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Abstract. This paper details the design of a new concurrent process-oriented program-
ming language, Rain. The language borrows heavily fromoccam-π and C++ to cre-
ate a new language based on process-oriented programming, marrying channel-based
communication, a clear division between statement and expression, and elements of
functional programming. An expressive yet simple type system, coupled with tem-
plates, underpins the language.

Modern features such as Unicode support and 64-bit integersare included from the
outset, and new ideas involving permissions and coding standards are also proposed.
The language targets a new virtual machine, which is detailed in a companion paper
along with benchmarks of its performance.

Keywords. Process-oriented programming, Concurrency, Language design, Rain

Introduction

Historically, desktop computing has been completely dominated by single-CPU, single-core
machines. This is now changing — Intel and AMD, the two giantsof desktop processor
manufacture, both have a multi-core processor as their central market offering. It appears that
the new dawn of parallelism has finally arrived, forced by theslowdown in the exponential
growth of processor clock speeds; the race to increase the gigahertz has been replaced by a
race to increase the cores.

Programming languages have not yet caught up to this shift. Cand C++, still two of
the most popular mainstream languages, completely lack anysupport for concurrency at the
language level. Java has threads and monitors built-in to the language but using these for
practical safe concurrency is not easy. The primary language with strong safe support for
concurrency built-in isoccam-π [2], a very different language to the C/C++/Java triumvirate.

Despite many innovations and developments, the level of abstraction of programming
languages has moved at a glacial pace over the past sixty years. Broadly speaking, the pro-
gression has been: machine code, assembly language, imperative procedural languages (e.g.
FORTRAN, C), and object-oriented languages (e.g. C++1 , Java). It is my hope that the next
step in that chain will be process-oriented programming. History suggests that in order for
this to happen, the change will have to be made in small increments.

The gap between, say, Java andoccam-π is vast in every respect.occam-π has no ob-
jects, collection classes (or built-in collection data types) or references and has a totally differ-
ent syntax.occam-π encourages parallel code and makes use of channels for communicating
between processes, rather than method calls between objects. From a practical business per-

1Although C++ is technically a multi-paradigm language, by far its most common mode of use is, in effect,
object-oriented C



238 N.C.C. Brown / Rain: A New Concurrent Process-Oriented Programming Language

spective, the differences mean that re-training would be necessary and much existing/legacy
code would have to be re-written.

Libraries such as JCSP [3], CTJ [4] and C++CSP [5] offer a bridge between current
popular languages and fully process-oriented programming. However, these libraries suffer
from the limitations of the language they are written in. Despite all the efforts of the library
developers, programmers will always be able to write unsafecode using these libraries. For
example, two C++CSP processes can both have a pointer to the same data structure which
they can freely both modify concurrently, each overwritingthe changes of the other. Such
problems must be addressed at the language-level if they areto be eliminated.

Groovy Parallel [6] is an example of a project that helps to bridge the gap between
mainstream languages and easy process-oriented programming. It is compatible with Java at
the byte-code level. However, it still uses the Groovy language — unaltered — as its base.
This means that the problems described above with JCSP et al.apply to Groovy Parallel.
Honeysuckle [7] does solve these problems at the language level but is headed in a novel
direction that diverges from some of the central concepts ofprocess-oriented programming
(such as channel communication).

I propose the development of a new process-oriented programming language, Rain. The
language can be used on its own but will also be able to interface with C++CSP. This will al-
low existing C++ code to be used together with Rain code, withchannels linking the C++CSP
and Rain processes. The language will build on process-oriented programming and add new
features such as templates and permissions (described later in this paper). The design of
Rain is detailed in the remainder of this paper.

The Rain language is intended to follow the write-once run-anywhere pattern of Java and
other interpreted languages. This will allow it to take advantage of heterogeneous concur-
rency mechanisms across multiple architectures without any code changes. This is described
in detail in the accompanying paper about the Rain Virtual Machine (VM) [1], which also
describes the C++ interface. The paper also provides performance benchmarks.

