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Abstract. Starting with the Gaudin-like Bethe ansatz equations associated with

the quasi-exactly solved (QES) exceptional points of the asymmetric quantum Rabi

model (AQRM) a spectral equivalence is established with QES hyperbolic Schrödinger

potentials on the line. This leads to particular QES Pöschl-Teller potentials. The

complete spectral equivalence is then established between the AQRM and generalised

Pöschl-Teller potentials. This result extends a previous mapping between the

symmetric quantum Rabi model and a QES Pöschl-Teller potential. The complete

spectral equivalence between the two systems suggests that the physics of the

generalised Pöschl-Teller potentials may also be explored in experimental realisations

of the quantum Rabi model.

1. Introduction

The quantum Rabi model [1, 2] describes the fundamental interaction between a two-

level atom and a single-mode bosonic field. There are a number of reasons for the

recent growth of interest in the quantum Rabi model, from the perspectives of both

mathematics and physics [3, 4]. Briefly stated, this is because experiments are now able

to push into the coupling regimes beyond which the simpler Jaynes-Cummings model

[2] no longer applies, with prospects for novel regimes of light-matter interactions. The

analytic solution of the quantum Rabi model [5] has also inspired further interest in the

analysis of this class of models.

The asymmetric version of the quantum Rabi model of interest here is a particular

generalisation of the Rabi model described by the hamiltonian

H = ∆σz + ε σx + ω a†a+ g σx(a
† + a). (1)
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Here σx and σz are Pauli matrices for a two-level system with level splitting ∆. The

single-mode bosonic field is described by the creation and destruction operators a† and a

with [a, a†] = 1 and frequency ω. The interaction between the matter and light systems

is via the coupling g. The additional term ε σx breaks the Z2 symmetry (parity) of the

Rabi model. It allows tunnelling between the two atomic states. The asymmetric version

of the quantum Rabi model is relevant to the description of various hybrid mechanical

systems [6, 7]. Moreover, the asymmetric quantum Rabi model (AQRM) is unitarily

equivalent to the effective circuit QED hamiltonian describing a flux qubit [8]

HcQED =
1

2
Ωσz + ω a†a+ g(cos θ σx − sin θ σy)(a+ a†) , (2)

with ∆ = 1
2
Ω sin θ and ε = 1

2
Ω cos θ.

The AQRM has been solved only relatively recently. There have been two

approaches: (i) by mapping the problem to the Bargmann space of analytic functions

[5], and (ii) by using the Bogoliubov operator method [9]. Using the former approach

explicit expressions have been obtained [6, 10] for the wavefunction in terms of confluent

Heun functions. Of particular relevance here is the fact that the energy spectrum

of the AQRM, although possessing no parity symmetry, still includes both regular

and exceptional parts. The full eigenspectrum can be determined from the analytical

solution. The exceptional parts, known as Juddian isolated exact solutions [11], can

be systematically found from the conditions under which the confluent Heun functions

are terminated as finite polynomials [6, 12]. The eigenvalues are simply those of a

shifted oscillator, however with the system parameters satisfying constraint polynomials

which become increasingly complicated for higher energy levels. A significantly deep

understanding of the constraint polynomials has recently been obtained, paving the

way for the general proof of crossing points in the energy spectrum when ε/ω ∈ 1
2
Z

[13, 14]. These crossing points become conical intersection points when the energy

surface is considered in the (g, ε) parameter space [15].

Our starting point is with algebraic Bethe ansatz equations characterising the

exceptional part of the eigenspectrum of the AQRM. These equations were obtained

[12] following the connection made [16, 17] between the quantum Rabi model and

the theory of quasi-exactly solved (QES) models. For this reason the quantum Rabi

model has been called a QES model, but given there is an analytic solution for the

full eigenspectrum, such a label seems not entirely appropriate [4, 18]. Nevertheless,

the identification of a QES sector of the Rabi model is important. The notion of QES

comes from quantum mechanics where there exist potentials for which it is possible to

find a finite number of exact eigenvalues and associated eigenfunctions in a relatively

simple closed algebraic form [19, 20]. In particular, there is a connection between QES

Schrödinger potentials and Gaudin-like Bethe ansatz equations [21]. Here we complete

this circle by establishing the explicit connection between the algebraic QES part of the

eigenspectrum of the AQRM and QES hyperbolic Schrödinger potentials. In doing so,

we obtain a specific QES generalisation of the well known Pöschl-Teller potential [22].

