University of

"1l Kent Academic Repository

Brown, Neil (2006) Rain: A New Concurrent Process-Oriented Programming
Language. In: Communicating Process Architectures 2006. Concurrent
Systems Engineering Series (64). I0S Press, pp. 237-251. ISBN 978-1-58603-671-3.

Downloaded from
https://kar.kent.ac.uk/33864/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/33864/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Communicating Process Architectures 2006 237
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)

|OS Press, 2006

(© 2006 The authors. All rights reserved.

Rain: A New Concurrent Process-Oriented
Programming L anguage

Neil BROWN

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, England.

neil@twistedsquare.com

Abstract. This paper details the design of a new concurrent proceseted program-
ming language, Rain. The language borrows heavily fomewam-mtand C++ to cre-
ate a new language based on process-oriented programmanyjmg channel-based
communication, a clear division between statement andessjon, and elements of
functional programming. An expressive yet simple type aystcoupled with tem-
plates, underpins the language.

Modern features such as Unicode support and 64-bit integerscluded from the
outset, and new ideas involving permissions and codinglatals are also proposed.
The language targets a new virtual machine, which is det&éile companion paper
along with benchmarks of its performance.

Keywor ds. Process-oriented programming, Concurrency, Languaggrdd®ain

I ntroduction

Historically, desktop computing has been completely datad by single-CPU, single-core
machines. This is now changing — Intel and AMD, the two giamitglesktop processor
manufacture, both have a multi-core processor as theiralenarket offering. It appears that
the new dawn of parallelism has finally arrived, forced by sfevdown in the exponential
growth of processor clock speeds; the race to increase ¢langitz has been replaced by a
race to increase the cores.

Programming languages have not yet caught up to this shiin@CC++, still two of
the most popular mainstream languages, completely laclsapgort for concurrency at the
language level. Java has threads and monitors built-ingdahguage but using these for
practical safe concurrency is not easy. The primary langweith strong safe support for
concurrency built-in imccam-1t[2], a very different language to the C/C++/Java trium\arat

Despite many innovations and developments, the level dfatign of programming
languages has moved at a glacial pace over the past sixty. \Braadly speaking, the pro-
gression has been: machine code, assembly language, timp@racedural languages (e.g.
FORTRAN, C), and object-oriented languages (e.g. €#3ava). It is my hope that the next
step in that chain will be process-oriented programmingtaty suggests that in order for
this to happen, the change will have to be made in small inengsn

The gap between, say, Java amatam-Ttis vast in every respeabccam-tt has no ob-
jects, collection classes (or built-in collection dataggpor references and has a totally differ-
ent syntaxoccam-ttencourages parallel code and makes use of channels for coicatiog
between processes, rather than method calls betweensbjeoin a practical business per-

LAlthough C++ is technically a multi-paradigm language, ayits most common mode of use is, in effect,
object-oriented C

238 N.C.C. Brown / Rain: A New Concurrent Process-Oriented Programming Language

spective, the differences mean that re-training would lmessary and much existing/legacy
code would have to be re-written.

Libraries such as JCSP [3], CTJ [4] and C++CSP [5] offer admiletween current
popular languages and fully process-oriented programntiogvever, these libraries suffer
from the limitations of the language they are written in. piesall the efforts of the library
developers, programmers will always be able to write unsafie using these libraries. For
example, two C++CSP processes can both have a pointer t@aiie data structure which
they can freely both modify concurrently, each overwritthg changes of the other. Such
problems must be addressed at the language-level if thap éeeliminated.

Groovy Parallel [6] is an example of a project that helps tolde the gap between
mainstream languages and easy process-oriented progngnitris compatible with Java at
the byte-code level. However, it still uses the Groovy laaggi— unaltered — as its base.
This means that the problems described above with JCSP apjaly to Groovy Parallel.
Honeysuckle [7] does solve these problems at the languagéheat is headed in a novel
direction that diverges from some of the central conceptsrotess-oriented programming
(such as channel communication).

| propose the development of a new process-oriented prognagianguage, Rain. The
language can be used on its own but will also be able to irderiath C++CSP. This will al-
low existing C++ code to be used together with Rain code, ehtmnels linking the C++CSP
and Rain processes. The language will build on processtedeprogramming and add new
features such as templates and permissions (describedriat@s paper). The design of
Rain is detailed in the remainder of this paper.

The Rain language is intended to follow the write-once roypwéhere pattern of Java and
other interpreted languages. This will allow it to take atage of heterogeneous concur-
rency mechanisms across multiple architectures withogtade changes. This is described
in detail in the accompanying paper about the Rain VirtuatMiae (VM) [1], which also
describes the C++ interface. The paper also provides pedioce benchmarks.

1. TheRole of the Compiler

Studies carried out on the process of programming have skimatnthe earlier in the devel-
opment/release cycle that a bug is caught, the less theadigtit [8]. Even if a test-first
methodology is used, the effective development flow for ittea code is of the form: edi-
tor, compiler, unit-tests, system tests. Language-awditers, usually present in Integrated
Development Environments (IDEs) such as Eclipse [9], cdp teehighlight syntax errors
before compilation takes place. The compiler can then spoeserrors before transforming
the code, and running it through the unit-tests which sh@udgbefully) catch any seman-
tic errors, assuming that coverage is complete — which élyas, due to the difficulty of
achieving complete coverage.

