresponding DBM. This again
is good for locality. The table also explains the slowdown on qlz: although the
number of memory references almost halve, the number of D1 misses increase,
which illustrates the importance of locality.

But figure 10 reveals a more subtle explanation for locality. Figure 10 gives
distributions of the identifiers which arise on CoDBM reads during the analysis
of taes, lev and sol. For a given prefix of the values array, each distribution gives
the total number of times the array prefix is used to map an identifier to a value.
The distributions are normalised. It is interesting to see that accesses cluster at
the bottom end of values, implying to there is both temporal and spacial locality
to the way the array is accessed. In fact, for taes, the first 7 elements of values
attract over 75% of the reads, and for both lev and sol the first 3 elements are
responsible for over 75% of the reads. This bias is not unique to taes, lev and
sol; it is a general pattern.

15

Fig. 10: Cumulative Frequency Distribution of Identifiers (taes, lev, sol)

This pattern of access suggests that the portion of values needed for a read is
likely to reside in a cache line. This stems from the way identifiers are created on
demand when a matrix is updated with a previously unseen number. Numbers
which arise with highest frequency tend to be encountered earlier in the lifetime
of an analysis hence are inclined to be assigned smaller identifiers, giving the
biased frequency distributions of figure 10. Moreover, the preallocated value 8,
needed for space widening, is also accessed with high frequency.

The first few iterations of the while loop at line 6 of figure 6 are not likely
to be conducive to locality, which suggests that a high proportion of writes to
reads is likely to degrade locality, which squares with unq.

16

5 Related Work

A DBM can track any octagonal constraint between any pair of two variables,
whether that constraint is needed or not. In response, variable clustering has been
proposed [6,17,24] for grouping variables into sets which scope the relationships
which are tracked. However, deciding variable groupings is an art, although there
has been recent progress made in its automation [12].

Other remedies for the size of DBMs include sparse analyses [20] and access-
based localisation techniques [4]. Access-based localisation uses scoping heuris-
tics to adjust the size of the DBM to those variables that can actually be updated
[4]. Sparse analyses generalise access-based localisation techniques, using data
dependencies to adjust the size of abstract states propagated to method calls:
[20] defines a generic technique to apply sparse techniques to abstract interpreta-
tion and combines this with variable packing to scale an octagon based abstract
interpreter for C programs. Variable clustering, access-based localisation and
sparse frameworks are orthogonal to our work, and can take advantage of the
CoDBMs introduced in this paper.

Sparse matrix representations have been proposed for Octagons [14] and Dif-
ferences [11] as an alternative to DBMs, but these representations sit at odds
with the simplicity of the original domains algorithms. The desirable property
of strong closure [18] (the normal form for Octagons) does not hold for a sparse
representation, motivating the need to rework the domain operations in order to
retain precision [14]. The CoDBM representation proposed in this paper is rem-
iniscient of a sparse set representation [7], which likewise uses two arrays. The
key difference is that sparse sets use their two arrays to reference one another to
speed up set operations. They are also limited to a fixed size universe. CoDBMs,
on the other hand, uses a single lookup table to store all rational numbers oc-
curring in all the difference matrices and moreover the elements of the difference
matrices are not prescribed upfront.

There is a trend towards using doubles instead of rationals so as to take
advantage of modern instruction sets [23]. In contrast, we aim to retain the
precision of rationals and not sacrifice performance for soundness. The memory
footprint of a DBM directly relates to the underlying arithmetic: a double re-
quires 8 bytes in the IEEE 754-1983 standard and a rational number at least
12 bytes using the GNU multiple precision library applied in Apron [13]. But if
space is the primary concern, then a CoDBM over rationals will be smaller than
its corresponding DBM over doubles.

6 Discussion

CoDBMs are designed to change the economy of difference matrices: the over-
heads of memory management in DBMs are exchanged in CoDBMs for the costs
of reading the matrix through an indirection and writing to the matrix through
search. Callgrind instrumentation shows that one hot spot occurs at lines 9 and
10 of the get id function, in comparing rational numbers. If the writes to the

17

matrix have temporal locality, then a splay trees [1] could improve search by
ensuring that recently accessed rationals will require fewer comparisons to be
found again. Alternatively hashing could reduce the number of comparisons,
while matching the conceptual simplicity of Octagons.

We suspect that CoDBMs will confer further advantages for parallelisation
where multiple processes increase the size of the working set, and exert additional
pressure on the caches. It is worth noting that CoDBMs were designed to counter
the size of DBMs, but actually are faster too. As qlz illustrates, the key difference
is not the number of memory references, but locality. Moreover, as CPUs continue
to out pace memory, locality will only become a more important issue in the
implementation and realisation of abstract domains.

Finally, it is important to emphasise that CoDBMs are not a substitute for
variable clustering and access-based localisation: these are orthogonal techniques
that can benefit from CoDBMs.

7 Conclusions

This paper proposes CoDBMs as a compact, new representation for difference
bound matrices (DBMs) in which each distinct rational number in the DBM is
assigned a unique (small) identifier. The identifier is then stored as an entry in
the matrix as a substitute for the number it represents. The matrix is used in
tandem with two arrays. The first array, used for reading the matrix, maps the
identifier to its number. The second array is ordered, used for writing to the
matrix, maps an number to its identifier (to provide a partial inverse). CoDBMs
retain the regular structure of DBMs, hence the simple, attractive loop structures
of their domain operations, but also reduce space consumption while improving
cache behaviour, and speeding up long-running analyses.

