
Brown, Neil C.C. and Kölling, Michael (2012) Position Paper: Programming
Can Deepen Understanding Across Disciplines. In: Addressing Educational
Challenges: the role of ICT (AECRICT 2012), July 2nd - 5th, 2012, Manchester
Metropolitan University, Manchester, UK.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/33881/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/33881/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Position Paper: Programming Can Deepen
Understanding Across Disciplines [DRAFT]

Neil Brown, nccb@kent.ac.uk
School of Computing, University of Kent, Canterbury, Kent, UK

Michael Kölling, mik@kent.ac.uk
School of Computing, University of Kent, Canterbury, Kent, UK

Extended Abstract
Computer programs can be used to support learning in various subjects: In
particular, computer simulations can be used to explain science subjects such as
Physics, Chemistry, and Biology (as well as wider subject areas such as Economics,
Geography and Music). Educational simulation programs are often used as a black-
box: Students are given the program to play with and are told about the principles
underlying the simulation, but they are given no opportunity to relate the computer
program to the knowledge being taught. The subject of Computing, in contrast to
ICT, enables students to read, understand and modify program code and
algorithms. These skills can be used, in conjunction with open-source simulations, to
allow students to directly read and understand (and potentially modify) the key parts
of the simulation programs that they are using. We believe that this use of
programming skills can allow for a deeper and more direct understanding of the
subjects under investigation, using Computing to support learning in the same way
that Mathematics supports the learning of subjects such as Physics.

Keywords
Greenfoot, Simulation, Education, Programming

INTRODUCTION
Information and Communications Technology (ICT) in schools takes various forms:
from smart whiteboards and graphing calculators through to software packages
(desktop publishing, word processing, etc) and specific computer-aided learning
packages (e.g. for language learning). Several subjects, especially the sciences,
can make use of educational simulations to support, complement or even replace
practical experiments (e.g. the PhET project (2011) resources). In all of these cases,
ICT is used as a black-box technology, with functionality that supports learning, but
with no transparency – no visibility of the inner workings.

A key difference between Computing and ICT is that the former includes examining
and altering how programs work, rather than simply using them (CAS, 2011). In this
paper, we examine the possibilities that are opened up for learning if students are
able to read and adapt code and are able to use Computing as a basis for learning,
rather than ICT: What if the students could not only use computerised simulations of
scientific concepts, but could also examine and alter the way in which the simulation
is implemented?

In this paper, we explore several subjects and describe how Computing could
benefit the teaching of some example topics in those disciplines. The examples will
be given using the authors' popular Greenfoot (2011) programming system (suited
to ages 14 upwards), which uses the Java programming language to support the
creation of interactive games and simulations. The choice of environment is not
central to this paper, and alternative environments such as Scratch (2011) (suited to
ages 7—14) would function equally well.

BIOLOGY
Biology – in particular, ecology and the study of populations – lends itself well to
illustrative simulations (e.g. Kölling, 2011). A classic example of organism behaviour
that has developed into its own sub-discipline of computer science is the study of
swarms and behaviours of creatures such as ants (e.g. Kölling, 2009a), inspired by
the famous boids example (Reynolds, 2011). This swarm behaviour is usually
expressed as a series of simple rules, which can be directly translated into a
computer program: align with your neighbours, keep reasonably close to them, but
avoid collisions. Understanding the behaviour of the swarm exactly corresponds with
understanding the algorithm expressing the creatures’ behaviour.

An example of how code reading could deepen understanding is the investigation of
how drops of pheromones are being used by ants in the ants simulation. If students
were able to also modify or write code, one could ask questions such as ―If a
pollutant were introduced into the environment that causes the sense of smell to
deteriorate by 50%, would ants still be able to form paths?‖ This could easily be
investigated experimentally by making small changes to the code. Another obvious
task might be altering the size of a habitat in a predator/prey simulation to
investigate whether habitat size influences probability of survival of species. In each
of these cases, fairly minor modifications allow deepening of interesting insights.

Another example where simulation can be useful is in explaining natural selection.
One Greenfoot example (Kölling, 2010) invites the human to play the role of a
predator in an environment in order to observe the principles of natural selection.
The scenario starts with a random population of frogs. The code is straightforward,
picking a random frog, which will ―reproduce‖. When a frog reproduces, it forms
copies of itself, which have a small chance of having a slightly altered colour from
their parent (i.e. a small mutation). This code can be understood fairly easily, and
when run (with some code to randomly kill off old frogs) the simulation produces a
random series of coloured frogs.

The user of the scenario is then challenged to ―kill‖ as many frogs as possible (by
simply clicking on the frog to remove it) in a short time frame. Played against a
green background, the player will automatically click on frogs whose colour stands
out against this background, and over a period of time, this evolves the frogs to
become green, even though the code shows no such bias. Playing against a red
background will instead breed red frogs. This combination of interaction, and
understanding the lack of in-built colour bias in the code, can allow a good
understanding and appreciation of the natural selection process. Furthermore, the
students can alter the code to answer questions: what if the colour is no longer
based on the parent frog, but is entirely random – do the frogs still converge to the
colour of the background (and in the same amount of time?).