1. The Role of the Compiler

Studies carried out on the process of programming have shownthat the earlier in the devel-
opment/release cycle that a bug is caught, the less the cost to fix it [8]. Even if a test-first
methodology is used, the effective development flow for the actual code is of the form: edi-
tor, compiler, unit-tests, system tests. Language-aware editors, usually present in Integrated
Development Environments (IDEs) such as Eclipse [9], can help to highlight syntax errors
before compilation takes place. The compiler can then spot some errors before transforming
the code, and running it through the unit-tests which should(hopefully) catch any seman-
tic errors, assuming that coverage is complete — which it rarely is, due to the difficulty of
achieving complete coverage.

Different compilers can detect a widely different range of errors. An assembly language
compiler can spot syntax mistakes, but as long as the operation is a valid one for the CPU,
no other errors will be issued. Compilers for languages suchas C++ and Java can pick up
type errors and errors such as the potential use of a variablebefore initialisation. At the
other end of the scale, interpreted languages have no compiler to speak of (other than the
syntax-checking when loading a source file) and hence the compiler will also issue no errors.
Errors such as type errors, unsupported interface methods and function/variable name typos,
all picked up by the compiler in a language such as Java, will be detected by the tests. If the
test coverage is incomplete then the errors will remain in the final code.

Given that the compiler is at such an early stage in development, and can be made pow-
erful enough to detect a large proportion of common programming errors, it seems wise to
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do just that. The compiler should eliminate as many potential errors as it can. This will need
to be a combination of language design and compiler implementation.

In a presentation [10], Tim Sweeney of Epic Games (games programming typically being
an area for the C/C++/Java/C# family of languages) providesa four-line C# function with
five possible failures, followed by a semantically identical three-line pseudo-Haskell function
with one possible failure. Solely by a combination of the language and the compiler, the
same algorithm is made safer. Games programming has always been focused on the use of
C-like languages for performance, but even in this domain itseems that higher-level, safer,
expressive languages are seen as the future2.

The Rain compiler will try to detect and issue compiler errors for as many potentially
dangerous code patterns as possible. If the safety of a givenpiece of source code is unclear, in
particular issues such as enforcing Concurrent-Read Exclusive-Write (CREW), the compiler
should adopt a pessimistic (least-permissive) approach. Apart from this being the safest ap-
proach, in practical terms it is better for a future version of the compiler to accept a superset
of the programs accepted by the current compiler rather thana subset — the latter option
leading to non-compilable legacy code.

2. Processes and Functions

There are two major units of program code in Rain; processes and functions. A process is
equivalent to a statement: it can affect and access externalstate (e.g. via channels), but it
does not return a value explicitly — although using a channelit can accomplish a similar
effect. A function is equivalent to an expression: it cannotaffect or access external state (only
its parameters) and will always return a value — otherwise itis a null statement from the
caller’s perspective. This means that functions can have noside-effects, and because they
never depend on external state, only their passed parameters, they always have the potential
to be inlined. Functions are permitted to be recursive.

It is hoped that this will allow a marriage of process-oriented and functional program-
ming, with a cleaner syntax for the latter thanoccam-π. Althoughoccam-π also contains
this functions-as-expressions concept, it does not allow for recursive functions, nor the com-
munication of functions (expanded on in section 4.4).

Functional languages have always had problems with any concept of I/O or time, due
to their lack of state. This has made interaction with user interfaces or networks difficult —
things that process-oriented languages can excel at. I/O can involve burdensome contortions
such as Monads [11]. It is intended that the combination withprocess-oriented programming
should remove such deficiencies of functional programming.

3. Communication

Like occam-π, Rain contains three communication primitives; channels,barriers and buck-
ets. One-to-one unbuffered channels are available. Due to the anticipated potential implemen-
tation difficulties in the virtual machine no guarantees areoffered regarding the availability
buffers, any-to-one modality etc.

Like C++CSP andoccam-π, Rain has the concept of both channel and channel end
types. Channels cannot be used for anything except for accessing their channel ends. Channel
ends may be used to read or write depending on the end they represent. There are some
complications to this however: poisoning,ALTing, and extended rendezvous.

