

A PRIVACY ENHANCING
INFRASTRUCTURE FOR CONTEXT-

AWARENESS

A THESIS SUBMITTED TO

THE UNIVERSITY OF KENT AT CANTERBURY

IN THE SUBJECT OF COMPUTER SCIENCE

FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

BY

PATRIK OSBAKK

© JULY 2007

ii

DEDICATION

To my wife,

Without your love and support it had not been possible.

iii

ACKNOWLEDGEMENTS
Firstly I would like to thank my supervisor Nick Ryan for his support and

guidance. I am especially grateful for the freedom I have been given during my

studies to explore the continuous stream of ideas I have had. Looking back I can

see that many ideas have been on the periphery of my research and beyond. The

experience gained from these explorations, successful and unsuccessful, is

invaluable.

Many thanks also to David Shrimpton and Ian Utting, my supervisory panel, for

their help and suggestions over the past years. The friendly discussions we have

had, often over a cup of coffee, have undoubtedly contributed to pushing my

research forwards as well as providing essential feedback. Special thanks also to

Janet Linington for your support over the years and for setting in motion my

career with Java.

I would also like to thank the Computing Laboratory including the Applied and

Interdisciplinary Informatics group, the Networks and Distributed Systems

group, the academic staff, my colleagues, the system administrators, and last but

not least the administrative personnel who have all aided me in my research and

made my time at the University of Kent enjoyable. I am also very grateful for

having had the privilege of receiving an EBS Home Bursary and a Maintenance

Award, allowing me to pursue my dreams.

I would also like to acknowledge the backing provided by my employer in

accommodating my needs to complete this thesis.

Finally, I would like to thank my family and friends for their support and

understanding during these demanding years. That you have stood fast whilst I

have had to prioritise studies and work means a lot to me. I am grateful always.

iv

TABLE OF CONTENTS
DEDICATION.. II

ACKNOWLEDGEMENTS..III

TABLE OF CONTENTS.. IV

FIGURES ... IX

ABSTRACT ... XII

CHAPTER 1 BACKGROUND .. 1
1.1. INTRODUCTION.. 1
1.2. UBIQUITOUS COMPUTING .. 2
1.3. THE ACTIVE BADGE SYSTEM .. 3
1.4. THE CONTEXT TOOLKIT .. 5
1.5. COOLTOWN.. 7
1.6. MUSIC FX.. 9
1.7. FIELDWORK ... 10
1.8. PRIVACY AND FREEDOM ... 11
1.9. P3P .. 14
1.10. SUMMARY.. 16

CHAPTER 2 THE PROJECT ... 18
2.1. MOTIVATION ... 18

2.1.1. Privacy .. 19
2.1.2. Development support... 21

2.2. FOCUS.. 23
2.3. INTENTIONS ... 24
2.4. METHODOLOGY... 25
2.5. INFRASTRUCTURE APPROACH.. 25
2.6. RELATED WORK .. 27

2.6.1. Context and Context-awareness .. 27
2.6.2. Application domain ... 28
2.6.3. Devices used.. 29

v

2.6.4. Privacy protection ... 31
2.6.5. Security aspects ... 33

2.7. SUMMARY.. 34

CHAPTER 3 CONCEPTUAL MODELS ... 36
3.1. CONTEXT MODEL .. 36

3.1.1. Definition... 37
3.1.2. Network of relationships ... 38
3.1.3. Representation... 39

3.2. PRIVACY MODEL ... 42
3.2.1. Definition... 43
3.2.2. Ideal level of privacy ... 44
3.2.3. Scope of control... 46
3.2.4. Process of disclosure... 51
3.2.5. Legislation and social norms .. 54
3.2.6. Visualising the model .. 55
3.2.7. Application to Context Model.. 56

3.3. USING THE MODELS ... 57
3.3.1. Scenario... 57
3.3.2. Entities and subjects.. 57
3.3.3. Context elements ... 58
3.3.4. Shared context ... 59
3.3.5. Implementation.. 60

3.4. SUMMARY.. 61

CHAPTER 4 THE INFRASTRUCTURE... 64
4.1. REQUIREMENTS ... 64

4.1.1. Capture process... 65
4.1.2. Captured requirements.. 66

4.2. STRATEGY ... 72
4.2.1. Prioritise privacy... 73
4.2.2. Modular design ... 74

4.3. SCOPE .. 75
4.3.1. Restricting the context model .. 76
4.3.2. Targeting a specific device type .. 78

4.4. ARCHITECTURE ... 79
4.4.1. Context managers.. 80

vi

4.4.2. Agents and other actors... 82
4.4.3. Component interactions .. 83

4.5. PRIVACY PROTECTION ... 86
4.5.1. Authentication ... 86
4.5.2. Access Control... 87
4.5.3. Anonymity and pseudonymity.. 96
4.5.4. Notice .. 98

4.6. CONTEXT COMMUNICATION FORMAT ... 99
4.6.1. Objectives .. 99
4.6.2. Composite Capability / Preference Profiles.. 101
4.6.3. Addressing CC/PP limitations... 102
4.6.4. Context vocabulary ... 105

4.7. SUMMARY.. 108

CHAPTER 5 IMPLEMENTATION ... 110
5.1. OVERVIEW... 110
5.2. PLATFORM ... 111
5.3. CONTEXT MANAGER ... 111

5.3.1. Communication ... 113
5.3.2. Privacy protection ... 122
5.3.3. Request fulfilment .. 124

5.4. CATALOGUE SERVICE.. 135
5.5. PROXIES... 138

5.5.1. Proxy types .. 139
5.5.2. Examples of usage... 139

5.6. AGENTS ... 142
5.6.1. Administration console.. 142
5.6.2. Context-aware desk display... 143
5.6.3. Web presence application ... 145
5.6.4. iButton context capture application .. 146

5.7. SUMMARY.. 148

CHAPTER 6 EVALUATION .. 150
6.1. PRIVACY PROTECTION ... 150

6.1.1. Requirement fulfilment analysis .. 151
6.1.2. User survey.. 159

6.2. DEVELOPMENT SUPPORT ... 166

vii

6.2.1. Feature set... 166
6.2.2. Code reduction .. 172
6.2.3. Infrastructure performance ... 175

6.3. COMPARISON WITH RELATED WORK ... 179
6.3.1. Privacy-awareness system... 180
6.3.2. Solar .. 181
6.3.3. EQUIP... 183

6.4. SUMMARY.. 185

CHAPTER 7 CONCLUSION AND FURTHER WORK .. 187
7.1. SUMMARY.. 187
7.2. CONTRIBUTIONS .. 189
7.3. FURTHER WORK... 190

7.3.1. Access control ... 190
7.3.2. User interaction... 191
7.3.3. Trust management ... 192
7.3.4. Security.. 192

7.4. CONCLUSION ... 193

APPENDIX .. 195
A CONTEXT VOCABULARY.. 195

A.1 Components... 195
A.2 Attributes ... 197

B CONTEXT-PROFILE EXTENSION ... 198
B.1 Header attributes... 198
B.2 Body attributes .. 200

