
Computer Science at Kent

Replacing Unevaluated Parts in the
Traces of Functional Programs

Yong Luo and Olaf Chitil

Technical Report No. 7 - 07
August 2007

Copyright c© 2007 University of Kent
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK

1

Replacing Unevaluated Parts in the Traces of

Functional Programs

Yong Luo and Olaf Chitil

Computing Laboratory, University of Kent, Canterbury, Kent, UK
Email: {Y.Luo, O.Chitil}@kent.ac.uk

Abstract In non-strict functional programming languages such as Haskell,
it happens often that some parts of a program are not evaluated because
their values are not demanded. In practice, those unevaluated parts are
often replaced by a placeholder (e.g. _) in order to keep the trace size
smaller. In the process of algorithmic debugging, one needs to answer
several questions in order to locate a program fault. Replacing uneval-
uated parts makes these questions shorter and semantically clearer. In
this paper, we present a formal model of tracing in which unevaluated
parts are replaced by the symbol _. The most important property, the
correctness of algorithmic debugging, is proved.

1 Introduction

Tracing for functional programs based on graph rewriting is a process to record
the information about computation. The trace can be viewed in various ways.
The most common need for tracing is debugging. Traditional debugging tech-
niques are not well suited for declarative programming languages such as Haskell,
because it is di�cult to understand how programs execute (or their procedural
meaning). In fact, functional programmers want to ignore low-level operational
details, in particular the evaluation order, but take advantage of properties such
as explicit data �ow and absence of side e�ects. Algorithmic debugging (also
called declarative debugging) has been developed for logic and functional pro-
gramming languages [11,8,10].

Several tracing systems for lazy functional languages are available, all for
Haskell [8,4,15,10,14]. Each tracing method gives a di�erent view of a compu-
tation; in practice, the views are complementary and can productively be used
together [3]. A direct and simple model of tracing for functional programs is
presented in [2,5]. The augmented redex trail (ART) is formally de�ned and its
properties are proved. The ART is independent of any particular evaluation order
and low-level operational details are ignored. In [5], the evaluation dependency
tree (EDT) for algorithmic debugging is formally generated from the ART.
Problems and Motivation

In non-strict functional programming languages such as Haskell, it happens
often that some parts of a program are not evaluated because their values are
not demanded. For example, in the evaluation fst (a, large_term) = a, the term

large_term may be a very large term and unevaluated. It has little meaning to
keep a large unevaluated term in a trace. In practice, those unevaluated parts are
often replaced by a placeholder (e.g. _) in order to keep the trace size smaller.
In the process of algorithmic debugging, one will have a smaller and clearer
question:

fst (a,_) = a yes or no?

However, there still are two problems:

1. Intuitively, it is quite clear that unevaluated parts can be replaced by _s,
and this idea has been implemented in Hat and Freja. However, it is not
easy to formulate this intuition, in particular, when dealing with high-order
functions, sharing and partial applications together. The examples in Section
4 will demonstrate the subtleties. In the paper, we shall formally present the
conditions to decide whether a node in a trace should be replaced by _ or
not. The reasons for these conditions will be explained as well.

2. There is lack of theoretical foundation. For example, the meaning of the
questions for algorithmic debugging may be di�erent after unevaluated parts
are replaced by _s. How do we know the debugging scheme is still correct? In
this paper, we use the formal model of tracing and the de�nition of the ART
and EDT in [2,5]. The unevaluated parts of the ART are replaced by the _s
if they satisfy the conditions. The most important property, the correctness
of algorithmic debugging, is proved. This is a non-trivial proof because the
traces include some interesting features such as high-order functions, sharing
and partial application. This paper is the �rst one to deal with all these
features together in terms of replacing unevaluated parts in a trace.

2 Overview of ART and EDT

The augmented redex trail (ART) is a compact but detailed representation of
the computation; in particular, it directly relates each redex with its reduct.
The ART does not overwrite a redex with its reduct, but adds the reduct into
the graph. The existing graph will never be modi�ed. A detailed example can
be found in [2]. The ART has no information about the order of computation
because this information is irrelevant. We formulate and prove properties without
reference to any reduction strategy. This observation agrees with our idea that
functional programmers abstract from time.

An evaluation dependency tree (EDT), as described in [6], is for users to
determine if a node is erroneous. Algorithmic debugging can be thought of as
searching an EDT for a fault in a program. The user answers whether the equa-
tions in an EDT are correct. If a node in an EDT is erroneous but has no
erroneous children, then this node is called a faulty node. For example, the dou-
ble negation function is mistakingly de�ned as doubleneg x = id (not x) (the
right-hand side should be not (not x)). The questions and answers are as fol-
lows. Then we locate a faulty node which is erroneous but has no erroneous
children.

3

doubleneg False = True

main = True

not True = False

yes

no

no

yes

yes

faulty node

id True = Truenot False = True

Related Work

In [13], the idea of redex trail is developed and the computation builds its own
trail as reduction proceeds. In [14], Hat, a tracer for Haskell 98, is introduced.
The trace in Hat is recorded in a �le rather than in memory. Hat integrates
several viewing methods such as Functional Observations, Reduction Trails and
Algorithmic debugging.