2Although it is beyond the scope of this particular paper, Sweeney goes on to outline concurrency problems
in game programming, which may well be of interest to the reader — including his opinion that “there is a
wonderful correspondence between features that aid reliability and features that enable concurrency”.
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3.1. ALTing and Extended Rendezvous

ALTing, the term often used to describe that what East [7] terms selection (to distinguish
from alternation), is a very powerful construct. Extended rendezvous (also referred to here
as extended input) is anoccam-π addition made by Barnes and Welch [12]. It essentially
allows the reader to block the writer until the reader has completed further actions. This
allows buffering/tapping processes to become essentiallyinvisible to either end.

Not all channels that Rain is intended to support will be internal. Some channels may be
networked, and some may be external channels such asstdin andstdout or plain sockets.
Network channels may support extended rendezvous, but notALTing. stdin may support
ALTing, but extended input would not be possible (or applicable). This leads to the idea of
channel-ends supporting a particular operation. In object-oriented programming this would
be construed as a channel supporting a particular interface.

Some processes will requireALTing and/or extended rendezvous on their channels, and
some will be indifferent to the support. For example, an extended-id process (that behaves
like id, but with an extended input) will naturally require its reading end to support extended
input, but will be indifferent toALTing support on the channel. A two-channel merger process
(that takes input on either of its two reading channels and sends it out on one output channel)
would requireALTingbut not extended input.

Rain includes the concept of different channel input ends; the programmer can specify
that a channel-reading end must support extended rendezvous orALTing. If no such specifiers
are included, such support is presumed not to be present. That is, by default the channel-
reading end type (e.g.?int) is assumed to not support anything other than normal input.

3.2. Poisoning

The Communicating Process Architectures (CPA) community seems to be divided over the
matter of stateful poisoning of channels [5,13,14,15]. Having seen its utility in programming
with C++CSP, I chose to include it in Rain.

At the suggestion of Peter Welch, C++CSP was modified to include channel ends that
were non-poisonable. That way, programs could hand out channel ends that could not be used
to poison the rest of the network; for example the writing ends of an any-to-one channel that
fed into an important server process. While any-to-one channels are currently not featured in
Rain, the general logic prevails, and non-poisonable channel ends are explained below.

The idea of interfaces for channels could potentially be extended to distinguish between
poisonable and non-poisonable channel ends. Consider the process id — there would need to
be a version for poisonable channels and one for without:

process id_int

(?int:in, !int:out)

{

int : x;

while (true)

{

in ? x;

out ! x;

}

}

process id_int_poison

(poisonable ?int:in, poisonable !int:out)

{

{

int : x;

while (true)

{

in ? x;

out ! x;

}

} on poison {

poison in;

poison out;

}

}



N.C.C. Brown / Rain: A New Concurrent Process-Oriented Programming Language 241

If only in was poisonable, andout were not, then another version would be required.
Likewise if it were reversed. This approach would clearly beuntenable. The solution is there-
fore that channel ends are assumed to be poisonable. Poisoning a non-poisonable channel
end simply has no effect. Note that non-poisonable channel ends can still become poisoned
by the process at the other end. So theid_int_poison process above would be the correct
implementation (less thepoisonable key-words) in order to catch the poison exceptions.

4. Types

Rain is strongly statically typed. Dynamic typing saves initial programmer effort, but experi-
ence has shown that this usually returns to haunt them in the form of run-time type errors. In
line with the earlier discussion on the role of the compiler in section 1, it is preferred that the
compiler do more work to save later problems.

Variables must be declared before use, with a specific type. They can be declared as
constant. All function and process parameters are considered constant for their entire scope
in the function/process. This saves confusion caused by reassigning function parameters.
Descriptions of the types can be found in the following sub-sections.

4.1. Primitive Data Types

Currently, mass-market computing is undergoing a transition from 32-bit to 64-bit architec-
ture. Therefore, Rain includes 64-bit integers. I anticipate that larger integers will not be nec-
essary in future. While similar phrases (usually foolish inretrospect) have been uttered in
computing over the years, I am willing to state that I believethat 64-bit integers should be
enough for most uses3.

To avoid the horrid conventions now present in other languages (for example, thelong
long in C++), integers are labelled with their size and signed modality. So the full set of
integers are:sint8, sint16, sint32, sint64, uint8, uint16, uint32, uint64.

int is also a built-in data type, and rather than adopt a sliding scale as per C/C++, it
is defined to be ansint64. It is assumed thatint will be used for most data (given that it
will soon be the default word size on most machines), and the other types will be used when
dealing with data that must be written on a network or to disk and hence requires a specific
size.

