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Value Creation from Big Data: Looking Inside the Black Box 

Abstract  

The advent of big data is fundamentally changing the business landscape. We open the “black 

box” of the firm to explore how firms transform big data in order to create value and why 

firms differ in their abilities to create value from big data. Grounded in detailed evidence 

from China, the world’s largest digital market, where many firms actively engage in value 

creation activities from big data, we identify several novel features. We find that it is not the 

data itself, or individual data scientists, that generate value creation opportunities. Rather, 

value creation occurs through the process of data management, where managers are able to 

democratize, contextualize, experiment, and execute data insights in a timely manner.  We 

add richness to current theory by developing a conceptual framework of value creation from 

big data. We also identify avenues for future research and implications for practicing 

managers.  

Key words: Big data, Resource management, Knowledge-based view, Open innovation, 

China 



2 
 

INTRODUCTION 

Increasingly, companies are exploring how big data can be used to create and capture value 

(McKinsey Global Institute, 2011). ‘Big data is about massive amounts of observational data, 

of different types, supporting different types of decisions and decision time frames (Goes, 

2014: vii). The use of big data enables managers both to know fundamentally more about 

their businesses, and to translate that knowledge into better decision-making and improved 

performance (McAfee and Brynjolfsson, 2012). For example, Netflix is able to collect data 

by monitoring when customers pause, rewind or fast forward, from their browsing and 

scrolling behaviour, and identify customer preferences based on the ratings given to the 

content. By analysing these data, Netflix is able to predict the popularity of its content and 

purposefully design content based on the data insights generated from customers.  

Like analytics that preceded it, big data analysis seeks to gather intelligence from data and 

translate that into business advantage, however, key characteristics mean that big data is more 

powerful than the analytics that were formerly used (McAfee and Brynjolfsson, 2012). These 

characteristics relate to the volume of data created; its velocity, i.e., the speed of data creation 

makes available real-time or close to real-time information; and its variety, big data is 

generated from a plurality of sources (George et al., 2014).  McAfee and Brynjolfsson (2012) 

point out that while analytics brought rigorous techniques to decision making, big data is both 

simpler and more powerful. Added to this the steadily declining costs of computing, 

including storage, memory, processing and bandwidth, mean that previously expensive data-

intensive approaches are becoming economical.  

In seeking a technology-based competitive advantage, central to growth and success, 

exploitation of big data enables companies to create and capture value. Big data and 

increased computational power enable companies to be smarter and innovative, in ways they 
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could not before (LaValle et al., 2011). The research findings of McAfee and Brynjolfsson 

(2012) show that the more companies characterized themselves as data-driven, the better they 

performed on objective measures of financial and operational results. Similarly, the study by 

LaVale et al., (2011) clearly connects performance and the competitive value of analytics.  

Although organizations are exploring ways of deploying and harnessing big data to create 

and capture value, many are struggling with how to create value from the significant amount 

of data they already have owing to its volume, velocity and variety (Goes, 2014; Lavalle et al. 

2011). Indeed, merely possessing a valuable resource does not guarantee the development of 

value creation (Barney and Arikan, 2001; Priem and Butler, 2001a, 2001b; Sirmon et al. 

2007). Lepark et al. (2007) define value creation as the relative amount of value that is 

subjectively realized by a target user and this subjective value realization must at least 

translate into the user’s willingness to exchange a monetary amount for the value received. In 

order to realize value creation, firms must effectively accumulate, combine and exploit 

resources (Grant, 1991; Sirmon et al. 2007). However, the understanding of how managers 

manipulate resources in order to create value is largely underdeveloped (Barney and Arikan, 

2001; Kraaijenbrink et al., 2010; Priem and Butler, 2001a; Sirmon et al. 2007). More 

recently, scholars and practitioners have noted the necessity for empirical investigation of the 

process of transforming big data to create value (Bharadwaj et al. 2013; Georg, et al, 2014; 

Goes, 2014; Munford, 2014).  In response to this, our aim is to examine how firms transform 

big data to create value, and further to investigate why firms differ in their abilities to create 

value from big data.  

We seek to make a contribution by exploring the value creation process in a Chinese context 

for three reasons. First, China is the world’s largest digital market. Due to the scale of the 

country’s economy and its engagement in the digital market, understanding how the leading 

companies in China transform data to create value is a timely undertaking. Second, the 
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combinations of cultural heritage, rapidly developed infrastructure and digital market have 

created a distinct business phenomena embedded in a special context (Whetten, 2009). 

Research that focuses on the Chinese context therefore serves to make an important 

contribution to knowledge (Tsui, 2007; Whetten, 2009). Third, many Chinese companies 

were able to keep foreign competitors, such as Google, eBay and Amazon, at bay (Zeng and 

Glaister, 2016). Therefore, understanding the process of how firms in China manage big data 

to create value should stimulate novel insights into “local” organizational practices and foster 

improvements in borrowed theory (Tsui, 2007; Whetten, 2009). 

Our study makes an important contribution by answering the call to investigate how 

managers create value from big data (Bharadwaj et al., 2013; George et al., 2014; Goes, 

2014; Munford, 2014). Drawing on qualitative data, we observe that firms differ in their 

abilities to extract value from big data, both internally within the firm and externally across 

the extended data-sharing network. We highlight the process of data management where 

managers are able to democratize, contextualize, experiment, and execute data insights in a 

timely manner to create value. Further, we move beyond the value creation process at the 

firm level of analysis to the network-level of analysis. By sharing data with its partners, the 

firm is able to build a leadership position depending on its capability to establish, maintain 

and reinforce symbiotic relationships with its partners. We also contribute to the organization 

structure literature. We suggest that firms that combine improvisation with low-to-moderately 

structured rules to execute a variety of opportunities that emerge from big data are more 

flexible and able to respond to market shifts.  

We structure the paper as follows. In the next section, we provide a review of the relevant 

literature. We then set out the study’s methods, including the sampling strategy, the interview 

protocol, and the data analysis. We then discuss the findings, offer an overarching framework 

and develop theoretical implications. Finally, we suggest avenues for future research. 
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THEORETICAL BACKGROUND 

Our focus here is on the value creation process from big data at the firm level, a topic that has 

so far received very limited attention from management scholars (George et al., 2014; Rai, 

2016). We review four streams of literature that are related to the dynamic context in which 

our studies were carried out, namely, resource management, knowledge-based view, 

organization structure and network collaboration that highlights extracting value from big 

data. We review this literature by probing its applicability to the specific context of creating 

value from big data. 

Resource management  

The resource-based view (RBV) of strategic management postulates that the competitive 

advantage of a firm lies primarily in its application of the bundle of tangible and intangible 

assets, resources and capabilities that are rare, valuable, non-substitutable and difficult to 

imitate (Barney, 1991; Rumelt, 1984), which firms need to manage, adopt, and deploy in 

product markets in order to create value (Mahoney, 1995; Sirmon et al., 2007). Such superior 

resources result in greater value creation i.e. an advantage in competition (Barney, 1991; 

Hoopes et al., 2003). Simply owning resources does not guarantee the development of value 

creation (Barney and Arikan, 2001; Priem and Butler, 2001a, 2001b; Sirmon et al., 2007).  

Resource management is critical to value creation because using resources is at least as 

important as possessing or owning them (Hansen et al. 2004; Penrose, 1959). Different 

resource management processes can yield heterogeneous outcomes for organizations holding 

similar resources and facing similar environmental contingences (Zott, 2003; Lippman and 

Rumelt, 2003).  

A small but growing number of researchers have attempted to elucidate the role of managers 

in managing resource-related processes within RBV and dynamic capability logic. For 
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example, Sirmon et al. (2007) defined resource management as the comprehensive process of 

structuring, bundling and leveraging the firm’s resources with the purpose of creating value 

for customers and competitive advantages for the firm. In parallel with research on the 

development of resource management, Helfat et al. (2007) developed a related logic that 

focused on asset orchestration emerging from the dynamic capability literature. Dynamic 

capabilities are an extension of RBV, and highlights explicitly the role of managers when 

they purposefully create, extend or modify resource base to create value to achieve 

sustainable advantages (Amit and Schoemaker, 1993; Eisenhardt and Martin, 2000; Teece et 

al. 1997; Winter, 2003).  

Although a growing number of researchers attempted to look inside the “black box”, 

additional theory development is required to add richness to our current understanding of 

how to manage resources to create value in dynamic environments (Hefat et al., 2007; Sirmon 

et al., 2011). This is particularly the case for big data. What is particularly interesting about 

data is that it often increases in value the more it is used. Moreover, it is self-regenerative, in 

that the identification of a new piece of information immediately creates both the demand for, 

and conditions for production of, subsequent pieces (Huber, 1984; Porat, 1976; Stiglitz, 

1975). The unique characteristics of big data differ significantly from those of traditional 

physical assets that are generally appropriable (“either I have it or you have it”), scarce, 

decrease return to use and are non-renewable (Porat, 1976; Stiglitz, 1975; Glazer, 1991). 

Kraaijenbrink et al. (2010) proposed that differentiating between resources and emphasizing 

their different characteristics could prove fruitful to offer a more robust explanation of RBV. 

Existing understanding of resource management literature has not distinguished the 

differences between rivalrous and non-rivalrous resources, nor is it safe to assume that 

existing theory could be extended to account for the value creation from big data.  

Knowledge -based view  
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The knowledge-based view (KBV) in strategy has largely extended resource-based reasoning 

by suggesting that knowledge is the primary resource underlying new value creation, 

heterogeneity, and competitive advantage (Barney, 1991; Grant, 1996; Kogut and Zander, 

1996).  Proponents of this view perceive knowledge as the principal strategic resource, and 

argue that firms supersede markets in their ability to create and harness this resource 

(Eisenhardt and Santos, 2001). The KBV proposes that the primary reason for the existence 

of the firm is its superior ability to integrate multiple knowledge streams, for the application 

of existing knowledge to tasks, as well as for the creation of new knowledge (Grant, 1996). 

Grant (1994: 375) further states that “At the heart of this theory is the idea that the primary 

role of the firm, and the essence of organizational capability, is the integration of 

knowledge”.  

The knowledge based view highlights the role of the individual as the prime driver in the 

creation of organizational knowledge (Nonaka, 1994), and conceptualizes the existence of a 

firm as an institution that integrates knowledge that resides within and across individuals 

(Grant, 1996). While some scholars have argued the primacy of the individual (Grant, 1996; 

Simon, 1991), most have focused on a collective locus of knowledge (Eisenhardt and Martin, 

2000; Winter, 2003; Zollo and Winter, 2002). The role of data scientists is often accentuated 

as the key source of knowledge that has direct impact in contributing to the firm’s value 

creation opportunities from big data (Davenport and Patil, 2012). A data scientist is a 

specialized individual who possesses tacit knowledge to understand and analyse big data 

(Davenport and Patil, 2012). An interesting question follows: Is value creation from big data 

about the attributes and abilities of the individual data scientist involved, or is value creation 

from big data about a collective process that is independent of individuals such as data 

scientists?  Further, as knowledge does not always flow easily within the organization, 

another question arises as to what the process is of transferring individual knowledge to the 
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whole organization in the context of big data? Research has yet to shed light on such 

questions. Felin and Hesterly (2007: 213) pointed to the need for empirical investigation of 

the individual drivers of knowledge-based value: “Thus opening up the proverbial black box 

of the firm by explicating the underlying a priori capabilities and knowledge of the 

individuals involved provides a natural starting point and micro foundation for explaining the 

creation of new value”.  

