
 1 

Incorporating Value Judgments in DEA Models 

Wenbin Liu, KBS, University of Kent, UK 

 

Wei Meng, Institute of Physics Science, Chinese Academy of Sciences, China 

 

    T.Q. Zhang, Institute of Policy and Management Science, Chinese Academy 

of Sciences, China 

 

1. Introduction 

The issue of reflecting value judgments very frequently arises in both theoretical 

investigations and practical applications of DEA. As Allen et al. (1997, p.2) presented: 

the concept of value judgments, albeit frequently discussed, is lacking a formal 

definition in the context of DEA, and therefore value judgments are considered as 

“logical constructs, incorporated within an efficiency assessment study, reflecting the 

Decision Makers’ (DMs) preferences in the process of assessing efficiency. The 

immediate intention of incorporating value judgments into DEA methodology is to 

reflect prior views or information in efficiency assessments. This prior information 

can be incorporated in different ways, and then has different implications on the 

outcomes of the assessments. 

This chapter examines the issue of incorporating value judgments in DEA, some 

available approaches and their advantages and drawbacks. The chapter is organized as 

follows: The next section highlights motivations of incorporating value judgments in 

DEA models, and reviews some existing approaches. In Section 3, we further discuss 

the approaches related to weights restrictions. In Section 4, methods associated with 

preferences changes are introduced from a viewpoint of changing the default 

preference in DEA models. Relationships and interpretations of these approaches are 

discussed in Section 5. In the sixth section, we conclude this chapter. 

 

2. Value Judgments in DEA: purposes and motivations 

Value judgments are often closely associated with preferences used in performance 

evaluation processes, as explained in Liu et al. (2006). Preferences are a set of rules 

that are explicitly or implicitly assumed in a performance evaluation in order to judge 

whether or not some input-output data sets (thus DMUs) are superior to others. For 

instance, under Pareto preference, which is widely used in performance evaluations 
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and assumed in the classic DEA models, one desirable output vector is said to be 

higher (or better) than another one only if each component of the former is not lower 

than that of the latter respectively. Thus under Pareto preference, one questionable but 

legitimate strategy for a DMU to become efficient is to maximize its efficiency only 

over a subset of the output components (e.g., any single output), while totally 

ignoring its performance on the other ones, because then no other DMUs can possibly 

beat it over this subset of the outputs thus in Pareto preference.  For instance let us 

assume that for the same amount of time spent on their studies, chemistry students A, 

B, and C have the examination results (71, 2, 3), (70, 70, 70), and (50, 50, 99) on 

mathematics, physics, and chemistry respectively. Most teachers may well think that 

the student B is the most efficient, but under Pareto preference that is used in standard 

DEA models, they are all efficient as no one is better than the others on all outputs i.e. 

A outperforms B and C on mathematics, B outperforms A and C on physics, and C 

outperforms A and B on chemistry. Such an assessment may not be desirable for the 

DMs or for the objectives of evaluation, as most of our universities will not allow too 

low results across two subjects, while some chemistry teachers may think that the 

student C is very talented. Such relevant a priori information may often need to be 

incorporated in DEA so that the value judgments will be reflected in the outcomes of 

the assessments.  

Next, we discuss why it may be necessary to incorporate value judgments in real-life 

applications of classical DEA models.  

2.1 Incorporating prior knowledge of the variables  

There are several inter-related problems associated with the default preference of 

DEA models when applying them in performance evaluations, which frequently occur 

in the real-life applications. Among them is the problem of unrealistic weight 

distribution, where some DMUs are identified as efficient simply because they have 

relatively very large (or small) weights in a single output (or input) while these 

extreme weights may be practically undesirable. This is illustrated through the 

following multiplier DEA model and the results are shown in Table 1.  
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Table1 

Student Mathematics Physics Chemistry Score *

1u  
*

2u  
*

3u  

A 71 2 3 1 0.0141 0 0 
B 70 70 70 1 0 0.0099 0.0044 
C 50 50 99 1 0 0 0.0101 

where rirjij uvyx ,,, are the inputs, outputs and the corresponding weighs respectively. 

Clearly some outputs are ignored in this DEA assessment by assigning zero weight, 

such as physics and chemistry for student A. This phenomenon often occurs in 

practical applications of DEA. As matter of fact, in the first DEA paper on 

performance evaluation of the “program follow through” in the USA, Charnes et al. 

(1978) observed that many DMUs were rated efficient by putting their output weights 

solely on “self esteem” and ignoring performance on mathematics and verbal 

reasoning. 

The default preference in standard DEA models such as CCR and BCC is Pareto 

preference, assuming no prior preference and knowledge on any of the inputs and 

outputs, so that a DMU has the complete freedom to select the weights that are most 

favorable for its assessment to achieve the maximum efficiency score. This full 

flexibility of selecting weights is important in the identification of inefficient DMUs. 

Nevertheless, weights with full flexibility may not always be suitable in practical 

applications when prior information or value judgments of DMs need to be 

incorporated on performance evaluation, such as the marginal rates of substitution 

between the inputs and/or outputs, or relative importance of the inputs and outputs. 

Still taking the chemistry students as an example, if DMs believe that the students 

must make good progress in a broad spectral of subjects, so that the weight for each 

subject in the DEA model should not be allowed too low, say, lower than 0.0045. If 

these constraints are added into Model 2.1, then only student B is rated as efficient. 

Other the other hand, if the chemistry department believes that the weights for the 
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chemistry are more important than those of physics and mathematics, then one may 

add other weights constraints to incorporate such value judgments in the multiplier 

DEA model as seen in the next sections. In fact weights restriction is an easy-to-use 

and yet powerful approach in incorporating prior information and value judgments in 

DEA models, and has been extensively studied in the DEA literature, such as Allen et 

al. (1997), Thanassoulis et al. (2004). Weights restrictions can be used to reflect prior 

knowledge on marginal rates of substitution and/or transformation of the factors of 

production in Thanassoulis (1995), or to capture special interdependencies between the 

inputs and outputs of the production process being modeled in Beasley (1990), 

Thanassoulis et al. (1995), or to incorporate price information in Charnes et al. (1990).  

In the next section we will further discuss how to set up appropriate weights 

restrictions according to application needs.  