Acknowledgements We thank Colin King at Canonical Limited for his tireless
patience and help with the performance analysis which underpinned this work.

References

1. B. Allen and I. Munro. Self-Organizing Binary Search Trees. Journal of the ACM,
25(4):526–535, 1978.

2. R. Bagnara, P. M. Hill, and E. Zaffanella. Weakly-relational Shapes for Numeric
Abstractions: Improved Algorithms and Proofs of Correctness. Formal Methods in
System Design, 35(3):279–323, 2009.

3. F. Banterle and R. Giacobazzi. A Fast Implementation of the Octagon Abstract
Domain on Graphics Hardware. In SAS, volume 4634 of LNCS, pages 315–335.
Springer, 2007.

4. E. Beckschulze, S. Kowalewski, and J. Brauer. Access-Based Localization for Oc-
tagons. Electronic Notes in Theoretical Computer Science, 287:29–40, 2012.

5. R. Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16:87–90,
1958.

18

6. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A Static Analyzer for Large Safety-Critical Software. In PLDI, pages
196–207, 2003.

7. P. Briggs and L. Torczon. An Efficient Representation for Sparse Sets. ACM
Letters on Programming Languages and Systems, 2(1-4):59–69, 1993.

8. D. Bühler, P. Cuoq, B. Yakobowski, M. Lemerre, A. Maroneze, V. Per-
relle, and V. Prevosto. The EVA Plug-in. CEA LIST, Software Reliability
Laboratory, Saclay, France, F-91191, 2017. https://frama-c.com/download/

frama-c-value-analysis.pdf.
9. A. Chawdhary, E. Robbins, and A. King. Simple and Efficient Algorithms for

Octagons. In APLAS, volume 8858 of LNCS, pages 296–313. Springer, 2014.
10. D. Dill. Timing Assumptions and Verification of Finite-State Concurrent Systems.

In J. Sifakis, editor, CAV, volume 407 of LNCS, pages 187–212. Springer, 1989.
11. G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. Stuckey. Exploiting

Sparsity in Difference-bound Matrices. In SAS, volume 9837 of LNCS, pages 189–
211, 2016.

12. K. Heo, H. Oh, and H. Yang. Learning a Variable-Clustering Strategy for Octagon
From Labeled Data Generated by a Static Analysis. In SAS, volume 9837 of LNCS,
pages 237–256, 2016.

13. B. Jeannet and A. Miné. APRON: A library of numerical abstract domains for
static analysis. In CAV, volume 5643 of LNCS, pages 661–667, 2009.

14. J.-H. Jourdan. Verasco: a Formally Verified C Static Analyzer. PhD thesis, Uni-
versité Paris Diderot (Paris 7) Sorbonne Paris Cité, May 2016.

15. J.-L. Lassez, T. Huynh, and K. McAloon. Simplication and Elimination of Re-
dundant Linear Arithmetic Constraints. In Constraint Logic Programming, pages
73–87. MIT Press, 1993.

16. M. Measche and B. Berthomieu. Time Petri-nets for analyzing and verifying time
dependent communication protocols. In H. Rudin and C. West, editors, Protocol
Specification, Testing and Verification III, pages 161–172. North-Holland, 1983.

17. A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, École Poly-
technique En Informatique, 2004.

18. A. Miné. The Octagon Abstract Domain. HOSC, 19(1):31–100, 2006.
19. N. Nethercote. Dynamic Binary Analysis and Instrumentation. PhD thesis, Trinity

College, University of Cambridge, 2004.
20. H. Oh, K. Heo, W. Lee, W. Lee, D. Park, J. Kang, and K. Yi. Global Sparse

Analysis Framework. ACM TOPLAS, 36(3):8:1–8:44, 2014.
21. I. Pavlov. Lempel-Ziv-Markov chain Algorithm CPU Benchmarking, 2017. http:

//www.7-cpu.com/.
22. S. Ruggieri. On Computing the Semi-Sum of Two Integers. Information Processing

Letters, 87(2):67–71, 2003.
23. G. Singh, M. Püschel, and M. Vechev. Making Numerical Program Analysis Fast.

In PLDI, pages 303–313. ACM Press, 2015.
24. A. Venet and G. Brat. Precise and Efficient Static Array Bound Checking for

Large Embedded C Programs. In PLDI, pages 231–242, 2004.
25. J. Weidendorfer, M. Kowarschik, and C. Trinitis. A Tool Suite for Simulation

Based Analysis of Memory Access Behavior. In International Conference on Com-
putational Science, volume 3038 of LNCS, pages 440–447. Springer, 2004.

26. L. F. Williams Jr. A Modification to the Half-Interval Search (Binary Search)
Method. In Proceedings of the 14th ACM Southeast Conference, pages 95–101.

19

https://frama-c.com/download/frama-c-value-analysis.pdf
https://frama-c.com/download/frama-c-value-analysis.pdf
http://www.7-cpu.com/
http://www.7-cpu.com/

	Compact Difference Bound Matrices
	Introduction
	The Octagon Domain and its Representation
	Definitions of Closure
	Apron Library

	Compact DBMs
	CoDBM data-structure invariants
	CoDBM algorithms
	Binary search with machine arithmetic

	Experiments
	Execution Time
	Memory Consumption
	Cache Behaviour

	Related Work
	Discussion
	Conclusions