Organization structure  

The postulate of a trade-off between efficiency and flexibility has gained increasing attention 

from management and strategy scholars (Rindova and Kotha, 2001; Rothaermel et al., 2006; 

Davis, Eisenhardt and Bingham, 2009). Organizations with too little structure have limited 

guidance to generate appropriate behaviors efficiently (Weick, 1993; Okhuysen and 

Eisenhardt, 2002; Baker and Nelson, 2005), while organizations with too much structure are 

over-constrained and lack flexibility (Siggelkow, 2001; Martin and Eisenhardt, 2010). This 

dilemma has created a “paradox of administration” (Thompson, 1967:15) because 

organizations operating in a dynamic business environment require both efficiency and 

flexibility. In order to manage this dilemma, scholars have pointed out that a moderate 

structure balance between these two extreme states will lead to high performance (Bingham 

et al., 2007; Weick, 1976). Research shows that high performing organizations resolve this 

tension by using a moderate amount of structure to improvise a variety of high-performing 

solutions (Brown and Eisenhardt, 1997, 1998). For example, Brown and Eisenhardt (1997) 

found that high-tech firms with a moderate number of simple rules (i.e., semi-structure) are 

more flexible and efficient (quickly creating high quality, innovative products while 

responding to market shifts) than firms with more or fewer rules.  
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This stream of enquiry is particularly relevant in the context of big data. The magnitude of 

data volume and the speed at which it should be analysed and acted upon requires 

organization to be flexible and agile to cope with a flow of opportunities that emerge from the 

data insights. Extant literature has been built around the central argument of how an 

organization balances flexibility and efficiency, to the neglect of key factors that are relevant 

to big data. For example, with limited managerial attention, how can a firm manage 

flexibility and efficiency when it seeks to capture heterogeneous opportunities in the big data 

context that, as noted, is high volume, high velocity and high variety? With a group of 

specialists, such as data scientists, who are able to generate data insights, how should the firm 

be structured in order to transmit knowledge across its boundaries in order to maximize the 

value from big data? A superior knowledge base can be associated with greater flexibility and 

faster reaction to environment changes (Grant, 1996), how then should a firm be structured to 

be able to execute the data insights in a timely manner in order to appropriate value? An 

understanding of how organizational structure shapes flexibility and enables fast reaction in a 

big data context is crucial to providing additional insights to the existing literature. 

Network collaboration  

Departing from the traditional RBV, this stream of research contains efforts to differentiate 

firms in terms of their ability to build unique resources from external alliances (Dyer and 

Singh, 1998; Lavie, 2006).  It complements the RBV by arguing that critical resources may 

span firm boundaries and therefore a firm needs to build relational rent from a network of 

alliance relationships in order to gain “complementarity”, “co-specialization”, and “synergy” 

resources that ultimately leads to superior firm performance (Lavie, 2006; Lippman and 

Rumelt, 2003; Mahoney and Pandian, 1992; Peteraf, 1993). By building such alliances, firms 

that are part of an inter-connected network can gain access to resources without paying their 

full acquisition costs (Dyer and Singh, 1998; Lavie, 2006). Such resource layering through 
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building relation-specific assets with a firm’s close alliance partners can be safeguarded by a 

contractual or long-term relationship agreement (Dyer and Singh, 1998). Open networks are 

characterised by alliances that are multi-firm based, with partners operating on a “modular” 

basis, moreover, they are dynamic as the scope of the sharing network evolves over time as 

new members join (Bharadwaj, et al., 2013; Han et al., 2012). This contrasts with firm 

collaboration in a closed alliance context which accentuates a centralized approach and a 

firm’s bargaining power to ensure its ability to generate superior economic rent (e.g., Gulati 

and Gargiulo, 1999; Lavie, 2006), a model which no longer appears sufficient to provide a 

robust explanation for superior firm performance in the new information age. 

Inspired by Chesborough (2003), open innovation highlights that as the boundary between a 

firm and its environment becomes more permeable, external ideas are important information 

resources for the firm’s competitive advantage. Many scholars proposed an Open 

Collaborative Ecosystem (OCEs) (Baldwin and Von Hippel, 2011; Curley and Formica, 

2013) and Open Strategy (Tavakoli et al., 2015) that underscores integrated collaboration, 

with co-created shared value and innovative network.  This was manifested by companies 

such as Facebook, Alibaba and Apple, that started to investigate the significant potential 

beyond conventional boundaries in order to tap into unique ideas from various constituencies 

within the innovative ecosystem through open platform strategy. Such an open process 

enriches a company’s own knowledge base through the synergetic effect from external 

resources, which leads to a great increase of a company’s innovativeness (Laursen and Salter, 

2006). As a result, firms are able to accelerate the rate of innovation and consequently create 

a more compelling competitive position (Chesborough and Appleyard, 2007). Although 

research in this domain has focused strongly on concepts such as open innovation and open 

ecosystem, the empirical understanding of how companies transform such external resources 



11 
 

to create value arguably remains in a black box (Bharadwaj, et al., 2013; Goes, 2014; 

Munford, 2014; Sirmon, Hitt and Ireland, 2007). 

Taken together, these brief summaries of the dominant themes in theory and research clearly 

demonstrate their value in understanding the process of value creation. Studies from 

information technology (IT) research streams also illuminate the magnitude and impact of 

data-related analytical problems in business organizations. A growing number of IT 

researchers have articulated the significant impact of big data and how big data is going to 

transform the business landscape (Goes, 2014; Rai, 2016; Chen, Chiang and Storey, 2012). 

However, despite the great effort devoted to emphasise the significance of big data, many 

firms are still struggling to capture value opportunities associated with big data. Recently, 

scholars have attempted to bridge the disciplines between information system strategy and 

strategy-as-practice and called for a joint agenda to take full advantage of such theoretical 

synergies (Lazer, Pentland and Adamic, 2009; Giles, 2012; Whittington, 2014).  As yet, there 

does not appear to be a holistic explanation of “how” firms transform big data to create value, 

as well as why variations exist across firms in relation to their capabilities to manage big 

data. This understanding is important, as recent researchers and practitioners suggest that data 

is playing an increasingly significant role in driving the sustainable value creation of the firm 

(George et al. 2014; Koutroumpis and Leiponen, 2013; McAfee and Brynjolfsson, 2012; 

Mckinsey Global Institute, 2011). 

It follows from these observations that the best way to understand the process of managing 

big data to create value is to undertake an inductive analysis that, while building on existing 

literature, allows new analytical insights on how big data drives the value creation of the 

firm. The purpose of this study is twofold. First, we look inside the “black box” and explore 

how firms transform big data to create value. Second, as some firms are more able to create 

value from big data than others, we investigate why firms differ in their ability to create value 



12 
 

from big data. In the following section, we elucidate our study’s sample, data collection, 

interview protocol, and data analyses. 

RESEARCH METHOD 

We adopt a “naturalistic inquiry”, which applies inductive logic to obtain insight (Lincoln 

and Guba, 1985). Inductive studies are particularly helpful in developing and extending new 

theoretical insights and when the research question is process oriented, such as ours. Multiple 

case studies were adopted in order to create the opportunity to triangulate information 

collected and to augment external validity, help guard against observer bias and allow for 

replication logic (Eisenhardt, 1989; Miles and Huberman, 1994; Yin, 2003). This approach 

allows us to extend existing theory and accordingly develop theoretical explanations for the 

observed phenomena (Locke, 2001). 

Research setting 

Internet platform companies (IPCs) are the setting of our research, and one where the core 

product is data. First, IPCs such as, Alibaba, are the epitome of data-based organizations 

because they are established on the internet and have been collecting data since their 

inception (Doan et al. 2011). Compared to traditional companies that largely depend on 

physical assets to drive internal and supply-side efficiency, IPCs primarily depend on their 

ability to generate information to enable/facilitate the interaction between different groups of 

users in order to create value (Parker and Van Alstyne, 2005). Thus, the value of data is 

particularly salient in the context of IPCs. Second, rather than protecting data that has been 

accumulated and collected by the firm, many IPCs open up their platforms and share their 

data with third parties. This phenomenon provides an interesting lens to understand how 

firms transform such open data to create value. The owners of open platforms normally 

expose their application programming interfaces (APIs) to allow third parties free entry into 
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the supply of the platform, including its technology, database and interaction with the focal 

platform’s users (West, 2003). This differs fundamentally from open source software where 

individual programmers and users develop a range of software applications and distribute 

them to the public for free.  

Following a purposeful sampling method (Eisenhardt, 1989; Miles and Huberman, 1994), we 

selected five firms in the IPC industry ranging from an e-commerce platform, a web search 

engine to a web instant messaging provider. All firms are publicly held.  As shown in Table 

1, five companies, that were previously successful with a proprietary platform strategy and 

have adopted ‘open platform strategies’ (West, 2003) in the last eight years, were eventually 

selected for this study. Among these five firms, we selected three firms that had been 

successful in creating value from big data and two that had not. We defined successful value 

creation as our informants did, in terms of positive characteristics (e.g., ‘made a huge 

difference to our job’) and negative ones (e.g., ‘too much hype, don't see the point’). The 

firms were selected as the unit of analysis.  

[Insert Table 1 about here] 

Data collection 

We obtained information from four sources: 1) semi-structured interviews with 42 informants 

from the sample firms, including CEOs, directors and senior managers who were usually one 

level subordinate to the CEO, and with senior data engineers in significant roles in their 

companies; a total of 34 additional interviews with the IPCs’ partner firms and third party 

developers and repeated semi-structured interviews with the same participants through on-site 

visits and conversations via telephone, Skype and WeChat; 2) reports and strategic memos 

produced by the companies for the period between February 2008 and March 2013; 3) 

extensive archives including newspapers, internet sources and corporate materials published 
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between March 2000 and July 2014; 4) informal follow-ups with emails and phone calls for 

clarification. This diverse range of sources was designed to improve the likelihood of gaining 

a complete and accurate picture (Yin, 2003) as well as providing textual accounts of debates 

and discussions and strengthening confidence in the findings (Jick, 1979). 

The semi-structured interviews were conducted in Chinese, ranged from 60 to 150 minutes, 

recorded (unless disallowed by the interviewees) and transcribed verbatim within a week of 

the interviews by the first author and professional transcribing and translating service 

provider. The interviews were structured into four sections. First, we asked questions about 

the background and business strategy of an informant’s firm. Second, using an open-ended 

format we asked the informant to describe the process by which firms transform big data to 

create value and key challenges they have encountered during such value creation process. 

We then asked informants to describe the role of data experts such as data scientists in 

contributing to the value creation process. This was followed by questions about how 

managers’ action/abilities influence the value creation process. More details of the interview 

questions can be found in the Appendix.  

We adopted a “court room” style of interviewing, pushing for concrete illustrations to 

increase the data trustworthiness (Eisenhardt and Graebner, 2007). Additional interview 

questions were added to the interview protocol in order to probe emergent themes or to take 

advantage of special opportunities that may have arisen in a given situation (Eisenhardt, 

1989). We assured anonymity to informants to encourage candour. The steps taken are likely 

to have mitigated informant and other biases and provided detailed and accurate accounts.  

