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Combinators for Message-Passing in Haskell

Neil C. C. BROWN

School of Computing, University of Kent, UK
neil@twistedsquare.com

Abstract. Much code in message-passing programs is tedious, verbose
wiring code. This code is error prone and laborious — and tends to be
repeated across many programs with only slight variations. By using
type-classes, higher-order and monadic functions in Haskell, most of this
code can be captured in re-usable high-level combinators that shorten
and simplify message-passing programs. We motivate the design and use
of these combinators via an example of a concurrent biological simula-
tion, and explain their implementation in the Communicating Haskell
Processes library.

1 Introduction

Message-passing programming is a type of imperative concurrent programming
that eschews mutable shared state in favour of passing messages between concur-
rent processes. This paper is particularly concerned with systems featuring syn-
chronous message-passing over point-to-point unbuffered channels (rather than
address-based systems such as mailboxes). This style of concurrent program-
ming has recently been successfully applied to biological and complex systems
simulation [13], robotics [8], and can achieve good parallel speed-up on multicore
machines [16]. Implementations exist as libraries in several functional languages,
e.g. Concurrent ML [15] and Communicating Haskell Processes [2].

Message-passing programming supports a compositional model of program-
ming, with processes comprised of sub-networks of communicating processes.
However, message-passing languages and libraries do not typically provide easy
ways in which to compose processes together, even when the composition is reg-
ular (e.g. a pipeline). Process wiring must be done “long hand”, declaring chan-
nel variables/arrays and passing them to the appropriate process. This style of
wiring is tedious, verbose and error-prone.

In contrast, higher-order functional programming allows common coding pat-
terns to be captured and re-used. For example, operations on lists can typically
be implemented using some combination of map, filter, or a fold. It is rare to
write a function that directly processes a list via pattern-matching, because the
operation can often be expressed using one of the aforementioned functions.

Haskell has seen a proliferation of further abstractions based on type-classes,
such as applicative functors [10], monads [12] and arrows [7]. These abstractions
capture particular patterns of computation, and allow general helper functions



(e.g. mapM) to act on all instances of this pattern; code re-use is supported by
parameterising the helper functions with the type-class in question.

This paper contends that patterns in message-passing programming can be
captured using functional programming techniques such as higher-order func-
tions and type-classes. This paper’s contribution is the introduction of new
combinators for message-passing systems which shorten and simplify code:
wiring functions for common process topologies (section 4), which can be gen-
eralised into a composition monad for more flexible wiring (section 5).

These abstractions are motivated and demonstrated using a central biolog-
ical simulation example introduced in section 3. All of these new abstractions
have been implemented using standard Haskell, and have been added to the
Communicating Haskell Processes library, which is introduced in section 2.

2 Background: Communicating Haskell Processes

Communicating Haskell Processes (CHP) is a Haskell library that supports con-
current synchronous message-passing [2], and is based on the Communicating
Sequential Processes calculus [6,17]. As with most imperative Haskell libraries,
it provides a monad (named CHP) in which all of its actions take place. Its basic
API provides channel creation and communication:

newChannelWR :: CHP (Chanout a, Chanin a)
writeChannel :: Chanout a -> a -> CHP ()
readChannel :: Chanin a -> CHP a

Note how the channels are used via two ends: the outgoing end (Chanout)
on which values are sent, and the incoming end (Chanin) on which values are
received. This separation between the two ends at the type level helps prevent
mistakes — such as connecting two reading processes together with a channel,
resulting in deadlock. It also promotes code clarity: making it clear from the
type of a process whether it will send or receive on each channel.

We refer to something that has type CHP r as being a complete CHP process
(one that is ready to run). Anything that will be a complete CHP process when
given further arguments (e.g. Chanin a ->Chanout a ->CHP ()) is referred to sim-
ply as a CHP process. An example of a basic CHP process is the identity process
that forwards values from one channel to another!:

idP :: Chanin a -> Chanout a -> CHP (O
idP input output = forever (readChannel input >>= writeChannel output)

CHP processes can be composed in parallel using the commutative, associa-
tive runParallel function which waits for all the parallel processes to terminate
before returning a list of their results:

runParallel :: [CHP a] -> CHP [a]; runParallel_ : : [CHP a] -> CHP O

! In this paper we suffix these simple processes with “P” to avoid confusion, here with
the Haskell identity function (id ::a ->a).