For many applications, the dual DEA models can be modified to effectively 

incorporate prior information on some variables, such as the marginal rates of 

substitution between the inputs and/or outputs and relative importance of the inputs 

and outputs. The most well known example is probably the Cone-Ratio Model, see 

Charnes et al. (1989, 1990), and Brockett et al. (1997). This approach can be 

interoperated from a point view of date transformations, see Thanassoulis et al. (2004). 

In Liu et al. (2006), it was regarded as a special case of another approach: Preferences 

Changes – to change the default preference of DEA models to reflect such 

information, since Pareto preference does not allow substitutions between inputs or 

outputs. These will be further explained below and in Section 4.  

2.2 Incorporating preferences on inputs and outputs  

Pareto preference implies that all the components of inputs and outputs are equally 

important in the evaluations, but this may not be desirable in some real-life 

applications. In fact the DMs often have some preferences on relative importance of 

the input or output components. For instance in assessing scientific research, often 

quality of research is regarded as of dominate importance over the other outputs. In 

the above simple example in Table 1, since the students are in a chemistry department, 

the department may put more emphasis on the examination results of chemistry, and 

wishes to incorporate this value judgment into DEA evaluation. One of the most 

difficult tasks of incorporating such value judgments is how to quantify them into 

DEA models. Usually these preferences are expressed in vague daily languages like 
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“more important” or “very valuable”, and have to be translated into precise 

mathematical relationship in DEA models. One widely used approach is again weights 

restrictions. In fact since the weights in the DEA models represent relative values 

attached to inputs and outputs, to some extent putting extra weights restrictions in the 

DEA models can reflect preferences on relative importance of the inputs and the 

outputs. In our students’ example, if one adds the weights restrictions like: 123 vvv   

in the multiplier DEA model to reflect the DMs’ preference on importance of the marks 

of the subjects, then students B and C are now classified as efficient. This approach will 

be further discussed in Section 3. 

On the other hand, value judgments can be incorporated into DEA directly by 

changing the default preference in dual DEA models as discussed recently in Liu et al. 

(2006). Let us explain this approach by examining the following CCR model:  

0  

 

X  S.t.
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Basically this approach (to be referred to as the approach of Preferences Changes) 

replaces the original meanings of the inequalities (or  ) in the dual DEA models 

with something that can reflect the desired preferences in an application. Still take the 

students’ case as an example, the second inequality for the outputs in the above model 

originally means greater than or equal in all the marks of the three subjects. If one 

replaces the meaning of this inequality in the above model by a suitable preference so 

that “ ” means “to have higher examination scores both in chemistry and in the total”, 

then student A is classified as inefficient by the modified DEA model. One can also 

replace it by “to have higher total examination scores”. This approach will be 

discussed in Section 4. Some existing DEA models like the Cone-model and DEA 

model with preferences in Zhu (1996) can be related to this approach. 

 

2.3 Improving discrimination between DMUs 

When the number of DMUs under performance evaluation is small compared to the 

total number of inputs and outputs, the problem of weak discriminating power often 

occurs. In this situation, classical DEA models, such as CCR, BCC models, often 

identify too many DMUs as efficient. This is again partly due to the fact that DEA 
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models like CCR, BCC, allow full flexibility in the selection of weights so that many 

DMUs will be able to achieve the maximum DEA efficiency score, especially if the 

number of DMUs is relatively small to the total number of inputs and outputs since it 

is then more likely that each DMU specializes on a specific input-output mix not 

directly comparable with that of the other DMUs. Thus weights restrictions can much 

increase discrimination power of a DEA model, and the example in Table 1 has 

demonstrated this. Thompson et al. (1986) and Cook et al. (1991) addressed the issue 

of discriminating between efficient DMUs through weights restrictions. Similarly the 

preferences in DEA dual models affect discrimination power of the models. For 

instance, by replacing the Pareto preference with the preference of total average in the 

dual CCR DEA model, only student B is classified as efficient. Some DEA models 

with the preferences of total or part averaging have been successfully applied on 

smaller data sets, for example, in Zhu (1996) and Meng et al. (2005).  

Discrimination between efficient DMUs can also be addressed by other methods like 

the super-efficiency DMU model in Andresen and Petersen (1993), the cross- 

evaluation procedure in Green et al. (1996), and multiple-objective programs in Li 

and Reeves (1999). 

 

2.4 Methods for incorporating Value Judgments 

The issue of incorporating value judgments should be considered even before DEA 

models are selected and computations start. In fact careful studies should be carried 

out on selections of all the possible input-output indicator combinations, and their 

implications on value judgments should be highlighted and discussed with all the 

stakeholders in an evaluation. Agreed value judgments should be borne in mind 

throughout the processes of indicator selection. Furthermore some outlets can be 

removed from an evolution during these processes according to the agreed value 

judgments. For example, if research quality is the key objective of a research 

evaluation, then maybe only publications in the very top academic journals should be 

counted when selecting output data for that evaluation.  

In the rest of the chapter we will concentrate on the issue of how to incorporate value 

judgments through DEA models. In the DEA literature there exist several types of 

approaches to incorporate value judgments in DEA models, some of which have been 

discussed above, such as 
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1. Weights Restrictions (WRs). This approach incorporates value judgments by 

adding suitable weights restrictions on the weights in the multiplier DEA models 

as explained above; 

2. Data Transformations (DTs). This approach incorporates value judgments by 

translating the original input-output data sets into new ones and then applying the 

standard DEA models; 

3. Preferences changes (PCs). This approach incorporates value judgments by 

replacing the default Pareto preference in the dual DEA models with some more 

suitable preferences.  

There exist several other interesting ideas used to incorporate value judgments in 

DEA, such as, restricting (extending) facets of the efficient frontier in Bessent et al. 

(1988) and Olesen and Petersen (1996), and formulating DMs preferred value 

functions in Halme et al. (1999). According to the discussions in Liu et al. (2006), at 

least value judgments can be reflected also through expanding the PPS set (see 

Thanassoulis et al. (2004) for adding extra DMUs), and selecting suitable merit 

measurements. These approaches have been used to incorporate prior information in 

DEA models, although we will not discuss them in further details.  

In the next section, we will focus on the DEA models with the weights restrictions. In 

the fourth section, we will discuss the DEA models with preferences different from 

the Pareto’s. For simplicity, we will often restrict the discussion to the classical CCR 

DEA model (Charnes et al. 1978), which implicitly assumes that the DMUs are 

constant returns to scale. All the inputs and outputs are assumed to be desirable and 

positive. 