Data analysis 

We began by conducting within-case descriptions, where the case studies were built based on 

data and key constructs (Eisenhardt, 1989; Yin, 2003). Within case evidence was acquired by 
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taking notes and writing narratives. For this purpose, we focused on analyzing the interview 

data as well as integrating and triangulating facts from various data sources. Triangulation of 

archival and interview data enables richer and more reliable description of each case (Jick, 

1979) and improves construct validity (Yin, 2003). This process led to the discovery of 

different modes of value creation as well as the mechanisms that enable/inhibit such value 

creation processes.   

Next, cross case analysis was conducted, looking for similar constructs and themes in the 

cases (Eisenhardt and Graebner, 2007). To preserve the integrity of replication logic across 

cases (Eisenhardt, 1989; Yin, 2003), we began this cross-case analysis after most data had 

been collected. As research progressed, we sought to verify the emerging dynamics by using 

supplemental data sources, especially non-interview data (Jick, 1979). From the emerging 

constructs and themes, we identified the tentative relationships between constructs and 

attempted to discern correlational tendencies between the value creation modes and the 

mechanism of enablers and inhibiters.  We then used replication logic to further refine these 

initial relationships by visiting frequently each case in order to compare and contrast the 

specific constructs, relationships and logics. To ensure the validity of the analysis and theory 

building, we presented our analysis in an academic workshop in order to stimulate and induce 

alternative explanations.  The latter were accepted or rejected based on their consistency with 

the data and/or theoretical logic.  We continued reading broadly in an effort to gain insight 

into the data (Glaser and Strauss, 1967). As the theoretical frame clarified, we compared it 

with the extant literature to highlight similarities and differences, strengthen the internal 

validity of findings, sharpen construct definitions and raise the generalizability of the 

emergent theory.  We also presented the inductive model to informants inviting their 

feedback and comments. These interactions were conducted through face-to-face meetings, 

telephone discussion, and email dialogue.  
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RESULTS: AN INDUCTIVE THEORY OF VALUE CREATION FROM BIG DATA  

Through iteration of the data described in the previous section, a theoretical framework 

emerged. Our inductively derived theoretical framework of value creation from big data is 

shown in Figure 1. 

[Insert Figure 1 here] 

The framework shown in Figure 1 helps to explain how firms manage big data to create value 

and why firms differ in their abilities to perform better than others. To trace the chain of 

causation, we have identified two modes of value creation processes from big data. Creating 

value from internal data is transaction-driven, where the firm mainly focuses on data analysis 

to generate superior economic rent that can be exclusively enjoyed by the firm. Creating 

value from the firm’s open data network is relation-driven, where the firm mainly focuses on 

data collaboration to generate superior economic rent that can be collectively enjoyed by the 

firm and its partners. Looking inside the “black box”, we found that data is location, context 

and relevance sensitive; when it is combined with different ideas and datasets, it enables 

firms to see new, better and different patterns that are impossible to see in isolation.  

The findings revealed that some firms are better than others in transforming big data to create 

value. In as much as there are gains from an internal data set, that is, when firms are able to 

democratize, contextualize, experiment with data and execute data insights in a timely manner 

to create value, these firms generally perform better than others in creating value from the 

firm’s internal data network.  Gains from data collaboration with external partners tend to 

reinforce gains from creating value from an internal dataset, which generate greater value 

creation opportunities when coupled with additional capabilities and datasets. In order to 

become the leader in an inter-connected data network, a firm’s central position is largely 

influenced by the potential of both its data relevancy to contribute to partners’ value creation 
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processes, and of its technology relevancy to provide a data infrastructure that can facilitate 

data flows and data exchange within the firm’s extended data network. Therefore, the 

differences in gains from data mining and gains from data collaboration were caused by 

heterogeneity between firms’ capabilities to harness data internally and heterogeneity 

between firms’ capabilities to manage relationships externally.  

In the following section, we discuss each value creation mode in further detail. We then shift 

the focus of the analysis from the question of how firms transform big data in order to create 

value to examine why firms differ in their abilities to create value from big data.  

FINDINGS 

Two distinct patterns of value creation modes from big data emerged from the empirical 

evidence: creating value from the firm’s internal data set and creating value from the firm’s 

external data network (see Figure 1). Our analysis indicates that the modes of value creation 

from big data exhibit common features (the firm’s capability to harness the data internally 

and its capability to manage relationships with external partners in an open data network) 

with variations in explaining how some firms are able to generate value better than others 

from the same value creation process. In this section, we first provide a brief picture of each 

mode, and then present a second layer of findings explaining why some firms differ in their 

capabilities to create value from big data better than others. We intersperse the narratives 

with significant quotes intended to illustrate our interpretation, as recommended by Langley 

and Abdallah (2011), and we display additional selected quotes in Table 2, to illustrate and 

document the robustness of our claims. 

[Insert Table 2 about here] 

Creating value from the firm’s internal dataset: capability to harness data internally 
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This pattern of value creation refers to the process of exploiting and exploring a large volume 

of data from the firm’s internal database in order to identify consistent patterns and 

systematic correlations among different variables in a particular representational form, and 

transforming these insights into actions that leads to identification of new opportunities for 

creating value that increase the customer’s willingness to use/pay. The selected IPCs have 

accumulated a large volume of data over time which allows sophisticated analysis and pattern 

matching. There is a recurring theme among all companies that exploiting data enables a firm 

to conduct “demand driven” product/service development. A senior director from Alpha 

commented: 

Every time customers use our platform, they left a trail of bread crumbs about who they are, 

what they like, etc. There are many types of data; administrative data, transactional data, 

behaviour data and real time data, etc. For example, we rely on customer behaviour data to 

understand how they react to where we place the click button, the size and font of words 

displayed on the website, the colour, shape. (Alpha, 04a)   

In a similar vein, Tangu divided user activity data from one particular product into three 

categories: early product utilization stage, peak product utilization stage and end of product 

utilization stage. This chain of evidence enables Tangu to gain a holistic understanding about 

the entire user experience journey, which provided valuable information guiding future 

product improvement and innovation.  

We also noted that firms use big data to provide value added and personalized service to 

different groups of consumers. Alpha introduced a series of services, such as, online store 

design, account management, and transaction data analysis (number of daily orders, the 

variation of daily online traffic, the metrics of visitors, sales, etc.) to assist the sellers on their 

platform to improve transaction efficiency. Based on big data, Alpha was able to build its 

own credit scoring model that provided comprehensive analysis about client behavior, 

transaction history, credit rating and review content. This knowledge led to a range of 

financial services including small financial loans to its customers. Similar examples can be 
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found among other IPCs. For example, Bray developed a set of big data predictive programs 

for monitoring diseases like hepatitis, Chinese New Year travel, earthquakes, FIFA World 

Cup victories and movie box office success.  One of the senior data engineers from Bray 

noted that:  

Now we have the luxury to have the real-time data which can really make a difference to our 

lives. We can use such data to have a fairly accurate understanding about, for example, how 

crowded it is now at Forbidden City. Data is time sensitive too. (Bray, 009a)   

 

As the arbiters of value, the customer plays the key role in determining the value of the 

product/service offered by the firm (Priem, 2007). The data generated from the demand-side 

can guide and help a firm to understand the consumer’s needs, which leads to the 

identification of new opportunities for creating value that increase the customer’s willingness 

to use/pay. Firms equipped with the insights generated from big data are more able to respond 

to unexpected opportunities. The outcome of data exploiting can enhance a firm’s isolating 

mechanism to allow it to decrease threats of imitation, thus increasing the maintainability of 

an advantage based on the insights generated from big data. This discussion leads to the 

following proposition: 

Proposition 1: In a big data context, exploiting data facilitates preferential access to a 

greater variety of demand-side opportunities, thus increasing the firm’s potential value 

creation. 

How do some firms create more value from internal data than others? Prior research placed 

emphasis on the role of “data scientists” who have the specialized skills and knowledge to 

analyse big data (e.g., Davenport and Patil, 2012) in contributing to the firm’s value creation 

opportunities from big data. This perspective implies that companies that have more data 

scientists have better chances of creating value from big data.  
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The findings from our research indicate a different view. Firms that hired many data 

scientists do not always generate better value creation opportunities. Rather, it was the 

process of data management where managers are able to democratize, contextualize, 

experiment, and execute data insights in a timely manner to create value. In the following 

sub- sections, we provide a detailed account of our observations to support our emergent 

theme (Eisenhardt and Graebner, 2007). We display additional selected quotes in Table 3 to 

illustrate and document the robustness of our claims.  

[Insert Table 3 about here] 

Capability to democratize data  

We define data democratization as the firm’s capability to integrate data across the firm and 

enable a wider range of employees to access and understand data where it is needed at any 

given time. One challenge dealing with big data, often highlighted during our interviews, is 

the sheer volume of data itself, as described by many informants as “we can easily drown in 

the big data sea”. We found significant variations in the scale where internal employees can 

benefit from exacting insights from big data. The quotes shown in Table 3 indicate that data 

democratization is associated with better value creation.  

The Alpha case illustrates the linkage between data democratization and value creation. 

Alpha data director argued “make big data serve everyone (in the company), not just top 

management and executives”. In 2009, Alpha introduced data tools to enable a wider scale of 

data application. For example, the data team introduced a data product called “Wu Liang 

Shen Zhen”, a data visualization tool that monitors the “heartbeat” of hundreds of thousands 

of customers. “It is like an electrocardiogram that hospitals use to monitor a patients’ pulse, 

if there is any abnormal sign, it draws our attention to it straightway” (Alpha, 017a).  This 

tool was a result of collaboration between the data team and the customer service team. The 
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tool enabled the customer service team to closely monitor the transaction activity of millions 

of customers based on historical and real time data, in order to detect any abnormal activities. 

As the data director described: 

 “We want everybody to like data and benefit from data. It is not easy as people often think 

only data experts can navigate and understand these sets of numbers. So, our goal is to turn 

big data into something that is tangible and easy to understand and use. Such productizing 

big data requires our team to work with other teams to understand their needs and 

customers’ needs to come up with something that can benefit them on a daily basis.” (Alpha, 

014a) 

Information gathered from other informants, published industry sources and archival data 

confirmed that this company was well known for its data democratization capabilities. Data 

products such as “Seismograph” that monitors which functions customers complain about the 

most, including gaining access to the original customer complaint, and “Time Machine” that 

traces the evolutionary journey of customers, were designed from big data to enable a wide 

use of data applications. The informants from the same company often expressed a high level 

of confidence in the data team, referring to them as the “magic maker”. One informant 

explained: 

 “We do not need to have a PhD in physics or advanced IT skills to understand the data, 

everything is so straightforward to understand, it makes our job so much easier. They really 

did a fantastic job here”. (Alpha, 002a)  

 

The Tangu case also indicates the link between the democratization of data and value 

creation. For example, in Tangu each department has its own data team. The purpose of the 

data team is to “assist everybody in the department to be able to use data” and to “coordinate 

with other departments in terms of data integration and data sharing”. Informants often 

noted that “without such collaboration between data experts and non-data experts, it would 

be impossible to build the bridge between the pure correlations (generated from big data) 

and real business value of such correlations” (Tangu, 008a). The following observation 
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provided by a senior data engineer at Tangu displays the relationship between the data 

democratization and conversion process.  