The version with an underscore suffix discards the results of the parallel
computations. The type of these functions exactly matches that of the standard
monadic sequence functions, specialised to the CHP monad:

sequence :: [CHP a] -> CHP [a]; sequence_ :: [CHP a] -> CHP ()

2.1 Barriers and Enrolling

As well as channels, CHP also features barriers. A barrier is a synchronisation
primitive that can only be used by processes enrolled on (i.e. members of) the
barrier. When an enrolled process wishes to synchronise on the barrier, it must
wait for all other enrolled processes to also do so. Barriers are created with an
enrollment count of zero, using one of the functions:

newBarrier : : CHP Barrier; newBarrierPri :: Int -> CHP Barrier

The latter function features priority: the default is 0, and larger numbers
indicate higher priority. When a process can choose between completing two
barriers, the higher priority barrier will be chosen. Barriers feature a “scoped”
API for enrolling, that eschews explicit enroll and resign (de-enroll) calls in
favour of taking as an argument the block of code to execute while enrolled:

enroll :: Barrier -> (EnrolledBarrier -> CHP a) -> CHP a

The enroll function takes a barrier and a CHP process that operates on the
enrolled barrier. The returned completed CHP process enrolls the given process
on the barrier for the duration of its execution and resigns afterwards. To prohibit
attempts to synchronise without first enrolling, synchronisation is only possible
on the EnrolledBarrier type:

syncBarrier :: EnrolledBarrier -> CHP ()

As an example, the following code enrolls twice on a barrier, then runs two
corresponding processes in parallel that repeatedly synchronise on the barrier:

do bar <- newBarrier
enroll bar (\eb0 -> enroll bar (\ebl ->
runParallel [replicateM_ 100 $ syncBarrier eb0, replicateM_ 100 $ syncBarrier eb1]))

Note that it is crucial that both enrollments happen before the parallel com-
position (rather than in each parallel branch). Consider the alternative code:

do bar <- newBarrier
runParallel [enroll bar (replicateM_ 100 . syncBarrier)
,enroll bar (replicateM_ 100 . syncBarrier)]

The barrier begins with an enrollment count of zero. When, in the above code,
the first parallel branch runs, it will enroll, increasing the enrollment count to
one. When it then tries to synchronise on the barrier, it may do so by itself.
Thus one branch can enroll and (potentially) perform all 100 synchronisations
before the other branch starts to run (and do the same). Thus, for the branches



to synchronise together, the enrollment of both processes must occur before the
parallel composition begins.

CHP already features two helper functions for enrolling, which hint at the
combinator-based approach seen later in the paper. The enrollList function enrolls
a single process on a whole list of barriers (nesting the process inside all the
enrollments), while the enrollAll function enrolls each of a list of processes on a
single barrier:

enrollList :: [Barrier] -> ([EnrolledBarrier] -> CHP a) -> CHP a
enrollList [| f =[]
enrollList (b:bs) f = enroll b (\eb -> enrollList bs (\ebs -> f (eb:ebs)))

enrollAll :: Barrier => [EnrolledBarrier -> CHP a] -> CHP [a]
enrollAll b ps = enrollList (replicate (length ps) b) (runParallel . zipWith ($) ps)

The previous example can thus also be written as:

newBarrier >>= flip enrollAll [replicateM_ 100 . syncBarrier, replicateM_ 100 . syncBarrier]

3 Motivating Example: Blood Clotting Simulation

Section 2 introduced the existing Communicating Haskell Processes library. This
section provides a motivating example for the design and inclusion of the new
features in the library introduced in future sections. The example is a concur-
rent simulation of blood clotting, with “sticky” platelets moving down a one-
dimensional pipeline of site processes. It is inspired by the example presented
by Schneider et al. [19], and has been converted to CHP to use some advanced
concurrency features such as conjunction [3].
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Fig. 1. Illustration of how the blood example is connected together. The first (left-
most) process is a platelet generator, and the last (right-most) is a platelet consumer.
The three processes in the centre are examples of the site processes (there are 100 in
the real model). The processes are connected to their neighbours with a channel (the
arrows) carrying platelets, and a barrier (drawn as a line with perpendicular ends). All
the processes also enroll on a shared “tick” barrier (shown above the processes).