The Pöschl-Teller potential has appeared in many areas of physics, including quantum
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many-body systems, quantum wells, black holes and optical waveguides.‡
In units of ~ = 2m = 1, the relevant results [21] satisfying the one-dimensional

Schrödinger equation

−d
2Ψ(x)

dx2
+ V (x)Ψ(x) = EΨ(x), (3)

are the wavefunction

Ψ(x) = (cosh x − 1)−(B/2+1/4)(coshx + 1)−(C/2+1/4)

× exp

(
Aγ

4
coshx

) M∏
j=1

(γ
2

coshx + vj

)
, (4)

with Schrödinger potential

V (x;A,B,C, γ) = M(M − 1−B − C +
Aγ

2
coshx) +

1

4
(B + C + 1)2

+
A2γ2

16
sinh2 x+

Aγ

4
(C −B)− Aγ

4
(B + C) coshx

+
(2B + 1)(2B + 3)

8(coshx − 1)
− (2C + 1)(2C + 3)

8(coshx + 1)
. (5)

The general form of the algebraic Bethe ansatz equations is

A+
B

vj + 1
2
γ

+
C

vj − 1
2
γ

=
M∑
k 6=j

2

vj − vk
, (6)

with

E = A
M∑
j=1

vj. (7)

The procedure for a specific hamiltonian is to identify the parameters A,B,C and γ

from the corresponding set of Bethe ansatz equations (6), from which the wavefunction

and Schrödinger potential V (x;A,B,C, γ) follow. In this way a spectral equivalence

at the level of the QES sectors is established. For some models a complete spectral

equivalence can also be established [21].

In the next section we make the explicit connection between the above results and

the algebraic QES part of the AQRM. This establishes a spectral equivalence between

the QES eigenvalues of the AQRM hamiltonian and the QES sector of the Schrödinger

operator. This equivalence is then extended to a complete spectral equivalence between

the two systems, thus providing a generalisation of the known mapping [16] between the

quantum Rabi model and the QES Pöschl-Teller potential. The paper concludes with

a brief discussion of the results and their implications.

2. Results

We begin by collecting the relevant results [12] for the AQRM.

‡ See, e.g., [23] and references therein.
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2.1. Algebraic equations for the asymmetric quantum Rabi model

By making use of the Bargmann realisation [24]

a† → z, a→ d

dz
(8)

the hamiltonian (1) is transformed to

H = ∆σz + ε σx + ω z
d

dz
+ g σx

(
z +

d

dz

)
. (9)

It then follows that in terms of the two-component wavefunction

ψ(z) =

(
ψ+(z)

ψ−(z)

)
, (10)

the Schrödinger equation Hψ = Eψ gives rise to the pair of coupled equations

(ωz + g)
dψ+

dz
+ (gz + ε− E)ψ+ + ∆ψ− = 0 , (11)

(ωz − g)
dψ−
dz
− (gz + ε+ E)ψ− + ∆ψ+ = 0 . (12)

Two sets of solutions for the components ψ+(z) and ψ−(z) have been obtained. For

the first set, the substitution ψ1
±(z) = e−gz/ωφ1

±(z) leads to the coupled equations[
(ωz + g)

d

dz
−
(
g2

ω
+ E − ε

)]
φ1
+(z) = −∆φ1

−(z) , (13)[
(ωz − g)

d

dz
−
(

2gz − g2

ω
+ E + ε

)]
φ1
−(z) = −∆φ1

+(z) . (14)

Eliminating φ1
−(z) gives the second order differential equation

(ωz − g)(ωz + g)
d2φ1

+(z)

d2z

+
[
−2gωz2 + (ω2 − 2g2 − 2Eω)z +

g

ω
(2g2 − ω2 − 2εω)

] dφ1
+(z)

dz

+

[
2g

(
g2

ω
+ E − ε

)
z + E2 −∆2 − ε2 +

2εg2

ω
− g4

ω2

]
φ1
+(z) = 0 . (15)

For the algebraic QES part of the eigenspectrum the wavefunction component is given

in the factorised form

ψ1
+(z) = e−gz/ω

n∏
i=1

(z − zi) , (16)

where the zi satisfy the set of algebraic equations
n∑
j 6=i

2ω

zi − zj
=
nω2 + 2εω

ωzi − g
+
nω2 − ω2

ωzi + g
+ 2g (17)

for i = 1, . . . , n. The system parameters obey the constraint

∆2 + 2ng2 + 2ωg
n∑
i=1

zi = 0 . (18)
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The energy of these states is given by

E = nω − g2

ω
+ ε . (19)

The corresponding wavefunction component ψ1
−(z) is determined using the result (16)

and equation (13).