“Big data may sound fancy but big also means slow, cumbersome, and complex. We used to 

set up the data team as a separate unit, which meant only a handful of people were able to 

crunch the data. The problem was then that the value of the data has not been used in an 

efficient manner as only a small group of people were working on it. We wanted to empower 

every single member of our team with the insights generated from big data.” (Tangu, 003a)  

 

In contrast, there was little mention from firms that generate limited value from big data 

concerning the enabling of large scale data applications. What was commented on suggested 

that employees’ access to data and their understanding of data was not particularly germane 

to the value creation process. For example, one deputy executive was asked to describe the 

process of how data was used at the general managerial and operational levels. He answered 

that the “business intelligence team analyse the results on a daily basis and present it to the 

senior management team, and the management team can select what is relevant and forward 

it to the lower level” (Cheu, 001a). Such information distribution was confirmed by other 

informants from the same firm. However, one informant commented, “Sometimes we don't 

really know the purpose of the document, to us, it’s more like tick boxing exercises” (Cheu, 

010a)  

The evidence on the linkage between the firm’s capability to democratize data for wider use 

of application and value creation is consistent with the converse found at Shrong. For 

example, informants described that while other departments put a cap on how many people 

they could hire, the data department was given a green light. “The problem is that they hired 

so many people”, one informant said, “so far I didn't see much value from it”.  At Shrong, 

informants often emphasized the technical role of data scientists but there was lack of interest 

in encouraging a wider scale of data use. In such firms, the informants indicated that big data 

was typically a luxury product for executives and data experts. 



23 
 

Overall, our findings concerning data democratization capability calls into question the 

implicit assumption that the analytical skill of individual data scientists is sufficient to 

contribute to a firm’s value creation opportunities. Our evidence indicates that the process of 

data scientists transmitting relevant knowledge across internal firm boundaries to enable 

wider and collective data application is positively associated with better value creation. 

Leaders in these firms tend to view data as a public good that can be used and accessed by all 

employees. This discussion suggests the following proposition:  

Proposition 2: In a big data context, the greater the firm’s capability to democratize data to 

enable a wide range of data applications, the greater the likelihood the firm will increase its 

potential value creation. 

Capability to contextualize data  

This capability refers to the firm’s ability to assign meaning as a way of interpreting the data 

within which an action is executed. Firms collect a significant amount and different types of 

data, including data on customer behaviour, market demand, shifting preferences and 

changing customer needs.  The firm’s capability to identify the contextual clues to gain a 

holistic view of customers will be positively associated with better value creation.  

A key insight is that those firms that created more value from big data than others tended to 

actively break down the data barriers that existed within the firm. Such data integration 

enables firms to gain a “360 degree context” for customers. For example, Alpha have been 

working on integrating internal data since 2004, as documented in an in-house memorandum. 

The effort was made to integrate data from multiple systems, inviting collaboration among 

different functional units. As one informant commented: 
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“We have been working on a unified user cookie and log format for about 10 years. We 

wanted to build a data warehouse so people get a 360-degree picture of our customers. It is 

all about joining the dots and understanding data within a context” (Alpha, 021a).   

The evidence we collected from other informants from the same company and from the 

secondary sources confirmed this view. It was emphasized that the real value of big data is 

not just the volume of the data itself, rather, it was the connection between “individual 

customers” and “their everyday life”. As pointed out by a senior data expert, “It is not just 

about what decision he/she made, it’s about what scenario that drives him/her to make that 

decision” (Alpha, 005a).  Similarly, this view is also shared by Tangu and Bray. Creating a 

closed data loop, collecting and analysing customer data from multiple channels and 

magnifying the context about individual needs was constantly highlighted during our 

interviews. As explained by one informant, 

“There are many different types of data, demographic data, historical data, situational data 

and locational data. By drawing all of these data together, you can have a full context of 

every customer interaction. Incomplete data often gives you a partial picture about 

customers. It’s like the story of blind man and an elephant.” (Tangu, 013a)   

In contrast, we noted that many frustrations were expressed regarding information hoarding 

among business units within firms that created less value from big data. For instance, several 

informants from Cheu pointed out that data was stored in diverse lines of business and this 

prevented the firm from gaining a holistic view of individual customers. This is illustrated in 

the following observation: 

“Incomplete data can only tell you part of the story and people here seem to have the 

mentality to hold the information. It is not a win or lose situation here, it’s not even about 

competition because when we mix our data together, we both benefit from it. The mentality 

needs to be changed and infrastructure needs to build to support this internal data 

collaboration otherwise everybody is doing their own thing with their incomplete set of data, 

nobody is doing a good job in this case.” (Cheu, 011a)  

 

In addition to failing to integrate data internally, many informants also noted that the outcome 

of data analysis from big data was often “too abstract” and “you don't get much out of it from 
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their data report”. A similar view was shared by other informants who described the 

information presented in the data report as “too technical” and “not sure where the business 

value lies”. One informant pointed out “delivering data and correlation without the context, 

it’s rather pointless” (Cheu, 006a). Our evidence also revealed that companies that are less 

active in building infrastructure to integrate internal datasets are also less active in engaging 

cross- department communication. This is reflected in the following:  

“Not everybody can do (data analysis) that's for sure so we leave it for the experts. They dig 

out what is relevant first then we decide how to use our resources to make it happen or make 

changes.” (Cheu, 010a)  

 

From firms that have created more value from big data, we noticed that such cross- 

department collaboration was a common practice. Data teams frequently communicated with 

other departments to co-create value from big data. As one informant lamented:  

“Albert Einstein once said ‘If I had only one hour to save the world, I would spend fifty-five 

minutes defining the problem, and only five minutes finding the solution’. It is very time 

consuming and pointless to approach data with no question in mind. You have to put data in 

a context. So we spent a lot of time talking to our colleagues from different departments, what 

problems do they have? What data is relevant for this problem? Can it be solved by data? If 

data is available, what data do you need? With a particular context in mind, it is much easier 

to find a solution from the data.”(Alpha, 005a)  

 

As a result of this patterned collaboration, firms are more likely to understand data in 

different contexts, therefore leading to a better understanding of individual customers. This, 

in turn, made firms perform better and achieve prominence in creating value from big data. 

This suggests that:  

Proposition 3: In a big data context, the greater the firm’s capability to encourage cross-

department collaboration to contextualize data, the greater the likelihood the firm will 

increase its potential value creation. 
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Capability to experiment with data 

Data experimentation is the firm’s capability to promote “trial and error”, cultivate an 

inquisitive attitude towards data, encourage continuous experimenting with the data and 

monitor the changes. Across the sample companies, we found notable variations in the firms’ 

actions in engaging in activities associated with data experimentation.  

A positive example is Tangu, where a senior data analyst commented:  

“People sometimes get very passive and just let computers take over. You need to have the 

balance between the ‘yin’ and ‘yang’. For me, data analytics is the ‘yin’ and you need the 

‘yang’ which entails coming up with new things to test the data, to test how the market reacts 

and fluctuates. There is a lot of hype about the role of data scientists and what they can do. 

Often they neglect the right side of your brain, the creative side of things.” (Tangu, 020a) 

 

Information from other informants from the same firm also accentuated the importance of 

data experimentation in driving the firm’s value creation. A product development manager 

described the process of testing data in order to try out different ideas:  

“We sometimes try out different designs and features on our products just to see how the data 

react. With the internet, we can control the scale in which we wish to experiment. It is a 

process where you try it out, you gather feedback, and you improve, then try it out again on a 

larger scale, then feedback- and then improve.” (Tangu, 002a)  

 

The findings suggest that a “trial and error” organizational culture, when coupled with a 

greater level of data accessibility, tends to have a better chance to transform value from big 

data within the firm’s internal network. This combination is reflected in the following 

observation from a senior marketing director at Alpha:  

“At the beginning, people felt quite intimidated by the data. They view data as it is, a scary 

set of numbers and statistics that they don’t know where and how to start with. We want them 

to be curious about the data, to ask what things they could try to find out to improve customer 

experiences or make their jobs easier. The data support center can then begin to interrogate 
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the data with a clear focus. This is extremely important given the amount of data we have. We 

also encourage them to try out new ideas in incremental steps to see how the (real-time) data 

reacts. We had one idea coming from one of our interns whose idea was to produce 

personalized video clips from the historical data to capture our customers’ journey from the 

time they first opened up a shop on our website. The results were very successful.” (Alpha, 

001a) 

    

In contrast, informants from other firms put a lot of emphasis on the robustness of the data 

itself, where the experimenting element was mentioned rarely. For example, a Shrong 

executive expressed a high level of confidence in the firm’s data analysis skills. Informants 

from the same company described the top management’s attitude to big data as “let the 

numbers do the talking” or “they stick too much to the number itself”. Similar examples can 

be found at Cheu, where the informants were asked to describe the role of big data in 

assisting their work activities. What was mentioned suggested that the insights generated 

from big data played a crucial role in influencing their jobs. “It is a hard-core science,” as 

one informant described “you don't want to mess with it”.  

Our findings indicate that firms showing a tendency toward cultivating a learning and 

experimental culture also tended to have better conversion rates from the data. The findings 

suggest that a “trial and error” approach, when coupled with a greater level of data 

accessibility, tends to have a better chance to transform value from big data within the firm’s 

internal network. This chain of evidence is consistent with the recent emphasis on managerial 

capability with the stress on flexibility, creativity and timing rather than efficiency and 

control (Amit and Schoemaker, 1993; Teece, 2007; Teece et al. 1997). This discussion 

suggests:  

Proposition 4: In a big data context, the greater the firm’s capability to cultivate a learning 

and experimental culture towards big data, the greater the likelihood the firm will increase 

its potential value creation. 



28 
 

Capability to execute data insight  

This capability refers to the firm’s ability to transform data insights into actions that lead to 

identification of new opportunities that increase the customer’s willingness to use/pay and 

thus for creating value. Our analysis found a clear pattern of variation in how firms execute 

big data insights.  Several informants from Alpha commented that the real value of big data 

depended heavily on the speed of the firm’s execution ability. As one informant emphasized:  

“We had many discussions around how are we going to react quickly to these data and how 

we can capture the opportunities emerging from data there and then. The solution is not easy, 

it requires structural change, process change and also mind-set change. These are the hidden 

challenges associated with the management of big data. It is a different management where 

you build a process to enable people to make sense of the data and take actions to respond to 

the data in a timely manner. You need to catch that moment”. (Alpha, 011a)  

 

Archival data, such as minutes of meetings and internal newsletters, confirmed this view.  

Different from the traditional hierarchal decision making process, operational employees 

from Alpha have the flexibility and freedom to act based on the data insights. “It is embedded 

in our daily routine, act more like a microscope, help us to see things better, clearer and 

quicker so we can make timely and right decisions.” (Alpha, 009a) Individual team members 

were able to monitor the market trends and customer activities through a data tool based on 

historical and real-time data every day. Employees observing any abnormality emerging from 

the data were able to react to the situation in real time or could discuss it with the team leader, 

after which action was able to be implemented within 24 hours. “It’s not just about strategy 

anymore”, claimed one informant, “it's the ability of execution”.  