In [6], Naish presents a very abstract and general scheme for algorithmic de-
bugging. The scheme represents a computation as a tree and relies on a way of
determining the correctness of a subcomputation represented by a subtree. In
[7,12,9], a basis for algorithmic debugging of lazy functional programs is devel-
oped in the form of EDT which hides operational details. The EDT is constructed
e�ciently in the context of an implementation based on graph reduction. In [1],
Caballero et al formalise both the declarative and the operational semantics of
programs in a simple language which combines the expressiveness of pure Prolog
and a signi�cant subset of Haskell, and provide �rm theoretical foundations for
algorithmic debugging of wrong answers in lazy functional logic programming.
However, the starting point in [1] is an operational semantics (i.e. a goal solv-
ing calculus) that is high-level and far from a real e�cient implementation. For
example, there is no sharing of replicated terms. In contrast we use the ART as
base, which is a model of trace used in the Hat system. In [2], important proper-
ties of the ART have also been proved. In [5], the EDT is directly generated from
the ART, and some important properties such as the correctness of algorithmic
debugging are formally proved.

3 Formalising an ART and EDT

In this section we give some basic de�nitions which will be used throughout the
paper, and we describe how to build an ART and generate an EDT. To make
the paper self-contented, we copy many de�nitions and properties from [5], but
some details and proofs are omitted. Readers who are familiar with the work
may skip this section.

De�nition 1. (Atoms, Terms. Patterns, Rewriting rule and Program)

• Atoms consist of function symbols and constructors.
• Terms: (1) an atom is a term; (2) a variable is a term; (3) MN is a term
if M and N are terms.

• Patterns: (1) a variable is a pattern; (2) cp1...pn is a pattern if c is a
constructor and p1,..., pn are patterns, and the arity of c is n.

4

• A rewriting rule is of the form f p1...pn = R where f is a function symbol
and p1,..., pn (n ≥ 0) are patterns and R is a term.

• A program is a �nite set of rewriting rules.

Example 1. id x = x, not True = False, map f (x : xs) = f x : map f xs
and ones = 1 : ones are rewriting rules.

Note that we only allow disjoint patterns if there is more than one rewriting rule
for a function. We also require that the number of arguments of a function in the
left-hand side must be the same. For example, if there is a rewriting rule f c1 = g,
then f c2 c3 = c4 is not allowed. We also require that all the patterns are linear
because conversion test is di�cult sometimes. Many functional programming
languages such as Haskell only allow linear patterns.

Now, we de�ne computation graphs and choose a particular naming scheme
to name the nodes in a computation graph. The letters l and r mean the left-
hand and right-hand side of an application respectively. The letter t means a
small step of computation.

De�nition 2. (Node, Node expression and Computation graph)

• A node is a sequence of letters t, l and r, i.e. {t, l, r}∗.
• A node expression is either an atom, or a node, or an application of two
nodes, which is of the form m ◦ n.

• A computation graph is a set of pairs which are of the form (n, e), where
n is a node and e is a node expression.

Example 2. We have a Haskell program, f (Just x) = g x and g x y = y && x.
The following is a computation graph for the starting termf (Just True) (id (not False)).

{(t, tl ◦ tr), (tl, tll ◦ tlr), (tll, f), (tlr, tlrl ◦ tlrr), (tlrl, Just), (tlrr, T rue),
(tr, trl ◦ trr), (trl, id), (trr, trrl ◦ trrr), (trrl, not), (trrr, False),
(trt, trr), (trrt, T rue), (tlt, tltl ◦ tlrr), (tltl, g), (tt, ttl ◦ tlrr), (ttl, ttll ◦ tr),
(ttll, &&), (ttt, T rue)}

It can be depicted as follows. The dashed edges represent the computation steps.
The pairs of the form (m,mt) are omitted in the formal representation of the
graph. For example, (t, tt) and (tl, tlt) are not included in the graph.

True

t tt ttt

tr

trr

trt ttl

trl
&&

ttll

Trueid

Falsenot

tlr

Just True

tl

tll

tlt

tlrrtlrl

tltl
g

trrt

trrrtrrl

f

5

Pattern matching in a graph

The pattern matching algorithm for a graph has two di�erent results, either
a set of substitutions or �doesn't match�. We shall denote the set of nodes in a
computation graph G by dom(G).

• The �nal node in a sequence of reductions starting at node m, last(G, m):

last(G, m) =

 last(G, mt) if mt ∈ dom(G)
last(G, n) if (m,n) ∈ G and n is a node
m otherwise

For example, if G is the graph in Example 2, then we have last(G, t) = ttt
and last(G, tr) = trrt.