The other set of solutions follow from the substitution ψ2
±(z) = egz/ωφ2

±(z), leading

to the coupled equations[
(ωz + g)

d

dz
+

(
2gz +

g2

ω
− E + ε

)]
φ2
+(z) = −∆φ2

−(z) , (20)[
(ωz − g)

d

dz
−
(
g2

ω
+ E + ε

)]
φ2
−(z) = −∆φ2

+(z) . (21)

Eliminating φ2
+(z) gives the second order differential equation

(ωz − g)(ωz + g)
d2φ2

−(z)

d2z

+
[
2gωz2 + (ω2 − 2g2 − 2Eω)z − g

ω
(2g2 − ω2 + 2εω)

] dφ2
−(z)

dz

+

[
−2g

(
g2

ω
+ E + ε

)
z + E2 −∆2 − ε2 − 2εg2

ω
− g4

ω2

]
φ2
−(z) = 0 . (22)

For the QES component of the eigenspectrum these equations are solved for the

wavefunction components in the form

ψ2
−(z) = egz/ω

n∏
i=1

−(z − zi) (23)

where the roots {zk} satisfy the algebraic equations
n∑
j 6=i

2ω

zi − zj
=
nω2 − ω2

ωzi − g
+
nω2 − 2εω

ωzi + g
− 2g (24)

for i = 1, . . . , n. The system parameters obey the constraint

∆2 + 2ng2 − 2ωg
n∑
i=1

zi = 0 , (25)

with energy

E = nω − g2

ω
− ε . (26)

The wavefunction component ψ2
+(z) = egz/ωφ2

+(z) follows from (23) and (21).

The symmetry between the two sets of solutions has been noted [6, 12]. Namely

the algebraic equations (17) and (24) are equivalent under the transformation zi ↔ −zi,
ε ↔ −ε. This corresponds to the related symmetry ψ1

+(z, ε) = ψ2
−(−z,−ε), ψ1

−(z, ε) =

ψ2
+(−z,−ε) in the wavefunction components. The − sign appears in equation (23) to

ensure this symmetry.
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2.2. Constraint polynomials

The constraint polynomials Pn(x, y) for the AQRM were defined in [12] following the

work of Kús [25] on the (symmetric) quantum Rabi model. These polynomials were

derived in the framework of finite-dimensional irreducible representations of sl2 in the

confluent Heun picture of the AQRM [13]. The polynomials Pk(x, y) of degree k are

defined via the three-term recursion relation [12, 13, 14]

Pk(x, y) =
[
kx+ y − k2ω2 − 2kε ω

]
Pk−1(x, y)

− k(k − 1)(n− k + 1)xω2Pk−2(x, y) , (27)

with P0(x, y) = 1 and P1(x, y) = x+y−ω2−2εω. The zeros of the constraint polynomials,

Pn((2g)2,∆2) = 0, (28)

define the QES, or Juddian solutions of the model, with in this case the energy given by

(19). Although the precise connection is not at all obvious, the constraint polynomials

are also of the form (18) and (25) in terms of the Bethe ansatz roots {zk}. We will

touch on this point further below.

Having laid out the relevant results for the AQRM we are now ready to make the

connection with the Schrödinger equation (3).