Platelets move (in a consistent direction) along a one dimensional pipeline.
On each time-step a platelet may move or not move, with the following rule: if
there are platelets immediately before or immediately after it in the pipeline, a



platelet will only move forwards if they do so too. Each platelet may refuse to
move on a given time-step with probability 5%. We model the sites (locations
which can either hold a single platelet, or be empty) as active processes, and the
platelets as passive data that passes between the sites. An illustration of their
connectivity is given in figure 1.

The new features introduced later in this paper will demonstrate the power of
a functional combinator-based approach. To provide a contrast to the existing
methods that must be used in other imperative languages, such as occam or
libraries for Java, we first present the example in figure 6 using idioms from
imperative languages, such as numeric indexing. The exact definitions of the
processes are not relevant in this paper and are thus omitted for brevity.

4 Wiring: Process Composition

In message-passing systems with typed channels, a substantial part of the pro-
gramming model is the composition of processes using channels. For example,
we may want to compose together the mapP and filterP processes (analogues of
the standard list-processing functions) into a process that filters out negative
numbers and then turns the remaining positive numbers into strings:

showPosP :: Chanin Int -> Chanout String -> CHP ()

showPosP input output = do (w, r) <- newChannelWR
runParallel_ [filterP (> 0) input w, mapP show r output]
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Fig. 2. The composition of filterP and mapP, as shown in the left-hand diagram. This
composition becomes an opaque box to other components, as shown progressively in the
middle and right diagrams. This component can then be further composed in a similar
manner. The programming model used in CHP is thus compositional, allowing complex
networks to be built from joining together different components without regard to their
internal implementation.

This is shown diagrammatically in figure 2. It is instructive to note that
the composition of two such processes with a single input channel and single
output channel is itself a process with a single input channel and a single output
channel. This component can then be re-used without requiring any knowledge
of its internally concurrent implementation.

4.1 Simple Composition Operator

This composition of two single-input, single-output processes is so common that
it is worth capturing in an associative operator:



(==>) :: (Chanin a => Chanout b => CHP ()) -> (Chanin b -> Chanout ¢ -> CHP ())
-> (Chanin a -> Chanout ¢ -> CHP ())
(==>) p g r w = newChannelWR >>= \(mw, mr) => runParallel_ [p r mw, g mr w]

The previous showPosP process can be written using this operator as follows:
showPosP = filterP (> 0) ==> mapP show

This point-free style is clearer and more elegant. By not introducing extra
variable names we eliminate potential mistakes (mis-wiring). It can be seen that
this process composition operator is an analogue of function composition.

We do not, however, always want to connect processes merely with a single
unidirectional channel. We may want to connect processes with a pair of channels
(one in each direction) or three channels, or a channel and a barrier, etc., as for
example in the main function in our blood clotting example in figure 6 — which
means that we need a more general operator than the one above.

4.2 Richer Composition Operator

Figure 3 shows another example of process composition, requiring different con-
nections than figure 2. The types and directions of the channels needed to com-
pose the processes are readily apparent — it should be just as easy to join these
processes with two channels as it was to join filterP and mapP with one.

Fig. 3. An example of slightly different process composition than figure 2. The letters
indicate the types of the channel-ends that each process takes. It is readily apparent,
both that these processes can be composed, and how they should be composed: with
a pair of channels.

To generalise the variety of composition possible, we use Haskell’s type-class
mechanism. We define a two parameter type-class, Connectable, an instance of
which indicates that the two parameters can be wired together in some fashion,
and provide a function that must be implemented to do so:

class Connectable | r where
connect :: ((l, r) => CHP a) -> CHP a

Instances for channels (in both directions) are trivial:
instance Connectable (Chanout a) (Chanin a) where

connect p = newChannelWR >>= p

instance Connectable (Chanin a) (Chanout a) where
connect p = newChannelWR >>= (p . swap)
where swap (x, y) = (y, x)



We choose this style of function to compose the processes, rather than say
connect ::CHP (I, r), because we may need to enroll the processes on the synchro-
nisation object for the duration of their execution. Our chosen style of function
allows us to do just that for an instance involving barriers:

instance Connectable EnrolledBarrier EnrolledBarrier where
connect p = do b <- newBarrier
enroll b (\bO -> enroll b (\bl -> p (b0, bl)))

The instance that grants much greater power to the Connectable interface is
the one that works for any pair of Connectable items:

instance (Connectable |IA rA,Connectable IB rB) => Connectable (IA, IB) (rA, rB) where
connect p = connect (\(ax, ay) => connect (\(bx, by) => p ((ax, bx), (ay, by))))

This instance means that two processes can easily be wired together if they
need to be connected by a channel and a barrier, for example. Similar instances
can also be constructed for triples and so on. Programmers may also create their
own instances (as with any Haskell type-class) for synchronisation primitives
not known to the library, or for compound data structures that feature several
synchronisation primitives that need to be wired together differently.