Similarly, the Tangu case also illustrates the linkage between capability to execute data 

insights and value creation. For example, one informant from Tangu described the execution 

ability to big data as “creating a harmonious relationship with big data, like a dancing 

partner, data move, you move”. She further explained:  
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“If you are constrained by the authority and hierarchy, then you lose that movement, agility 

and flow. Things change fast, and you have to catch that moment. It is all about speed. Time 

in this age is more important than money”. (Tangu, 001a)   

Tangu created a decentralized data ownership and empowered employees with data insights 

to make timely decisions. In contrast, firms that created less value from big data usually 

adopted a centralized data ownership, where only data experts and top executives could 

access the data. The decision-making process generally originated from the top, then 

cascaded down to the operational employees. For example, a data team would produce a data 

report, present it to the top management, this report would be forwarded to middle 

management, and then finally filtered to the operational employees. One informant from 

Shrong commented: “it takes layer after layer of digestion, once it is your turn to digest and 

do something, it always quite late. So sometimes I don't really understand the purpose of the 

report. What do they want us to do? Read it?” As a result of this kind of decision-making 

process, firms often missed opportunities to grasp the value emerging from real-time data, 

which hindered the firm’s ability to create value from big data.  

Our findings support the view that decentralized power enhances the pace of decision 

making. This is consistent with Brown and Eisenhardt (1997, 2009) who suggest that firms 

with simple or few rules that combine improvisation tend to be more flexible to market shifts.  

This discussion leads to the following proposition:  

Proposition 5: In a big data context, the greater the firm’s capability to build a decentralized 

decision-making process to enable agile execution of big data, the greater the likelihood the 

firm will increase its potential value creation. 

 

Creating value from the firm’s open data network 
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This pattern of value creation refers to the process of attracting and integrating separate 

external datasets and resources, and managing this open data network to create value. Such 

collaborations can result in significantly higher value being co-created in comparison to value 

harnessed through the firm’s internal big data. The alliance partners contribute 

complementary and supplementary data/capabilities, so together they are a source of value 

that individual partners could not build in isolation. All five IPCs emphasised that their 

platforms’ internal resources and capacity can only be stretched to a certain extent to meet the 

diversified and heterogeneous market demand, particularly in the mobile internet age. 

Therefore, new infrastructure capabilities, as well as new resources centred on improving 

customer experience, need to be created and built in order to remain competitive in a fast-

changing market. 

Several informants highlighted the network externality effect of opening their resources to 

third-party developers, resulting in a distinctive resource within their network innovation 

systems. For example, a senior director from Tangu commented: 

“We tried to do everything ourselves in the past. After we opened up our platform, we noticed 

that the most popular games were actually coming from outsiders. It is not about the data 

itself, it is about how to connect your data to with the ‘a-ha’ moment where you can provide 

better products for your customers based on the data. Data does not generate innovation, 

people do.” (Tangu, 005a)  

 

In addition to exposing the public APIs that allow third parties free entry to the supply of the 

platform, including its database, firms also coalesced datasets from different external sources. 

For example, in 2013, Shrong embarked on a collaborative partnership with Alpha, with the 

intention of combining two datasets in order to bring unique and valuable services to both 

platform users. A senior executive from Shrong commented:  

“We both sit on a huge amount of data. They have huge data about e-commerce and we have 

huge data on customer behavior on the mobile internet. When we drew our data together, we 
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noticed that there were so many things that could be done or improved. That is the beauty of 

data, when you mix and match them, new and different patterns occur.’ (Shrong, 005a)  

 

Another example is the collaboration between Tangu and a local search engine, who agreed 

to integrate their respective datasets in order to jointly develop and cross-promote their 

products and services. Similarly, Bray pulled data together from various airline companies 

and the Civil Aviation Authority of China. This action not only improved airline operation 

efficiency but also provided a better experience for customers. A Chinese electrical appliance 

manufacturer entered into a collaborative relationship with Alpha with the aim of building 

internet products which allow the management of domestic appliances by remote control and 

enables communication between devices. A senior director from this electrical appliance 

manufacturer noted: 

“Our data has different strengths and sheds different lights on our products and customers. 

We accumulated years of experience and data in delivering electronic products, and they 

(Alpha) also sat on a huge amount of data regarding market trends, customer preferences 

and different metrics. Such online and offline integration is the perfect marriage for product 

innovation (Alpha-partner, 2a). 

 

A similar example is Cheu’s collaboration with offline travel agents and travel relevant 

partners, such as Taxi Company, to further discover new opportunities from the collective 

dataset where all parties’ resources can be fully maximized. When asked about whether they 

would be worried that such offline travel companies would “steal”  Cheu’s online business, a 

senior manager commented: 

“We all have different strengths, resources and ideas, it is not like they don’t have access to 

important data. Data is cheap to get and store these days and it is coming from so many 

sources including physical products. It is all about mixing and matching, every time you put 

different data together, you will see different results, different trends and different patterns. 

There are so many opportunities in the market. We want to grow the whole market together, 

instead of competing head to head in a small market space.” (Cheu, 015a) 
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Similarly, Alpha and a local logistic company engaged in a “joint data crunching” project in 

order to improve delivery efficiency. A senior operational director from a logistic company 

commented: 

“We have so many parcels to deliver and our drivers are under a lot of pressure. We 

captured and tracked thousands of package movements from telematic sensors and they 

(Alpha) tracked thousands of transaction activities from their websites. The data pot enabled 

us to redesign our logistic system. Together, we can predict how many packages will be 

generated for which province during different periods of the week.” (Alpha-partner, 6a)  

 

The evidence resonates well with the role of external actors in contributing to the firm’s value 

creation in conjunction with the firm’s internal R&D by stimulating innovation through a 

combination of the efforts of a diverse pool of complementary firms, leading to superior firm 

performance (Chesbrough, 2003; Chesbrough and Appleyard, 2007). This open process 

enriches the firm’s own database through the synergetic effect from external knowledge 

sourcing, which leads to a great increase in innovativeness (Laursen and Salter, 2006). As a 

result, the firm is able to create a more compelling competitive position (Chesbrough and 

Appleyard, 2007).  

It was evident that IPCs and their collaborative partners were able through collaboration to 

combine their datasets into “synergistic bundles” to generate economic rent (Madhok and 

Tallman, 1998). Our evidence demonstrates that the value of data increases when it is 

combined with different sets of data, a process which fundamentally shifts the nature of the 

relationship between the firms and their network partners from competitive to collaborative. 

Value can be realized in the form of new products and business model innovation, which 

ultimately expand the market opportunities for firms and their partners to create and capture 

value. This leads to the following proposition:  
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Proposition 6: In a big data context, data layering with inter-industry and intra-industry 

partners’ data, allows preferential access to a greater variety of opportunities that generate 

additional sources of value for customers, thus increasing a firm’s potential value creation.  

A key observation is that instead of passively opening their platforms and sharing their data, 

all the study’s IPCs acted in the role of supporter/enabler by providing tailored financial, 

technical and analytical data support to their partners. The evidence of this support is found 

consistently across all cases. Rather than focusing on acquiring more bargaining power with 

their partners, the five IPCs all adopted a conciliatory approach by providing free support 

first and only extracting a small commission fee when the developers started to obtain profit 

from their own operations. A senior director from Bray stated that: 

“We are not like the United States, we are very short of talent and our infrastructure 

conditions are unevenly distributed across different provinces.  There are so many people 

that would like to take advantage of the resources we have, but they simply do not have the 

data, knowledge or money to do so. You can see most of us (IPCs) acting as a gardener 

trying to fertilize the ground to make the flowers blossom. You plant the seeds, you fertilize 

them, and they will grow and then you can make profit from fruits or vegetables from the 

plant. It is like making a profit from your resources’ interest. They tell us about their ideas 

and we help them to crunch the data. The stronger they get, the more profitable we are.” 

(Bray, 002a)  

 

Acting as an incubator, Bray launched Chengdu High-Tech Zone’s ‘Mobile Internet Venture 

Building’, aiming to provide a range of services including free office space to start-up 

developers based in China’s Western region. As another informant from Bray commented, 

“When people have good ideas, we give ideas enough oxygen to make sure they grow” (Bray, 

010a). The concept “the stronger they are, the stronger we will become” was repeatedly 

emphasized across all the interviews. This idea was communicated clearly across the 

platform and its complementors. Bray further launched the “Light App” that is designed to 

increase the visibility of less popular apps, and its indexation feature through search engines 
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boosts the light app’s promotion and monetization capabilities. It bypasses the app store and 

makes finding services and information easy for customers.  

Evidence revealed that all IPCs worked closely with their indirect business partners in order 

to overcome the deficient infrastructure/market conditions in China. Alpha offered tailored 

training programmes generated from big data to start an “Alpha villages” project that helped 

farmers and entrepreneurs from small and isolated villages to start their own businesses on 

Alpha’s platform. The first village to take up e-commerce on a large scale was Dongfeng 

village in Jiangsu Province where more than 1,000 households started selling furniture goods 

online. A director of one of the trading agencies that Alpha worked with noted: 

“They are offering training and banking services to help local farmers start their own 

business on its platform. They trained us so we can train more farmers from different 

villages. It is all free of charge.” (Alpha-partner, 1a) 

 

Another consistent theme emerging from the data is that all the leading IPCs are building 

their own ecosystems by providing technical and data analysis support for small-medium 

IPCs (SM IPCs). For example, companies such as Alpha, Tangu and Bray help SM IPCs to 

build up their online traffic, provide data-driven technological support to help SM IPCs to 

design and implement more advanced web monitoring systems, and offer free training 

sessions to help partners maximize the data potential. Rather than focusing on the short-term 

firm–level financial returns, all five case firms simultaneously devote more attention to 

cultivating an ecosystem that enable others to grow.  We noted that in an emerging economy 

such as China, where the support market is either absent or weak, often referred to as an 

institutional void, the selected firms perceive it as a new opportunity space for further 

ecosystem building. For the firms in this study, the complexity of institutional situations in 

China, such as market deficiency, shortage of talent, underdeveloped infrastructure and a 
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wide wealth gap between urban centres and rural villages, acted not as constraints, but as a 

stimulus for IPC value creation activities. One informant from Alpha commented:  

“E-commerce in the United States is a dessert. In China, it is a main course. Because the 

infrastructure of commerce in China was so bad that we had to develop and nurture our own 

system to make it work, so the boundary of our firm is getting bigger and bigger. And the 

infrastructure of e-commerce in the United States was so good, that e-commerce is a 

supplement” (Alpha,  010a) 

 

This statement suggests that the under-developed institutional environment of China provided 

a fertile ground for Chinese IPCs to use big data to nurture and strengthen their direct and 

indirect value creation providers within their ecosystem, thus acting as a catalyst to further 

strengthen and enlarge the scope of a firm’s extended network.  

The dominant view of investing in an ecosystem has two extremes, one is to make limited or 

no ecosystem investment in an institutional void context because no immediate or direct 

economic returns will be generated (e.g., Khanna and Palepu, 2000).  The other view is to 

build a perfect ecosystem where firms can capture most of the economic value. Contrary to 

extant theories, our data suggest an additional alternative, in an emerging economy where the 

market support mechanisms are weak, firms can proactively engage in seeding an ecosystem 

by developing and cultivating new business partners while not trying to dominant the space 

and capture all the value. In our cases, the market was not viewed purely as the main place to 

appropriate value, instead, it was perceived as an important mechanism to stimulate building 

a broad ecosystem to foster social and economic development. This view is consistent with 

scholars who have championed the role of social entrepreneurs (e.g., Venkataraman, 1997; 

Peredo and Chrisman, 2006; Mair and Marti, 2009), whose primary objective is to create 

social value while creating economic value is a necessary condition to ensure financial 

viability (Mair and Marti, 2006).  Our evidence revealed that by opening the firm’s data, thus 

attracting and enabling resource constrained partners to participate more actively in its 
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ecosystem, can lead to many sustainable business opportunities, consequently providing 

considerably more sustainable value creation. This discussion leads to our next proposition: 

Proposition 7: In emerging countries where the support markets are absent or weak, the 

firm’s capability to invest in seeding a big data ecosystem, while not trying to dominant the 

space and capture all the value, allows sustainable access to a greater variety of capabilities 

and resources, thus increasing a firm’s potential value creation.   