 

3. DEA models with weights restrictions 

3.1 Constraint forms of weights restrictions  

Generally weights restrictions incorporate value judgments in DEA through the 

models of multiplier type, such as Model 3.1 below. In order to make the coming 

explanations simpler, CCR multiplier models with a constant return to scale are to be 

used throughout this section. 

Model 3.1(multiplier model) Model 3.2(dual model) 
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In a CCR multiplier model like Model 3.1, the weights ( ru and iv ) assigned to DMU0 

originally have full flexibility as long as the linear programming constraints are 

satisfied. In some ways, the weights ru and iv  in Model 3.1 reflect relative 

importance of the inputs and outputs for each assessed DMU, although the precise 

meanings could be quite subtle and are context dependent as to be seen later. Allen et 

al. (1997) classified weights restrictions on the multiplier models into three major 

categories as: 1) absolute weights restriction, 2) assurance regions of type I: to 

represent the relative weights relationship within inputs variables or outputs variables 

respectively. And assurance region of type II: to represent the relative relationship 

between inputs and outputs. 3) Restrictions on virtual inputs and outputs. Table X 

below summaries them: 

Categories 
Formulas 

WRs On inputs WRs on outputs 

Absolute WRs iii v           (a1) rrr u           (a2) 

Assurance region of 

type I 

211   iiiii vvkvk  (b1) 
211   rrrrr uuwuw (b2) 

i

i

i
i

v

v
 

1

     (c1) r

r

r
r

u

u
 

1

      (c2) 

Assurance region of 

type II rii uv          (d) 

WRs on virtual 

input and outputs 
im

i
iji

iji

i

xv

xv
 


1

  (e1) rs

r
rjr

rjr

r

yu

yu
 


1

   (e2) 

* The Greek letters (
rriiirriirirrii  ,,,, , , , , ,  , , , , ,
) are user-specified constants 

to reflect value judgment of DMs in the formulae (a )-(e). 

 

1. Absolute weights restrictions 

Absolute weights restrictions directly provide lower and/or upper bounds for input 
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weights iv  and/or output weights ru , as the formulas (a1) and (a2) below show: 

iii v           (a1)           rrr u            (a2) 

This type of weights restrictions was first introduced by Dyson and Thanassoulis 

(1988) on an application to rate departments. Cook et al. (1991) presented an 

application of this type on evaluation of highway maintenance patrols. Allen et al. 

(1997) explained that initially this type of weights restrictions was mainly introduced 

to prevent the inputs or outputs from being over emphasised or ignored in the 

assessment. It is straightforward to include the constraints of type (a1) and/or (a2 ) into 

Model 3.1. However, how to interpret the meanings of these bounds parameters in 

efficiency assessment is still a challenge, since weights in DEA models are significant 

on a relative basis. In general the values of the bounds are context dependent. Another 

difficulty is associated with the potential infeasibility of DEA models with absolute 

weights restrictions; see for example, Podinovski and Athanassopoulos (1998) and 

Podinovski (1999, 2004). It was also noted that switching from an input orientation to 

an output orientation might produce different efficiency scores for DEA models with 

absolute WRs, see Allen et al. (1997). 

It is important to realise that there is an implicit interdependence between the bounds 

on different weights when applying absolute weight restrictions. For example, in our 

student example above, there is only one input and it is assumed to be the same for all 

the DMUs. Thus the total virtual outputs have to be less than or equal to the unit, and 

when we impose a lower bound for one output weight, we have also implicitly set the 

upper bounds for the other output weights. In this example, if the absolute lower 

bounds are set to be lower than 0.004 then these restrictions have no effects to the 

model. However, if the lower bounds are higher than 0.005, then the constrained 

models are infeasible, as explained above. Thus it is neither straightforward nor 

intuitive to sent suitable absolute WRs for this case. Sometimes, it is helpful to first 

examine the unbounded the solutions in model 2.1, and then to decide the appropriate 

bound levels. Therefore we can set the lower bounds to be 0.0045. Then only student 

B is rated as efficient, and the computation results are as follows.  

Table2 

Student Score *

1u  
*

2u  
*

3u  

A 0.397786 0.0053 0.0045 0.0045 
B 1 0.0045 0.0045 0.0053 
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C 0.973286 0.0045 0.0045 0.0053 
 

Roll and Golany (1993) studied the approach of using unbounded DEA models to 

decide the weights restrictions systematically. When absolute weights restrictions are 

used in the DEA models of multiplier form, new variables are introduced in the dual 

models not only on the constraints but also the objective function. Customary 

interpretation of radial measurement in standard DEA models may break down when 

absolute weights restrictions are incorporated. How to test the validation of a model 

with absolute weights restrictions and how to interpret the results clearly and make it 

is meaningful for DMs and managers have been extensively discussed. Podinovski 

(2001, 2004) proposed to replace the traditional DEA objective functions (which 

measure absolute efficiency) by max-min objective functions to measure relative 

efficiency in order to avoid mis-representation of unit relative efficiency.  

 

2. Assurance region method 

(1) Assurance regions of type I (WRs within inputs or outputs) 

211   iiiii vvkvk  (b1)          211   rrrrr uuwuw    (b2) 

i

i

i
i

v

v
 

1

     (c1)          r

r

r
r

u

u
 

1

         (c2) 

These types of restrictions impose relative lower and/or upper bounds for either inputs 

weights (b1 and c1) or outputs weights (b2 and c2), or both to incorporate value 

judgments in the models. They were first used by Thompson et al. (1986) to improve 

discrimination on laboratory site selections. Since then, such weights restrictions have 

been applied in various applications, and among them type (c) restrictions were used 

most frequently. ARIs are particularly suitable when there is a priori information on 

marginal rates of substitution between inputs and/or outputs. For instance, when all 

the weights are set to be the same in (c), then the total sums of the inputs or outputs 

replace the virtual inputs or outputs.. Generally, this type of weights restrictions 

shares similarity with assessing trade-off in multi-criteria decision analysis. The 

difference between multi-criteria decision analysis and DEA is that the former aims to 

identify the trade-off exactly, while DEA leaves some weight flexibility, see, e.g. 