2.3. Equivalent QES Schrödinger potentials

Beginning with the algebraic equations, comparison of (17) and (18) with (6) and (7)

gives

A+ = −2g/ω, B+ = n+ 2ε/ω, C+ = n− 1, γ = 2g/ω, (29)

and

E = −∆2/ω2 − 2n g2/ω2. (30)

Likewise, comparison of (24) and (25) with (6) and (7) gives

A− = 2g/ω, B− = n− 1, C− = n− 2ε/ω, γ = 2g/ω, (31)

with E also given by (30). In each case M = n and we identify vj = −zj.
For each case the corresponding wavefunction ψ(x) is given by (4) with the

Schrödinger potential V (x;A,B,C, γ) given by (5). This establishes the spectral

equivalence between the QES sector of the AQRM on the one hand, and a QES

hyperbolic Schrödinger potential on the other. For the set of parameters (29) the

Schrödinger potential is

V+(x) =
ε2

ω2
+
g4

ω4
sinh2 x+

g2

ω2
(1− coshx) +

2g2ε

ω3
(1 + cosh x)

− 4n2 − 1

8(coshx+ 1)
+

(2n+ 1 + 4ε/ω)(2n+ 3 + 4ε/ω)

8(coshx− 1)
. (32)
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The parameters (31) give

V−(x) =
ε2

ω2
+
g4

ω4
sinh2 x+

g2

ω2
(1 + cosh x)− 2g2ε

ω3
(1− coshx)

+
4n2 − 1

8(coshx− 1)
− (2n+ 1− 4ε/ω)(2n+ 3− 4ε/ω)

8(coshx+ 1)
. (33)

We will demonstrate that these hyperbolic Schrödinger potentials are in fact

generalised QES Pöschl-Teller potentials. Consider first the potential (32), which can

be rewritten as

V+(x) =
ε2

ω2
+
g2

ω2

(
1 +

2ε

ω

)
− g2

ω2

(
1− 2ε

ω

)
coshx+

g4

ω4
sinh2 x

+ 1
4

(
(2n+ 1)2 + 8ε/ω (1 + n+ ε/ω)

)
csch2x

+ 1
2

(2n+ 1 + 4ε/ω (1 + n+ ε/ω)) cothx cschx. (34)

Similarly the potential (33) is

V−(x) =
ε2

ω2
+
g2

ω2

(
1− 2ε

ω

)
+
g2

ω2

(
1 +

2ε

ω

)
coshx+

g4

ω4
sinh2 x

+ 1
4

(
(2n+ 1)2 − 8ε/ω (1 + n− ε/ω)

)
csch2x

− 1
2

(2n+ 1− 4ε/ω (1 + n− ε/ω)) cothx cschx. (35)

The hyperbolic functions appearing in these potentials are precisely those given in

equation (5.11) of reference [26], therein corresponding to canonical form IIb (Case 2a).

Here the various constant terms and prefactors are essential to the spectral equivalence

with the AQRM. In principle the constant terms in V±(x) could be absorbed into the

energy (30). We also note that, as pointed out in [26], the exactly-solvable case is when

g = 0, here corresponding to the absence of the light-matter interaction term in the

AQRM, as we should expect.

The corresponding wavefunctions are, respectively,

Ψ+(x) =
exp

(
− g2

ω2 coshx
)

(coshx− 1)
1
4
(2n+1+4ε/ω)(coshx+ 1)

1
4
(2n−1)

n∏
j=1

( g
ω

coshx+ vj

)
,

(36)

Ψ−(x) =
exp

(
g2

ω2 coshx
)

(coshx− 1)
1
4
(2n−1)(coshx+ 1)

1
4
(2n+1−4ε/ω)

n∏
j=1

( g
ω

coshx+ vj

)
.

(37)

As a concrete example, consider n = 1. The algebraic Bethe ansatz equations (6)

reduce to

A+ +
B+

v1 + γ/2
+

C+

v1 − γ/2
= 0. (38)

For the parameter set (29), the solution is

v1 =
ω2 − 2g2 + 2εω

2gω
. (39)



The asymmetric quantum Rabi model and generalised Pöschl-Teller potentials 8

The energy follows as

E = −1 + 2g2/ω2 − 2ε/ω. (40)

It should be noted that this energy is equivalent to the general result (30) due to the

n = 1 constraint relation

∆2 + 4g2 − ω2 − 2εω = 0. (41)

The corresponding results for the wavefunction and potential are

Ψ+(x) = (cosh x− 1)−3/4−ε/ω(coshx+ 1)−1/4 exp

(
− g

2

ω2
coshx

)
×
(
g

ω
coshx+

ω2 − 2g2 + 2εω

2gω

)
, (42)

V+(x) =
ε2

ω2
+
g4

ω4
sinh2 x+

g2

ω2
(1− coshx) +

2g2ε

ω3
(1 + cosh x)

− 3

8(coshx+ 1)
+

(3 + 4ε/ω)(5 + 4ε/ω)

8(coshx− 1)
. (43)

It can be readily verified that E ,Ψ(x) and V (x) satisfy the Schrödinger equation (3).