C INTERFACE SPECIFICATION.. 201
C.1 Datastorage driver interface ... 201
C.2 TCP interface .. 208
C.3 TSP interface ... 209
C.4 Communication event listener ... 211
C.5 Communication event .. 212
C.6 EDP Interface.. 213
C.7 Key pair ... 215
C.8 REP Interface .. 217
C.9 Context manager link .. 218

D CONFIGURING ACCESS... 219

viii

D.1 Scenario... 219
D.2 Procedure .. 219

E PRIVACY SURVEY .. 221
E.1 Questions... 221
E.2 Responses .. 225

BIBLIOGRAPHY ... 230

ix

FIGURES
FIGURE 1. CONCERNED ABOUT SECURITY? .. 20
FIGURE 2. WORRIED ABOUT PERSONAL INFORMATION? .. 20
FIGURE 3. AFRAID OF MISUSE OF PERSONAL DATA? .. 21
FIGURE 4. RESEARCH PROCESS... 25
FIGURE 5. OVERVIEW OF DEVICE CAPABILITIES... 31
FIGURE 6. AN ENTITY TO CONTEXT RELATION ... 37
FIGURE 7. A SET OF ENTITY TO CONTEXT RELATIONS.. 38
FIGURE 8. A SIMPLE CONTEXT NETWORK... 39
FIGURE 9. RDF GRAPH REPRESENTING A SIMPLE CONTEXT MODEL 40
FIGURE 10. RDF TRIPLE REPRESENTATION OF A SIMPLE CONTEXT MODEL 41
FIGURE 11. XML SERIALISED RDF REPRESENTATION OF A SIMPLE CONTEXT MODEL........ 42
FIGURE 12. MAPPING TO WESTIN’S FOUR BASIC STATES OF PRIVACY. 51
FIGURE 13. A VISUAL REPRESENTATION OF THE PERSONAL SPACES.................................... 56
FIGURE 14. REQUIREMENT CAPTURE PROCESS... 65
FIGURE 15. PRIVACY-REQUIREMENTS.. 66
FIGURE 16. FUNCTIONAL-REQUIREMENTS ... 69
FIGURE 17. MISCELLANEOUS-REQUIREMENTS... 71
FIGURE 18. GROWING CONTEXT MODEL .. 76
FIGURE 19. ENTITY AND ITS PERSONAL SPACE... 80
FIGURE 20. ENTITY AND ITS PERSONAL SPACE AND CONTEXT MANAGER............................ 81
FIGURE 21. INFORMATION-FLOW.. 82
FIGURE 22. INFRASTRUCTURE COMPONENTS ... 83
FIGURE 23. USE CASES ... 84
FIGURE 24. CCS TRUSTWORTHINESS AND SENSITIVITY... 88
FIGURE 25. RBAC VARIABLES ... 90
FIGURE 26. EXAMPLES OF CONTEXT VOCABULARY ... 94
FIGURE 27. RESOLVING ACCESS WITH P3P .. 95
FIGURE 28. TWO-LEVEL DATA STRUCTURE.. 102
FIGURE 29. THREE-LEVEL DATA STRUCTURE... 103
FIGURE 30. FLATTENED THREE-LEVEL DATA STRUCTURE ... 104

x

FIGURE 31. ADDING UNSUPPORTED DATA TYPES USING BASE64 ENCODING. 105
FIGURE 32. CONTEXT VOCABULARY COMPONENTS. .. 107
FIGURE 33. CONTEXT VOCABULARY ATTRIBUTES ... 108
FIGURE 34. OVERVIEW OF IMPLEMENTED INFRASTRUCTURE COMPONENTS...................... 110
FIGURE 35. INWARD AND OUTWARD FLOW OF INFORMATION ... 112
FIGURE 36. THE CM’S REQUEST HANDLING STAGES AND THEIR SUBSIDIARY STEPS......... 112
FIGURE 37. THE THREE ASPECTS OF COMMUNICATION. ... 113
FIGURE 38. FREQUENTLY USED HEADER ATTRIBUTES ... 114
FIGURE 39. FREQUENTLY USED BODY ATTRIBUTES ... 115
FIGURE 40. CLIENT AND SERVER PLUG-INS. ... 115
FIGURE 41. TRANSPORT CLIENT PLUG-IN SPECIFICATION. ... 117
FIGURE 42. TRANSPORT SERVER PLUG-IN SPECIFICATION. .. 117
FIGURE 43. SOCKET SERVER AND CLIENT PLUG-IN LIFECYCLES. 119
FIGURE 44. CRYPTOGRAPHIC PLUG-IN SPECIFICATION... 120
FIGURE 45. DATA FORMAT OF RSA-AES PLUG-IN... 121
FIGURE 46. PRIVACY PROTECTION ASPECTS... 122
FIGURE 47. ACCESS CONTROL STEPS.. 124
FIGURE 48. REQUEST FULFILMENT ASPECTS. ... 125
FIGURE 49. DATA STORAGE DRIVER... 125
FIGURE 50. DATA HIERARCHY.. 126
FIGURE 51. DATA STORAGE DRIVER SPECIFICATION.. 128
FIGURE 52. MEMORY/FILE DRIVER STATE CHART.. 129
FIGURE 53. RESOURCE EXTENSION PLUG-IN SPECIFICATION.. 133
FIGURE 54. MOBICOMP PLUG-IN LIFECYCLE.. 134
FIGURE 55. BASIC URI SYNTAX ... 136
FIGURE 56. CM URI SYNTAX ... 136
FIGURE 57. EXAMPLE OF A CM URI .. 137
FIGURE 58. USING A PROTOCOL TRANSLATION PROXY .. 140
FIGURE 59. ADMINISTRATION CONSOLE COMPONENT. .. 142
FIGURE 60. SCREENSHOTS FROM THE ADMINISTRATIVE CONSOLE. 143
FIGURE 61. CONTEXT-AWARE DESK DISPLAY. ... 144
FIGURE 62. CONTEXT-AWARE DESK DISPLAY COMPONENT. .. 144
FIGURE 63. WEB PRESENCE APPLICATION COMPONENT... 145
FIGURE 64. IPAQ EQUIPPED WITH AN IBUTTON READER. .. 146
FIGURE 65. SCREENSHOTS FROM THE IBUTTON CONTEXT CAPTURE APPLICATION. 147
FIGURE 66. TABLE WITH AVAILABLE P3P POLICY AND RULESET EDITOR TOOLS. 157