• The head of the term at node m, head(G, m), where G is a graph and m is
a node in G:

head(G, m) =

head(G, last(G, i)) if (m, i ◦ j) ∈ G
f if (m, f) ∈ G and f is an atom
unde�ned otherwise

For example, if G is the graph in Example 2, then we have head(G, t) = g
and head(G, tl) = f .

• The arguments of the function at node m, args(G, m):

args(G, m) =
{
〈args(G, last(G, i)), j〉 if (m, i ◦ j) ∈ G
〈〉 otherwise

For example, if G is the graph in Example 2, then we have args(G, t) =
〈tlrr, tr〉 and args(G, tr) = 〈trr〉.

Now, we de�ne two functions match1 and match2 which are mutually recursive.

• match1(G, m, x) = [m/x] where x is a variable.

match1(G, m, cq1...qk)

=
{

match2(G, args(G, m′), 〈q1, ..., qk〉) if head(G, m′) = c
does not match otherwise

where m′ = last(G, m).
•

match2(G, 〈m1, ...,mn〉, 〈p1, ..., pn〉)
= match1(G, m1, p1) ∪ ... ∪match1(G, mn, pn)

where ∪ is the union operator. Notice that if n = 0 then

match2(G, 〈〉, 〈〉) = []

If any mi does not match pi, 〈m1, ...,mn〉 does not match 〈p1, ..., pn〉. If the
length of two sequences are not the same, they do not match.

6

• We say that G at node m matches the left-hand side of a rewriting rule
fp1...pn = R with [m1/x1, ...,mk/xk] if head(G, m) = f and

match2(G, args(G, m), 〈p1, ..., pn〉) = [m1/x1, ...,mk/xk]

In the substitution form [m/x], m is not a term but a node. In Example 2, the
graph at node t matches g x y with [tlrr/x, tr/y].

Graph for label terms. During the computations all the variables in a term
will be substituted by some nodes. When the variables are substituted by a
sequence of shared nodes, it becomes a label term. The function graph de�ned
in the following has two arguments: a node and a label term. The result of graph
is a computation graph.

graph(n, e) = {(n, e)} where e is an atom or a node

graph(n, MN) =


{(n, M ◦N)} if M and N are nodes
{(n, M ◦ nr)} ∪ graph(nr, N) if only M is a node
{(n, nl ◦N)} ∪ graph(nl, M) if only N is a node
{(n, nl ◦ nr)} ∪ graph(nl, M) otherwise

∪graph(nr, N)

3.1 Building an ART

• For a start term M , the start ART is graph(t, M). Note that the start term
has no nodes inside.

• (ART rule) If an ART G at m matches the left-hand side of a rewriting
rule fp1...pn = R with [m1/x1, ...,mk/xk], then we can build a new ART

G ∪ graph(mt, R[m1/x1, ...,mk/xk])

• An ART is generated from a start ART and by applying the ART rule
repeatedly. Note that the order in which nodes are chosen has no in�uence
in the �nal graph.

Example 3. In Example 2, the new parts built from the nodes t and tr are

graph(tt, (y && x)[tlrr/x, tr/y])
= graph(tt, (tr && tlrr))
= {(tt, ttl ◦ tlrr), (ttl, ttll ◦ tr), (ttll, &&)}

graph(trt, x[trr/x]) = {(trt, trr)}
Note that the order of computation is irrelevant because the result of pattern
matching at the node tr is always [trr/x], no matter which node is computed
�rst.

3.2 Generating an EDT

The real Hat ART also includes so-called parent edges. Each node has a parent
edge that points to the top of the redex that caused its creation. Parent edges
are key ingredient for the redex trail view of locating program faults [13].

7

De�nition 3. (Parent edges)

parent(nl) = parent(n)
parent(nr) = parent(n)
parent(nt) = n

Note that parent(t) = ε where ε is the empty sequence.

De�nition 4. (children and tree) Let G be an ART, and mt a node in G (i.e.
mt ∈ dom(G)).

• children(G, m) = {n | parent(n) = m and nt ∈ dom(G)}. The condition
nt ∈ dom(G) is to make sure that only evaluated nodes become children.

• tree(G, m) = {(m,n1), ..., (m,nk)}∪tree(n1)∪...∪tree(nk) where {n1, ..., nk} =
children(G, m).

Example 4. If G is the graph in Example 2 then

tree(G, ε) = {(ε, t), (ε, tr), (ε, trr), (ε, tl), (t, tt)}

Usually, a single node of a computation graph represents many di�erent terms.
We are particularly interested in two kinds of terms of nodes, the most evaluated
form and the redex.

De�nition 5. (Most Evaluated Form) Let G be an ART. The most evaluated
form of a node m is a term and is de�ned as follows.

mef (G, m) =
{

mef (G, mt) if mt ∈ dom(G)
meft(G, m) otherwise

where

meft(G, m) =

a (m,a) ∈ G and a is an atom
mef (G, n) (m,n) ∈ G and n is a node
mef (G, i) mef (G, j) (m, i ◦ j) ∈ G

One may also use the de�nition of last(G, m) to de�ne the most evaluated form.