A particularly powerful way to enhance this operator would be to use ses-
sion types on CHP channels. Session types generalise from carrying a particular
type on a one-way channel (as CHP currently does) to specifying the series of
communications that can take place in both directions between two participants,
encapsulating the entire protocol between two parties in the channel type. It has
been shown that session types can be embedded well in a Haskell setting [14].

The Connectable interface is a suitable basic API, but it is too unwieldy to
compose processes together. We can use it to define a more general version of
the composition operator seen earlier:

(<=>) :: Connectable | r =>
(a->1->CHP Q) ->(r->b->CHP ()) -> (a->b -> CHP )
(<=>) p q xy = connect (\(I, r) => runParallel_ [p x |, g r y])

The type of this operator is very general. No restrictions are placed on the
“outer” types a and b (which may be channels, but are not required to be so).
This operator composes together any pair of two-argument processes where the
second argument of the first process can be connected to the first argument of
the second process. We can also trivially define other operators that are useful
at the start and end of a process pipeline, respectively, and that compose just a
start and end process:

(1<=>) :: Connectable | r => (I -> CHP ()) -> (r => b -> CHP ()) -> (b -> CHP ())
(<=>1) :: Connectable | r => (a => | => CHP () -> (r -=> CHP () -> (a -> CHP Q)
(I<=>1) :: Connectable | r => (I => CHP ()) -> (r -=> CHP ()) -> CHP ()

We also provide a pipelineComplete function in the next section to support
combining one start process and one end process with multiple middle processes.
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Fig. 4. The pipeline topology (left) and cycle topology (right). It can be seen that a
cycle can be formed simply by connecting the two end points of a pipeline together.
The processes are illustrated here by connecting them with a single channel, but any
regular interface could be connected together using the Connectable class.

4.3 Capturing Common Topologies

We do not always want to simply compose two adjacent processes. Another
common requirement is to wire together a pipeline of processes. We can do
this by building on top of our connectable operator, meaning that the helper
function is parameterised by the type of connection between processes, but fixes
the topology — we can then easily extend this to a cycle (also known as a ring):

pipeline :: Connectable r 1 => [l => r => CHP (O] -=>1->r -> CHP O
pipeline = foldrl (<=>)

cycle :: Connectable r | => [I => r => CHP (O] => CHP ()
cycle ps = connect (\(l, r) -> pipeline ps | r)

Both topologies are depicted in figure 4. We can also define a function for
connecting a complete pipeline, as discussed at the end of the previous section:

pipelineComplete :: Connectable | r =>
(I->CHP ) =>[r->1->CHP O] -> (r -> CHP () -> CHP O
pipelineComplete begin middle end = (begin |<=> pipeline middle) [<=>| end

This idea of capturing topology extends beyond such one-dimensional struc-
tures. A common requirement when building concurrent simulations with the
CHP library is to form a regular two-dimensional (or three-dimensional) grid,
either with or without diagonal connections. Producing such wiring, especially
with diagonal connections, is verbose and error prone. Without the Connectable
interface, it would have to be replicated for each type of channel used, increasing
the possibility for error (this was originally the case in the CHP library [2]). But
we can now write the function once, test it to show its correctness once, and
re-use it repeatedly in different programs. We show an example type here but
omit the lengthy definition?:

griddway :: (Connectable right left, Connectable bottom top) =>
[[above -> below -> left -> right -> CHP r]] -> CHP [[r]]

2 Tt can be found in the library at http://hackage.haskell.org/package/chp-plus;
an alternate short implementation is given in section 5.2 of this paper.



The parameter is a list of rows of processes (which must be rectangular); the
result is a corresponding list of rows of results. The processes are wired together
into a regular grid where the far right edge also connects to the far left edge,
and the bottom edge to the top: this forms a torus shape.

Any topology (especially regular topologies) can be captured in helper func-
tions like those given above, and re-used regardless of the channel types required
to connect the processes.

4.4 Improved Process Wiring: Blood Clotting Example

The blood clotting example shown in figure 6 wired up its pipeline of processes
by creating a list of channels and a list of barriers. List indexing was used to
access the corresponding channels and barriers for each process. The connectable
operators and functions introduced in the previous sections allow the processes to
be wired together using a couple of the new operators and the pipeline combinator.
This combinator is a list fold which replaces imperative-style list indexing.