Dyson et al. (2001). 
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In many applications, these types of weights restrictions are explicit and meaningful 

to DMs and managers, although the bound values for ARI are dependent on the 

scaling of the inputs or outputs, and are sensitive to non-commensurable indicators, as 

discussed in Allen et al. (1997). Take the chemistry students’ case as example; if we 

add the constraints  0123  uuu into the multiplier model to reflect the value 

judgments that the marks of chemistry are more important than those of physics and 

the latter are important than those of mathematics, and then we will have the 

following results:  

Table3 

Students Score *

1u  
*

2u  
*

3u  

A 0.3619 0.0048 0.0048 0.0048 
B 1 0.0026 0.0058 0.0058 
C 1 0.0000 0.0067 0.0067 

 

Furthermore unlike absolute weights restrictions, Charnes et al. (1990) and Thompson 

et al. (1990) pointed out that different oriented DEA models produce consistent 

results. 

Bounds in ARIs generally reflect information on marginal rates of substitution 

between inputs and/or outputs, and such information can be obtained by summarizing 

expert opinions on the comparative important between inputs or outputs, see Beasley 

(1990) and Takamura (2003), or by combining expert opinions with price or cost 

information as presented in Thompson et al. (1990). Usually such price information is 

not accurate and a range of prices is used instead, see Camanho and Dyson (2005).  

Meanwhile, when weights restrictions of ARI are incorporated in the multiplier DEA 

model, their managerial meanings may need to be clarified and resolved by using its 

dual model. However, when complex weights restrictions are used, its dual model 

may have  complicated structures so it may be very difficult to give clear 

interpretations for their managerial meanings, as discussed in Allen et al (1997) and 

Thanassoulis et al. (2004). 

 

(2)Assurance regions of type II (WRs between Inputs and Outputs): 

rii uv          (d) 

In Thompson et al. (1990) both ARIs and ARIIs were proposed, although only ARIs 



 12 

were actually used to assess the efficiency of Kansas farming. As a matter of fact, they 

already realised several problematic issues in applying ARIIs, see, e.g., Thanassoulis 

et al. (2004) for more details. This type of weights restrictions has mainly been 

applied to profit efficiency analysis, since the ratios like 
1

1

v

u
are naturally associated 

with profit efficiency. The applications of ARIIs with the traditional DEA models are 

not very easily found in the DEA literature. One interesting example is Thanassoulis 

et al. (1995), where they assessed the efficiency of perinatal care units in England, 

and required the weight on “babies at risk” (input) to be linked with the weight on 

“number of survivals” (output). Otherwise, a DMU could be efficient by assigning 

very high weights on survivals or very lower weights on babies at risk, while actual 

survival rate is ignored. How to meaningfully interpret the results have also been 

discussed in, for example, Thompson and Thrall (1994) and Thompson et al. (1995). 

3. Restricting virtual inputs and outputs 

Apart from direct restrictions on weights, there exists an implicit type of weights 

restrictions on virtual inputs and/or outputs, as formulae (e1) and (e2) shown.  

im

i
iji

iji

i

xv

xv
 


1

 (e1)           rs

r
rjr

rjr

r

yu

yu
 


1

  (e2) 

Restrictions on virtual inputs and outputs were first investigated in Wong and Beasley 

(1990). The virtual inputs/outputs of a DMU reveal the relative contribution of each 

input/output to its efficiency rating, and therefore can be quite helpful in identifying 

strong and weak areas of performance. Restrictions on the virtual inputs and outputs 

impose implicit weights restrictions and received relatively little attention in the DEA 

literature. One advantage of virtual weights restrictions is that virtual inputs and 

outputs are independent on units of measurement. Furthermore virtual weights 

restrictions are often more intuitive for DMs. However, as Thanassoulis et al. (2004) 

pointed out, DEA models with such constraints may become computationally 

expensive, and sensitive to the model orientation. Also they have the same complexity 

as ARI and ARII on results interpretations. To decide the bounds, it is useful to have 

some prior view on the relative importance of the individual inputs and outputs. 

Sarrico and Dyson (2004) extended proportional virtual weights restrictions in Wong 

and Beasley (1990) to non-proportional, and categorised them as simple virtual 
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weights restrictions, and virtual assurance regions of type I and II.   

4. Cone-Ratio approach 

Charnes et al. (1989) proposed the following Cone-Ratio model, which confines 

weights in cones, V  and U :  

.   ,                  

,...,1 ,1                  

(3.3)               0,  

           

0

0
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njxv
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When 
 mRV  and  sRU , it is back to the classic CCR DEA model. In practical 

applications, value judgments are incorporated into the models by defining suitable 

polyhedral cones V  and U . There are two different ways to represent such cones: 

Either, we can say that a cone mRV   is polyhedral cone, if it has the so-called half 

space form:  

}0|{  CvvV , where C is a sm  matrix. Or if it is generated by a finite set of 

vectors with the form: 









 


sjavvaaconeV j

s

j

jjs ,...,1,0  ,|}),...,({ˆ

1

1  , 

where ),...,( 1 saa  are some vectors in mR , and s is a positive integer. Let 

sm matrix TA  be formed from the vectors ),...,( 1 saa . Then we can say the cone 

V̂  is generated by matrix TA . 

Generally the constraints of ARIs can be written as follows: }0|{  CvvV , and 

}0|{  DuuU . Thus DEA models with weights restriction of ARI are clearly a 

specific case of Cone-Ratio models.. Charnes et al. (1991) discussed relationships 

between A and C: which are very useful in applying Cone-Ratio model Then we can 

transform the cone-ratio model 3.3 into the following programming problems 

(Charnes et al. 1990): 

Cone-Ratio Prime Model 3.4 Cone-Ratio dual Model 3.5 
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Let BYYAXX  ˆ   and    ,ˆ  in models 3.4 and 3.5. Then it is clear that the cone-ratio 

model is consistent with a CCR model, but with the transformed inputs and 

outputs YX ˆ and ˆ . Thus the cone-ratio model can be viewed as a special case of the 

approach of data transformations, see Thanassoulis et al. (2004) for the details. In the 

next section we will see a different interpolation of the cone-ratio model.  

There are several different ways to construct suitable cones to incorporate values 

judgments. One possible approach uses expert opinions through, for example, the 

analytic hierarchy process (AHP) or Delphi first. Then we may be able to decide the 

constraints of ARI and the then the matrixes C , D . One can also use the DMUs 

optimal weights to construct the cones. Generally, one first solves the original CCR 

model and then selects the preferable DMUs among the efficient ones. Then we can 

use the set of the optimal weights *v  and *u  of the preferable DMUs as the 

elements of matrix TA , TB , see Cooper et al. 2000. Charnes et al. (1990) and 

Brockett et al. (1997) used this approach to set the admissible directions for the cone 

to analyze efficiency for some banks. In the next section, we will explain another 

possible approach to construct the matrixes A and B . 