De�nition 6. (redex) Let G be an ART, and mt a node in G (i.e. mt ∈
dom(G)). redex is de�ned as follows.

• redex(G, ε) = main

• redex(G, m) =
{

mef (G, i) mef (G, j) if (m, i ◦ j) ∈ G
a if (m,a) ∈ G and a is an atom

Example 5. If G is the graph in Example 2, then

mef (G, t) = mef (G, tt) = meft(G, ttt) = True

redex(G, t) = mef (G, tl) mef (G, tr) = g True True

8

Now, we de�ne the evaluation dependency tree of a graph.

De�nition 7. (Evaluation Dependency Tree) Let G be an ART. The eval-
uation dependency tree (EDT) of G consists of the following two parts.

1. The set tree(G, ε);
2. The set of equations; for every node in tree(G, ε) there is a corresponding

equation redex(G, m) = mef (G, m).

Note that we write mef (G, ε) for mef (G, t).

Example 6. The EDT for the graph in Example 2 is the following.

t

g True True = True

main = True

id True = True not False = True

tr trr tl

tt
True && True = True

f (Just True) = g True

4 Replacing the unevaluated parts by _s.

In this section, we present the conditions of replacing the unevaluated parts by
_s, and give examples to explain these conditions.

Conditions

If m ∈ dom(G) satis�es the following three conditions it can be replaced by _.

1. mt 6∈ dom(G); and
2. head(G, m) is a function; and
3. (i, n ◦ j) 6∈ G for any nodes i, n and j, where last(G, n) = m.

We give two examples to illustrate these conditions. More explanation of these
conditions will be given after the examples. If the above conditions are satis�ed
for a node m ∈ dom(G), we shall remove some parts (or pairs) from the original
ART.

1. For any pair (n, e) ∈ G, if n = m{l, r, t}+ then the pair (n, e) will be removed
from the original ART.

2. The pair (m, e) will be replaced by (m,_).

Example 7. We give some ARTs and EDTs. The programs are omitted.

9

1. The original ART:
t

tl
tr

trl g

h c3
trrr

trrrttrrl

f

trr

trt

c1

tt

c2

trrrl trrrr

trtrtrtl

trtrl trtrrh2 c4

c5h1

Notice that ARTs are non-deterministic about evaluation order and inde-
pendent of any particular evaluation strategy. The computation at trrr may
happen according to the de�nition of ART although it may not happen in
any lazy evaluation strategy.
The original EDT is:

t f c2 = c1 h1 c5 = c3

main = c1

trrrtrg (h c3) = c2 (h2 c4)

Since the nodes trr and trtr satisfy the three conditions, the pair (trr, trrl ◦
trrr) and (trtr, trtrl ◦ trtrr) are replaced by (trr,_) and (trtr,_) respec-
tively, and other pairs such as (trrl, h) are removed from the original ART.
Then we have a new ART and a new EDT as follows.

t

tl
tr

trl g

f

trr

trt

c1

tt

c2
trtrtrtl

−

−

t

main = c1

trg _ = c2 _f (c2 _) = c1

2. The original ART:

t tt

ttr

ttrr

ttt

ttl

c1f

tl
tr

c2

trl trr

c4

c3

c6

c5

tlrtll

tlt

tltl tltr

ttll ttlr

g

h

i

The original EDT:

10

g c2 (h c3) = c6 f c1 = g c2

i c4 (h c3 c5) = c6

main = c6

t tl

tt

Since the node ttr satis�es the three conditions, the pair (ttr, tr ◦ ttrr) is
replaced by (ttr,_), and (ttrr, c5) is removed from the original ART. Then
we have a new ART as follows.

t tt

ttr

ttt

ttl

c1f

tl
tr

c2

trl trr

c4

c3

c6

tlrtll

tlt

tltl tltr

ttll ttlr

g

h

i

−

Now, the node tr satis�es the three conditions although it did not before
because (ttr, tr ◦ ttrr) was in the original ART. Then we have another new
ART and an new EDT as follows.

t tt

ttr

ttt

ttl

c1f

tl
tr

c2

c4

c6

tlrtll

tlt

tltl tltr

ttll ttlr

g

i

−

−

f c1 = g c2

main = c6

g c2 _ = c6

i c4 _ = c6

t

tt

tl

Now, we explain why these three conditions must be satis�ed for a node m before
we replace it by _.

1. mt 6∈ G. This means that there is no computation at m. We do not intend
to remove any evaluated parts. However, m may be removed because other
node satis�es all the three conditions. For example, the node trrr in Example
7(1) is removed although trrrt ∈ G.

11

2. head(G, m) is a function. This means that the head of m must not be a
constructor. If head(G, m) is not a function, i.e. it is a constructor, then the
value (or the weak head normal form) at m may be demanded for pattern-
matching. Since we only consider the computation graphs (i.e. traces) with-
out the information of programs, it is hard to decide whether a constructor is
demanded by pattern-matching. Therefore, it is in general unsafe to replace
a node whose head is a constructor. For example, the node trt in Example
7(1) should not be replaced because the head c2 may be used for pattern-
matching.