PHYSICS
The idea of using computer-based simulations for Physics is far from new. In
particular, the PhET (Physics Education Technology) project (2011) is a successful
example of producing simulations for Physics (and other natural sciences) that can
be used for teaching a variety of ages. The PhET examples are delivered as black-
box simulations: ready to use, but without the possibility to easily examine (or alter)
the source code. One example from the PhET project is the ―wave on a string‖
simulation, which simulates wave propagation along a string, with configurable
damping. This exact example has been replicated in the Greenfoot system (Kölling,
2009b); in Greenfoot, the source code can be viewed, showing the key behaviour of
the system in a few lines:

 middle = (leftNeighbour.getExactY() + rightNeighbour.getExactY()) / 2;

 newForce = (middle - getExactY()) * 2;

 movement = (newForce + movement) / (1.0 + damping);

 setLocation(getExactX(), getExactY() + (movement / 4));

This code is easy to read for someone with basic mathematical knowledge, even
without much programming knowledge. This ability to see the exact inner workings
can help to solidify the students' understanding of the underlying concepts. By
altering internal simulation parameters or behaviour, students could experiment with
characteristics of different materials, such as difference in elasticity.

MATHEMATICS
Graphical frameworks such as Scratch and Greenfoot are heavily dependent on
trigonometry to function. The underlying mechanism to rotate images uses a
trigonometric transformation, moving sprites a fixed distance at a given angle is a
straightforward application of trigonometric laws. Thus, one easy way to present a
practical application of trigonometry to students (who sometimes complain of
mathematics' lack of obvious application) is to expose this functionality with the
simple equations written into the program:

 x += dist * Math.cos(angle);

 y += dist * Math.sin(angle);

Many games include functionality, for example, to find the nearest object, or to react
as a function of distance to another object. Since object location is usually
expressed in Cartesian coordinates, this typically involves the use of Pythagoras’
theorem. These examples can be used in a code reading exercise to uncover the
mathematical foundation of simulations/games, or they can be used constructively,
by setting students the challenge to extend a given program in this way.

CONCLUSION
This paper has outlined how knowledge of Computing, particularly programming,
can be used to support education in other disciplines and provide deeper insight into
the topic under discussion, while simultaneously practicing computing skills as a
general tool for scientific discovery. We propose that if students are taught to read
code (even if their ability to write code is limited), they can gain great benefits from
exploring the code behind the simulations that are used to support their learning.
This ability to read code need be treated no differently than the ability to read a
mathematical equation (which is, in some respects, a similar skill) or the ability to
cross-reference material.

Once students have the ability to read code, simulations can become more
instructive by allowing students to see (and alter) how they work, and thus learn the
underlying principles of the simulations – rather than simply using them as a black-
box tool for experimental simulation. Such simulations can be constructed in
environments such as Greenfoot or Scratch, and then shared for many teachers to
use. Making the core code readable and understandable should be a priority, but
this is already good software development practice.

The cross-disciplinary applications of Computing described in this paper are not
restricted to the more obvious natural science subjects that we have chosen to focus
on. Subjects such as Economics and Sociology can use simulations of the
population in order to explore the effects of tax policy or the spread of information. A
score in Music can be viewed as a deterministic program, ready to be executed –
but Computing allows the exploration of procedurally generated music: What if the

score were not deterministic, but had defined choice points? We believe that
Computing can support many other disciplines, analogously to Mathematics. These
cross-disciplinary applications of Computing should be recognised and implemented
by teaching basic code-reading (and, ideally, code-writing) to all students, then
making use of these skills across the curriculum.

REFERENCES
CAS (2011) Computing: A Curriculum for Schools, Computing at School Working

Group, http://www.computingatschool.org.uk/

Greenfoot (2011) http://www.greenfoot.org/, accessed December 2011

Kölling, M. (2009a), Ants Greenfoot Scenario,

http://www.greenfoot.org/scenarios/1016, accessed December 2011

Kölling, M. (2009b), Wave-Lab Greenfoot Scenario,

http://www.greenfoot.org/scenarios/1007, accessed December 2011

Kölling, M. (2010), Natural Selection Greenfoot Scenario,

http://www.greenfoot.org/scenarios/1385, accessed December 2011

Kölling, M. (2011), Foxes and Rabbits Greenfoot Scenario,

http://www.greenfoot.org/scenarios/3902, accessed December 2011

Reynolds, C. (2011) Flocks, herds and schools: A distributed behavioral model. In

SIGGRAPH ’87. pp. 25—34.

Scratch (2011) http://scratch.mit.edu/, accessed December 2011

The PhET project (2011) http://phet.colorado.edu, accessed December 2011

Biography

Dr Neil Brown is a Research Associate in the Computing
Education Research Group, in the School of Computing at the
University of Kent. He works on the Greenfoot project as one of
the lead developers, and is a working member of the Computing
At School (CAS) group.

Professor Michael Kölling is a Professor of Computer Science
in the Computing Education Research Group, in the School of
Computing at the University of Kent. He is responsible for the
creation of the popular BlueJ and Greenfoot learner’s
development environments, and is a Distinguished Member of
the ACM and a working member of the CAS group.

Copyright
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License. To view a copy of this licence, visit
http://creativecommons.org/licenses/by-nc-nd/3.0/

http://www.computingatschool.org.uk/
http://www.greenfoot.org/
http://www.greenfoot.org/scenarios/1016
http://www.greenfoot.org/scenarios/1007
http://www.greenfoot.org/scenarios/1385
http://www.greenfoot.org/scenarios/3902
http://scratch.mit.edu/
http://phet.colorado.edu/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