Different compilers can detect a widely different rangembes. An assembly language
compiler can spot syntax mistakes, but as long as the operitia valid one for the CPU,
no other errors will be issued. Compilers for languages saagclE++ and Java can pick up
type errors and errors such as the potential use of a varisitae initialisation. At the
other end of the scale, interpreted languages have no centpikpeak of (other than the
syntax-checking when loading a source file) and hence th@iemvill also issue no errors.
Errors such as type errors, unsupported interface methwb&iaction/variable name typos,
all picked up by the compiler in a language such as Java, witldtected by the tests. If the
test coverage is incomplete then the errors will remain éitmal code.

Given that the compiler is at such an early stage in developraaed can be made pow-
erful enough to detect a large proportion of common progrargrarrors, it seems wise to

N.C.C. Brown/ Rain: A New Concurrent Process-Oriented Programming Language 239

do just that. The compiler should eliminate as many poteetrars as it can. This will need
to be a combination of language design and compiler impléatien.

In a presentation [10], Tim Sweeney of Epic Games (gamesanoging typically being
an area for the C/C++/Java/C# family of languages) provadé&sur-line C# function with
five possible failures, followed by a semantically identtbaee-line pseudo-Haskell function
with one possible failure. Solely by a combination of thegaage and the compiler, the
same algorithm is made safer. Games programming has alvegysfbcused on the use of
C-like languages for performance, but even in this domase@&ms that higher-level, safer,
expressive languages are seen as the fiture

The Rain compiler will try to detect and issue compiler esrfor as many potentially
dangerous code patterns as possible. If the safety of a gieea of source code is unclear, in
particular issues such as enforcing Concurrent-Read EixeltWrite (CREW), the compiler
should adopt a pessimistic (least-permissive) approaphart4rom this being the safest ap-
proach, in practical terms it is better for a future versibthe compiler to accept a superset
of the programs accepted by the current compiler rather ghambset — the latter option
leading to non-compilable legacy code.

2. Processes and Functions

There are two major units of program code in Rain; processddunctions. A process is
equivalent to a statement: it can affect and access extstat (e.g. via channels), but it
does not return a value explicitly — although using a chaiinehn accomplish a similar
effect. A function is equivalent to an expression: it caraf@ct or access external state (only
its parameters) and will always return a value — otherwiss & null statement from the
caller's perspective. This means that functions can havsiae-effects, and because they
never depend on external state, only their passed parangtey always have the potential
to be inlined. Functions are permitted to be recursive.

It is hoped that this will allow a marriage of process-oreghtind functional program-
ming, with a cleaner syntax for the latter thaocam-1t Althoughoccam-rt also contains
this functions-as-expressions concept, it does not altimwefcursive functions, nor the com-
munication of functions (expanded on in section 4.4).

Functional languages have always had problems with anyeptraf I/O or time, due
to their lack of state. This has made interaction with usearfaces or networks difficult —
things that process-oriented languages can excel at. li@nealve burdensome contortions
such as Monads [11]. It is intended that the combination ptiitess-oriented programming
should remove such deficiencies of functional programming.

3. Communication

Like occam-1, Rain contains three communication primitives; chanrmstiers and buck-
ets. One-to-one unbuffered channels are available. Diretariticipated potential implemen-
tation difficulties in the virtual machine no guaranteesaifered regarding the availability
buffers, any-to-one modality etc.

Like C++CSP andccam-11, Rain has the concept of both channel and channel end
types. Channels cannot be used for anything except for sioggtheir channel ends. Channel
ends may be used to read or write depending on the end thegsesyr There are some
complications to this however: poisoning,Ting, and extended rendezvous.

2Although it is beyond the scope of this particular paper, &vay goes on to outline concurrency problems
in game programming, which may well be of interest to the eead- including his opinion that “there is a
wonderful correspondence between features that aid ilitlfadnd features that enable concurrency”.

240 N.C.C. Brown / Rain: A New Concurrent Process-Oriented Programming Language

3.1. ALTing and Extended Rendezvous

ALTing, the term often used to describe that what East [7] temtecgon (to distinguish
from alternation), is a very powerful construct. Extendeddezvous (also referred to here
as extended input) is amccam-1t addition made by Barnes and Welch [12]. It essentially
allows the reader to block the writer until the reader has pmleted further actions. This
allows buffering/tapping processes to become essenimadigible to either end.

Not all channels that Rain is intended to support will berimé Some channels may be
networked, and some may be external channels sushds andstdout or plain sockets.
Network channels may support extended rendezvous, bukliting. stdin may support
ALTing, but extended input would not be possible (or applicaldlais leads to the idea of
channel-ends supporting a particular operation. In okpeieinted programming this would
be construed as a channel supporting a particular interface

Some processes will requirg.Ting and/or extended rendezvous on their channels, and
some will be indifferent to the support. For example, an motéel-id process (that behaves
like id, but with an extended input) will naturally requits reading end to support extended
input, but will be indifferent ta\LTing support on the channel. A two-channel merger process
(that takes input on either of its two reading channels andsé out on one output channel)
would requireALTingbut not extended input.