Similarly the parameter set (31) leads to the solution

v1 =
2g2 − ω2 + 2εω

2gω
. (44)

and thus the energy

E = −1 + 2g2/ω2 + 2ε/ω. (45)

Here the corresponding constraint relation

∆2 + 4g2 − ω2 + 2εω = 0, (46)

ensures (30) is satisfied. In this case the Schrödinger equation (3) is satisfied with the

wavefunction and potential

Ψ−(x) = (cosh x− 1)−1/4(coshx+ 1)−3/4+ε/ω exp

(
g2

ω2
coshx

)
×
(
g

ω
coshx+

2g2 + 2εω − ω2

2gω

)
, (47)

V−(x) =
ε2

ω2
+
g4

ω4
sinh2 x+

g2

ω2
(1 + cosh x)− 2g2ε

ω3
(1− coshx)

+
3

8(coshx− 1)
− (3− 4ε/ω)(5− 4ε/ω)

8(coshx+ 1)
. (48)

To illustrate the QES spectral equivalence between the two systems more generally,

consider the eigenspectrum of the AQRM shown in Figure 1 as a function of the coupling

g at the particular asymmetry value ε = 0.3. The QES points are indicated as circles.

The corresponding energy values of the QES generalised Pöschl-Teller potentials are

shown in Figure 2.
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0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

6

g

E
+
g
2

Figure 1. Rescaled lowest energy levels E + g2 in the eigenspectrum of the AQRM

(1) as a function of the light-matter coupling g. The parameter values are ∆ = 1.2,

ω = 1 and ε = 0.3. The blue lines are the energy E + g2 = n − ε for n = 1, 2, 3, 4, 5.

The red lines are the energy E+ g2 = n+ ε for n = 1, 2, 3, 4, 5. In each case the circles

indicate the QES exceptional points. For the given parameter values there are n QES

points on the red lines and n− 1 QES points on the blue lines. The precise values of g

at the QES points can be determined from the roots of the constraint polynomials. As

ε → 0 the QES points become doubly degenerate crossing points. The energy levels

have been obtained using Braak’s G-function [5].

2.4. QES general form and constraint polynomials

A second order differential equation has a QES sector if it can be written in the form

P (z)
d2y(z)

dz2
+

[
Q (z)− n− 1

2
P ′(z)

]
dy(z)

dz

+

[
R− n

2
Q′(z) +

n(n− 1)

12
P ′′(z)

]
y (z) = 0, (49)

where in general P (z) is a quartic polynomial, Q(z) is a quadratic polynomial, R is a

constant and n is a non-negative integer [26]. Comparing this form with equation (15)

for the φ+
1 (z) component, the polynomials are thus

P (z) = ω2z2 − g2, (50)

Q(z) = − 2gω z2 −
(
nω2 + 2εω

)
z − g

ω

(
ω2 + 2εω − 2g2

)
, (51)
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0.08 0.24

-1.4

-1.7

0.0 0.5 1.0 1.5 2.0

-40

-30

-20

-10

0

g

ℰ

Figure 2. The energy levels E (30) of the QES generalised Pöschl-Teller potentials

(32) and (33) with parameter values ∆ = 1.2, ω = 1 and ε = 0.3. Here, from top to

bottom, n = 1, 2, 3, 4, 5. The QES points are indicated by circles. The inset shows a

magnification of the indicated region. The QES points are spectral equivalent to the

QES points indicated in Figure 1.

R =
1

3
n2ω2 +

1

6
nω2 + nεω − 2ng2 −∆2, (52)

along with the energy relation (19). The algebraic sector has n + 1 eigenfunctions of

the form (16), one of which is the ∆ = 0 case with zi = −g/ω, corresponding to the

degenerate atomic limit in the Rabi model [12].