xi

FIGURE 67. PROPORTIONS OF SUBJECTS THAT REPORTED PRIVACY CONCERNS................. 161
FIGURE 68. THE ACCURACY OF THE SUBJECTS’ ACCESS CONTROL SETUPS........................ 162
FIGURE 69. THE SUBJECTS’ PERCEPTION OF THE ACCESS CONTROL SETUPS. 163
FIGURE 70. THE EFFECT OF INACCURATE REPRESENTATION OF PRIVACY PREFERENCES .. 164
FIGURE 71. USING THE INFRASTRUCTURE.. 174
FIGURE 72. WRITE/READ TIME IN MS.. 176
FIGURE 73. RSA KEY GENERATION TIME IN MS ... 178
FIGURE 74. RSAAES ENCRYPTION/DECRYPTION TIME IN MS (1024 BYTES)...................... 178
FIGURE 75. RSAAES ENCRYPTION/DECRYPTION TIME IN MS (10240 BYTES).................... 179

xii

ABSTRACT
Context-awareness enables applications and services to better fulfil the needs of

users by adapting to their situation and their preferences. However, the use of

contextual information is complicated by privacy concerns. A subject’s context

is personal and needs to be regarded as sensitive. Hence, contextual information

must only be used with the consensus of the subject and according to their

privacy preferences.

This thesis examines the development of privacy-friendly context-aware

systems. In particular the focus is on (A) improving the overall level of privacy,

(B) evaluating access control mechanisms, (C) providing development support,

and (D) offering protection to third-party infrastructures. The hypothesis

investigated is whether these objectives can be achieved through the use of a

privacy enhancing infrastructure.

As part of the investigation two conceptual models are presented describing the

assumptions made about context and privacy. Also presented is a decentralised

privacy enhancing infrastructure developed and implemented to determine the

validity of the hypothesis. Along with the infrastructure mechanisms for privacy

protection including authentication, access control, and anonymity are

discussed. A general data format for context communication in the

infrastructure is also presented.

Finally the thesis presents the findings uncovered during the investigation and

evaluation of the hypothesis. This includes a qualitative analysis of whether the

privacy enhancing infrastructure meets the key objectives, a user survey

examining the performance of two candidate access control mechanism, a

performance measure of the infrastructure when run with resource constrained

devices, and a comparison with the approaches taken in related work.

1

CHAPTER 1

BACKGROUND
The vision of ubiquitous computing is no longer pursued only by a handful of

people. It is now actively being researched on a much larger scale. Various

prototype systems have been developed and deployed that provide a wide range

of services in many different environments.

This chapter introduces the area on which this thesis focuses, namely privacy in

context-aware ubiquitous computing. It outlines and discusses some of the

previous work done in the fields of ubiquitous computing, context-awareness,

and privacy. The intention is to give a broad overview to the fields and to

present the work that has inspired further research. Each section will try and

capture a different aspect of the research area.

1.1. Introduction
Context-awareness has the potential of providing significant benefits. By

utilising contextual information applications and services can adjust to our

situation and preferences, thus enabling new functionality and an improved user

experience to be provided. For example, context-awareness enables a city guide

application to not only list restaurants but also make recommendations on places

that are both nearby and that serve food to your taste. Influenced by the vision

of ubiquitous computing, these solutions are to be pervasive, providing

unobtrusive services when and where appropriate.

Whilst beneficial, the use of contextual information is not without controversy.

Privacy is of great concern in context-aware systems. Contextual information is

by nature personal and sensitive and when collected over time it reveals an

individual’s behaviour and preferences. This can be exploited by dishonest

individuals. Given the existing misuse of personal information on the Internet, it

2

is believed these concerns are well founded. Hence, contextual information

must be carefully handled and protected.

Consequently, the work presented in this thesis focuses on the area of privacy

protection and context-awareness. In particular, the thesis examines an

infrastructure approach to providing development support for privacy-friendly

context-aware systems.

1.2. Ubiquitous computing
The concept of ubiquitous computing was first thought of at the Electronics and

Imaging Laboratory at Xerox Palo Alto Research Centre (PARC) in late 1987

[Weiser, Gold et al.1999]. It has since gathered momentum and is now widely

researched. This section will summarise the initial work done at Xerox PARC.

The original proposal leading to the birth of ubiquitous computing was for the

creation of wall-size computer displays. These displays intended to be capable

of providing both data output and input, yet be as easy to use as whiteboards.

This idea inspired the new vision of computing, where computers are invisibly

spread throughout our environment. Another contributing factor was the work

done by anthropologists in the area of Work Practices and Technology at

PARC. Their studies, into how people use computers, led M. Weiser and others

to think more about the situations in which technology is used rather than on

technology alone. Together this gave birth to the Ubiquitous Computing

program in the Computer Science Laboratory (CSL) at PARC.

The initial goal of this program was to solve some of the problems they felt

personal computers exhibit including that computers are too hard to use, they

need too much attention, and they isolate us from other people [Weiser, Gold et

al.1999]. Although on first inspection these appear to be issues regarding the

graphical user interface, it was apparent at PARC that it was the result of the

whole machine and its usage [Weiser 1993]. To quote M. Weiser “The

challenge is to create a new kind of relationship of people to computers, one in

which the computer would have to take the lead in becoming vastly better at

getting out of the way, allowing people to just go about their lives” [Weiser

1993]. Their answer to this challenge was the development of three new

3

computing devices known as tabs, pads, and boards. Weiser describes tabs as

inch scale devices approximating active post-it notes, pads as foot scale devices

behaving like notepads, and boards as yard scale devices as the equivalent to

whiteboards [Weiser 2002]. Examples of these new types of devices are the

ParcTab, ParcPad, and LiveBoard.

Although the initial goal of the Ubiquitous Computing program was thought of

as an answer to the many problems with personal computers, the contributions

that this research program has made are far more important. It resulted in the

creation of a completely new research area and defined ubiquitous computing as

we know it.

1.3. The Active Badge System
One type of context that has been widely researched is location. An early and

widely know example of a context-aware, more specifically location-aware,

system is the Active Badge system [Harter, Hopper 1994] developed at Olivetti

Research Limited, later AT&T Laboratories Cambridge.