Rain includes the concept of different channel input enus;drogrammer can specify
that a channel-reading end must support extended rendepvaLTing. If no such specifiers
are included, such support is presumed not to be present.i§Hay default the channel-
reading end type (e.@int) is assumed to not support anything other than normal input.

3.2. Poisoning

The Communicating Process Architectures (CPA) commurignss to be divided over the
matter of stateful poisoning of channels [5,13,14,15].iHgseen its utility in programming
with C++CSP, | chose to include it in Rain.

At the suggestion of Peter Welch, C++CSP was modified to declthannel ends that
were non-poisonable. That way, programs could hand outel@mds that could not be used
to poison the rest of the network; for example the writingsatlan any-to-one channel that
fed into an important server process. While any-to-one obbsmare currently not featured in
Rain, the general logic prevails, and non-poisonable oblaemds are explained below.

The idea of interfaces for channels could potentially berdéd to distinguish between
poisonable and non-poisonable channel ends. Considerdbegs id — there would need to
be a version for poisonable channels and one for without:

process id_int process id_int_poison
(?int:in, !int:out) (poisonable ?7int:in, poisonable !int:out)
{ {
{
int : x; int : x;
while (true) while (true)
{ {
in 7 x; in 7 x;
out ! x; out ! x;
} }

} on poison {
poison in;
poison out;

b

b }

N.C.C. Brown/ Rain: A New Concurrent Process-Oriented Programming Language 241

If only in was poisonable, angut were not, then another version would be required.
Likewise if it were reversed. This approach would clearlyupéenable. The solution is there-
fore that channel ends are assumed to be poisonable. Raisamion-poisonable channel
end simply has no effect. Note that non-poisonable chanmmdd ean still become poisoned
by the process at the other end. So theint_poison process above would be the correct
implementation (less theoisonable key-words) in order to catch the poison exceptions.

4, Types

Rain is strongly statically typed. Dynamic typing savesiahprogrammer effort, but experi-
ence has shown that this usually returns to haunt them irotine ¢f run-time type errors. In
line with the earlier discussion on the role of the compiteséction 1, it is preferred that the
compiler do more work to save later problems.

Variables must be declared before use, with a specific typey Tan be declared as
constant. All function and process parameters are coreidsnstant for their entire scope
in the function/process. This saves confusion caused lgsigrang function parameters.
Descriptions of the types can be found in the following sabti®ns.

4.1. Primitive Data Types

Currently, mass-market computing is undergoing a trasitiom 32-bit to 64-bit architec-
ture. Therefore, Rain includes 64-bit integers. | antigghat larger integers will not be nec-
essary in future. While similar phrases (usually foolistretrospect) have been uttered in
computing over the years, | am willing to state that | belihvat 64-bit integers should be
enough for most usés

To avoid the horrid conventions now present in other langadgpr example, theong
long in C++), integers are labelled with their size and signed afibd So the full set of
integers aresint8, sint16, sint32, sint64, uint8, uint16, uint32, uint64.

int is also a built-in data type, and rather than adopt a slidoagesas per C/C++, it
is defined to be asint64. It is assumed thaint will be used for most data (given that it
will soon be the default word size on most machines), and tiheraypes will be used when
dealing with data that must be written on a network or to disét Bence requires a specific
size.

The language currently offetsal32 andreal64 floating-point types. It is anticipated
that the 128-bit version will be added in the future.

4.2. Communication Data Types

Rain contains channels, channel-ends, barriers and lmuckeannels and channel-ends have
a specified inner type, and channel-ends have a specifiedlitgqdgut or output). Chan-
nels, barriers and buckets are all always constant. Makiagntconstant prevents aliasing
and also provides a clear point to allocate (upon declarptiod deallocate (at the end of its
scope).

3For observed quantities larger thaff the purpose is likely scientific computing, which will prdiha be
using floating-point numbers and/or a natively compiledjlzage. The other common use of integers in com-
puting is to store exact frequencies (having an incremamtégle identifier in databases is effectively the same
thing). Even if a new event occurred every nanosecond, ilawstill take over 500 years to overflow the 64-bit
integer.

242 N.C.C. Brown / Rain: A New Concurrent Process-Oriented Programming Language
4.3. Complex Data Types

4.3.1. Named Tuples

Tuples in languages such as Prolog suffer from a lack of bititya From experience, pro-
gramming with a nine-member tuple and always rememberiagitint field order (in a dy-
namically typed language, to add to the problem) is a diffiadk.