The language currently offersreal32 andreal64 floating-point types. It is anticipated
that the 128-bit version will be added in the future.

4.2. Communication Data Types

Rain contains channels, channel-ends, barriers and buckets. Channels and channel-ends have
a specified inner type, and channel-ends have a specified modality (input or output). Chan-
nels, barriers and buckets are all always constant. Making them constant prevents aliasing
and also provides a clear point to allocate (upon declaration) and deallocate (at the end of its
scope).

3For observed quantities larger than2
64 the purpose is likely scientific computing, which will probably be

using floating-point numbers and/or a natively compiled language. The other common use of integers in com-
puting is to store exact frequencies (having an incrementedunique identifier in databases is effectively the same
thing). Even if a new event occurred every nanosecond, it would still take over 500 years to overflow the 64-bit
integer.
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4.3. Complex Data Types

4.3.1. Named Tuples

Tuples in languages such as Prolog suffer from a lack of scalability. From experience, pro-
gramming with a nine-member tuple and always remembering the right field order (in a dy-
namically typed language, to add to the problem) is a difficult task.

Rain therefore offers what are referred to here as named tuples; a combination of records
and tuples, almost a return to C structs:

typedef (real:x,real:y,real:z) : Point;

Point: p;

p = (0,1,1);

p.x = 1;

p = Point(z:0,y:0,x:0);

The tuples can be used either as tuples, or by named member access, or a combination
of both in manner similar to Visual Basic’s named parameter list.

4.3.2. Lists

C++ and Java did not build their main (non-array) list types into the language, but rather
provided the language with tools from which the standard collection libraries were defined.
This usually makes constructing these data structures difficult because there is no easy syn-
tax. To define a list of the 3-D points (0,0,0) and (1,1,1) in Prolog would mean writing:
[(0,0,0) , (1,1,1)]. In C++ the code would normally be along the lines of:

vector<Point> v;

v.push_back(Point(0,0,0));

v.push_back(Point(1,1,1));

Even accounting for the extra type information, this is an awkward way of creating
a list. Only the fiendishly clever Boost [16] ‘assign’ libraries help alleviate this problem
for arbitrarily sized-lists. Java 1.5 introduced a type-safe form of varargs to deal with this
problem [17].

Rain also offers list types. In C, C++ and Java arrays and linked lists are two very differ-
ent things; one was in-built and the other an object (or C’s equivalent, a struct). Prolog only
provides one list type, as does Python. Rain offers one list type, the underlying implemen-
tation of which (i.e. array or linked list) is guessed for best performance. Programmers may
override this if desired.

typedef [Point] : PointList;

PointList: ps;

ps = [ (0,0,0) , (1,1,1) ];

ps += (2,2,2);

Lists support the addition operator (and therefore the+= operator) but no other operators.

4.3.3. Maps and Sets

The two other commonly used data structures are maps (key/value structures) and sets. A
set can be treated as a map with an empty value for each key. As such, only maps are built-
in to Rain. Sets are provided by using an under-score as an empty data type. Maps support
insertion/over-writing (through the assignment operator), removal, direct element access by
key, presence checks and iteration.
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Insertion/over-writing is guaranteed to always succeed. Removal of a non-present ele-
ment is not considered an error and will have no effect. The only dangerous operation is el-
ement access (i.e. if the specified key is not present in the map) — this is covered in sec-
tion 7 on exceptions.

typedef < int : Point > : NumberedPoints;

typedef <Point:_> : PointSet;

NumberedPoints : n;

PointSet : s;

s<(0,0,0)> = _;

remove s<(1,1,1)>;

n<3> = (1,0,1);

if (n has 4)

s< n<4> > = _;

4.3.4. Variants

Named tuples, described above, are an example of product-type. Their complement is the
sum-type, typified in a dangerous manner by C’s union type; unions are dangerous because
they do not keep a record of what their currently stored type is. Therefore a currently invalid
type in a union can be accessed.