3. (i, n ◦ j) 6∈ G for any nodes i, n and j, where last(G, n) = m. This means
that m cannot be the left-hand side of any application. Otherwise, if the
left-hand side of an application is replaced by _, important information
about computation may be lost. This condition is particularly important
when there are high-order functions and partial applications. For example,
the nodes ttl and tlt in Example 7(2) should not be replaced although they
satisfy the other two conditions.

We may take into consideration that after some replacements it is possible that
(last(G, m),_) ∈ G for some m ∈ dom(G). In this case we can replace m by _
and remove all the intermediate reduction steps. This kind of replacement will
not change any questions for algorithmic debugging but will only remove some
trivial questions of the form M = _ which are always true. We do not consider
this kind of replacement in the paper.

Notation: We say G is a Condensed ART if it is obtained from an original
ART G0 by replacing some unevaluated parts. There are some pairs of the
form (m,_) in a condensed ART. From now on we shall regard _ as an
atom .

Lemma 1. Let G0 be an original ART, G a condensed ART of G0 and m a
node in G (i.e. m ∈ dom(G)).

1. m ∈ dom(G0).
2. If head(G0,m) = c and c is a constructor then (m,_) 6∈ G. This means that

any node whose head is a constructor cannot be replaced by _.
3. If (m, i ◦ j) ∈ G then (last(G, i),_) 6∈ G. This means that any node that is

the left-hand side of an application cannot be replaced by _.
4. If (m,_) ∈ G then mt 6∈ dom(G) and mef (G, m) = _.
5. If mt ∈ dom(G0) then mt ∈ dom(G) and (m,_) 6∈ G.
6. If (m,n) ∈ G0 and n is a node then (m,n) ∈ G.
7. last(G0,m) = last(G, m).
8. If (m,_) 6∈ G and (m, i ◦ j) ∈ G0 then (m, i ◦ j) ∈ G.
9. If (m,_) 6∈ G, (m,a) ∈ G0 and a is an atom then (m,a) ∈ G.
10. If (m,_) 6∈ G and head(G0,m) = a then head(G, m) = a.
11. If head(G0,m) = c and c is a constructor then head(G, m) = c.
12. If (m,_) 6∈ G then args(G0,m) = args(G, m).

Proof. By the three conditions and the de�nitions of mef , last, head and args.

12

5 Correctness of Algorithmic Debugging

In this section, we present the properties of the EDT and prove the correctness
of algorithmic debugging.

Notations: M 'I N means M is equal to N with respect to the semantics
of the programmer's intention. If the evaluation M = N of a node in an
EDT is in the programmer's intended semantics, then M 'I N . Otherwise,
M 6'I N , i.e. the node is erroneous.

Semantical equality rules are given in Figure 1. They will be used in Lemma 5
later.

General semantical equality rules:

M 'I M

M 'I N

N 'I M

M 'I N M ′ 'I N ′

MM ′ 'I NN ′
M 'I N N 'I R

M 'I R

Figure 1. Semantical equality rules

When there are _s in an equation in an EDT, for example, g _ = c2 _
as in Example 7(1), if this is the programmer's intention, then it means that
∀x∃y.(g x 'I c2 y). If it is not the programmer's intention, then it means that
∃x∀y.(g x 6'I c2 y). In general, for any equation M = N in an EDT, we re-
place _s by fresh variables. Then the equation becomes M ′ = N ′, and suppose
{x1, ..., xn} is the set of variables in M ′ and {y1, ..., ym} is in N ′. If M = N is
the programmer's intention, it means that ∀x∃y.(M ′ 'I N ′). If M = N is not
the programmer's intention, it means that ∃x∀y.(M ′ 6'I N ′).

Notations: Let M and N be terms with _s. Replace _s by fresh variables
then the equation becomes M ′ = N ′, and suppose {x1, ..., xn} is the set of
variables in M ′ and {y1, ..., ym} is in N ′. M w N denotes ∀x∃y.(M ′ 'I N ′).
M 6w N denotes ∃x∀y.(M ′ 6'I N ′). If there is no _ in M and N , M w N
means M 'I N and M 6w N means M 6'I N .

Lemma 2. We have the following lemmas.

1. _ w _, M w M , and M w _ for any M .
2. If M ′ is obtained from M by replacing some parts by _s, then M w M ′.

Proof. For the �rst, ∀x∃y.x 'I y is true. For other lemmas, similar arguments
su�ce.

Lemma 3. We also have the following lemmas by the semantical equality rules
in Figure 1.

13

1. If M w N and N w R then M w R.
2. If M w N and M ′ w N ′ then MM ′ w NN ′.
3. If M1 w N1,..., Mk w Nk then R[M1/x1, ...,Mk/xk] w R[N1/x1, ..., Nk/xk].