How do some firms create more value from a data ecosystem than others? The dominant 

view of network alliances is that building relation-specific assets with the firm’s closed 

alliance partners can be safeguarded by a contractual or long-term relationship agreement 

(Dyer and Singh, 1998). In particular, according to this perspective, the firm’s bargaining 

power and centralized approach in a closed alliance network is crucial to ensure the firm’s 

ability to generate superior economic rent (e.g., Krause, et al., 2007; Lavie, 2006).  

Contrary to extant theories, we noted that while firms engage in an open data network where 

alliances are multi-firm based, partners operate on a “modular” basis. The scope of the 

sharing network is dynamic as it evolves over time as new members join (Bharadwaj, et al., 

2013; Han et al., 2012). Consequently, the traditional approach is insufficient to offer a robust 

explanation in the open data network context. Our findings indicated that firms perform better 

in managing their position in open networks if they are able to leverage their large customer 

numbers, databases and critical services provided by the open data platform infrastructure in 

order to contribute to their external partner’s value creation. 

Capability to build data relevancy  

This capability refers to the extent of the firm’s data and data analysis skills that are 

applicable to contribute to the external partner’s value creation. Such a mechanism was 
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constantly brought up during our interviews. For example, one informant from Bray 

commented:  

“We are competing (with other platforms) to attract all the (external) useful resources, 

(including) app developers, entrepreneurs, other platforms and other companies. We try to 

make ourselves as attractive as possible for potential alliances based on our data and skills. 

You need to make yourself indispensable to others; you need to make yourself relevant.” 

(Bray, 006a) 

 

We noted that firms that have a central network position tend to possess a substantial amount 

of data and have better data analysis capability in supporting external partners’ value 

creation. Many informants highlighted the network externality effect of opening up their 

resources to third-party developers, resulting in a distinctive resource within their network 

innovation systems. In addition to attracting developers, firms are also competing to build a 

data network. Findings indicate that new patterns and correlations in terms of location, 

relevancy and context, appear when one set of data is integrated with other datasets. This is 

consistent with the self-generating nature of information assets (Glazer, 1991). Coalescing 

datasets from different sources can therefore further stimulate the heterogeneous generation 

of value from the data. When asked about the key mechanism that drives partners to choose 

one platform over others, many informants commented that the accumulated value of the data 

platform and its analytical skills and service were the main factors. One of the developers 

commented:  

“The top ones (platforms) all have huge customer numbers, we are talking about at least 

millions (of customers), and thinking about the value of these data, it is huge. Each platform 

has its unique strength, so it up to you to see where your strength and idea fits. How their 

data and service is going to help us to come up with new to better service our customers.” 

(Tangu-partner, 2a)  

In contrast, where a firm is struggling to build a central network position within its open data 

network, this is often associated with the firm’s limited ability to create value from its 

existing database, as represented in the following description: 
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“If we can’t make sense of our data, how can we help others to see the real value of our data, 

how can we help others to make sense of the collective data pot. If we can’t master this, 

people would only show very limited interested in partnering with us”. (Bray, 001a)   

 

By building an environment enabling external actors to create value though accessing, 

integrating and creating opportunities from the focal firm’s resources, such firms become 

hubs. They have a decisive influence in connecting external actors and developing “new rules 

of the game” that serve the inter-connected data network. This leads to our next proposition: 

Proposition 8: In a big data context, the greater the firm’s capability to contribute to external 

partners’ value creation through its internal data and data analytical skill, the more likely it 

will increase its potential value creation in its extended data network.  

Capability to orchestrate an open data platform  

Our findings also highlighted that the firm’s ability to build an infrastructure that enables data 

to flow within its data network is positively associated with its ability to create value from the 

firm’s open data network. This capability refers to the functionality, usability and 

compatibility of technological infrastructure to facilitate communication and value creation 

within a firm’s extended data network. This is also exemplified in the following from Cheu:  

“In the data age, data will be connected and shared. While you connect all the data together, 

the storage, processing and sharing mechanisms need to be established to make sure it is 

easy to use, compatible with others’ [technology]. Your system needs to be able to put 

everything together seamlessly, the levels of virtualization of hardware, software and storage. 

Whoever has the ability to build this [infrastructure] will have an influential role to play in 

this network. This is a huge challenge, but also represents huge opportunities. You can see 

the battle has already started.” (Cheu, 001a) 

A similar example can be found at Tangu, which invested heavily in building an open data 

platform. In addition to the technology related platform infrastructure, Tangu also paid close 

attention to building a data security system. Based on archival data and internal 

communications, Alpha invested around $1 billion on its cloud service and opened data 
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centres in Singapore, the Middle East and the US. The underlying technology is an open data 

processing services platform, which our informant claimed can process petabytes of data in 

six hours (a petabyte is 1015 bytes of data). The platform’s application goes beyond e-

commerce. For example, the genomic research institute BGI used it in 2013 to sequence 

genes more quickly. ODPS has also been used to track weather patterns and pharmaceutical 

drugs sold in China. While such data generate great value, managing such a cloud platform is 

a challenge, as described by the data expert: 

“Managing that volume of data comes with big responsibility, how you can ensure data 

security, this includes access-authorization and data auditing, how can you monitor the data 

exchange, what the governance structure should be. You connect this amount of data and you 

have so many data users that are active on your platform, how can you manage this process, 

how can you monitor the data quality, how can you measure it?”. (Alpha, 020a) 

 

This view was consistently emphasized in all of our cases. Our analysis indicated that firms 

which have better capabilities to build a technological infrastructure that enables data flow 

and data sharing within its extended data network, tended to be associated with greater levels 

of ability to build a leader position in an open network. This leads to our next proposition:  

Proposition 9: In a big data context, the greater the firm’s capability to manage an open data 

network platform the more likely it will increase its potential value creation in its extended 

data network. 

 

CONTRIBUTION 

By providing a new theoretical framework grounded in qualitative evidence, this research 

provides an important contribution to our knowledge of big data management. Organizational 

research has long recognized the role of resources as the key ingredient that drives the value 

creation of the firm (Barney, 1986; 1991; 2001). Although scholars have argued the need to 
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understand the black box of “how” firms transform resources to create value, investigations 

of the specific process by which firms create value from resources have been insufficient 

(Barney and Arikan, 2001; Sirmon et al. 2007; Sirmon et al. 2011; Kraaijenbrink et al. 2010; 

Priem and Butler, 2001a, b). We therefore adopted a process-oriented approach in order to 

understanding how firms transform big data to create value. Our findings suggest that it is not 

the data itself, but rather what firms do that leads to value creation.  

The main outcome and contribution of this work is an inductive process model that not only 

shows the process of value creation from big data, but also sheds insights into the 

mechanisms that can be used to explain how some firms are better at extracting value from 

big data than others. Data itself does not automatically generate value for customers. Several 

scholars have highlighted that it is not resources themselves, but the firm’s capability to 

manage the resource-related process that makes a difference to the development of value 

creation (Adner and Helfat, 2003; Bharadwaj, 2000; Helfat, et al., 2007; Sirmon et al., 2011).   

Our analysis showed that firms differ in their abilities to extract value from big data both 

internally within the firm and externally across the extended-data network. In developing our 

theoretical framework, several new insights emerged, in particular the notion of big data 

management, where managers can democratize, contextualize, experiment with data and 

execute data insights in a timely manner to create value, as well as the firm’s network 

orchestration capabilities that generate value creation from the firm’s extended data network.  

Our analysis revealed four types of internal firm ability for harnessing big data to create 

value: data democratization, data contextualization, data experimentation and data execution. 

The facility to implement each of these capabilities critically impacts the firm’s ability to 

create value from big data. In regard to debates of the knowledge-based view as to whether it 

is the individual or the collective that is the source of new value, we propose that individual 

knowledge, such as that possessed by data scientists, is insufficient to maximize value 
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creation from big data. Rather, value creation is closely associated with a collective process 

that transmits relevant knowledge across internal boundaries of the firm. This resonates with 

those scholars that emphasise that the collective locus of knowledge is the key to drive value 

creation (e.g., Eisenhardt & Martin, 2000; Kogut & Zander, 1995; Winter, 2003; Zollo & 

Winter, 2002). This view informed an understanding of the four knowledge management 

capabilities within the black box of the firm.  

In addition to focusing on creating value directly from the firm’s internal data, firms also 

pursued a collaborative strategy to create value indirectly from their data network, where a 

diversified and dynamic knowledge base becomes a heterogeneous resource network that is 

rare, scarce and difficult for competitors to imitate. The basis of competition is no longer 

confined to the firm-level but is extended to the data network level. Authority is no longer 

fully controlled by the firm, but is distributed among the different dataset owners, as each 

party is dependent on the others in order to generate new patterns, trends and ideas from the 

collective dataset. This is consistent with the “co-opetition” phenomenon where firms engage 

in simultaneous cooperation and competition with each other (Brandenburger and Nalebuff, 

1996; Gnyawali and Madhavan, 2008). The nature of competition has thus moved away from 

a focus on the “I win, you lose” mind-set towards concerns with being excluded from 

participating in adding value to the given stock of available data. This finding concurs with 

prior research showing that Open Collaborative Ecosystems (OCEs) (Baldwin and Von 

Hippel, 2011; Curley and Formica, 2013) underscore integrated collaboration, co-create 

shared value and cultivate innovative networks, which lead to the proliferation of value 

creation opportunities.  

Our findings expand on observations of capability at the firm level of analysis, by suggesting 

that through an open data network, the firm is no longer a self-contained entity. Through its 

extended data network, the firm’s ability to build a leader position will depend on its 
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capability to establish, maintain and reinforce symbiotic relationships with its partners.  Our 

findings provide new insights about the importance and need for identifying managerial 

capabilities that result in significant outcomes for value creation from big data. This furthers 

our understanding of the resource orchestration literature by applying theory to the “big data” 

context.  

Our findings also lend support to the assertion that firms which combine improvisation with 

low-to-moderately structured rules to execute a variety of opportunities are more flexible and 

able to respond to market shifts (Brown and Eisenhardt, 1997; Bingham, Eisenhardt, and 

Furr, 2007; Davis, Eisenhardt and Bingham, 2009). Our findings revealed that firms with a 

tendency to build a decentralized data structure, encourage cross-department collaboration, 

and promote “trial and error” and an inquisitive attitude towards data, are more likely to 

create value from big data. The focus of these companies was on building a flexible and 

decentralized organizational structure that allows improvised and agile responses to the data. 

Leaders in these firms also tend to view the data as a public good that might be accessed and 

understood by all employees.  