An active badge is a small wireless device that transmits a unique identifier at

specified intervals over infrared. It is a square device about 55 x 55 x 7mm with

a weight of 40g [Want, Hopper 1992] and it has two buttons, two leds, and a

speaker [Harter, Hopper 1994]. The active badge location system uses infrared

as well as radio technology to sense the location of these badges, which can be

worn by people or attached to objects. The system works by having a fixed

network of infrared sensors that are positioned at known locations. This network

of sensors constantly listens for incoming signals from active badges. When an

active badge is within range of a sensor the signal it transmits will be received

and since the location of the sensor is known, the system can establish the

identified badge’s location and thus also the associated person or object. Active

badges can with this technique provide “room scale location” [Harter, Hopper

1994 (p.2)].

Better granularity of the location is described to be achievable by using a denser

network of sensors and reducing the transmitter power of the badges. Harter and

Hopper also describe another hybrid infrared radio technique employed by the

4

Active Badge system to improve the location granularity in certain areas

[Harter, Hopper 1994]. This works by embedding a passive radio receiver into

the badges and by placing radio transmitters around objects of interest. The

transmitter sends out an identifiable signal that is directed such that it forms a

field around the object. A badge entering the field then adds the received signal

to the transmission it sends to the infrared sensors. Thus the badge can be

located to be within the field, achieving what they call “desk scale location”

[Harter, Hopper 1994 (p.3)].

The initial application developed for the active badge system was intended to be

used by the receptionist at Olivetti Research Limited to help with the

forwarding of telephone calls [Want, Hopper 1992]. The application displays a

list of people’s names along with their last known location and the telephone

extension there. It also displays a measure of how accurate the location

information is or how old the information is if data is not being updated. The

system also handles the processing of simple user commands. Among the

interesting ones described are WITH which lists the badges near a supplied

badge name, LOOK which lists the badges near a supplied location, and

HISTORY which produces a report containing information about the

whereabouts of a supplied badge name during the last hour.

It is stated that over 1500 badges and 2000 sensors have been deployed

(November 1993) [Harter, Hopper 1994] and that the system has been accepted

and is used daily by the staff at Olivetti Research Limited [Want, Hopper 1992].

As such the active badge system has demonstrated the feasibility of deploying

location sensing in working environments. However it is also described that

despite its successful internal deployment, people from outside are sceptical

about whether they would like such a system in their office due to privacy

concerns. Hence privacy is an issue that most definitely needs to be addressed

and even more so when considering more accurate location systems like the

successor of the active badge, the bat system [Addlesee, Curwen 2001].

5

1.4. The Context Toolkit
The work on context-awareness done at Georgia Institute of Technology

focused on improving the development support for context aware applications

through the development of a conceptual framework. This section will present

some of this work starting with their definitions of context and context-aware.

The most widely accepted definition of context is probably the one presented by

Dey and Abowd, which states that: “Context is any information that can be used

to characterize the situation of an entity. An entity is a person, place, or object

that is considered relevant to the interaction between a user and an application,

including the user and applications themselves” [Dey, Abowd 2000A]. In

addition to defining context they provide a system for categorising different

types of context [Dey, Abowd 2000A]. The system consists of two levels. On

the first level are what they consider to be primary pieces of context: location,

identity, time, and activity. These are the important pieces of context that

characterise a situation. On the second level they place all other types of

context, which are considered to be secondary. Secondary pieces of context are

attributes of entities with primary context and can be indexed by primary pieces

in information spaces. Dey and Abowd continue by providing a definition for

context-aware which state that “a system is context-aware if it uses context to

provide relevant information and/or services to the user, where relevancy

depends on the user’s task” [Dey, Abowd 2000A]. They also propose a

categorisation of the features context-aware applications have. Features are

categorised into one of three categories: presentation, automatic execution, and

tagging. Where the presentation category includes actions such as presentation

of context information or services to a user, the automatic execution category

includes actions that are triggered or adapted by the context of a user, and

finally the tagging category includes actions that add context to information for

later use.

In his thesis, Providing Architectural Support for Building Context-Aware

Applications, [Dey 2000B] Dey points out that many of the well known context-

aware applications only support a small subset of types and features. Dey

6

attributes this lack in range to the difficulty of using context information. To

make the development of context-aware applications easier a framework is

proposed, allowing developers to focus on the problem at hand. Seven features

are described as being required in the framework:

1. The framework must enable an application developer to specify the

context required by an application.

2. The processing of context should be independent of the retrieval.

3. Contextual information should be able to be interpreted transparently

by the framework.

4. The communication between the context source and the applications

should be transparent and support distributed sources.

5. The context sources should be constantly available to allow

applications to retrieve contextual information when needed.

6. The framework should store captured contextual data to allow access

to a context history.

7. The resource discovery should be built into the framework.

It is recognised that not all solutions can be accommodated. As such the

framework provides four basic building blocks which can be used to extend the

support: widgets, aggregators, interpreters, and services. The widgets act as

context sources. They provide the necessary abstraction from the physical

sensor. Aggregators allow the contextual information from multiple widgets to

be combined to reduce the complexity of having to communicate with the

widgets individually. Interpreters are used to provide high-level context

information from the collected low-level information. Finally services provide

an output, allowing changes to be made in the environment. With these building

blocks Dey wants to encourage the development of new components for the

framework rather than standalone ad hoc solutions.

The implementation of the framework described in Dey’s thesis [Dey 2000B] is

known as the Context Toolkit [Dey, Abowd 2000C]. The toolkit is implemented

using Java and provides the required features of the framework [Dey 2000B

(s.4.2.2)]. Communication between the components uses the HTTP protocol and

the data is encoded using XML. They also emphasise that each component runs

7

independently allowing them to be used by many applications. To demonstrate

the benefits provided by the toolkit Salber and others [Salber, Dey et al. 1999]

describe three applications that have been built: an in/out board, an information

display, and a meeting board. The in/out board displays whether or not a person

is in the office building. To do this the board collects and uses the entry and exit

time of office members. They also describe an information display that shows

information relevant to a nearby person. This display uses context information

like the identity of the person, what group they are associated with, and the

location of the display. Finally they have added context-awareness to

DUMMBO, another project at Georgia Institute of Technology [Brotherton,

Abowd et al. 1999]. DUMMBO is a smart whiteboard that captures what is

written on it during meetings as well as what is said. This information is then

made available afterwards. By utilising the Context Toolkit they altered the

starting behaviour of the whiteboard so that it started recording in the presence

of two or more persons.

The work done at Georgia Institute of Technology provides a good base for

further research. First of all their definitions of context and context-awareness

allow for a better understanding of what context-aware systems are. Secondly

their work on a framework and toolkit that aid the development of context-

aware applications have been an important start to the move away from ad hoc

implementations towards more uniform structures. However one area in which

further research is required is that of privacy. Although a preliminary extension

is presented [Dey 2000B (s.6.1)], allowing some control over the access of

information, privacy protection is not central to the framework design. The

nature of privacy issues requires this to ensure adequate protection is provided.