Rain therefore offers what are referred to here as nameeésuglcombination of records
and tuples, almost a return to C structs:

typedef (real:x,real:y,real:z) : Point;
Point: p;

p=(,1,1);

p.x =1;

p = Point(z:0,y:0,x:0);

The tuples can be used either as tuples, or by named memlemsact a combination
of both in manner similar to Visual Basic’s named paramesgr |

4.3.2. Lists

C++ and Java did not build their main (non-array) list typet® ithe language, but rather
provided the language with tools from which the standartectibn libraries were defined.
This usually makes constructing these data structuresuliffbecause there is no easy syn-
tax. To define a list of the 3-D points (0,0,0) and (1,1,1) iol®y would mean writing:
[(0,0,0) , (1,1,1)].In C++ the code would normally be along the lines of:

vector<Point> v;
v.push_back(Point (0,0,0));
v.push_back(Point(1,1,1));

Even accounting for the extra type information, this is arkaard way of creating
a list. Only the fiendishly clever Boost [16] ‘assign’ libras help alleviate this problem
for arbitrarily sized-lists. Java 1.5 introduced a typé&darm of varargs to deal with this
problem [17].

Rain also offers list types. In C, C++ and Java arrays anedtnists are two very differ-
ent things; one was in-built and the other an object (or Cigwadent, a struct). Prolog only
provides one list type, as does Python. Rain offers oneyist,tthe underlying implemen-
tation of which (i.e. array or linked list) is guessed for togsrformance. Programmers may
override this if desired.

typedef [Point] : PointList;
PointList: ps;
ps = [(0,0,0) , (1,1,1) 1;
ps += (2,2,2);

Lists support the addition operator (and thereforettheperator) but no other operators.

4.3.3. Maps and Sets

The two other commonly used data structures are maps (Keg/e#ructures) and sets. A
set can be treated as a map with an empty value for each keyichs enly maps are built-
in to Rain. Sets are provided by using an under-score as atyeafafa type. Maps support
insertion/over-writing (through the assignment openat@moval, direct element access by
key, presence checks and iteration.

N.C.C. Brown/ Rain: A New Concurrent Process-Oriented Programming Language 243

Insertion/over-writing is guaranteed to always succeesm®val of a non-present ele-
ment is not considered an error and will have no effect. THg dangerous operation is el-
ement access (i.e. if the specified key is not present in th@ mathis is covered in sec-
tion 7 on exceptions.

typedef < int : Point > : NumberedPoints;

typedef <Point:_> : PointSet;

NumberedPoints : n;

PointSet : s;

s<(0,0,0)> = _;

remove s<(1,1,1)>;

n<3> = (1,0,1);

if (n has 4)
s< n<4> > =

-_—

4.3.4. Variants

Named tuples, described above, are an example of prodpet-fheir complement is the
sum-type, typified in a dangerous manner by C’s union typ&nsare dangerous because
they do not keep a record of what their currently stored tgp&lherefore a currently invalid
type in a union can be accessed.

Many languages also supply types often referred to as emtimes. These are types
consisting of a small closed set of values, identified by ammegul name rather than merely
a number. Their advantage over using integers with a setrstaats is that the compiler can
ensure the full set of values is handled in switch-like stegets, and that the constants from
two different types are not mixed (for example, a file errongtant is not used in place of a
GUI error constant).

In occam-T1, similar ideas are combined to form variant protocols — d¢gfly an
enumeration-like constant preceding a particular typeréisult being somewhat similar to a
safe union. Iroccam-Tt, variant protocols only exist in the form of a communicalyiee. In
Rain, it is intended that these structures be a standardyaausable wherever other data
structures (lists, maps, etc) are. Haskell contains a aimndncept of data with field labels.
This idea requires further consideration before beingifedlhowever.

4.4. Processes and Function Types

Processes and functions can be stored and are thereforgyplesa Their type includes their
parameter list (which itself is a named tuple type). Proegsl® not carry with them any state
(which would be a much more complex mobility discussion J18j effect, an instance of
process or function data is merely a code address. Therfeyaean be assigned at will, but
can never contain an invalid value (the compiler can mantthég

Process and function data types can be transmitted ovenelsait his opens up interest-
ing code patterns. Consider a filter process, with an incgraitd outgoing channel of type
int, and an incoming channel of a function that takes a singlamater of typeint and
returns a boolean. The filter process would accept an inpitsathannel ofint, and send
out the values if the function returns true — a dynamicallpfagurable filter. The process
would also accept input on its function channel, which wauidvide a new filter. Example
code for the process is given overleaf (without poison hagdbr brevity):

244 N.C.C. Brown / Rain: A New Concurrent Process-Oriented Programming Language

process filter (7int : in,!int : out, ?function bool:(int) : filterIn)
{
int: t;
function bool: (int) : filter;
filterIn ? filter;
while (true)
{
pri alt
{
filterIn ? filter {}
in 7 t
{
if (filter(t))
out ! t;
}
}
}
}

4.5. Composing Data Types

Data types in Rain are compositional, with a few necessatyicdons. Tuples and lists can
contain any types. Maps can have any value type, but the kmyrtyust support ordering.
Maps, communication primitives, processes and functiansad support ordering. Lists and
tuples support ordering if (all of) their inner types do. Alpbes support equality comparison.