Our findings also shed light on the unique institutional conditions in China. The accelerated 

rates of internet and smartphone penetration, cheap labour costs, uneven subnational 

infrastructure conditions and skills shortages in China, served as a stimulus that generated 

many value creation opportunities for companies. Prior research presented two extremes to 

invest in an ecosystem:  Some scholars proposed making no or limited investment in an 

institutional void situation as no immediate or direct financial returns would be generated, 

others suggested building a complete ecosystem where firms can capture most of the 

financial value. In contrast, our data provided an alternative:  By proactively investing in 

seeding an ecosystem through developing and cultivating new business partners while not 

trying to appropriate all the value allows a firm to have sustainable access to a greater variety 
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of capabilities and resources. Our analysis revealed rich examples of how firms in China use 

the value generated from big data to support the conditions of institutional voids, which 

further broadened the firm’s extended network. Acting as a “hub” for the firm’s extended 

data network in a guanxi-oriented society, accentuating ties and reciprocal relationships can 

further strengthen a firm’s ecosystem network. This research makes a unique contribution to 

contextualization by highlighting the distinctive institutional conditions in China and how 

they shape the firm’s value creation activities in a big data context.  

There is an important caveat from this study for practicing managers. Our data do not place 

data scientists at the centre of the value creation process.  Our view is that it is the manager’s 

capability to democratize, contextualize, experiment with data in a collective process, and 

build an organization structure to enable an agile response to execute data that makes an 

important difference in the value creation process. The findings also highlighted that in 

addition to harnessing data within the firm’s existing data set, managers could seek broader 

potential value creation opportunities with external partners. By being the enabler in the inter-

connected data network, a firm can have more influential power in managing such an 

expanded network, which leads to much more sustainable value creation opportunities. Our 

findings suggest that action patterns that involve different value creation processes, 

particularly managerial capabilities in which organizational competences can develop, create 

value better than others. This could offer informative concepts and relationships that 

managers can use to make deeper and richer assessments of the ways in which they manage 

data to create value.  

LIMITATIONS AND FUTURE RESEARCH 

In common with other research, this study has several limitations. First, our qualitative 

approach where a relatively small number of cases are analysed from a specific industry 
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(Perry, 1998) provides a limited basis for generalisation (Chetty, 1996). Moreover, we only 

study IPCs that adopted an open platform strategy after they were previously successful with 

proprietary strategies, therefore, our findings ought to be interpreted with caution as they may 

not be applicable to IPCs that initially unsuccessfully pursued proprietary strategies or to 

IPCs that have intended to build an open platform strategy from inception. In addition, this 

investigation focused on China, where market imperfections and scarcity of resources are 

particularly pressing. Whether our findings are replicable in other cultural settings or whether 

they are unique to the Chinese context is an empirical question. Future research can expand 

or test (e.g. using quantitative methods) our model on other industries from different 

countries.  

Due to the novelty of big data, this study prompts several paths for future research. Further 

research could address questions such as: How is our model of large scale sharing across all 

kinds of databases compatible with the business strategies of organizations that are involved 

in this business? What are the necessary conditions that must be in place to build such shared 

ecosystems, and how will they share the risk or losses from inter-firm arrangements? How 

should firms manage data privacy issues? To what extent should companies open their 

platforms and how do firms benefit from these interfaces? What are the capabilities required 

to stimulate ecosystem collaborations?
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Table 1: Background characteristics and data sources for cases   

Company  Founding 

year 

Ownership  

 

Type (from 

inception)  

Where 

traded   

$ Sales/revenue 

(2013) 

Year adopted 

open platform 

strategy   

Number of 

informants  

Data sources   

Alpha 1999 Private Online B2C 

retailer  

NASDAQ 8.58 Billion 2008 11 Reports and strategic memos (27) 

Press articles (36)  

Interviews with firm’s collaborative partners 

(8)  

Total interviews with informants including 

repeated interviews (23)  

Bray 2000 Private Online search 

engine 

NASDAQ 5.2 Billion  2009 9 Reports and strategic memos (14) 

Press articles (21)  

Interviews with firm’s collaborative partners 

(6)  

Total interviews with informants including 

repeated interviews (16)  

Tangu 1998 Private Online social 

network  

SEHK  7.72 Billion  2011  9 Reports and strategic memos (25) 

Press articles (38)  

Interviews with firm’s collaborative partners 

(10)  

Total interviews with informants including 

repeated interviews (21)  
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Shrong   1998 Private Online content 

provider  

NASDAQ 148.59 Million  2011  6 

 

Reports and strategic memos (16) 

Press articles (17)  

Interviews with firm’s collaborative partners 

(5)  

Total interviews with informants including 

repeated interviews (15)  

Cheu 1999 Private Online travel 

agent  

NASDAQ 877.12 Million  2012  7 Reports and strategic memos (11) 

Press articles (23)  

Interviews with firm’s collaborative partners 

(5)  

Total interviews with informants including 

repeated interviews (17)  
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Table 2 Summary of cases    

Evidence First order codes  

Statement about... 

Illustrative quotes  Value 

creation 

process  
Alpha   Bray  Tangu Shrong  Cheu 

A, b A, B A, B A  A, B Data driven 

product/service 

development from 

analyzing data  

 

 

“It (big data) gave us much user experience data; their interaction with the platform itself, how they 

behave on our website, how they react about the new features we added on. It is like having the customer 

as part of our product development”. 

“The data itself kind of made us more comfortable and confident when trying out new ideas. We could 

quickly come up with some ideas from the data or just some new ideas in general; we could then put it out 

and let the customers be the judge. They like it, we do it, they don’t, we change it”.  

Internal data 

exploitation    

A, B A, B A, b a, b A, b Value added/personalized 

service from analyzing 

data  

 

 

“The pattern (emerging from the big data) acted as a GPS telling us where different places are, who is 

congregating there and what kind of stuff they actually need. So, we are no longer led by the blind, like we 

were in the past”. 

“Before (big data) you were serving a huge number of customers, it was a very vague crowd and it was 

very difficult to please this huge crowd. Now the technology makes it possible for us to understand the 

individual’s (customer) behavior and preferences; you can use it to guide you to provide a personalized 

service”.   

A, b A, b A, B a A Business model 

innovations from 

analyzing data  

 

“We use big data to understand client behavior and offer relevant financial services by leveraging our 

cloud computing service to speed up the response time to our customers and keeping our operational cost 

low”.  

“One of the biggest advantages of such data is that it tells us what kind of things we missed or what kinds 

of spaces were untouched. These empty spaces led to many different value propositions, which enabled us 

to re-leverage what we have to fill those spaces.”  

A, B a, b A, B a, b A, B Diversity and 

heterogeneous platform 

from open platform  

“It is like you are selling alcohol in the pub, once you make the boundary invisible, you are transformed 

from being a pub to a boundary-less plaza where you can sell thousands of new things”.  

“Some have the mentality that they want to make money themselves by doing everything on their own. It 

is impractical and impossible to cover everything. You don’t have the resources, even if you do, how thin 

Attracting 

external 

resources 
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  can you be stretched? The thinner you stretch, the more vulnerable you are. Even if you have the 

resources, you don’t have that diversified mind set to come up with these many new things. Sharing our 

database from our open platform opened up so many windows, it made possible for us to provide a “one 

stop” service station for our customers”. 

though 

internal data  

A, B A, b A, b A, b A, b Additional business model 

innovation from external 

partners  

 

“The wisdom of crowds is often underestimated. Organizations often think they know better. It was an eye 

opener when we saw how external partners use our data to come up with different business models. We 

were struggling with how to make money from our platform and they (external partners) provided so many 

solutions. It was difficult to change that mentality because of the uncertainty and you don’t know how 

vulnerable you will be when you open. Now after everything that has happened, we are so glad we did it at 

the right time”  

“People are overwhelmed by such massive data, if you don’t use it, data is just data, it doesn’t mean 

anything. Our ability is limited based on how much data we have. Data analysis is necessary but 

insufficient to maximize the whole value. Once you make it available to other people, trust me, you won’t 

believe how many things these people can do with the data you have”  

A, B A, b A, B a, B A, b Improved customer 

stickiness from sharing 

data  

 

“The switching cost for customers is literately zero, given how many choices they have, how much 

information they can access. It is only a few clicks away. Their decisions are changing every hour, I am 

serious, and sometimes it is just a matter of minutes. It is very hard to get their attention nowadays. And 

our survival is purely dependent on their attention so we must do everything we can to get hold of that 

attention. What we can do is rather limited in a world like this. Through sharing our data, we are building a 

boundary-less human resource pool where we can collectively increase customer stickiness in every little 

detail. They are able to interact with a huge number of customers that we have accumulated for years and 

we can improve customer stickiness. Everybody wins”.  

“They developed so many applications to address the different needs of customers; some for entertainment 

purposes, some for educational purposes, you name it. They (app developers) made the whole customer 

experience much more enjoyable and fun”. 

A, B A, B A, B A, B A, B New product development 

with intra industry partners 

 

“We are collecting more data than ever before and the amount of data that has already been generated is 

huge. Organizations keep collecting data without having a clear idea how to use them. One thing is to 

share your data; another thing is to put different datasets together to generate new insights and trends. It is 

not like once you’ve used it, it loses its value. It is exactly the opposite, the more you use it in different 

contexts with different datasets, the more valuable it will be. We are working with Baidu to put our data 

together to generate much more relevant, context sensitive search results”.  

Attracting 

external 

resources 

through data 

conjugating  
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“We are currently working with a shoe manufacturer to embed a sensor to the shoes so it can be tracked 

through the cloud technology. We have so many missing children every year and parents are devastated. 

So hopefully this new product will make a small contribution to solving this problem. It is a win-win”.  

A, B A, b A, b A, B A, B Business model 

innovations - with intra 

industry partners  

 

“They (Shrong) are doing so well with the social networking site and their resources, their customer base 

and the data about their customers are very valuable assets to us. And we have millions of shoppers 

spending time on our website everyday buying and selling stuff. The data are collected from different 

perspectives: social networking and e-commerce. When you put it all together, we have made mobile 

shopping easier, fun and secure for our customers. Generally, customers are not willing to give you the 

money from their pocket, but when you make a strong case that the product/service you are providing is 

making their life so much better, they are more than willing to enjoy that service by paying you some 

money”.   

A, B A, b A, b A A, b New product and 

development with inter 

industry partners  

 

“Everyone is talking about the ‘internet of things’. The combination of offline and online by adding digital 

dimension or IP addresses to the products, air conditioners, cookers, your fridge, everything can be made 

“smart”. They know the “hardware” side of things; we know the “software” side of things. When we put 

our strengths together, the potential is huge”.  

“For example, we are working with the government, the public transport agency and Baidu to provide a 

better personalized travel experience for our customers. Stand-alone data is incomplete data; the data will 

become much more reliable and holistic when it’s combined with different datasets”.  

A, B A, B A, B a, B A, b Business model 

innovations with inter 

industry partners  

 

“You need to make yourself relevant to other people. In this case, you need to make your data relevant to 

other people. How is it going to help them? We are working with the banking services, insurance services 

and agriculture services by pulling our data together to provide better product/services to our customers. 

The tailored service for individual customers can lead to so many opportunities for new and better ways to 

capture value”. 

A, B A, B A, B A, b A, b Additional support for 

complementors  

 

“We need thousands of entrepreneurs and we are growing our own entrepreneurs. When people have the 

passion, desire and eagerness to learn, we provide as much support as we can to enable them to grow. The 

stronger and more diversified they are, the stronger we will become”. 

“We want to be long lasting. We always joked about wanting to build an organization that could last 102 

years. It is like fishing; you could just catch as many fish as you want, but the fish will run out one day. 