Theorem 1. If M 6w N and R w N , and there is no _ in M and R, then
M 6'I R.

Proof. If M 'I R, then we will have a contradiction.

As mentioned in Section 2, if a node in an EDT is erroneous but has no erroneous
children, then this node is called a faulty node. Figure 2 shows what a faulty
node looks like, where n1, n2, ..., nk are the children of m.

�������)

XXXXXXXXXXXz

�
�
�

redex(n2) w mef(n2)

m

redex(n1) w mef(n1)
... ... redex(nk) w mef(nk)

n1

redex(m) 6w mef(m)

n2 nk

Figure 2. m is a faulty node

De�nition 8. Suppose the equation fp1...pn = R is in a program. If there exists
a substitution σ such that (fp1...pn)σ ≡ fb1...bn and Rσ ≡ N , then we say that
fb1...bn →P N . Note that there is no _ in σ, fb1...bn and N .

If fb1...bn →P N but fb1...bn 6'I N , then we say that the de�nition of the
function f in the program is faulty.

fb1...bn →P N means that it is a single step computation from fb1...bn to
N according to one of the rewriting rules in the program P , and there is no
computation in b1, ..., bn.

De�nition 9. (Correctness of Algorithmic Debugging) If the following
statement is true, then we say that algorithmic debugging is correct.

• If the equation of a faulty node is fb1...bn = M , then the de�nition of the
function f in the program is faulty.

In order to prove the correctness, we need some de�nitions �rst.

De�nition 10. (branch and branch′) We say that n is a branch node of m,
denoted as branch(n, m), if one of the following holds.

• branch(m,m);

14

• branch(nl, m) if branch(n, m);
• branch(nr,m) if branch(n, m).

Let G be a condensed ART.

branch′(G, m) = {n | nt ∈ dom(G) and branch(n, m)}

Note that branch′(G, m) is the set of all evaluated branch nodes of m.

Lemma 4. Let G be a condensed ART. If mt ∈ dom(G) then children(G, m) =
branch′(G, mt).

Proof. By the de�nitions of children and branch′.

De�nition 11. Let G be a condensed ART and m a node in G. reduct(G, m)
is de�ned as follows.

reduct(G, m) =



a if (m, a) ∈ G and a is an atom
mef (G, n) if (m, n) ∈ G and n is a node
reduct(G, ml) reduct(G, mr) if (m, ml ◦mr) ∈ G
reduct(G, ml) mef (G, j) if (m, ml ◦ j) ∈ G and j 6= mr
mef (G, i) reduct(G, mr) if (m, i ◦mr) ∈ G and i 6= ml
mef (G, i) mef (G, j) if (m, i ◦ j) ∈ G and i 6= ml and j 6= mr

De�nition 12. (depth) Let m be a node in a condensed ART G.

depth(G, m) =



1 + max{depth(G, ml), if (m, ml ◦mr) ∈ G
depth(G, mr)}

1 + depth(G, ml) if (m, ml ◦ j) ∈ G and j 6= mr
1 + depth(G, mr) if (m, i ◦mr) ∈ G and i 6= ml
1 if (m, i ◦ j) ∈ G and i 6= ml and j 6= mr
0 otherwise

Lemma 5. Let G be a condensed ART and m a node in G. If redex(G, n) w
mef (G, n) for all n ∈ branch′(G, m), then reduct(G, m) w mef (G, m).

Proof. By induction on depth(G, m). The structure of the proof is very similar
to the one in [5], but the lemmas used in this proof are about the relation w.

When depth(G, m) = 0, we have (m, e) ∈ G where e is a node or an atom.

• If e ≡ _, we have mt 6∈ dom(G) by Lemma 1(5). Then reduct(G, m) = _
and mef (G, m) = _. Therefore, by Lemma 2(1), we have reduct(G, m) w
mef (G, m).

• If e is an atom and e 6≡ _, we have reduct(G, m) = e. Now, we consider the
following two cases.

· If m ∈ branch′(m), then we have mt ∈ dom(G) and redex(G, m) = e
and redex(G, m) w mef (G, m). Note that e 6≡ _ in this case. Therefore,
we have reduct(G, m) w mef (G, m).

15

· If m 6∈ branch′(m), then we have mt 6∈ dom(G) and mef (G, m) =
meft(G, m) = e. Therefore, by Lemma 2(2), we have reduct(G, m) w
mef (G, m).

• If e is a node, then mt 6∈ G. Then by the de�nitions of reduct and mef , we
have reduct(G, m) = mef (G, e) and mef (G, m) = meft(G, m) = mef (G, e).
Therefore, by Lemma 2(2), we have reduct(G, m) w mef (G, m).

For the step cases, we proceed as follows.