Channels and channel-ends are a problem, as channel-estislmey CREW. Consider
the following code:

chan int: c; #1
?int : in; #2
[2int] : a,b; #3
in = c; #4
a = [in]; #5
b = [in]; #6

seq all (x : a) #7
{b += x;} #8

It would be relatively easy to spot the potential CREW prab(¢hat is, the possibility of
the non-shared channel end being used twice in parallehgibgts) on line 6. However, even
if line 6 was removed, spotting the problem on same line 8 rddra Situations of greater
complexity are also imaginable. Therefore, adopting atipasmissive approach, channels
and channel-ends cannot be contained in other data types (other channels). For similar
reasons, barriers and buckets cannot be contained in aeyduta types.

5. lteration Constructs

Rain offers sequential and parallel iteration loops fasland maps, in the following form:

seq all (x : list) par all ((key,value) : map)
{ {

. do something with x ... do something with key and value
} }

It is inherent in these constructs that all invalid-accesblems are avoided (for exam-
ple, array index out of bounds or map key not being presehgse are therefore the preferred

N.C.C. Brown/ Rain: A New Concurrent Process-Oriented Programming Language 245

forms of processing entire collections. Direct access dividual elements by index/key
must be guarded by exception handlers as touched upon inrs&abn exceptions.

Note that the type of the iteration variables ey andvalue) is automatically deduced
from the list/map type (where possible).

6. Templates

Consider the archetypal id process (shown without poisollivag for brevity):

process id (7type : in, !type : out)
{
type: X;
while (true)
{
in 7 x;
out ! x;
}
}

The only thing needed to compile this process is to know wlyat is. For a valid
compilation,type could be any numeric type, a list, a map, or any other type daatbe
transmitted through channels. Having to write id over aner@gain for each type would be
a nonsense. C++CSP is able to use templates to provide & slefghition of a process —
this is then compiled again whenever the process is usedawidw type.

Experience has shown that templates are incredibly usafaréating libraries of com-
mon processes (thus encouraging code re-use and reduoggprmer effort) and that they
are generally a useful language feature. The type is sutestiin at compile-time, not run-
time, so itis just as safe as if each version were writtenang{hand. This is a feature sadly
lacking from any other process-oriented language that I\&areof.

In Rain, both processes and functions can be templated. 8&meof compile-time re-
flection and/or partial specialisation is intended for ustbn, but the design of that is beyond
the scope of this paper. Currently it will simply be plain ¢ypubstitution. Either all types
can be allowed (using theny keyword, or it can be restricted to numeric data types (using
numeric). The conversion of id and successor are given below:

template (any: Type) template (numeric: Type)
process id (?Type: in, !Type: out) process successor (?Type: in, !Type: out)
{ {
Type: x; Type: x;
while (true) while (true)
{ {
in ? x; in 7 x;
out ! x; X += 1;
} out ! x;
} }
}

In C++, templates are provided by re-compiling the same edtiethe new type sub-
stituted in. This means that the source code is requiredndwding header files) every time
the templated type is used. In Java, generics simply ‘aatoihe type, and thus the same
piece of code is re-used for all instantiations of the genalject. C++ is able to use a tem-
plated type’s properties (e.g. making a method call on i) way that Java’s generics cannot
without using inheritance. Rain adopts Java'’s approach reutih the use of type functions
in the virtual machine (described in [1]), the equivalenaofo-boxing is performed.

246 N.C.C. Brown / Rain: A New Concurrent Process-Oriented Programming Language

7. Exceptions

Exceptions seem to have found favour in programming langdagign. C++, Java, the .NET
languages and Python all include them. In their common impl&ation they allow error-

handling to be collected in a single location, and for clear(certainly in the case of C++)
to happen automatically during stack-unwinding. This isally done to avoid checking for

an error code on every call made. Below, the version on thdlleftrates checking every call

for an error, whereas the version on the right collects thar érandling in the catch block.

if (file_open(...) == Error) try {
{ ...} file_open (...);

else if (file_write(...) == Error) file_write (...);
{ ...} file_close (...);

else if (file_close(...) == Error) } catch (FileException e)
{...% {...%

C++CSP contained poison exceptions — thrown when an atteraptmade to use a
poisoned channel. As in the above example, exceptions Wwerbdst practical way of im-
plementing stateful poisoning. The common poison-hagdiode for each process could be
collected in one location.

There are a number of situations in Rain where the safety oparmation cannot be guar-
anteed at compile-time. The programmer usually has tworaltizes: ensure that the oper-
ation will be safe with an appropriate check, or handle theepkon. In the non-exception
example below (on the left) the compiler can perform a sirspd¢éic analysis and understand
that the array access is safe. In the exception example ongtfie an exception-handling
block is provided.

if (xs.size > 5) {
{ x=xs[5]; } x = xs[5];

else } on invalid index
{ ...} { ...}

Exceptions, as in other languages, are a mechanism forctotieerror handling. The
currently intended exceptions in Rain are: invalid listarohg, invalid map access, poison
and divide by zero.