The polynomials for φ−2 (z) satisfying equation (22) are

P (z) = ω2z2 − g2, (53)

Q(z) = 2gω z2 − (nω2 − 2εω)z +
g

ω

(
ω2 − 2εω − 2 g2

)
, (54)

R =
1

3
n2ω2 +

1

6
nω2 − nεω − 2ng2 −∆2, (55)

along with the energy relation (26).

Here the particular polynomial P (z) corresponds to canonical form IIb in the

classification of QES spectral problems [26], discussed therein as Case 2a and Case

2b depending on the domain z. The corresponding change of variables is as given in

(68) below. Within the general QES formalism contact can also be made with the

three-term recursion relations defining the constraint polynomials [27]. In this way the
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known constraint polynomials for the AQRM can be recovered. These same constraint

polynomials appear in the solutions involving the generalised Pöschl-Teller potentials.

The polynomials Pk(x, y) arise from a generating function type of solution to the

confluent Heun picture of the AQRM [14]. Relations (16) and (17) arise from assuming

a product type of solution

φ1
+(z) =

n∏
i=1

(z − zi), (56)

which we insert into (15) and equate coefficients of powers of z. The coefficient at

order zn+1 is zero if E satisfies (19), the constraint (18) is the coefficient of zn and the

coefficients of lower order powers of z specify the Bethe ansatz equations (17). If we

seek a solution to (15) in the form of a generating function,

φ1
+(z) =

∞∑
k=0

Rk(n, ε, ω,∆) zk, (57)

we find a 4-term recursion relation for the coefficients Rk, and cannot easily deduce

Rn+k = 0 for k = 1, 2, . . . . However, one further variable transformation will allow

a direction connection to be made between the approach discussed in §2.1 and the

constraint polynomials Pn(x, y). Setting E as per equation (19) and applying the

variable changes

z = − g
ω

u+ 1

u− 1
, y(u) = ω(u− 1)−nf(u), (58)

to equation (15) gives

u(u− 1)2ω2d
2f(u)

du2

+
(
(1− n)ω2u2 + (2εω + (2n− 1)ω2 − 4g2)u− ω(2ε+ nω)

) df(u)

du
−∆2f(u) = 0. (59)

Note that a further variable change maps this equation to the confluent Heun equation

of relevance to the AQRM [6, 10, 13]. Here we work with the form (59) because it

explicitly includes the special solutions ∆2 = 0, as we note below.

The function

f(u) =
∞∑
k=0

Qk(n, ε, ω,∆)uk (60)

is a solution of (59) provided the coefficients Qk := Qk(n, ε, ω,∆) satisfy the three-term

recurrence relation

ω(k + 1)(2ε+ nω − kω)Qk+1

= −Qk(ω
2(2k2 − 2kn− k)− 2kεω + 4kg2 + ∆2)

+Qk−1(1− k)ω2(n− k + 1), (61)

with initial condition Q−1 = 0 and Q0. When k = n+ 1

ω(n+ 2)(2ε− ω)Qn+2 =
(
(2 ε ω − 4 g2 − ω2)(n+ 1)−∆2

)
Qn+1. (62)
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Setting

Qn+1(n, ε, ω,∆) = 0 (63)

leads to Qn+1+k = 0 for k = 0, 1, . . . and the series (60) truncates to a polynomial. More

explicitly, Qn+1 = 0 sets the coefficient of un in (57) to zero when f(u) takes the form

(58), with the coefficients of lower order terms in the expansion defining Qk(n, ε, ω,∆)

in terms of Qn(n, ε, ω,∆), resulting in the QES solutions f(u) of the ARQM model.

The connection between Qn+1(n, ε, ω,∆) and the constraint polynomial

Pn((2g)2,∆2) is

Qn+1(n, ε, ω,∆) =
(−1)n+1∆2

ωn+12n+1(n+ 1)!
∏n

k=0(ε+ kω/2)
Pn((2g)2,∆2). (64)

The constraint Pn((2g)2,∆2) = 0 does not include the degenerate atomic limit solutions

of the AQRM that arise when ∆2 = 0. These solutions are built into (63) as can be

deduced from the factor ∆2 on the right-hand side of (64).

We also note that though the polynomials Qk satisfy a 3-term recurrence relation,

they are not orthogonal polynomials in the usual sense and are instead said to be weakly

orthogonal [27].