Also since the development of the Context Toolkit there has been a movement

towards infrastructures being requested that can provide even greater abstraction

for developers [Hong, Landay 2001].

1.5. Cooltown
In the Cooltown project at Hewlett-Packard Laboratories it is believed “that the

future consists of nomadic people carrying personal communication and web

browsing devices interacting with services that are location specific and

8

customized to the user” [Debaty, Caswell 2000]. The project seeks to support

this behaviour by adopting the existing web infrastructure such that the real and

virtual worlds are brought closer together. At the heart of the project there are

three different categories of entities: people, places, and things [Debaty, Caswell

2000]. People are the users in Cooltown, a place is an area or space, and things

are objects. As such people can use things, and places can be filled with both

people and things. The vision they have is that each one of these entities will

have a web presence [Debaty, Caswell 2000], i.e. it needs to have a

representation on the web that can be accessed using an URL. This web

presence is then used to provide customised and enhanced services to people.

The Cooltown museum is one of the examples they give of what an enhanced

service may look like. Throughout the museum beacons have been deployed

close to objects of interests such as pictures. These beacons transmit URLs that

link the physical objects to their respective web presence, where information

about the object is found. The visitors can then receive these URLs with their

portable digital assistants (PDA) when they explore the museum, allowing them

e.g. to read more about the object using the PDA’s web browser. The URLs can

also be stored for later use. In the museum bookshop URLs are associated with

the items for sale, to allow visitors to retrieve further information such as

reviews. Furthermore, they offer a print service that makes it possible for

visitors to print out the web pages associated with the URLs collected during

their stay, as well as reproductions of paintings.

The future as thought of in the Cooltown project is not far away. Today a large

proportion of the population in the industrial world carry mobile phones, some

of which support web browsing, and the use of PDAs, and increasingly,

smartphones is steadily growing [Debaty, Goddi et al. 2003]. These mainstream

devices can already today be utilised to gain access to enhanced services that

give you more information about museum artefacts [Duan 2002], help you find

your friends [Telia 2005], or guide you around a tourist attraction [Mobil

Turism 2005]. But there is still some way to go before the real and virtual

worlds seamlessly interact; simply providing a web presence for people, places,

and things is not enough.

9

1.6. Music FX
Another project that shows some practical uses of context information is

MusicFX [McCarthy 1998]. It investigates the use of a group preference agent

in a shared environment. The environment in question is that of a fitness centre,

the Fitness Xchange at the Accenture Technology Park in this case. In this

fitness centre, as in others, music is often being played. The type played can

often be subject to dissatisfaction, and this is indeed what 25% of the Fitness

Xchange’s written suggestions convey. This project has therefore developed a

system that aims to improve on this by adjusting the type of music played

according to the preferences of the group of people working out.

To be able to make a decision about what music should be played MusicFX has

a database containing people’s preferences with respect to musical genre. The

preferences are expressed as a collection of ratings for the different genres. Each

rating is on a 5 step scale, going from love +2 to hate -2 with 0 being the no

preference. This database is populated by the members and can be updated at

anytime. The system must also know which members are present in the

environment. This is achieved by requiring people to logon to the system when

they come to workout. After logging on that person is by default assumed to be

present for 90 minutes, removing the need to explicitly logout. Together these

pieces of data form the basis needed for MusicFX to run the group preference

arbitration algorithm, which is the decision maker. The algorithm is run every

time certain events occur, e.g. when a member logs on. Without going into too

much detail the algorithm calculates the aggregate rating of the available genres

using the preferences of the current people logged in. The top rated genres are

then short-listed and given different weights that reflect the aggregate ratings. It

is then from this list a genre is selected; the selection is random but takes into

account the different weights. Having selected a genre to play MusicFX utilises

an existing music service to play the appropriate music. This service has

previously been controlled manually by the members of staff and consist of 91

channels each catering for a certain genre. In addition to this there are a number

of ways in which the system can be fine-tuned to ensure there is variation in the

music played and for users to express their dislike of songs.

10

The MusicFX project shows one way in which context-awareness can improve

our environments. It is especially interesting, seeing as music is commonly

played in the background of places such as shops and restaurants and it is also

something people can easily relate to. However the project does not consider the

scenario of users moving between different environments nor does it adequately

address the privacy issues that arise with the introduction of such a system. The

set of preferences used by MusicFX are stored locally in a database, as such

data will be duplicated if other services requiring a user’s musical preferences

are deployed. It also gives the user less control over the use of their contextual

information and its accuracy. Furthermore by storing preferences when not

needed, i.e. between workout sessions, the system raises questions regarding the

extent to which the preferences are used for other purposes than influencing the

type of music being played.

1.7. Fieldwork
The use of context-awareness extends beyond controlled environments such as

offices, homes, and gyms. It can also be applied to other situations, for example

to assist in fieldwork. The Mobile Computing in a Fieldwork Environment

(MCFE) project is one effort aimed at developing context-aware applications

for the field [Ryan, Pascoe et al. 1997]. The project has developed several tools

for handheld devices that support the recording, presentation, and administration

of field notes [Ryan, Pascoe et al. 1997] [Pascoe, Morse et al. 1998] [Ryan,

Pascoe et al. 1999].

Among the tools developed is a general purpose system for rapid data entry

[Pascoe, Morse et al. 1998]. The system is based on the stick-e note concept

[Brown, Bovey et al. 1997], but is distinct in that the focus is on recording

information instead of retrieving information [Pascoe, Morse et al. 1998]. To

facilitate the fieldworker’s need for quick note taking the system utilises both

templates and automatic capture of contextual information. The prototype

developed has been tested in field trials in Kenya, where animal behaviour was

studied. It was concluded from the trial that the tool developed in addition to

replacing traditional pen and paper also benefited the users in offering better

11

usability and speed [Pascoe, Morse et al. 1998]. Thus, the work shows that

context-aware tools are both applicable and useful in field work environments.

Another tool developed as part to the MCFE project is a geographical

information system allowing the mapping of field notes on handheld devices

[Ryan, Pascoe et al. 1999]. The system utilises contextual information to make

note taking easier, automatically augmenting notes with positioning

information, date and time, and the recorder’s name. Previously recorded

information as well as the user’s current position is available using a map view.

From the map field notes can be retrieved for viewing and editing. Field trials

with this tool have also verified the applicability of context-aware mobile

systems to fieldwork [Ryan, Pascoe et al. 1998]. Its usefulness has also

prompted continued development of the tool [Ryan 2005].