The exceptions listed are required because of other featirhe language. Most lan-
guages allow programmers to define, throw and catch theireowaption types. This was a
possibility for Rain. However, other languages have a gfisoprocedural basis that fits the
perpetuation of thrown exceptions up the call stack. Rdowel functions, but they would
definitely not be allowed to throw an exception (as a functah is only an expression).
Processes would not be allowed to throw exceptions that earaibght by their parents. Ex-
ceptions are also not allowed to be caught outsiplereblock (due to the difficulties involved
with parallel exceptions [14]). In Rain exceptions are ahhigocalised affair, and there-
fore do not have their procedural-nesting usefulness begt do in languages such as C++.
Therefore the programmer is provided with no mechanism timel¢heir own exceptions in
Rain.

Error messages in process networks can either be perpeugte error messages car-
ried over channels or by using poison. It is up to the programwhich is used but the in-
tention behind their design is thus. It is intended that @oise used only for unrecoverable
errors and halting the program. For example, a processshiged to load up a file (the name
of which is passed as a parameter) and send out its contbotddgpoison its channels if it
discovers that the file does not exist. Without the file, thecpss has no purpose. By contrast,
a process that has an incoming channel for file-names, andtgaing channel for byte lists
(of the file contents) should use error messages. If a regiéit does not exist, the process

N.C.C. Brown/ Rain: A New Concurrent Process-Oriented Programming Language 247

is still capable of continuing to function when processing mext requested file.

8. Text and Unicode

Unicode [19] was created to allow all known language charadio be stored as numbers,
and yet still leave space for more in the standard. Unicodedsable in a number of different
encodings. Unicode prompts two considerations from thatpafi view of implementing a
programming language; the compilation of source files, apgart within the language itself
for Unicode.

Support in the language itself is the trickier issue. Eithetedicated string type can
be created and built-in to the language (as in Java), or som&riction like a list/array of
bytes (as in C) can be used. Given that a dedicated type weutddoed as a list of bytes
underneath the differences are really: how built-in to @neguage it should be, and what
encodings should be offered/used by default.

Consider a program that takes a list of characters and skadsdut one at a time on a
channel. In ASCII, this would be done by accepting a lissbit8, and outputting a single
sint8 at a time. In UTF-8, this must be done by accepting a listiaft8, and outputting a
list of sint8; one character can be multiptent8 bytes. Naturally, the temptation is to use
an encoding where all characters are the same size. Telipies is UTF-32, where every
character is exactly four bytes. However, Unicode charaaatside the two-byte range are
quite rare.

Java originally picked a two-byte character size. At theetitnis was enough to hold
all the planned Unicode characters [20]. Now that charaatan be larger, the simplicity
of having a character type that can hold all characters has lest. Some believe that Java
should resize its character class accordingly [21].

The decision of how large to make the default character tgpberefore a trade-off
between space efficiency (due to cache hits/misses, tlishaks an effect on performance)
and the problems that would occur when encountering rareacteas. The Unicode FAQ
provides no specific guidance [22]. For simplicity of usealé decided to use 32-bits as a
character type. Strings, by default, will be a list of 32Amtues (therefore strictly one per
character). The typetring will be in-built, and exactly equivalent tguint32]. Library
functions and processes will be provided to aid conversaiween encodings.

Rain source files are assumed to be UTF-8, although this withede configurable via
the command-line. White-space is used to separate vanedees — therefore any non-
white-space Unicode characters are valid in variable naArgsUTF-8 characters in a string
literal between quote’s " will be converted and stored as UTF-32 for use as constanalg
in the program .

9. Data Transmission

Concurrency has always been at odds with aliasing. Wheasiag is allowed in a program,
two concurrent processes can have an alias for the same,adnpecCREW can be broken.
Process-oriented languages have tried to prevent thiselaying all data as private to the
process. This presents an efficiency problem when large slatatures are sent between
processesoccam originally took the approach of always copyiragcam-ttintroduced the
concept of mobiles — essentially a non-aliasing refere@8¢ Honeysuckle introduced the
idea of ownership, a similar idea.

Mobiles, always-copy and duplicate-on-modify (allowingederence to be shared as
read-only, creating a new localised copy when it is modif@d) three acceptable seman-
tic solutions to the problem. The main question is whetheexpose the dilemma to the

248 N.C.C. Brown / Rain: A New Concurrent Process-Oriented Programming Language

programmer, or hide the detail from them. Mobile data presigroblems for the program-
mer (the potential for dereferencing an undefined mobild)rambenefits besides efficiency.
Therefore including the idea of mobiles but hiding this ddtam the programmer seems
wise.

The compiler will use heuristics to decide which semanticadopt as the underlying
mechanism. From the programmer’s perspective, it mustapgeif always-copy is being
used. Consider the following producer process:

seq all (int x : [0..100])
{
[int]: 1list = [0..x];
out ! list

}

The list is never referenced after its communication. Tioeeein this example, mobile
semantics would be wisest. Of course, the process on the etioeof the communication
needs to know whether it has received a reference that iscdtgion-modify or not (from
the receiver’s perspective, a mobile reference is no @iffefrom a copied reference, as the
receiver “owns” it). This involves a small amount of dynartyping on the implementation
side. Given that the programming language is being compdedvirtual machine [1], the
virtual machine can enforce the correct semantics.