Many languages also supply types often referred to as enumerations. These are types
consisting of a small closed set of values, identified by a meaningful name rather than merely
a number. Their advantage over using integers with a set of constants is that the compiler can
ensure the full set of values is handled in switch-like statements, and that the constants from
two different types are not mixed (for example, a file error constant is not used in place of a
GUI error constant).

In occam-π, similar ideas are combined to form variant protocols — typically an
enumeration-like constant preceding a particular type, the result being somewhat similar to a
safe union. Inoccam-π, variant protocols only exist in the form of a communicable type. In
Rain, it is intended that these structures be a standard datatype, usable wherever other data
structures (lists, maps, etc) are. Haskell contains a similar concept of data with field labels.
This idea requires further consideration before being finalised however.

4.4. Processes and Function Types

Processes and functions can be stored and are therefore datatypes. Their type includes their
parameter list (which itself is a named tuple type). Processes do not carry with them any state
(which would be a much more complex mobility discussion [18]). In effect, an instance of
process or function data is merely a code address. Thereforethey can be assigned at will, but
can never contain an invalid value (the compiler can mandatethis).

Process and function data types can be transmitted over channels. This opens up interest-
ing code patterns. Consider a filter process, with an incoming and outgoing channel of type
int, and an incoming channel of a function that takes a single parameter of typeint and
returns a boolean. The filter process would accept an input onits channel ofint, and send
out the values if the function returns true — a dynamically configurable filter. The process
would also accept input on its function channel, which wouldprovide a new filter. Example
code for the process is given overleaf (without poison handling for brevity):
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process filter (?int : in,!int : out, ?function bool:(int) : filterIn)

{

int: t;

function bool:(int) : filter;

filterIn ? filter;

while (true)

{

pri alt

{

filterIn ? filter {}

in ? t

{

if (filter(t))

out ! t;

}

}

}

}

4.5. Composing Data Types

Data types in Rain are compositional, with a few necessary restrictions. Tuples and lists can
contain any types. Maps can have any value type, but the key type must support ordering.
Maps, communication primitives, processes and functions do not support ordering. Lists and
tuples support ordering if (all of) their inner types do. Alltypes support equality comparison.

Channels and channel-ends are a problem, as channel-ends must obey CREW. Consider
the following code:

chan int: c; #1

?int : in; #2

[ ?int ] : a,b; #3

in = c; #4

a = [in]; #5

b = [in]; #6

seq all (x : a) #7

{b += x;} #8

It would be relatively easy to spot the potential CREW problem (that is, the possibility of
the non-shared channel end being used twice in parallel via the lists) on line 6. However, even
if line 6 was removed, spotting the problem on same line 8 is harder. Situations of greater
complexity are also imaginable. Therefore, adopting a least-permissive approach, channels
and channel-ends cannot be contained in other data types (nor in other channels). For similar
reasons, barriers and buckets cannot be contained in any other data types.

5. Iteration Constructs

Rain offers sequential and parallel iteration loops for lists and maps, in the following form:
seq all (x : list)

{

... do something with x

}

par all ((key,value) : map)

{

... do something with key and value

}

It is inherent in these constructs that all invalid-access problems are avoided (for exam-
ple, array index out of bounds or map key not being present). These are therefore the preferred
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forms of processing entire collections. Direct access of individual elements by index/key
must be guarded by exception handlers as touched upon in section 7 on exceptions.

Note that the type of the iteration variables (x, key andvalue) is automatically deduced
from the list/map type (where possible).

6. Templates

Consider the archetypal id process (shown without poison handling for brevity):

process id (?type : in, !type : out)

{

type: x;

while (true)

{

in ? x;

out ! x;

}

}

The only thing needed to compile this process is to know whattype is. For a valid
compilation,type could be any numeric type, a list, a map, or any other type thatcan be
transmitted through channels. Having to write id over and over again for each type would be
a nonsense. C++CSP is able to use templates to provide a single definition of a process —
this is then compiled again whenever the process is used witha new type.

Experience has shown that templates are incredibly useful for creating libraries of com-
mon processes (thus encouraging code re-use and reducing programmer effort) and that they
are generally a useful language feature. The type is substituted in at compile-time, not run-
time, so it is just as safe as if each version were written out long-hand. This is a feature sadly
lacking from any other process-oriented language that I am aware of.