The main feature of programming with CHP that enables the process wiring
operators is the use of first-class processes®. In other languages where processes
cannot be passed around, a function such as pipeline would not be possible to
define. For example, the occam language does not have first-class processes. The
C++4CSP concurrent programming library allows complete processes (instances
of classes that inherit from a CSProcess class) to be passed around, but processes
still requiring channels is neither a straightforward nor natural idiom to support.

The revised version of the main process of the blood clotting example us-
ing the connectable operators where possible is shown in figure 7 and can be
contrasted to figure 6. The new code using the connectable operators is much
shorter. It is also instructive to note that there is no longer a call to the runParallel_
function in the main wiring function. The concurrency, which is a central prim-
itive of CHP, has been captured in the pipelineComplete wiring function. This is
indicative of the higher-level nature of the new process wiring, which abstracts
away the details of the parallelism (and removes the channel declarations) in
favour of operators that capture the connectivity pattern being used to join
together the processes.

5 Compositional Wiring

Section 4 outlined ways to compose processes into a complete whole. We often
have situations where a process needs not just one set of connections, but also
some other cross-cutting connection. For example, a cycle of processes may all be
connected to their neighbours with a channel — but they may also all be enrolled
together on a barrier (as illustrated in figure 5). We have a similar situation in
our blood clotting example, depicted in figure 1.

3 Since a CHP process is a function/monadic action, these being first-class in Haskell
means that CHP has first-class processes.



Consider how to implement such an arrangement with the combinators that
we have introduced thus far; we have (with specialised types for illustration):

enrollAll :: Barrier => [EnrolledBarrier -> CHP a] -> CHP [a]
pipeline :: [Chanin a -> Chanout a => CHP ()] -> Chanin a -> Chanout a -> CHP ()

Both processes expect a list of processes that take exactly the required ar-
guments (a barrier or a channel pair, respectively) and return a CHP process.
Neither supports partial application that would return a process ready to be
wired up by the other function: in short, these combinators do not compose.

We cannot simply create a function without the CHP monad, such as:

pipeline’ :: [Chanin a => Chanout a => b] => Chanin a => Chanout a => [b]

We require access to the CHP monad in order to run the processes in parallel,
and to create the channels used to connect them together. This means that we
need a different strategy in order to support composing these combinators in a
useful way. To that end, we introduce a Composed monad.

5.1 The Composed Monad

We need to abstract over the return types of the processes being composed
together while still allowing access to the functionality in the CHP monad. We
therefore create functions such as (again with types specialised for illustration):

enrollAlIR : : Barrier => [EnrolledBarrier -> a] -=> Composed [a]
pipelineR :: [Chanin a => Chanout a -> b] -> Chanin a -=> Chanout a -> Composed [b]
cycleR :: [Chanin a => Chanout a -> b] -> Composed [b]
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Fig. 5. A ring of processes connected to their neighbours with a single channel, and
also all enrolled together on the same central barrier.

Given a list of processes : :[EnrolledBarrier ->Chanin a =>Chanout a ->CHP ()], we
can compose them, as depicted in figure 5, simply using:

enrollAlIR b processes >>= cycleR



The meaning of composition in this monad is not intuitively the sequencing
of actions as is often the case for monads (in fact, the monad is conceptually
commutative in many cases). It is instead a form of nesting — the code above
enrolls the processes on the barrier, and inside the scope of that enrollment
it wires them together in a cycle. From a user’s perspective the monad can
be thought of as a series of wiring instructions. Each command composes the
processes further until finally the complete processes are returned: the output
of any Composed block is almost always such a list of complete CHP processes
ready to be run in parallel. The type of the Composed monad is:

newtype Composed a = Composed { runWith :: forall b. (a -=> CHP b) -> CHP b }

instance Monad Composed where
return x = Composed (\r => r x)
(>>=) m f = Composed (\r => m ‘runWith* ((‘runWith* r) . f))