• If m ∈ branch′(G, m), then we have mt ∈ dom(G) and
redex(G, m) w mef (G, m).
Let us consider only one case here. The other cases are similar. Suppose
(m,ml ◦ j) ∈ G and j 6= mr, then by the de�nitions we have

redex(G, m) = mef (G, ml) mef (G, j)
reduct(G, m) = reduct(G, ml) mef (G, j)

Since for any n ∈ branch′(G, ml), by Lemma 4, we have n ∈ branch′(G, m)
and hence redex(G, n) w mef (G, n). By the de�nition of depth, we also
have depth(G, ml) < depth(G, m). Now, by induction hypothesis, we have
reduct(G, ml) w mef (G, ml). Therefore, by Lemma 3(2), we have reduct(G, m) w
redex(G, m). And by Lemma 3(1), we have reduct(G, m) w mef (G, m).

• If m 6∈ branch′(G, m), then mt 6∈ dom(G).
Let us also consider only one case. The other cases are similar. Suppose
(m,ml ◦ j) ∈ G and j 6= mr, then by the de�nitions we have

mef (G, m) = mef (G, ml) mef (G, j)
reduct(G, m) = reduct(G, ml) mef (G, j)

Similar arguments as above su�ce.

Corollary 1. Let G be a condensed ART and mt a node in G. If redex(G, n) w
mef (G, n) for all n ∈ children(G, m), then reduct(G, mt) w mef (G, m).

Proof. By Lemma 4 and 5.

Lemma 6. Let G0 be an ART, G a condensed ART of G0 and m a node in G.
If mt ∈ dom(G0) and G0 at node m matches the left-hand of a rewriting rule
fp1...pn = R with [m1/x1, ...,mk/xk], then we have:

1. G at node m matches fp1...pn with [m1/x1, ...,mk/xk],
2. redex(G, m) ≡ (fp1...pn)[mef (G, m1)/x1, ...,mef (G, mk)/xk],
3. R[mef (G, m1)/x1, ...,mef (G, mk)/xk] w reduct(G, mt).

Proof. For the �rst two, by induction on the de�nition of pattern matching and
Lemma 1. Similar results have been proved in [2,5].

For the third, if no node under mt is replaced by _, formally speaking,
(mt{l, r}∗,_) 6∈ G, then we have

reduct(G, mt) = R[mef (G, m1)/x1, ...,mef (G, mk)/xk]

16

This result has been proved in [2,5]. If some parts under mt are replaced by _s,
then we can replace some parts of R in R[mef (G, m1)/x1, ...,mef (G, mk)/xk] by
_s and get reduct(G, mt), and we have

R[mef (G, m1)/x1, ...,mef (G, mk)/xk] w reduct(G, mt)

Now, we come to the most important theorem, the correctness of algorithmic
debugging.

Theorem 2. Let m be a faulty node in the EDT for a condensed ART G and
the equation of m is fb1...bn = M , then the de�nition of the function f in the
program is faulty.

Proof. Since m is a faulty node, we know redex(G, m) 6w mef (G, m) where
redex(G, m) ≡ fb1...bn and mef (G, m) ≡ M . Let us replace _s in redex(G, m)
andmef (G, m) by fresh variables, and then redex(G, m) becomes M ′ andmef (G, m)
becomes N ′. Suppose x and y are variables in M ′ and N ′ respectively. Then we
have ∃x∀y.(M ′ 6'I N ′) because redex(G, m) 6w mef (G, m). Suppose there are
terms e such that ∀y.(M ′[e/x] 6'I N ′). We write redex(G, m)[e/_] for M ′[e/x].
Notice that there is no _ in e and redex(G, m)[e/_], and we have

redex(G, m)[e/_] 6w mef (G, m) (1)

Now, because there is a computation at the node m, we suppose that the
original graph at m matches fp1...pn with [m1/x1, ...,mk/xk]. Then by Lemma
6, G at m matches fp1...pn with [m1/x1, ...,mk/xk]. By Lemma 6, we also have

redex(G, m) ≡ (fp1...pn)[mef (G, m1)/x1, ...,mef (G, mk)/xk]

and
R[mef (G, m1)/x1, ...,mef (G, mk)/xk] w reduct(G, mt) (2)

So, we have

redex(G, m)[e/_]
≡ ((fp1...pn)[mef (G, m1)/x1, ...,mef (G, mk)/xk])[e/_]

Notice that there is no _ in fp1...pn. Therefore, if we replace the _s inmef (G, mi)
by some relevant terms from e and get Mi, then we have

redex(G, m)[e/_] ≡ (fp1...pn)[M1/x1, ...,Mk/xk]

and M1 w mef (G, m1),..., Mk w mef (G, mk).
By the de�nition of →P , we have

redex(G, m)[e/_] →P R[M1/x1, ...,Mk/xk] (3)

By Lemma 3(3), we have

R[M1/x1, ...,Mk/xk] w R[mef (G, m1)/x1, ...,mef (G, mk)/xk] (4)

17

Now we have R[M1/x1, ...,Mk/xk] w reduct(G, mt) by the relations (2) and
(4) and Lemma 3(1).