In Rain, both processes and functions can be templated. Someform of compile-time re-
flection and/or partial specialisation is intended for inclusion, but the design of that is beyond
the scope of this paper. Currently it will simply be plain type substitution. Either all types
can be allowed (using theany keyword, or it can be restricted to numeric data types (using
numeric). The conversion of id and successor are given below:

template (any: Type)

process id (?Type: in, !Type: out)

{

Type: x;

while (true)

{

in ? x;

out ! x;

}

}

template (numeric: Type)

process successor (?Type: in, !Type: out)

{

Type: x;

while (true)

{

in ? x;

x += 1;

out ! x;

}

}

In C++, templates are provided by re-compiling the same codewith the new type sub-
stituted in. This means that the source code is required (by including header files) every time
the templated type is used. In Java, generics simply ‘auto-box’ the type, and thus the same
piece of code is re-used for all instantiations of the generic object. C++ is able to use a tem-
plated type’s properties (e.g. making a method call on it) ina way that Java’s generics cannot
without using inheritance. Rain adopts Java’s approach — through the use of type functions
in the virtual machine (described in [1]), the equivalent ofauto-boxing is performed.
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7. Exceptions

Exceptions seem to have found favour in programming language design. C++, Java, the .NET
languages and Python all include them. In their common implementation they allow error-
handling to be collected in a single location, and for clean-up (certainly in the case of C++)
to happen automatically during stack-unwinding. This is usually done to avoid checking for
an error code on every call made. Below, the version on the left illustrates checking every call
for an error, whereas the version on the right collects the error handling in the catch block.

if (file_open(...) == Error)

{ ... }

else if (file_write(...) == Error)

{ ... }

else if (file_close(...) == Error)

{ ... }

try {

file_open (...);

file_write (...);

file_close (...);

} catch (FileException e)

{ ... }

C++CSP contained poison exceptions — thrown when an attemptwas made to use a
poisoned channel. As in the above example, exceptions were the best practical way of im-
plementing stateful poisoning. The common poison-handling code for each process could be
collected in one location.

There are a number of situations in Rain where the safety of anoperation cannot be guar-
anteed at compile-time. The programmer usually has two alternatives: ensure that the oper-
ation will be safe with an appropriate check, or handle the exception. In the non-exception
example below (on the left) the compiler can perform a simplestatic analysis and understand
that the array access is safe. In the exception example on theright, an exception-handling
block is provided.

if (xs.size > 5)

{ x = xs[5]; }

else

{ ... }

{

x = xs[5];

} on invalid index

{ ... }

Exceptions, as in other languages, are a mechanism for collecting error handling. The
currently intended exceptions in Rain are: invalid list indexing, invalid map access, poison
and divide by zero.

The exceptions listed are required because of other features of the language. Most lan-
guages allow programmers to define, throw and catch their ownexception types. This was a
possibility for Rain. However, other languages have a strongly procedural basis that fits the
perpetuation of thrown exceptions up the call stack. Rain allows functions, but they would
definitely not be allowed to throw an exception (as a functioncall is only an expression).
Processes would not be allowed to throw exceptions that can be caught by their parents. Ex-
ceptions are also not allowed to be caught outside apar block (due to the difficulties involved
with parallel exceptions [14]). In Rain exceptions are a highly localised affair, and there-
fore do not have their procedural-nesting usefulness that they do in languages such as C++.
Therefore the programmer is provided with no mechanism to define their own exceptions in
Rain.

Error messages in process networks can either be perpetuated using error messages car-
ried over channels or by using poison. It is up to the programmer which is used but the in-
tention behind their design is thus. It is intended that poison be used only for unrecoverable
errors and halting the program. For example, a process that is used to load up a file (the name
of which is passed as a parameter) and send out its contents, should poison its channels if it
discovers that the file does not exist. Without the file, the process has no purpose. By contrast,
a process that has an incoming channel for file-names, and an outgoing channel for byte lists
(of the file contents) should use error messages. If a requested file does not exist, the process
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is still capable of continuing to function when processing the next requested file.