This type is not without precedence as a monad; it is equivalent to the
continuation-passing monad transformer on top of CHP, forall b.ContT b CHP a,
and is technically the codensity monad of CHP. The monad is not used to pass
continuations, however. The intuition is that any type wrapped in Composed
needs to be told how it can be turned into a CHP action, and then it becomes
that CHP action. At the outer-level this is accomplished with runParallel:

run :: Composed [CHP a] -> CHP [a]
run ps = ps ‘runWith* runParallel

5.2 Composed Wiring Functions

We can re-define all the wiring functions seen earlier in the new Composed monad.
The most basic are the connectR and enrollR functions:

connectR :: Connectable | r => ((I, r) => a) -=> Composed a
connectR p = Composed (\r -> connect (r . p))

enrollR :: Barrier -=> (EnrolledBarrier -> a) -> Composed a
enrollR b p = Composed (\r => enroll b (r . p))

The latter can easily be expanded into an enrollAlIR function:

enrollAlIR : : Barrier => [EnrolledBarrier -> a] => Composed [a]
enrollAlIR b ps = mapM (enrolIR b) ps

The enrollAlIR function enrolls a list of processes on the given barrier. Without
the Composed monad it is an intricate recursive function, but with the Composed
monad it is a non-recursive and straightforward mapM call.

We can define the pipelineR function as follows:

pipelineR :: Connectable | r => [r => | -=> a] -> Composed (r -> | => [a])
pipelineR [] = return (\_ - =>[])

pipelineR (firstP:restP) = foldM adj (\x y —> [firstP x y]) restP

where adj p g = connectR (\(I, r) xy => (p x I) ++ [q r y])



As before, the cycleR function is a small addition to the pipelineR function:

cycleR :: Connectable | r => [r => | => a] => Composed [a]
cycleR [] = return []
cycleR ps = pipelineR ps >>= connectR . uncurry . flip

With these composition operators we can now easily define the 4-way grid
composition discussed earlier in section 4.3:

griddwayR :: (Connectable below above, Connectable right left) =>
[[above -> below -> left => right -> a]] -> Composed [[a]]
griddwayR = (mapM cycleR . transpose) <=< (mapM cycleR . transpose)

The inherent symmetry, and regularity, of the combinator is exposed, and its
cycleR-based definition trivial with the help of the standard list function transpose
that swaps rows for columns in a list of lists and the (<=<) :: Monad m =>(b ->m ¢)
->(a ->m b) ->a ->m c function that composes two monadic functions.)

It is possible for users to define their own wiring functions using this monad.
For example, a user may have a repeated pattern in their program, such as a list
of processes where they wish to enroll all the processes at odd positions in the
list on one barrier, but all the processes at even positions in the list on another
barrier. They could write a function to do this, and use it in different situations
in combination with other functions — for example, one such list may further be
wired into a pipeline, while another may be wired into a star topology.

The use of wiring combinators avoids explicitly declaring and naming the
channels and barriers required to construct the process network. This makes the
code shorter, and prevents errors (such as passing the wrong channel-end to the
wrong process, which will compile if they have the same type). It also means
that common topologies (such as pipelineR) can be recognised by name when
reading code — it is not straightforward to recognise wiring patterns when they
are written out “long-hand” with individual named channels.

5.3 Further Improved Process Wiring: Blood Clotting Example

The motivation behind the Composed monad was that our original combinators
did not easily compose. Certain combinators, such as enrollAll and pipeline, cannot
easily be used together. For this reason our previous simplification of the blood
platelets’ wiring in figure 7 used enrollList instead. Often, nesting the combinators
like this can lead to code nested many levels deep that is hard to follow, with
many extra named parameters that are hard to track.

Our new Composed monad allows us to simplify the wiring in our blood clot-
ting example even further by using two combinators: see figure 8 for the result.
It can be seen that the only communication primitive that is named is the tick
barrier. There are no manipulations involving list indexing as before. All of the
creation of channels and barriers (except for tick) and all of the concurrency
is hidden in the combinators for the Composed monad; pipelineCompleteR and
enrollAlIR create the channels and barriers, while the run function runs all the
resulting processes concurrently.



plateletGenerator :: (Chanout Platelet, EnrolledBarrier) -=> EnrolledBarrier -> CHP ()
plateletConsumer :: (Chanin Platelet, EnrolledBarrier) -> EnrolledBarrier -> CHP ()

site :: (Chanin Platelet, EnrolledBarrier) -> (Chanout Platelet, EnrolledBarrier)
-> EnrolledBarrier -> CHP ()

numSites = 100

main :: 10 O
main = runCHP_ $ do
(writers, readers) <- unzip <$> replicateM (numSites + 1) newChannelWR
bars <- replicateM (numSites 4+ 1) newBarrier
tick <= newBarrierPri (-1)
enrollList (replicate (numSites + 2) tick) $ \ticks ->
enrollList bars $ \ebars -> runParallel $
[site (readers !! i, ebars !l i)