You want to provide space and nutrition so they can last generations, which means you can make a profit 

over a much longer period of time. We are relying on our resources’ interest to make a living”.  

Seeding an 

ecosystem 

through 

investing in  

institutional 

void condition  
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“They provided free services to our farmers and free computers to the village trading center where 

everybody could use or learn how to use them. Some of us have never even seen one before. It was funny, 

nobody dared to touch it in the first couple of days and people always washed they hands before they 

touched it. They taught us how to set up our own stores, how to put our products on the website, and how 

to increase our online sales”.  

 

 

A, B A, b A, B a, b A, b Additional support for 

direct business partners  

 

“The infrastructure in China is not ideal. We, as a company, do not exist in a vacuum. Everything we do is 

closely connected with the people and organizations around us. We generated some conclusions from the 

dataset and used this information to help the logistics company plan the logistics side of things. We did the 

same thing with the insurances company. The service that customers value should be seamlessly connected 

and we want to use what we have from the data to improve this connection”  

A, b A A, b  a Additional support for 

indirect business partners  

 

“We are working with the local training agency and local communities to set up training sessions and 

relevant services for our customers; some of them are particularly designed for the older customers.  We 

understand their behavior, their preferences and concerns from the data and we know how to provide 

tailored support for them. In a big country like China, we have limited resources to offer training sessions 

to people from different places. So, we are equipping them (local training agencies and communities) with 

the best resources and material to enable them to do so. Some of the training sessions are free; some of the 

additional service comes with a reasonable fee. We are strengthening the connections within our 

ecosystem”.  

 

Notes: codes for the evidence categories are as follows: “A”, evidence from three + interviews with different informants from the same 

company; “a”, evidence from less than three + interviews with different informants from the same company; “B”, evidence from three + archival 

sources; “b”, evidence from less than three + archival sources.  
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Table 3 Core capabilities and illustrative quotes  

Creating value from internal dataset 

Capability to 

democratize data 

“Most of our data analysts focused too much on the data itself, they don't have the ability of converting the knowledge they gained from data into simple tools that can serve the 

rest of the company, including executives, managers and front line employees. They are normally data driven rather than problem driven, this means that you need to ask the 

people you serve, what problem do you have? Can it be solved by data? Might data be the core of the solution? What kind of data do you think is useful?” 

 “Our ultimate goal is to present data results into a non-data way, no complicated numbers and figures, tell a story with our data, turning data into an easy to use product or 

visualized tool that could turn everyone into data scientists. All of these data products are derived from data analysis. You turn the analysis concept and framework into a product, 

in essence, it is data generalization ability. This is the most important part of the job otherwise the request for data is huge and we will be swamped by the repetitive jobs”.   

“It is not surprising that people get put off by the complicated numbers and graphics. It can be quite intimidating, all these statistics and numbers. The hard skill is their analytical 

skill, this is an essential requirement, but they also need to know how to use the data to tell a story, presenting in a way that people can get most insights from, how to sense the 

business context of these data, how to sense the business potential of these data, how to help other colleagues to use these data, I mean how to help other colleagues to self-serve 

use the data product we provided for them. Most of the organization has one, but not two and three, and it's the two and three that really set them apart from the rest.”  

“You need a systematic approach when it comes to data management. First of all, do you want everybody or a small group of people to benefit from data? If it's the latter, then I 

would say that you are only touching the tip of the iceberg, I mean that you are only digging the very surface of the data value.  If it’s the former, you want to know the problems 

they are experiencing, don't know how to access the data, don't have the tools, don't have the authority, don't have the knowledge, don't know how to deal with real-time and 

fresher data. So, for having a data expert team, their job is to get everybody to benefit from data, solve all the problems I mentioned above”.  

Capability to 

contextualize data  

 

“It’s not just about plucking numbers, understand the correlations, this is just a very beginning of the journey, it’s about understanding the context. For example, people often pay 

particular attention to the transaction data, who bought what, but what triggered this buying behaviour was often overlooked. They (data scientists) are very good at swimming in 

data, drawing correlations and visualizing data, and then making fancy, but very professional diagrams and tables for the executives. However, they often overlooked the context. 

Data without context is useless”.  

“When data analysts present the data, I always ask them to discuss the business implication, how it’s relevant to our customers or staff, how it might benefit our customers or staff. 

I don't want them to lock themselves in their own room playing with the data, I want them to talk to others from different departments to see how can they help to solve their 

problems through data”.  

“You need to have that business sensitivity, it is an additional role you have to have. Without understanding the context of the data, you can never maximize the data potential. For 

example, rather than looking at who bought what, you need to understand under what context, or scenario he or she has the desire to purchase, what is the business potential, how 

can such potential be realized in the business context. This requires great commination between data experts and non-data experts”.  
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“Many companies when they collected data, they often found that the data is rather scattered, distributed in different data collection channels and operation staff. Incomplete data 

sometimes can be very misleading because it provides a partial context”.  

Capability to 

experiment with data 

 

“People become fascinated about data itself and forgot important mechanisms to enabling to make these data “alive”. The mechanism I am talking about is culture. You need to 

have that culture change, the culture that takes an innovative approach when it comes to data”. 

“It is important to create a synergy between data and people. Data is important proving solid evidence, but it can only be to its best potential with the magic touch from people. 

That's why I say data cannot overtake all the jobs because there are certain aspects such as curiosity, creativity and imagination, things we are good at but data cannot do. That's 

exactly what we try to get our people to do when they approach the data, be curious, ask questions, be creative and use their imaginations, use data to create different stories, to 

create emotional connections with our customers”. 

“Everything is ‘we need to look at the data’ or ‘let the data do the talking’. We don't have the voice in the process. When it comes to data, we often have a blurred vision, it is like 

trying to admire a flower in foggy weather, and nobody really knows the true beauty of the flower”. 

Capability to execute 

data insight  

 

“Data is data, unless you do something about it, otherwise it is just a set of numbers. We had many discussions around how are we going to react quickly to these data and how can 

we capture the opportunities emerging from data there and then. The solution is not easy, it requires structural change, process change and also mind-set change. These are the 

hidden challenges associated with the management of big data. It is a different management where you build a process to enable people to make sense of the data and take actions 

to respond to the data in a timely manner. You need to catch that moment”. 

“Most organization collect data, actually, it’s not about collecting data as it simultaneously generates itself from different sources, not many organizations can make the story come 

to life, the most difficult part is to act on it quickly. Because things change so fast, you need to act fast otherwise you just waste money and effort”. 

“The mainstream of management style is layers after layers, you get data from the bottom up and then people on the top organize the resource distribution and give what people 

call ‘strategic direction’ to the people from the operational level. It was a useful method. But in the data age, from data mining and data analysis, most the decisions can be made 

through data, so it was completely unnecessary to report it up layers after layers, only wait a few weeks or even a few months to get a direction”.  

“Data without action is useless. We are spoiled by the data every day and we spend way too much time on data without thinking about the things we can do there and then to 

respond to the insights data tell us”.  

Creating value from external network  

 

Capability to build 

data relevancy 

“If you can’t play the data well, how can you convince others to join your data party and throw their time, data and effort into it. It is not about how much data you have, volume is 

just a number, it is about how much you can make sense of these data and make it relevant to others. The more relevant you are, the better you are able to attract outsiders to join 

your network”.  
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“You want to put yourself in a central dot and think about how this dot is going to connect to other dots in order to make a spider’s web. The more dots rely on you, the more 

valuable or more central your role would be. The dot is how valuable your data is, how valuable your data is relevant to others”.  

“It is about what motivates others to join your data network, trust me, they (external partners) have many invitations and you want them to look at your platform, your data. It is not 

about how much you can make money from them, it is about how much they can benefit from coming to you. Here, the mindset needs to be changed, how can you turn yourself 

into a data tool to contribute to others’ success”.  

“People need water, electricity and air because they are heavily dependent on them. We want to turn our data into one of these essentials so we want to contribute to our partners’ 

life as much as possible. The more value they can get from our data and data insights, the better chance we are able to build a data ecosystem”.  

Capability to 

orchestrate open data 

platform 

“There are so many things to think of, how can you make an open data network, how can you manage the data security, how can you manage the coordination, how can you ensure 

the data compatibility? Do you have the technical infrastructure to support such an open data pot? How do you govern such an open data network?”  

“Managing this open data ecosystem comes with huge responsibility. You need to create rules that govern such open data interaction. You have a diversity of stakeholders with 

different interests, so how are you going to coordinate it and how to build policies based on collective agreement?” 

“The key challenge here is the management of the open data platform, the technical infrastructure is a prerequisite condition to have this platform, then it is about whether you have 

the ability to manage such a complicated network because you have so many data users, there are changes for the raw data, changes for the structure, correlations and logic 

relationships, how do you notice any abnormality in data change, how do you monitor the data quality, even the data life cycle management, it covers too much. And how can you 

price for all the different services in an open data platform?”   
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Figure 1: Theoretical framework of value creation from big data  

 

 

 

 

 

 

Value Creation from Big Data  

 

        

         Transaction Driven  

(focusing on data analysis to create value 

from firm’s internal dataset and capability) 

Creating value from 

internal data  

Creating value from 

external data 

network 

 

Relation Driven 

(focusing on data collaboration to create 

value from additional datasets and 

capabilities with partners) 

 

 

 

 

Mechanisms: 
 Capability to democratize data  

 Capability to contextualize data  

 Capability to experiment with 

data  

 Capability to execute data  

 

 
 Decentralized structure  

 Culture of experimentation  

 

Mechanisms: 
 Capability to build data 

relevancy  

 Capability to orchestrate open 

data platform  
 

Heterogeneity between 

firm’s capabilities to 

harness data 

Heterogeneity between 

firm’s capabilities to 

manage relationships 



65 
 

Appendix: Interview Guide  

1 Background information  

 Can you please briefly tell me about yourself, e.g., your position at this company, key responsibilities, and how long have you been working here?  

 Can you please provide an overview of the strategy of your company? In particular what is the strategy regarding big data?  

 What is your understanding of big data?  

2 General value creation process from big data  

 Can you please describe how your company seeks to create value from big data?  

 Can you please explain how such a process leads to commercialization/increases the customer’s willingness to use/pay?  

 What are the key challenges/hurdles your company/you have encountered during such a value creation process?  

 Who benefits from big data analytics? How did they benefit, and in what context?  

3 The role of data experts  

 What is role of data experts in your company?  

 How are they involved in the value creation process?  

4 Managers’ capabilities  

 Can you please describe the managers’ actions or abilities that influence the value creation process?   

 Have these actions you mentioned made a positive or negative impact on the value creation process/outcome?  



66 
 

Jing Zeng (Dr) is a Lecturer at the University of Kent at Kent Business School. Her main 

research interests include emerging strategies in the digital economy, business ecosystem, 

dynamic capabilities and innovation. She has published in journals such as British Journal of 

Management and Management and Organization Review.  

Keith W. Glaister is Associate Dean and Professor of International Business at the University 

of Warwick Business School, He was previously Dean of Sheffield University Management 

School (2005-2013). He is Fellow of the Academy of Social Sciences and an elected Fellow 

of the British Academy of Management. He has published over 100 refereed journal articles 

and chapters, including papers in Strategic Management Journal, Journal of Management 

Studies, British Journal of Management and Journal of World Business. He is an editorial 

board member for several journals including the British Journal of Management. 