10. Permissions

One of the challenges of programming is keeping on top of #sgh of a system. Even
with one programmer this can be difficult; with multiple pragnmers and distributed teams
it can become a nightmare. The compositional hierarchiesilghs that process-oriented pro-
gramming naturally favours can help to alleviate this peofol Small components are easily
composed into larger ones, and the interactions betwedartdr components (in the form
of communication) are all visible from the parent componétdwever, if left unchecked,
understanding which components are using external sereee become difficult.

In a language such as Java, any part of a program can open uet 80 a file using
the right API, and the calling method can be unaware of it. As\&loper it has not been as
uncommon an experience as it should be to dig into methochéiell method call, only to
find that one of them is making an unexpected SQL query oveclesoor opening its own
log file. In process-oriented programming, such activitias lead to unexpected deadlocks
that are not obvious from a system overview.

Rain tentatively offers the idea of permissions (for wanaddfetter name — services is
ambiguous). A process must list the permissions that itireguPotential examples include
network, file or gui. Processes are permitted to pass on any or all of their pgionsto
their sub-processes, but permissions cannot be trangfémeexample, via a channel). If
processP, is the parent oz, which is the parent 0P, and P needs to write to a filel’s
and P, will also need these permissions in order to pass them on dogvhierarchy. This
will allow it to be obvious from the top-level process in thegram where the permissions
are being granted, even if they are simply being granted/exresre (as is effectively the case
in other languages).

11. Coding Standards

Coding standards have been a source of contention amongaproters since they were
conceived. Some believe that consistent coding standaraoimmon patterns and naming

N.C.C. Brown/ Rain: A New Concurrent Process-Oriented Programming Language 249

conventions are necessary on large projects to aid re@gialeissen mistakes, and speed up
programming when using code written by other developereef@tbelieve that they are a
waste of time that only impedes programming.

Coding standards can be used because the standard-wsagreks with a design deci-
sion taken by the language designer. For example, a C++gatimdard might disallow the
choice operatora ? b : c) because the standards-writer believes it unwisely hideges
in expressions.

Not all programmers will agree with the choices that havenbeade in Rain. They
may prefer forcing variable declarations to be at the sthe block (as in C) rather than
anywhere (as in C++/Java). Alternatively, they may wantvoicithe use of exceptions as
much as possible, and would therefore want to disbar expitiindexing and unguarded
map accesses (favouring iteration constructs instead).

In the future, the compiler will support user-specified wags and errors on normally-
legal program code. The compiler will be able to take two $ypkinputs; source files, and
(likely) XML files containing policy. Naturally the range darrors that can be supported
will have to be restricted to relatively simple rules (mgimlbout syntax uses rather than
semantic patterns), but this will allow the programmer tstomise the compiler slightly to
their wishes — as perverse as asking the compiler for moogsemay seem. | expect that
some Perl programmers will recognise this latter desire.

The idea of a seemingly-reconfigurable language may be adgran first. The key detalil
is that these policies are always less permissive than tlalltleThat is, the language with
policies (coding standards) in place will always be a subktte original language.

12. Implementation Progress

This paper has detailed the design of the Rain programmimguige. | have been imple-
menting the compiler alongside the implementation of timigl machine [1] that forms the
target for the compiler. The framework and design of the dtengs complete, and a subset
of most of the compiler stages has been implemented. Cotigpilaf very simple programs
is now possible. The compiler is targeted at the Windows alt(&inux platforms although

| expect that it will compile on any operating system with atGompiler and a Boost [16]
installation.

As with the virtual machine, the development has taken pdace mostly test-first basis,
with copious unit tests. | believe that this provides a measi assurance in the proper
functioning of the compiler. Looking back, | do not believeduld have come as far without
such testing, despite the extra time that it needed.

13. Conclusions and Future Work

This paper has presented the design of a new process-arigmtgramming language, Rain,
intended for stand-alone use or integration with existirg-€ode. Rain is statically typed
with a rich set of data types and aims to eradicate as manyseasopossible at compile-
time. It offers (along with its VM) portable easy concurrgiit a language that will interface
well with C++CSP, thereby allowing it to interact with exigy C++ libraries; in the future
| particularly hope to include support for GUIs and netwatkiapplications well suited to
process-oriented programming.

Rain includes many innovations not found in other procesmted programming lan-
guages. These include channel end interfaces (e.g. diffateg between channel end types
that supportaLTing and those that do not), templates and permissions. ™iesdd make

250 N.C.C. Brown / Rain: A New Concurrent Process-Oriented Programming Language

the language interesting to current process-orientedranaigpers, who it is hoped will find
these features useful.

It is unfortunate that further progress has not been madbecdampiler; the implemen-
tation of the virtual machine alongside the compiler hasmhézat neither are yet finished.
Future work will naturally involve, first and foremost, thenapletion of the compiler.