What these applications have demonstrated is that mobile computing and

context-awareness can be successfully applied to fieldwork. Hence, it is

important to not limit the focus of context-aware work to areas such as offices

and homes, but also consider a wider range of environments.

1.8. Privacy and Freedom
The book Privacy and Freedom by Alan F. Westin [Westin 1970] provides a

ground for understanding privacy by addressing some of the important

questions. It is also the source of a widely used definition of privacy.

So what is privacy? According to Westin “Privacy is the claim of individuals,

groups, or institutions to determine for themselves when, how, and to what

extent information about them is communicated to others” [Westin 1970 (p.7)].

With respect to the interaction between an individual and society he states that

“privacy is the voluntary and temporary withdrawal of a person from general

society through physical or psychological means” [Westin 1970 (p.7)]. The

book also presents four basic states of privacy: solitude, intimacy, anonymity,

and reserve. Solitude is the first and most private state. In this state the

individual is not part of any group or under any observation. The only

disturbance that can be experienced originates from the individual’s own senses

and psychological fears. The second state is intimacy. In this state the individual

12

is part of a small group that is allowed to be separate from the rest of society.

The group members can therefore form an open relationship. The third state is

anonymity. In this state privacy is attained by being in a larger public group of

people. The individual may be observed but since they are anonymous in the

group they may still enjoy privacy. The fourth and final state is that of reserve.

In this state psychological barriers are used to protect privacy. Such barriers

may involve limiting the information an individual communicates about

themselves.

Is this a modern concept? No, it is argued in Privacy and Freedom that the need

and desire for privacy is not a new phenomenon but that it can be traced as far

back as to our animal origin. To support this, a number of parallels are

presented between humans and animals. For example, Westin states that almost

all animals, or intimate groups of animals, seek periods of seclusion. It is also

said that animals, just as humans, possess mechanisms that govern the distance

between members of a group, allowing personal space. Related to this is the

requirement for animals to have a minimum amount of private space to ensure

health and survival. Furthermore it is said that animals share our need for intra-

species social interaction. As such privacy is not only a human desire or as

Westin puts it “the quest for privacy is not restricted to man alone, but arises in

the biological and social process of all life” [Westin 1970 (p.11)].

What function does privacy play in society? In Privacy and Freedom the

functions of privacy are discussed with respect to democratic societies and four

different categories are described for which privacy is essential: personal

autonomy, emotional release, self-evaluation, and limited and protected

communication. Privacy is needed to ensure personal autonomy because the

most serious threat to an individual's personal autonomy is, according to

Westin, that someone may learn their ultimate secrets, be it deliberately or by

accident. Then there is emotional release. Emotional release can be attained by,

for example, the temporary discard of social roles, by not fully complying with

social norms, or by being allowed to express anger. All of these forms rely on

the individual not being held accountable for their release actions, thus requiring

privacy. The third category described is self-evaluation. Individuals need to be

13

able to evaluate collected information about themselves and others, and they

need to do so in privacy. One example given is that although individuals

consider the morality of their actions continuously, it is in privacy they compare

it to their personal ideals. Finally there is privacy for limited and protected

communication for which Westin describes two general aspects. First, it serves

to give the opportunities required for an individual to share sensitive

information with those they trust. Secondly, it allows individuals to set

psychological boundaries with respect to their interaction with others. Finally it

is important to note that even though privacy fulfils an important function in

society, “the individual’s desire for privacy is never absolute, since participation

in society is an equally powerful desire” [Westin 1970 (p.7)].

So what determines the balance of privacy? In Privacy and Freedom the

political system is described as a “fundamental force in shaping its balance of

privacy” [Westin 1970 (p.23)] since the requirements differ from system to

system. As an example, the contrast between a totalitarian state and a

democratic society is presented. In a totalitarian state privacy, or if you will

secrecy, is restricted to the regime. All others are subject to high surveillance

and disclosure. On the other hand in a democratic society it is the government

that is under the scrutiny of the public and privacy is used to protect the private

life of the people. Furthermore historical and political traditions as well as

cultural differences are also recognized as affecting the balance of privacy. But

it is not only society that determines the balance of privacy. An individual’s

personal status, their life situation, as well as their personal preferences affect

this balance too. Finally Westin emphasises that an individual will constantly

adjust their balance of privacy to allow them to both fulfil their role in society as

well as their personal needs.

Although Privacy and Freedom was published 1970 the initial chapters are still

relevant in today’s information age. We still desire privacy [Guardian 2002] and

the basis on which society operates is fundamentally the same. It is therefore

assumed that privacy still fulfils much the same function today. The major

differences are that the quantity of information flowing is larger and the speed at

which it is communicated much faster. At the same time the amount of human

14

intervention needed to collect and distribute information has decreased,

resulting in a greater potential for privacy invasion.

1.9. P3P
The Platform for Privacy Preferences Project (P3P) [World Wide Web

Consortium 2002A] is a specification, endorsed by the World Wide Web

Consortium (W3C). With the specification, W3C aims to achieve two goals.

Firstly they want to enable websites to specify their privacy policy/policies in a

standard machine-readable format. Secondly they want users to be informed

about what data is collected, why it is collected, and if possible what the user

can opt-in or opt-out for. In other words, P3P is intended as a mechanism with

which sites can convey their privacy practises and their intentions to users and

user-agents.

The P3P specification [World Wide Web Consortium 2002A] describes a

format in which P3P policies, i.e. privacy policies, can be represented. The

format is XML-based and is accompanied by a standardised vocabulary. If

required this vocabulary can be extended. The specification also includes

information on how to reference P3P policies on websites and the meaning of

the accompanying vocabulary. What the specification does not cover is how to

enforce or verify the P3P policies described. The W3C also publish a related

specification that outlines how to represent privacy preferences with respect to

P3P policies using sets of rules [World Wide Web Consortium 2002B]. The

format described by this specification is also based on XML, and features an

extendable vocabulary.

So how will P3P be used? The specification [World Wide Web Consortium

2002A] outlines a simple example describing the use of P3P in a Web

environment. A user desires to visit a website on the Web and at their disposal

is a web-browser with a built in P3P user-agent. The user types in the address

for the desired webpage and at this point rather than directly requesting the page

the P3P user-agent will first attempt to retrieve the site’s P3P policy. Assuming

a policy is retrieved, the user-agent will then evaluate the policy to see if it

matches the user’s privacy preferences which have been provided earlier. If the

policy matches the preferences the page will then be retrieved and displayed. If

15

the policy does not match, the user may be prompted for a decision on whether

to retrieve the page or not. Alternatively the agent can be set up, for example, to

block the page automatically.