(writers !! succ i, ebars !! succ i)

(ticks !1i) | i <= [0..numSites-1]] ++
[plateletGenerator (writers ! 0, ebars !l 0) (ticks !! numSites)
.plateletConsumer (readers !! numSites, ebars !! numSites)

(ticks !! succ numSites)]

Fig. 6. An example version of the blood clotting example that uses array-like indexing
idioms for wiring. The internal definition of the processes being wired together is not
relevant (their types are given here to aid understanding), and the network is depicted
in figure 1.

main = runCHP_ $ do
tick <= newBarrierPri (-1)
enrollList (replicate (numSites + 2) tick) $ \ticks ->
pipelineComplete (flip plateletGenerator (ticks !! numSites))
(map (flip2 site) (take numSites ticks))
(flip plateletPrinter (ticks !! succ numSites))
where flip2fcab=fabc

Fig. 7. A revised version of the wiring code originally shown in figure 6, which uses
the pipeline combinator and other new operators to simplify the wiring of the process
network.

main = runCHP_ $ newBarrierPri (-1) >>= \tick -> run $
pipelineCompleteR plateletGenerator (replicate numSites site) plateletConsumer
>>= enrollAlIR tick

Fig. 8. A further revised version of the wiring code shown originally in figure 6 (and
previously revised in figure 7). This time the Composed monad is used to reduce the
complete wiring code to just a few lines.



6 Related Work

Several other message-passing libraries exist in functional programming lan-
guages. Concurrent ML is the most obvious precursor [15], and it has since been
converted to Haskell, too [18,4]. Given support for type-classes or a comparable
mechanism, there is no reason why the programming patterns captured in this
paper could not also be captured in Concurrent ML.

Erlang is a functional programming language with a strong message-passing
component. However, Erlang uses asynchronous messages sent to a particular
process address, rather than channels. This difference is vital with respect to
the work described in this paper; the process composition described here does
not apply to Erlang, and the styles of process that are composed in this paper
are not common in Erlang. Additionally, Erlang is dynamically typed, which
precludes the type-based connectable operators seen in this paper.

Lava is a hardware design domain-specific language embedded in Haskell [1].
Lava featured operators to compose together digital circuit components. This
is an analogue of the Connectable operators seen in this paper — although Lava
featured different combinators depending on data-flow direction, whereas the
Connectable class abstracts away details such as directionality and types.

At an abstract level, CHP can be thought of as a way to represent interac-
tive computations. Another way to do so is Functional Reactive Programming
(FRP) [11]. There are various implementations of FRP [11,5,9], but broadly
they represent interaction as a function from timed observations/inputs to timed
outputs. This neatly removes explicit state and imperative constructs, but can
cause problems with causality (where future events can affect past behaviour).

7 Conclusions

The Communicating Haskell Processes library is an imperative message-passing
library built in a functional programming language. This paper has shown how
the ideas of higher-order functions, type-class-based abstractions and re-usable
combinators can be taken from functional programming and applied to message-
passing programming, with all of the same benefits.

CHP programs are made up of many components composed together concur-
rently, and connected by channels and barriers. The “long-hand” way of compos-
ing these processes — manually declaring channels and passing the ends to the
right processes — is tedious, verbose and error prone. The combinators discussed
in this paper allow for an elegant and concise point-free style, composing pro-
cesses together without ever naming the primitives that connect the processes.

The Connectable type-class allows the wiring functions to abstract away from
the primitives used to compose processes and to instead focus on capturing
topology. This allows complicated functions (such as two-dimensional grids with
diagonal connections) to be written once and re-used. The Composed monad takes
this further and allows complicated composition with several cross-cutting con-
cerns to be done easily and compositionally, which makes for completely flexible



wiring of processes. Both of these mechanisms could generalise to composing
processes with any Haskell communication primitive such as MVar or TChan.
All of this work is only possible because functions and processes are first-class
in CHP, and can thus be passed as arguments. Implementing these combinators
in message-passing frameworks in other languages would either be overly verbose
and awkward (e.g. using interfaces and classes in Java) or simply not possible
(e.g. in the language occam, where higher-order programming is not possible).
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