 

4. Incorporating value judgments in DEA by changing preferences 

As mentioned in the Section 2 of this chapter, one difficult task in incorporating value 

judgments in DEA is how to quantify them. Usually they are expressed in vague daily 

languages like “more important” or “very valuable”, and have to be translated into 

precise mathematical relationship in DEA models. In many applications, value 

judgments can be reflected by preference that has been one of the bases of multiple 

criteria decision-making theory. Preference can be viewed as an order relation, and 

aims to clarify the precise meanings of our fuzzy concepts like “higher”, or “lower”; 

“better”, or “worse”. With a preference selected, we can unambiguously state that 

outcome of one DMU is greater or better than another. 
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4.1 Preferences and properties 

A preference is a relationship defined for some pairs ),( yx  on a set X, which can be 

denoted by }{  and }{  to represent “ better than”, and “worse than”. That is，for 

Xyx  , ，if yx  ，then “ x  is at least as good as y ”; if yx  , then “ x  is at 

most as good as y ”. The definition of preference looks slightly abstract, but 

essentially it just clarifies the precise meanings for the vague expressions like “better, 

worse”. Clearly one should have some agreements on these meanings before an 

evaluation is carried out. The most classic example is the numerical order (preference) 

for the real numbers like “ 35  ” and “ 64  ”. Such an order can be generalized to a 

column or a table of real numbers – like the Pareto preference to be discussed below. 

However unlike the real number preference, a pair ),( yx  generally may not have 

such a relationship under these generalized preferences –many pairs may not be 

comparable under these preferences.  

When there exist no other element in X  better than an element x , then it will be 

considered as “optimal, or non-dominant ” solution in X , although this does not 

really mean that it better than the others in assigned preference like in the real 

numbers, since this could only mean there are many elements incomparable with it. In 

a sense, DEA is to find “optimal” DMUs in PPS under Pareto preference, see, Cooper 

et al. (2004) and Liu et al. (2006).  

All the preferences discussed here are Reflexive: For all x  in X , xx  , and most 

of them are Transitive: For all x , y , and z  in X , if yx   and zy  , then 

zx  . These properties usually hold in the real-life applications of DEA, and they are 

defined to make sure the mathematical summaries of the value judgments of decision 

makers are consistent and rational. Let us first examine some preferences frequently 

used.  

Example 1: Pareto preference 

The Pareto preference is by far the most widely used one in economical and 

management areas. We will keep using the usual inequality symbols   , for this 

preference. 

Let ),...,( 1 nxxx  , ),...,( 1 nyyy   be two outputs. Then in Pareto preference, yx   

( yx  ), or x is better than (worse than) y, if and only if ii yx   ( ii yx  ) for 
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ni ,...,1 . Thus if n=1, then }{  in Pareto preference is just the standard numeral 

symbol “ ”. However when 1n , this standard “ ” is no longer meaningful, and 

Pareto preference is just a natural generalization of this symbol to higher dimensions.  

Pareto’s “better than” requires each of the outputs is better. Therefore for the same 

inputs, if one DMU has achieved the maximum in any one of the outputs, then it 

becomes an “optimal” solution in this preference, as no other DMUs can be better 

than it in Pareto preference. Thus students A, B, and C having the examination results 

(71, 2, 3), (70, 70, 70), and (50, 50, 99) are all efficient. Pareto preference also implies 

no-substitutions between outputs and equal-importance of all components. This is 

quite different if we define the preference using the total of the marks, as then only 

student B will be efficient due to substitutions between marks of different subjects.  

For DMUs ),( YX  with desirable inputs and outputs, DMU1 ),( 11 YX  is better than 

( ) DMU2 ),( 22 YX  in the standard DEA means 21 XX  , and 21 YY   in Pareto 

preference. DEA is to find the “optimal” DMUs in Possible Production Sets under this 

preference, see, Liu, et al. 2006.  

Example 2: (A, B) matrix preference 

Let we re-examine the chemistry students example. Let 3-dimensional vector iX  

denote the examination marks of math, physics and chemistry of student i respectively. 

In the example above, all the subject marks are regarded as equally important and 

non-substitutable so that the students A, B, C are not comparable. This may not be the 

case as the students are in a chemistry department. For example, the department may 

think student-i is better than student-j if his or her chemistry marks and marks in total 

are higher, that is: 

jjjiii

ji

xxxxxx

xx

321321

33




 

If the students are however in a mathematics department, then this could be changed 

as: a student-i is better than student-j if  

jjjiii

ji

xxxxxx

xx

321321

11




 

This time still no students are directly comparable. If the university think all the 

subject marks are equally important and substitutable, then the totals are the most 
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important so that student-i is better than student-j if 

jjjiii xxxxxx 321321   

The above preferences can be conveniently presented with matrixes. For the first case 

we can let A= 








111

100
, so performance of student i is better than that of student j if 

and only if ji AXAX  in Pareto preference. For the second and third cases we can 

let A= 








111

001
, and A=  111 . Finally, if we let A=I=

















100

010

001

, then the 

matrix preference ji XX   is just the Pareto preference: 

ji

ji

ji

xx

xx

xx

33

22

11







 

 In general let A be a n×m matrix with non-negative entries. A preference on X 

can be defined via the matrix A so that X   W if and only if AWAX   in the 

Pareto preference. Particularly, when A is the unit matrix, then we can see the matrix 

preference is just the standard Pareto Preference. When A is row vector with all “1” 

elements, then the preference is just to compare the totals. From the examples above, 

we can see many preferences can be obtained in this way. 

For input-output data, DMU(X, Y) is preferred to DMU(W, Z) under the (A, B) 

matrix preference, if and only if AWAX   and BZBY   in the Pareto preference, 

where A and B are mn  and sn   matrices with non-negative entries. In the DEA 

models, the matrix preference plays a very important role in incorporating value 

judgments. The Cone-Ratio model is closely related to this preference.  