Since m is a faulty node, we have reduct(G, mt) w mef (G, m) by Corollary
1. Now, by Lemma 3(1), we have

R[M1/x1, ...,Mk/xk] w mef (G, m)

Since redex(G, m)[e/_] 6w mef (G, m) (see the relation (1)), and there is no
_ in redex(G, m)[e/_] and R[M1/x1, ...,Mk/xk], by Lemma 1, we have

redex(G, m)[e/_] 6'I R[M1/x1, ...,Mk/xk] (5)

Since we have proved the relations (3) and (5), the computation from
redex(G, m)[e/_] to R[M1/x1, ...,Mk/xk] is a single-step computation accord-
ing to the rewriting rule fp1...pn = R, but redex(G, m)[e/_] is not equal to
R[M1/x1, ...,Mk/xk] according to the intended semantics. Therefore, the de�ni-
tion of the function f in the program is faulty.

6 Conclusion and Future Work

In this paper, we formally present three conditions for replacing unevaluated
parts in a trace of a functional program. The traces have some interesting features
such as high-order functions, sharing and partial applications. Compared with
some simpler functional programs in which, for instance, high-order functions are
disallowed, it is much harder to give formal conditions to capture our intuition.
We also give examples to explain the informal meaning of these conditions. The
properties of condensed ARTs are proved. The most important property, the
correctness of algorithmic debugging, is also proved. This means that a node
can be safely replaced by _ if it satis�es the three conditions.

There is still more work that needs to be done. Currently we are studying
two extensions of the ART model.

1. Add local rewriting rules to the program.

2. Remove trusted functions from the ART.

How these two extensions will a�ect the EDT and algorithmic debugging needs
further study.

Acknowledgements

The work reported in this paper was supported by the Engineering and Physical
Sciences Research Council of the United Kingdom under the grant EP/C516605/1.

18

References

1. Rafael Caballero, Francisco J. López-Fraguas, and Mario Rodríguez-Artalejo. The-
oretical foundations for the declarative debugging of lazy functional logic programs.
In Herbert Kuchen and Kazunori Ueda, editors, Functional and Logic Program-
ming, 5th International Symposium, FLOPS 2001, Tokyo, Japan, March 7-9, 2001,
Proceedings, LNCS 2024, pages 170�184. Springer, 2001.

2. O. Chitil and Y. Luo. Towards a theory of tracing for functional programs based
on graph rewriting. In Proceedings of the third international workshop on Term
Graph Rewriting, Termgraph, volume 7, 2006.

3. Olaf Chitil, Colin Runciman, and Malcolm Wallace. Freja, Hat and Hood � A
comparative evaluation of three systems for tracing and debugging lazy functional
programs. In Markus Mohnen and Pieter Koopman, editors, Implementation of
Functional Languages, 12th International Workshop, IFL 2000, LNCS 2011, pages
176�193. Springer, 2001.

4. Andy Gill. Debugging Haskell by observing intermediate data structures. Elec-
tronic Notes in Theoretical Computer Science, 41(1), 2001. 2000 ACM SIGPLAN
Haskell Workshop.

5. Y. Luo and O. Chitil. Proving the correctness of algorithmic debugging for func-
tional programs. In Proceedings of the seventh symposium on Trends in Functional
Programming, TFP, 2006.

6. Lee Naish. A declarative debugging scheme. Journal of Functional and Logic
Programming, 1997(3), 1997.

7. Henrik Nilsson. A declarative approach to debugging for lazy functional languages.
Licentiate Thesis No. 450, Department of Computer and Information Science,
Linköping University, S-581 83, Linköping, Sweden, September 1994.

8. Henrik Nilsson. Declarative Debugging for Lazy Functional Languages. PhD thesis,
Linköping, Sweden, May 1998.

9. Henrik Nilsson and Peter Fritzson. Algorithmic debugging for lazy functional
languages. Journal of Functional Programming, 4(3):337�370, 1994.

10. B. Pope and Lee Naish. Practical aspects of declarative debugging in Haskell-
98. In Fifth ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, pages 230�240, 2003.

11. E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.
12. Jan Sparud and Hendrik Nilsson. The architecture of a debugger for lazy functional

languages. In Mireille Ducassé, editor, Proceedings of AADEBUG'95, Saint-Malo,
France, May, 1995.

13. Jan Sparud and Colin Runciman. Tracing lazy functional computations using redex
trails. In H. Glaser, P. Hartel, and H. Kuchen, editors, Proc. 9th Intl. Symposium
on Programming Languages, Implementations, Logics and Programs (PLILP'97),
pages 291�308. Springer LNCS Vol. 1292, September 1997.

14. Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-
view tracing for Haskell: a new Hat. In Preliminary Proceedings of the 2001 ACM
SIGPLAN Haskell Workshop, UU-CS-2001-23. Universiteit Utrecht, 2001. Final
proceedings to appear in ENTCS 59(2).

15. Malcolm Wallace, Olaf Chitil, and Colin Runciman. Hat: transforming lazy func-
tional programs for multiple-view tracing. In preparation, 2004.

19