Another use is described in the paper Privacy Enhancements in the Mobile

Internet [Nilsson, Lindskog et al 2001]. There Mikael Nilsson et al. describe

how P3P can be used to protect Composite Capabilities/Preference Profiles, a

standard for describing device capabilities and user preferences [World Wide

Web Consortium 2004E]. The approach they take requires a device/user to have

a minimal profile in addition to their normal CC/PP profile. The minimal profile

may be empty or it may contain data that is not considered sensitive. As such it

can be used before a level of trust has been established between user and the

site. Hence, this minimal profile is used when the user-agent requests a site’s

P3P policy. The P3P policy is then evaluated to see if the site’s privacy policy

matches the user’s requirements. If it does then the more elaborate CC/PP

profile will be used for the subsequent requests. If the site’s policy does not

fulfil the user’s requirements they suggest the continued use of the minimal

profile. They also suggest that the minimal profile can be used to access non-

P3P compliant sites.

The example above demonstrates how P3P can be used. Whether P3P does

indeed improve the privacy of users or not is debated widely. In the report

Pretty Poor Privacy: An Assessment of P3P and Internet Privacy [EPIC,

Junkbusters 2000] the Electronic Privacy Information Center (EPIC) and

Junkbusters raise their concerns regarding P3P. They are for example worried

that users will be forced to give up privacy or accept a more restricted Internet.

Another issue they highlight is that there is a problem with launching P3P

because if few sites use P3P then few users will invest time in setting it up and

then there is no incentive for sites to use P3P. Concerns are also held due to the

fact that it is not possible to make sure that a site follows its stated P3P policy.

Several other issues are also discussed and the overall view presented in the

report is that P3P will actually not improve user’s privacy.

In the paper Can P3P Help to Protect Privacy Worldwide? [Grimm, Rossnagel

2000] by Rüdiger Grimm and Alexander Rossnagel a slightly more optimistic

16

view of P3P is presented though. They show that P3P can complement the

German privacy laws and that it supports some of the legal requirements sites

have to fulfil. They also point out that P3P could be extended to better support

the existing legal framework. Another positive effect mentioned is that P3P can

increase the awareness of users regarding privacy protection. However, several

issues with P3P are also highlighted in this paper. For example, they criticise the

limited choice the user has, i.e. either to accept or reject a policy. They point out

that there is no way for the provider to know why users reject a policy. They

also feel that the lack of technology to ensure policies are enforced is a problem,

especially where a self-regulatory approach to privacy protection is used.

However, it is concluded overall that the use of P3P can be beneficial.

Independent of what view you hold, the development of the Platform for

Privacy Preferences (P3P) specification must be credited for fuelling the debate

regarding internet privacy. Raising the awareness among both developers and

users about internet-privacy is just as important as providing technological

solutions, if not more so.

1.10. Summary
This chapter has presented a selection of the previous work done in the fields of

ubiquitous computing, context-awareness, and privacy.

The initial research on ubiquitous computing done at PARC still remains an

important influence on today’s research. Developing systems that are all around,

yet invisible, is increasingly desirable. The ongoing technological development

is turning this vision into reality by allowing smaller and smaller devices to be

manufactured. Also, the everyday use of technology like mobile phones will

gradually make the interaction with ubiquitous devices more transparent to the

user. Research projects such as Cooltown, The Guide project, and FieldWork

have shown that there are practical uses for ubiquitous computing technology in

different areas.

The progress made within ubiquitous computing has also allowed another

research field to be born, that of context-aware computing. Dey et. al. define a

context-aware system that uses contextual information to provide a user with

17

information or services relevant to their task. One piece of context that has been

widely researched is location. The Active Badge system, for instance,

demonstrated how location information can be captured indoors using infrared

and radio based sensing technology and that the deployment of such technology

is feasible. But context-aware applications are not limited to location. MusicFX,

for example, uses the gym members’ preferences when determining what music

to play in the gym. As such, context-awareness can benefit users in many

situations. However context-aware computing also brings its own set of

challenges. The work done on the Context Toolkit at the Georgia Institute of

Technology emphasises the difficulty in using context information and the need

to provide support for the development of context-aware applications. Also,

context-aware applications operate in a wide range of environments. The

projects described in this section cover environments such as the office, the gym

as well as more general fieldwork environments. This undoubtedly provides

issues itself.

Privacy is a long standing desire that according to Westin can be traced back as

far as our animal origin. It also asserted that privacy fulfils important functions

in society by, for example, providing people with the opportunity to evaluate

gathered information. It is thus not surprising that privacy is a subject of

concern to ubiquitous technology. The Platform for Privacy Preferences Project

(P3P) is one attempt in improving the privacy of online technology users.

Although developed for use in traditional environments, it has been shown that

the technology can be used within mobile environments as well. How successful

P3P is in improving privacy has been the subject of controversy, and is likely to

continue to be so. The importance of this technology is instead seen to be the

awareness and discussion it has raised regarding online privacy.

Although each of these fields are research areas in their own right, the existence

of a strong link is apparent. To provide valuable and acceptable ubiquitous

services to end users it is believed that we need to consider all three of these

research areas. In the next chapter a project will be introduced that attempts this,

i.e. combines the fields of privacy, context-awareness, and ubiquitous

computing.

18

CHAPTER 2

THE PROJECT
As the previous chapter has shown the development of ubiquitous computing

and the related field of context-awareness have made some significant progress.

A multitude of research projects have been undertaken which further the

understanding of these types of system. The work done has also highlighted a

number of existing issues with ubiquitous and context-aware computing and

emphasised the need for further work to address these.

This chapter presents the motivation for the research undertaken that is

presented in this thesis within the field of Privacy in Context-Aware Ubiquitous

Computing. It also describes in which ways this research aims to contribute to

the field, along with the issues that need to be addressed. Finally the chapter

also present some of the related work undertaken in the field, in the context of

this project.

2.1. Motivation
Over the last decade or so, significant progress has been made in the

manufacture of small devices. Small computing devices are no longer limited to

research or corporate use, they are available to mainstream users at what can be

considered reasonable cost. They have also become more powerful, and even

though resources are still limited, what they can do has increased and continues

to do so. Devices may still be far from invisible but even so a notable step has

been taken towards the wide scale realisation of ubiquitous computing.

Although this development itself has been a source for inspiration, the

motivation for this work concerns the issues that exist in developing publicly

acceptable context-aware ubiquitous systems for widescale deployment. In

19

particular the motivation comes from the work needed in two key areas: privacy

and development support.