Example 3: Lexicographic preference 

A lexicographic ordering is sometimes very useful when the k-th component is 

overwhelmingly more important than the k+1-th component for 1,...,1  nk . A 

chemistry department may think that the chemistry marks are the most important and 

then are physics and then mathematics. A lexicographic ordering preference is defined 

as follows: the outcome ),...,( 1 nyyy   is preferred to ),...,( 1 nxxx   (i.e. xy  ) if 

and only if 11 xy  , or there is some k(2,…,n) so that kk xy   and ii xy   for 
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1,...,1  ki . For the students A, B, C, we have then CBA in Lexicographic 

preference. Lexicographic order is used in Olympic games to rank the countries’ 

performance according to the medals they have obtained. Thus one country has better 

performance than another, if its total of gold medals is more than that of another’s. If 

the gold medal numbers are equals, then we count the silver medal numbers that the 

countries have obtained, and so on.  

   

4.2. DEA models with various preferences 

4.2.1 Classical DEA models under Pareto preference 

Let us first examine the standard additive DEA model:  

,1,0                    

,0                    

,0   :subject to

             max

n

0i

0

n

0i

0

m

0 0







 



















ii

ii

ii

s

kj

SYY

SXX

ss






    (4.1) 

where )....,( 21

  msssS , )....,( 21

  ssssS , and the inequalities are understood in 

Pareto preference. It is clear that    
m

0 0

 
s

kj ss  is an indicator for how much better 

of the virtual DMU (


n

0i

iiX  ,


n

0i

iiY  ) than 0(X , 0Y ) in Pareto preference, see Liu et 

al. (2006) for more details. Thus this DEA model is to identify the virtual DMU, 

which is better than 0(X , 0Y ) and achieves the maximum performance with the 

additive indicator. Let us then examine the output oriented CCR model 

,1,0                    

,                    

,   :subject to

             max

n

0i

0

n

0i

0























i

ii

ii

YY

XX

    (4.2) 

where the inequalities are again understood under Pareto preference, and  is an 

output orientated radial measurement for how much better of the virtual DMU 
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(


n

0i

iiX  ,


n

0i

iiY  ) than 0(X , 0Y ) in Pareto preference, see Liu et al. (2006). Let us 

also note that an inequality like: 



n

0i

0YY ii  can be equivalently expressed by: 

0,
n

0i

0  



 SYSY ii  , using the slacks S . Thus the CCR with slacks reads: 

.0, ,0 ,0S                    

,                    

,   :subject to

)(              max

n

0i

0

n

0i

0

m

0 0

























 









i

ii

ii

s

kj

S

YSY

XSX

ss

    (4.3) 

According to Liu, et al. (2006), one can substitute the default preference with those 

suitable for an application to incorporate value judgments directly. 

4.2.2 DEA models with matrix preferences 

We start from a simple example and assume that a mathematical department wishes to 

investigate study efficiency of mathematics and physics for its students via DEA. 

Total time on study is used as the input, and examination marks of mathematics and 

physics are used as the outputs for each of its students. Let jj xX 1  be the inputs 

and T

jjj yyY ),( 21  denote the examination marks of mathematics and physics 

respectively as outputs for student-j in the department. As a mathematical department, 

it puts more emphasis on mathematics. Thus it adopts the Pareto preference for the 

inputs, and the following preference for the outputs: iY  is better than jY  if 

jjii

ji

yyyy

yy

2121

11




 

Using these preferences, then the output oriented CCR model reads: 

,1,0                    

,                        

   ,   :subject to

             max

n

0j

0

n

1j

0





















i

jj

jj

YY

XX



    (4.4) 
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where “ ” is understood in the above preference. Thus for individual components of 

the inputs and outputs, it reads: 

.1,0                    

),(                     

,    ,   :subject to

             max

n

0j

201021

n

0j

101

n

1j

101







 















i

jjjj

jjjj

yyyy

yyxx

    (4.5) 

Now let us re-examine the chemistry students’ case and let jj xX 1  be the input 

and T

jjjj yyyY ),,( 321  denote the examination marks of mathematics, physics and 

chemistry respectively as outputs for student-j in a chemistry department. The 

department adopted the following preference: 

jjjiii

ji

yyyyyy

yy

321321

33




   (4.6) 

Using this preference, then the output oriented CCR model still reads: 

,1,0                    

,                    

   ,   :subject to

             max

n

0j
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n

1j

0





















i
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YY

XX



    (4.7) 

although here “ ” is understood in the new preference. For individual components of 

the inputs and outputs, it now reads (adding the slacks): 

.1,0,0 ,0s,s                    

),(                     

,    ,   :subject to

)(              max

121

n

0j

3020102

0
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0
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n
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  (4.8) 

The computational results using this DEA model is summarized in the following 

Table 4: 

Student   1/  
*

1  
*

2  
*

3  
Slacks-1 

(Chem.) 
Slacks-2 

(Math. +Phy. +Chem.) 
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A 2.7632  0.3619  0 1 0 61.7105  0 
B 1 1 0 1 0 0 0 
C 1 1 0 0 1 0 0 

 

It is interesting to know how to recover (4.8) by imposing ARI restrictions in the 

multiplier DEA model in the sense that the dual of the restricted model coincides with 

(4.8). These models can be conveniently summarized using the matrix preference:  

1, 0,                   

          ,                  

,       

    Max       

0

0:Subject to

 







YY

XX




(4.9) 

where the preferences are understood in the (A,B) metric preference. Using the 

standard inequalities:  

1 0,                   

  ), (  )  (                  

,    )(   

    Max       

0

0:Subject to















BYBY

AXAX
    (4.10) 

We have A=I and B= 








11

01
, A=I and B= 









111

100
 for the first and second cases 

respectively.  

Some of these models seem to coincide with the dual form of the well-known 

Cone-ratio model, although the preferences changes approach looks more general. For 

the reference change approach, the matrices A and B are decided directly from the 

value judgment information of an application, as we have seen above.  

We can also replace the preference in the standard additive DEA model: 

,1,0                    
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,0   :subject to
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    (4.11) 

where the inequalities are understood in the (A,B) matrix preference so that using the 

standard symbols, it reads:   
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,1,0                    
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 
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     (4.12) 

The computational results using this model are presented as follows: 

Student Score *

1  *

2  
*

3  Slacks-1 (Chem.) 
Slacks-2 

(Math. +Phy. +Chem.) 
A 219 0 0 1 96 123 
B 0 0 1 0 0 0 
C 0 0 0 1 0 0 

 

4.2.3 DEA models with weighted average preferences 

One of the most useful preferences for multi-inputs and multi-outputs is to compare 

total average. Let ),...,( 1 nxxx  , ),...,( 1 nyyy   be two outputs. Then in this 

preference, yx  if  

nnnn yyyxxx   ,...,,..., 22112211 , 

where 0i are the assigned weights. Using this preference assumes that the inputs 

or outputs are i -important and substitutable. For instance, subject examination 

marks of a student in a university often are considered to be equally important and 

substitutable. For sake of simplicity, assume that the weights for inputs are all the 

same. Then the additive DEA model in this preference reads:  
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

One DMU is efficient if its score is zero. Let us have a closer look at this model. 