Acknowledgements

I would like to thank Fred Barnes, Peter Welch and lan Eastregmoany others for their
outstanding work omccam-rtand Honeysuckle. | hope they understand that if | step o thei
toes, itis only in an attempt to stand on their shoulders.

Trademarks

Javais a trademark of Sun Microsystems, Inc. Windows angVBasic are registered trade-
marks of Microsoft Corporation. Linux is a registered tnadek of Linus Torvalds. Python
is a trademark of the Python Software Foundation. ‘Cell Ba@and Engine’ is a trademark
of Sony Computer Entertainment Inc. Eclipse is a trademBEctpse Foundation, Inc. Uni-
code is a trademark of Unicode, Iraccam is a trademark of SGS-Thomson Microelectron-
ics Inc.

References

[1] N.C.C. Brown. Rain VM: Portable Concurrency through Mging Code. In Peter Welch, Jon Kerridge,
and Fred Barnes, editorSpmmunicating Process Architectures 2006, pages 253—-267, September 2006.

[2] Fred Barnes. occam-pi: blending the best of CSP and titalpulus.
http://www.cs.kent.ac.uk/projects/ofa/kroc/, June 2006.

[3] University of Kent at Canterbury. Java Communicatingg&ential Processes. Available at:
http://www.cs.ukc.ac.uk/projects/ofa/jcsp/.

[4] Jan F. Broenink, Andre W. P. Bakkers, and Gerald H. Hilde Communicating Threads for Java. In
Barry M. Cook, editorProceedings of WoTUG-22: Architectures, Languagesand Techniques for Concur-
rent Systems, pages 243-262, 1999.

[5] N.C.C. Brown and P.H. Welch. An Introduction to the Kent€CSP Library. In J.F. Broenink and G.H.
Hilderink, editors Communicating Process Architectures 2003, pages 139-156, 2003.

[6] Jon M. Kerridge. Groovy Parallel! A Return to the Spirftaccam? In Jan Broenink, Herman Roebbers,
Johan Sunter, Peter Welch, and David Wood, edi®osymunicating Process Architectures 2005, pages
13-28, September 2005.

[7] lan R. East. The 'Honeysuckle’ Programming Languageerifvand Process. In James Pascoe, Roger
Loader, and Vaidy Sunderam, edito@ammunicating Process Architectures 2002, pages 285-300, 2002.

[8] B. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[9] The Eclipse Foundation. Eclipsgttp://wuw.eclipse.org/, June 2006.

[10] Tim Sweeney. The Next Mainstream Programming LanguAdeame Developer’s Perspective 2006. In
ACM SIGPLAN - SGACT Symposium on Principles of Programming Languages. ACM, 2006. Available
at:http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL. ppt, June 2006.

[11] Stefan Klinger. The Haskell Programmer’s Guide to tBeMonad. Don’t Panic. December 2005. Avail-
able athttp://db.ewi.utwente.nl/Publications/PaperStore/db-utwente-0000003696.pdf,
June 2006.

[12] Fred Barnes and Peter Welch. Prioritised Dynamic Comioating Processes - Part I. In James Pascoe,
Roger Loader, and Vaidy Sunderam, edit@smmunicating Process Architectures 2002, pages 321-352,
2002.

[13] Jan F. Broenink and Dusko S. Jovanovic. On Issues of @artg1g an Exception Handling Mechanism
for CSP-Based Process-Oriented Concurrent Software niBdzenink, Herman Roebbers, Johan Sunter,
Peter Welch, and David Wood, edito&pmmunicating Process Architectures 2005, pages 29—41, 2005.

N.C.C. Brown/ Rain: A New Concurrent Process-Oriented Programming Language 251

[14] Gerald H. Hilderink. Exception Handling Mechanism iro@municating Threads for Java. In Jan
Broenink, Herman Roebbers, Johan Sunter, Peter Welch, anid ®Wood, editorsCommunicating Pro-
cess Architectures 2005, pages 313-330, 2005.

[15] Correspondence on the occam-com mailing list, 2nd maoo6.

[16] Boost C++ Librarieshttp://www.boost.org/, June 2006.

[17] Sun Microsystems Inc. Varargs.
http://java.sun.com/j2se/1.5.0/docs/guide/language/varargs.html, June 2006.

[18] F.R.M.Barnes and P.H.Welch. Prioritised Dynamic Camminating and Mobile Processes.[EE
Proceedings-Software, 150(2):121-136, April 2003.

[19] Unicode Inc. Unicode Home Pagettp://www.unicode.org/, June 2006.

[20] Sun Microsystems. Class Character (Java 2 Platform.8E 5
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Character.html, June 2006.

[21] ONJava. 10 Reasons We Need Java 3.0.
http://www.onjava.com/pub/a/onjava/2002/07/31/java3.html, June 2006.

[22] Unicode Inc. Unicode FAQ — Programming ISsu@stp://www.unicode.org/faq/programming.
html, June 2006.

[23] F.R.M.Barnes and P.H.Welch. Mobile Data, Dynamic Altion and Zero Aliasing: anccam Experi-
ment. InCommunicating Process Architectures. 10S Press, 2001.