8. Text and Unicode

Unicode [19] was created to allow all known language characters to be stored as numbers,
and yet still leave space for more in the standard. Unicode isavailable in a number of different
encodings. Unicode prompts two considerations from the point of view of implementing a
programming language; the compilation of source files, and support within the language itself
for Unicode.

Support in the language itself is the trickier issue. Eithera dedicated string type can
be created and built-in to the language (as in Java), or some construction like a list/array of
bytes (as in C) can be used. Given that a dedicated type would be stored as a list of bytes
underneath the differences are really: how built-in to the language it should be, and what
encodings should be offered/used by default.

Consider a program that takes a list of characters and sends them out one at a time on a
channel. In ASCII, this would be done by accepting a list ofsint8, and outputting a single
sint8 at a time. In UTF-8, this must be done by accepting a list ofsint8, and outputting a
list of sint8; one character can be multiplesint8 bytes. Naturally, the temptation is to use
an encoding where all characters are the same size. Technically, this is UTF-32, where every
character is exactly four bytes. However, Unicode characters outside the two-byte range are
quite rare.

Java originally picked a two-byte character size. At the time this was enough to hold
all the planned Unicode characters [20]. Now that characters can be larger, the simplicity
of having a character type that can hold all characters has been lost. Some believe that Java
should resize its character class accordingly [21].

The decision of how large to make the default character type is therefore a trade-off
between space efficiency (due to cache hits/misses, this also has an effect on performance)
and the problems that would occur when encountering rare characters. The Unicode FAQ
provides no specific guidance [22]. For simplicity of use, I have decided to use 32-bits as a
character type. Strings, by default, will be a list of 32-bitvalues (therefore strictly one per
character). The typestring will be in-built, and exactly equivalent to[uint32]. Library
functions and processes will be provided to aid conversion between encodings.

Rain source files are assumed to be UTF-8, although this will be made configurable via
the command-line. White-space is used to separate variablenames — therefore any non-
white-space Unicode characters are valid in variable names. Any UTF-8 characters in a string
literal between quotes" " will be converted and stored as UTF-32 for use as constant literals
in the program .

9. Data Transmission

Concurrency has always been at odds with aliasing. Where aliasing is allowed in a program,
two concurrent processes can have an alias for the same object, and CREW can be broken.
Process-oriented languages have tried to prevent this by treating all data as private to the
process. This presents an efficiency problem when large datastructures are sent between
processes.occam originally took the approach of always copying.occam-π introduced the
concept of mobiles — essentially a non-aliasing reference [23]. Honeysuckle introduced the
idea of ownership, a similar idea.

Mobiles, always-copy and duplicate-on-modify (allowing areference to be shared as
read-only, creating a new localised copy when it is modified)are three acceptable seman-
tic solutions to the problem. The main question is whether toexpose the dilemma to the
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programmer, or hide the detail from them. Mobile data provides problems for the program-
mer (the potential for dereferencing an undefined mobile) and no benefits besides efficiency.
Therefore including the idea of mobiles but hiding this detail from the programmer seems
wise.

The compiler will use heuristics to decide which semantics to adopt as the underlying
mechanism. From the programmer’s perspective, it must appear as if always-copy is being
used. Consider the following producer process:

seq all (int x : [0..100])

{

[int]: list = [0..x];

out ! list

}

The list is never referenced after its communication. Therefore in this example, mobile
semantics would be wisest. Of course, the process on the other end of the communication
needs to know whether it has received a reference that is duplicate-on-modify or not (from
the receiver’s perspective, a mobile reference is no different from a copied reference, as the
receiver “owns” it). This involves a small amount of dynamictyping on the implementation
side. Given that the programming language is being compiledto a virtual machine [1], the
virtual machine can enforce the correct semantics.

10. Permissions

One of the challenges of programming is keeping on top of the design of a system. Even
with one programmer this can be difficult; with multiple programmers and distributed teams
it can become a nightmare. The compositional hierarchical designs that process-oriented pro-
gramming naturally favours can help to alleviate this problem. Small components are easily
composed into larger ones, and the interactions between thelarger components (in the form
of communication) are all visible from the parent component. However, if left unchecked,
understanding which components are using external services can become difficult.