The variable transformations (58) can be unravelled to find the relation between

the polynomials Qk and the Bethe ansatz roots {zk}. We have

(−1)n

ω

n∏
k=1

[( g
ω

+ zk

)
u+

( g
ω
− zk

)]
=

n∑
k=0

Qk u
k, (65)

with

Q0 =
(−1)n

ωn

n∏
k=1

( g
ω
− zk

)
. (66)

Expanding the left-hand side, the polynomials Qk are expressed in terms of the Bethe

ansatz roots {zk} via

Qk =
(−1)n

ω
Sn−k

(
g − ωz1
g + ωz1

,
g − ωz2
g + ωz2

, . . . ,
g − ωzn
g + ωzn

) n∏
k=1

( g
ω

+ zk

)
, (67)

where Sj(x1, . . . , xn) is the jth symmetric polynomial on n variables.

This argument can similarly be repeated for the other QES sector of the AQRM

by considering the equation satisfied by φ2
−(z).

2.5. Complete spectral equivalence

So far we have demonstrated the spectral equivalence between the QES energies of the

AQRM on the one hand, and hyperbolic Schrödinger potentials on the other. In fact

this spectral equivalence is complete. This can be shown by applying the change of

variable

z =
g

ω
coshx (68)
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in the second order differential equations (15) and (22), along with the transformations

φ1
+(x) = (coshx− 1)

2Eω+2εω+2g2+ω2

4ω2 (coshx+ 1)
2Eω−2εω+2g2−ω2

4ω2

× exp

(
g2

ω2
coshx

)
Ψ+(x), (69)

φ2
−(x) = (coshx− 1)

2Eω+2εω+2g2−ω2

4ω2 (coshx+ 1)
2Eω−2εω+2g2+ω2

4ω2

× exp

(
− g

2

ω2
coshx

)
Ψ−(x). (70)

The differential equations for φ1
+(x) and φ2

−(x) then transform to Schrödinger equations

of the form (3), with wavefunctions Ψ±(x) and hyperbolic potentials

V+(x) =
ε2

ω2
+
g4

ω4
sinh2 x+

g2

ω2
(1− coshx) +

2g2ε

ω3
(1 + cosh x)

+
(2Eω + 2εω + 2g2 + 3ω2)(2Eω + 2εω + 2g2 + ω2)

8ω4(coshx− 1)

− (2Eω − 2εω + 2g2 + ω2)(2Eω − 2εω + 2g2 − ω2)

8ω4(coshx+ 1)
, (71)

V−(x) =
ε2

ω2
+
g4

ω4
sinh2 x+

g2

ω2
(1 + cosh x)− 2g2ε

ω3
(1− coshx)

+
(2Eω + 2εω + 2g2 + ω2)(2Eω + 2εω + 2g2 − ω2)

8ω4(coshx− 1)

− (2Eω − 2εω + 2g2 + 3ω2)(2Eω − 2εω + 2g2 + ω2)

8ω4(coshx+ 1)
. (72)

The corresponding energy is given by

E± = −2Eg2/ω3 − 2g4/ω4 −∆2/ω2 ± 2g2ε/ω3. (73)

The potentials (74) and (75) can be simplified to some extent. We write them in

the form

V+(x) =
ε2

ω2
+
g2

ω2

(
1 +

2ε

ω

)
− g2

ω2

(
1− 2ε

ω

)
coshx+

g4

ω4
sinh2 x

+
[(
E + g2/ω + ω/2

)2
+ ε2 + εω

]
csch2x

+ (2ε/ω + 1)(Eω + g2 + ω2/2) cothx cschx, (74)

V−(x) =
ε2

ω2
+
g2

ω2

(
1− 2ε

ω

)
+
g2

ω2

(
1 +

2ε

ω

)
coshx+

g4

ω4
sinh2 x

+
[(
E + g2/ω + ω/2

)2
+ ε2 − εω

]
csch2x

+ (2ε/ω − 1)(Eω + g2 + ω2/2) cothx cschx, (75)

It should be noted that the energy E appearing in these equations is now the

regular energy of the AQRM, for the common set of parameter values. This establishes

the full spectral equivalence between the two systems. For the QES exceptional values,

E± = nω − g2/ω ± ε, the above results reduce to those given in §2.3.
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Figure 3. Rescaled lowest energy levels E+g2 in the eigenspectrum of the symmetric

quantum Rabi model as a function of the light-matter coupling g. The parameter

values are ∆ = 1.2, ω = 1 and ε = 0. The n crossing points are exactly on the lines

E + g2 = n for n ≥ 2. The energy levels have been obtained using Braak’s G-function

[5].