Assume that all the DMUs have the same inputs, and then it is clear that: 

(max  max ,...1 njss 

  02021012211 ...()... sssjsjj yyyyyy   ) 

Thus this DEA model recovers the widely used statistical comprehensive analysis 
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model with the pre-assigned weights i  for the ratio data.  

Of course, often adding the inputs or outputs like student numbers and profits together 

is meaning less. Thus the following preferences are often very useful. Let 

),...,( 1 nxxx  , ),...,( 1 nyyy   be two positive outputs, and let 
i

i
i

y

x
 . One can 

express preferences with these ratios. For example, Pareto preference can be 

described by the condition that yx   if 1i for i=1,2,.,n. In order to compare the 

outputs via the total average, we can use the sum of the ratios. We say that yx   if 

1
1




n

i

i  (sometimes it can be replaced by 121 
n

n  ). This preference allows 

the individual ratios below the unit as long as the total average is not less than one 

without adding all the inputs or outputs together. Only the inputs or outputs in the 

same category are compared and this makes a lot of sense. Then with this preference 

we can have some useful DEA models. For example, in some applications, outputs are 

equally important and non-substitutable, but inputs are equally important and 

substitutable. Then the corresponding DEA models are  
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    (4.13) 

Let us note that these are not just the DEA models with Russell measurement since 

here the vital individual constraints 1,1  ri   are dropped so now only the total 

averages are important, referred to as the DEA models with preference. These models 

have much more discrimination power than the standard DEA models, and this has 

been confirmed in Zhu (1996) and Meng et al. (2005). 

4.2.4. DEA models with lexicographic preference 

In this section we present some DEA models with lexicographic preference via 

examining a typical application. Olympic ranking is a typical example of applying 

lexicographic preference, where countries are ranked in accordance with the number 

of gold, silver and bronze models that their athletes have won.  Gold medals are of 
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dominant importance, as the countries that won a number of silver and bronze medals 

but none of gold are often ranked below the countries that have just won a single gold 

medal. When the gold medals are the same, then the silver and then bronze medals are 

used to rank. Thus this procedure typically uses lexicographic preference.  

Since such Olympic ranking only focuses on outputs (medals), in other words, it is a 

typical effectiveness evaluation that regardless resources utilisation. It arises an 

interesting issue on examining the participant countries’ efficiency. In fact there are 

already several papers related with efficiency evaluation of Olympic Games by using 

DEA approach.  Lozano et al. (2002) and Lins et al. (2003) analysed the relative 

efficiency of countries that win at least one modal in Olympic Games in relation to its 

available resources, where inputs were a country’s population and GDP, outputs were 

the number of gold, silver and bronze medals. These two papers used weights 

restrictions to incorporate the value judgments that gold medals were worth more than 

silver ones and that the latter were worth more than bronze medals.  Let 1x , 

2x represent the population and the GDP, and 1y , 2y , 3y  represent the number of 

gold, silver, and bronze medals respectively.  For example, Lozabo et al. (2002) 

incorporated this value judgment in the multiplier DEA model by restricting 
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1  
u
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u
 where  ,  were numerical scalar.  

. Churilov and Flitman instead aggregated four outputs according to four possible 

preferences by following formula 



3

1r
jrrj yuy , where yrj were the corresponding 

number of gold, silver, and bronze medals won by DMUj, ur were the weights.  For 

example, the first output could be accounted by assigning weights (10, 7, 2) to gold, 

silver and bronze medal. This implies that winning a gold medal is five times as 

important as winning a bronze medal. With selected inputs and aggregated four 

outputs, standard DEA models were used to examine different countries’ technical 

efficiency and scale efficiency.  

However it is clear that these DEA models on evaluation of Olympic Games did not 

use lexicographic preference, but some kinds of matrix preferences. Here we indicate 

how to incorporate lexicographic preference in DEA in this particular application, in 

order to illustrate the general idea. Output oriented model is used, and Pareto 
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preference is adopted for the inputs, as we regard the population and GDP are equally 

important and non-substitutable. Let us select lexicographic preference for the outputs 

with the radial measurement.  Then the BCC model with lexicographic preference 

can be presented via a multi-phase procedure as follows: (for simplicity, we omit 

slacks) 

Step 1: First consider the number of gold medals as the output 
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    (4.14) 

If all countries are assigned different efficiency scores in this step, then we have 

completed the ranking. Otherwise, those DMUs have the same efficiency scores need 

to be further ranked in Step 2 as below. This means that these countries have same 

efficiency scores from the point of view of obtaining the gold medals, and need to be 

further compared using their silver medals.  

Step 2: Substitute the optimal value *1  obtained from Step 1 into the following 

model.  Then rank these countries by comparing their relative efficiency from a point 

of view of wining silver medals: 
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     (4.15) 

Then if some DMUs still have the same efficiency scores in Step 2, we need to move 

to Step 3 as below:  

Step 3: Substitute the optimal values of ,*1  and *2  , which was obtained from 

Step-2, into the following model to measure the relative efficiency to win bronze 
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medals for these countries. 
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This approach clearly reflects the value judgment that the number of gold medals is of 

the dominant importance, and so on.  Then interpretation of the results is easier and 

clearer. For any two countries A and B, DMUA>DMUB (i.e., A is ranked higher than B) 

if and only if 11

B A . If  A

11

B  , then we move to Step 2. If 22

B A , then 

DMUA>DMUB. Otherwise, we further move to Step 3. If the two countries still have 

the same efficiency score at Step 3, we give them the same rank. 

4. 3. Discussions 

The core of the preferences changes approach is to quantify value judgments into 

suitable preferences and then incorporate them into DEA models. This approach has 

the advantage of incorporating value judgments in DEA more directly. The most 

difficult part is to quantify value judgments into suitable preferences, and this is not 

always possible. Sometimes, only a part of the value judgments can be reflected. 