In a language such as Java, any part of a program can open up a socket or a file using
the right API, and the calling method can be unaware of it. As adeveloper it has not been as
uncommon an experience as it should be to dig into method callafter method call, only to
find that one of them is making an unexpected SQL query over a socket, or opening its own
log file. In process-oriented programming, such activitiescan lead to unexpected deadlocks
that are not obvious from a system overview.

Rain tentatively offers the idea of permissions (for want ofa better name — services is
ambiguous). A process must list the permissions that it requires. Potential examples include
network, file or gui. Processes are permitted to pass on any or all of their permissions to
their sub-processes, but permissions cannot be transferred (for example, via a channel). If
processPA is the parent ofPB, which is the parent ofPC , andPC needs to write to a file,PB

andPA will also need these permissions in order to pass them on downthe hierarchy. This
will allow it to be obvious from the top-level process in the program where the permissions
are being granted, even if they are simply being granted everywhere (as is effectively the case
in other languages).

11. Coding Standards

Coding standards have been a source of contention among programmers since they were
conceived. Some believe that consistent coding standards for common patterns and naming
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conventions are necessary on large projects to aid readability, lessen mistakes, and speed up
programming when using code written by other developers. Others believe that they are a
waste of time that only impedes programming.

Coding standards can be used because the standard-writer disagrees with a design deci-
sion taken by the language designer. For example, a C++ coding standard might disallow the
choice operator (a ? b : c) because the standards-writer believes it unwisely hides choices
in expressions.

Not all programmers will agree with the choices that have been made in Rain. They
may prefer forcing variable declarations to be at the start of a block (as in C) rather than
anywhere (as in C++/Java). Alternatively, they may want to avoid the use of exceptions as
much as possible, and would therefore want to disbar explicit list-indexing and unguarded
map accesses (favouring iteration constructs instead).

In the future, the compiler will support user-specified warnings and errors on normally-
legal program code. The compiler will be able to take two types of inputs; source files, and
(likely) XML files containing policy. Naturally the range oferrors that can be supported
will have to be restricted to relatively simple rules (mainly about syntax uses rather than
semantic patterns), but this will allow the programmer to customise the compiler slightly to
their wishes — as perverse as asking the compiler for more errors may seem. I expect that
some Perl programmers will recognise this latter desire.

The idea of a seemingly-reconfigurable language may be alarming at first. The key detail
is that these policies are always less permissive than the default. That is, the language with
policies (coding standards) in place will always be a subsetof the original language.

12. Implementation Progress

This paper has detailed the design of the Rain programming language. I have been imple-
menting the compiler alongside the implementation of the virtual machine [1] that forms the
target for the compiler. The framework and design of the compiler is complete, and a subset
of most of the compiler stages has been implemented. Compilation of very simple programs
is now possible. The compiler is targeted at the Windows and GNU/Linux platforms although
I expect that it will compile on any operating system with a C++ compiler and a Boost [16]
installation.

As with the virtual machine, the development has taken placeon a mostly test-first basis,
with copious unit tests. I believe that this provides a measure of assurance in the proper
functioning of the compiler. Looking back, I do not believe Icould have come as far without
such testing, despite the extra time that it needed.

13. Conclusions and Future Work

This paper has presented the design of a new process-oriented programming language, Rain,
intended for stand-alone use or integration with existing C++ code. Rain is statically typed
with a rich set of data types and aims to eradicate as many errors as possible at compile-
time. It offers (along with its VM) portable easy concurrency in a language that will interface
well with C++CSP, thereby allowing it to interact with existing C++ libraries; in the future
I particularly hope to include support for GUIs and networking, applications well suited to
process-oriented programming.

Rain includes many innovations not found in other process-oriented programming lan-
guages. These include channel end interfaces (e.g. differentiating between channel end types
that supportALTing and those that do not), templates and permissions. Theseshould make
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the language interesting to current process-oriented programmers, who it is hoped will find
these features useful.

It is unfortunate that further progress has not been made on the compiler; the implemen-
tation of the virtual machine alongside the compiler has meant that neither are yet finished.
Future work will naturally involve, first and foremost, the completion of the compiler.
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