2.6. Symmetric quantum Rabi model

We now illustrate this equivalence further for the special case of the symmetric quantum

Rabi model when ε = 0. The eigenspectrum of the symmetric quantum Rabi model is

shown in Figure 3 for a particular set of parameter values. The energy levels E given

by (73) for the generalised Pöschl-Teller potentials (74) and (75) are shown in Figure 4

for the same set of parameter values. The analogous crossing points, at which the QES

formalism applies, can be clearly observed.

2.7. Connection to previous results for QES potentials

We are now in a position to make contact with previous work connecting the quantum

Rabi model to a generalised QES Pöschl-Teller potential [16]. Generalised QES Pöschl-

Teller potentials have also been discussed purely within the QES framework [28]. In the

latter work, the authors begin with the equation

z(1− z)
d2Rj(z)

dz2
+
[
L+ 3

2
+ z(B + 4j − qA2z)

] dRj(z)

dz
− (λ− 2jqA2z)Rj(z) = 0. (76)



The asymmetric quantum Rabi model and generalised Pöschl-Teller potentials 15
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Figure 4. The energy levels E (73) of the generalised Pöschl-Teller potentials (74) and

(75) with parameter values ∆ = 1.2, ω = 1 and ε = 0. The inset shows a magnification

of the indicated region. The crossing points are the QES exceptional points, with the

whole energy spectrum corresponding to the energy spectrum of the quantum Rabi

model shown in Figure 3.

Here L, q, A and λ are constants with 2j = 0, 1, 2, . . .. First we remark that this equation

is precisely equation (15) subject to the change of variables z = (g + ωx)/(2g) then

multiplying by −ω2. We can make the explicit identification

q = − 4g2

A2ω2
, (77)

λ = E2/ω2 − 2Eg2/ω3 + 4g2ε/ω4 − 3g4/ω4 −∆2/ω2 − ε2/ω2, (78)

B = − 1− 4g2/ω2 + 2ε/ω, (79)

2j = E/ω + g2/ω2 − ε/ω, (80)

L = − E/ω − g2/ω2 − 1/2 + ε/ω. (81)

A is arbitrary, or equivalently q can be taken to be arbitrary and define A. We note

that the generalised QES Pöschl-Teller potentials given in references [16] and [28] differ

from those derived here, because they are based on different transformations compared

to (68). In this sense our approach follows more closely reference [26], obtaining the

same form of generalised QES Pöschl-Teller potentials derived therein, but establishing

a spectral equivalence beyond the QES sector with the AQRM. In the same way the

above identification of variables can be used to extend the QES potentials given in [28],
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which can now also be related to the AQRM.

3. Concluding remarks

Beginning with the Gaudin-like Bethe ansatz equations (17) and (24) associated with the

QES exceptional points of the AQRM we established a spectral equivalence with QES

hyperbolic Schrödinger potentials on the line, for which similar algebraic Bethe ansatz

equations were known [21]. This involved generalised QES Pöschl-Teller potentials of

the type (34) and (35). Both systems share the same set of constraint polynomials

defining the QES exceptional points. In this way recent progress on understanding the

crossing points in the energy spectrum of the AQRM when ε/ω ∈ 1
2
Z [13, 14] also applies

to the energy spectrum of the QES Pöschl-Teller potentials. Here we have been able

to write the polynomials Qk in the form (67) in terms of the Gaudin-like Bethe ansatz

roots {zk}. The QES spectral equivalence was then extended to the complete spectral

equivalence between the AQRM and the generalised Pöschl-Teller potentials (74) and

(75). The analytic solution of the AQRM thus equally applies to the generalised Pöschl-

Teller potentials. Given this equivalence between the two systems, it is not unreasonable

to expect that the physics of the generalised Pöschl-Teller potentials, and possibly other

Schrödinger potentials, may also be explored in experimental realisations of the quantum

Rabi model.§
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