Often the issue of preferences is silently hided inside mission statements of DMUs 

and needs to be clarified. For instance, when stakeholders in an application tell an 

evaluator that one particular output is more important than the others, this statement 

can be quantified via a) the lexicographic preference – then it is of dominant 

importance; or b) via the preference used in the chemistry department in Section 4.2.2 

– then the marks of chemistry are not substitutable although the others are with the 

equal weights; or c) via the weighted total preference with a high assigned weight as 

in Section 4.2.3 – then all the marks are substitutable although the chemistry marks 

have a higher weight; or d) something more suitable for this situation. Agreement 

needs to be made through close communications with the DMs and the stakeholders 

from all sides. A useful approach is that the evaluator first listens to and understands 
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the requirements from all stakeholders, and present several possible alternatives (as 

the above) with clear explanations of their meanings and differences in daily 

languages for discussions. This often can lead to an agreement on the preference to be 

used. For instance when evaluating a group research institutes as requested by a 

funding body, if the evaluator is not sure what preference to be used, then he or she 

should present several possible alternative for discussion and to communicate with the 

researchers, administrators, and the funding body in order to have an agreed solution. 

This is of course quite demanding for the evaluator. In this sense weights restrictions 

are easer to use. However in fact it is much more difficult to know whether the 

resulting DEA models with weights restrictions correctly reflect the value judgments 

requested in a particular application, as to be seen in the next section.  

More discussions and useful preferences can be found in Liu et al. (2006). For 

instance, there the approach of preferences changes was used to handle the cases 

where parts of the inputs or outputs are undesirable, and also economics preference is 

defined to handle allocative efficiency. Furthermore it is important to realize that the 

performance measurements may affect incorporation of value judgments as well with 

selecting the preferences, see the above reference again for the details. 

5. Interpretation and relationship of different approaches 

Interpreting results of DEA models with value judgments may not be a trivial task. 

Among the several approaches discussed in this chapter, interpretation is generally 

more straightforward for the approach of preferences changes, as an important part of 

interpretation has been included in the procedure of quantifying value judgments into 

suitable preferences. For example, when incorporating the value judgment that the 

marks of chemistry are more important than the others in DEA with this approach, the 

evaluator should have already discussed with the stakeholders which of the precise 

statements a)-d) in the section above most accurately reflects the real meanings of 

“more important” for the department. Thus an important part of the interpretation task 

has been transferred to the DMs and stakeholders. The rest of the task follows the 

standard interpretations of dual DEA models, as illustrated in Liu et al. (2006). 

On the other hand, interpreting results of DEA models with weights restrictions often 

needs careful thinking, although applying this approach in applications seems more 

straightforward. For example, in the absence of weights restrictions, the CCR 

efficiency score for a DMU is traditionally interpreted as a measure of the radial 
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contraction of inputs (or expansion of outputs) necessary for efficient operation. 

However this interpretation of the CCR efficiency measure no longer holds under 

weights restrictions. The standard interpretation that a DEA model seeks the virtual 

DMUs of the best performance in PPS often breaks as well in the presence of WRs.  

As stated in the general guidelines for interpreting results of DEA models with WRs, 

there may exist substantial changes to the mix of inputs and outputs of a given DMU, 

and deteriorations in some observed inputs or output level. There are comprehensive 

studies on effects of DEA weights restrictions on the efficiency scores, DEA targets, 

and efficient peers, etc, see, Allen et al. (1997), Thanassoulis et al. (2004).  

However here we wish to emphasize that these changes brought by the WRs may be 

perfectly in line with intuition, and suitable for incorporating value judgments in a 

particular application, as long as the evaluators are fully aware of, and approve these 

changes. Take the mathematical department case in Section 4.2.2 for example. 

Suppose that we wish to incorporate the value judgment that marks of mathematics 

are more important than these of physics with weights restrictions, say, 021  uu  

in the multiplier-DEA model. Then it can be shown that the dual model reads:  
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(5.1) 

Thus in this case, the model with WRs exactly coincides with the PCs model in 

Section 4.2.2. Therefore implicitly this weights restrictions model assumes the 

preference in option b) for the outputs as adopted by the mathematical department in 

Section 4.2.2 
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Of course as long as these implicit features are in line with the DMs value judgments, 

they are all perfectly acceptable. However it is not very often that implications of 

WRs can be clearly demonstrated as in this simple case. Until the dual models are 

clearly presented and analyzed, an evaluator may not easily realize these implicit 
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features and changes, and therefore the implications and consequences that they will 

bring to the assessment outcomes.  

As illustrated above, the DEA models from weights restrictions have some overlaps 

with the DEA models from preferences changes. Also sometimes, the PCs approach 

can be viewed as a kind of data transformations as in the Cone-ratio model. It is easy 

to see that many modified DEA models with weights restrictions cannot be produced 

from the PCs approach. On the other hand, it is not always possible to recover a 

modified DEA model with PCs via WRs. For example, a DEA model of type (4.13) 

cannot be recovered from any weights restrictions of a standard DEA model, see Zhu 

(1996). In fact it does not seem to be straightforward to recover any of the models 

after (4.7) via weights restrictions of a standard DEA model.  

6. Conclusions 

The issue of incorporating value judgments in DEA models may arise in many real-life 

applications with several different goals, and may be dealt with via very different 

approaches.  However none of the approaches studied or briefly outlined in this 

chapter is all-purpose, or free of disadvantages. It is important for evaluators to be 

aware of their advantages and the pitfalls.  

It seems to be more straightforward to interpret mathematical and managerial 

implications of introducing value judgments in DEA via the approach of preferences 

changes. This approach often requires the explicit participation of the DMs and 

stakeholders, although it is now considered to be increasingly important to involve 

these stakeholders in the evaluation processes to reach agreements on appropriate ways 

to reflect the value judgments. On the other hand, the approach of weights restrictions 

seems to be simpler to use and more flexible in incorporating value judgments in DEA, 

although it is still a current issue how to interpret the efficiency scores from weights 

restricted DEA models, as seen in the section above.  

The most suitable approaches to be used for incorporating value judgments will depend 

on many factors like objectives of the evaluations and the data available to the 

evaluators. It is also important for the evaluators to bear in mind that there may be other 

methods such as selecting suitable sets of input-outputs or data transformation, which 

can better handle incorporation of value judgments in their situations. 
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