2.1.1. Privacy
The distribution of invisible computer devices, which are able to communicate

and store information, throughout our physical environment poses some serious

questions about personal privacy. What devices are nearby and what purpose do

they serve? Do they collect information? If they do, what type of information is

collected and will it be distributed? The origin of these concerns are in fact the

very desirable characteristics of ubiquitous computing, the ubiquity and

invisibility. Although privacy concerns were encountered already within the

Ubiquitous Computing program at Xerox PARC [Weiser, Gold et al. 1999],

these issues have not been prioritised. This has left privacy being recognised but

to a large extent unaddressed.

Furthermore the development of context-aware applications can be seen to

aggravate any existing privacy concerns held with respect to ubiquitous

computing. The nature of context information is the cause of these heightened

concerns. A piece of context can consist of anything from location information

to that of the current activity. Thus the information will often be personal and

considered to be sensitive. Moreover if one takes into account that a context-

aware application may collect and use many pieces of information of various

types over an extended period of time, then it is not difficult to see that there

will be an impact on people’s privacy. Brown and Jones go so far as to state that

“Context-aware applications, above all others in the pervasive field, can be

regarded as anti-privacy” [Brown, Jones 2004].

But are people really concerned about their online privacy? Surveys examining

peoples’ feelings towards privacy suggest that they are. For instance in the

GVU’s 10th WWW survey from 1998, see Figure 1, 52.8% of the respondents

said that they were in general very concerned about the security on the Internet,

where security was stated to include issues like privacy, confidentiality, and

authentication [GVU's WWW Surveying Team 1998].

20

Not at all

A little

Very

Should be,
but not

Somewhat

0%

10%

20%

30%

40%

50%

60%

Concerned about security

Figure 1. Concerned about security? [GVU's WWW Surveying Team 1998]

Similarly an ICM Poll published by The Guardian in 2002, see Figure 2, shows

that 66% of those asked agreed to the statement: “I am worried about the

security of my personal information travelling on the internet and email”

[Guardian 2002 (p.3)].

Worried about personal information?

Disagree
21%

No
opinion,

14%
Agree
66%

Figure 2. Worried about personal information? [Guardian 2002 (p.3)]

Finally a survey undertaken by Your voice in Europe, see Figure 3, shows that

69% of the respondents were afraid that the personal data they provide whilst

buying or using online services will be misused [European Commission 2002].

In fact it was stated to be one of the main reasons why purchases were not made

online.

21

Afraid of misuse of personal data?

No
26%

Yes
69% N/A

5%

Figure 3. Afraid of misuse of personal data? [European Commission 2002]

All of the above surveys focus on slightly different aspects but they all show a

clear trend. Online privacy, security, and trust are important as well as desired.

With surveys clearly showing that privacy is indeed desired and context-aware

ubiquitous computing having matured, privacy research in this field has become

a hot topic. Privacy is indeed one of the key issues that are highlighted in the

ubiquitous computing grand challenge [Crowcroft 2003]. And as progress is

made in creating truly ubiquitous and context-aware computing environments,

we will increasingly find privacy to be the subject of concern. The need to

address these concerns is further stressed by the desire to deploy context-aware

ubiquitous systems on a wider scale for which public acceptability is ever so

important.

The development of privacy protection is therefore a key motivation for the

work presented in this thesis. Most would agree that the thought of a world

where information about us is recorded, used, or even distributed without our

knowledge is not very pleasant and that every effort must be made to avoid the

creation of a surveillance society.

2.1.2. Development support
The vast majority of people are not expected to start using context-aware

ubiquitous technology unless it provides them with some form of benefits. Thus

the existence of useful applications will be very important when it comes to

persuading people to use context-aware applications. It is also recognised that

what constitutes a useful application will vary greatly from user to user. Hence

22

there exists a need to develop a wide range of applications, providing users with

a choice.

But just as with the development of any other end-user application a significant

effort is required in producing useful context-aware applications. The task is

further complicated because of the nature of context-awareness. For instance

four aspects described by Dey [Dey 2000B] as making the use of context

information difficult are that:

• Limited experience exists in using context sensing devices.

• Abstraction is needed to make effective use of sensed context.

• Multiple dissimilar sensors may need to be used.

• Context information is dynamic.

Add to this list the need to develop secure applications that are privacy-friendly,

then further difficulties arise including: the provision of appropriate access

controls, integrity and secrecy of communication, secure data storage, etc.

Hence the complexity becomes even greater.

It is therefore essential that support is provided for the development of context-

aware application. By moving the responsibility for common tasks away from

the application, the complexity can be reduced. This will allow the applications

to focus on the task at hand and be developed with greater ease. Projects, such

as the Context Toolkit [Dey, Abowd 2000C], have indeed shown this to be true.

With further work in this area it is expected that application development can be

made even easier. Others [Hong, Landay 2001] have indeed argued that there

are benefits in taking an infrastructure approach rather than using a toolkit. Also

the additional difficulties that appear when secure and privacy-friendly

applications are developed creates a need for further work in this area.

Thus another key motivation for the work presented in this thesis is the need to

study further how to provide better development support.

23

2.2. Focus
The scope of possible work within the field of study is large, even within the

key areas of motivation. Indeed both context-awareness and privacy are

presented as unsolved key issues in the ubiquitous computing grand challenge

[Crowcroft 2003]. Thus the focus of the work has been further narrowed.

Firstly, the nature of the research has mostly been applied. By applied it is

meant that the work have been focused on researching practical and operational

solutions rather than abstract concepts. This follows the path of previous work

in the field of ubiquitous computing where the emphasis has been on

experimental research. Also, because the field of study is a combination of three

independent fields, i.e. privacy, context-awareness, and ubiquitous computing,

many benefits can be achieved by furthering the research into their integration.

Secondly, rapid progress is made in both the manufacture of small devices and

in the available software for such devices. This means the area is a moving

target. To avoid the research becoming a constant quest in utilising newer

technology the work has focused on using the same set of devices and software

as much as possible. Naturally newer technology has been used when

appropriate, provided no significant overhead is caused. Although it is

appreciated that benefits can be had from always using the latest available

technology, it is seldom required.

Finally, the work has focused on researching the software side of ubiquitous

computing rather than the development of specialised devices. Although the

research into hardware is both useful and interesting it requires a large

commitment of resources and time. Given the availability of small general

purpose devices, e.g. PDAs, it is thought that the current focus will better utilise

the resources to hand. Thus the work has used off-the-shelf devices throughout.

Although this inevitably imposes limitations on what can be done, these are

considered to be negligible. It should also be noted that the use of standard

equipment greatly simplifies any large scale deployment of context-aware

applications as equipment already in the hands of the users can potentially be

used.

24

2.3. Intentions
The work presented in this thesis aims to contribute to the ongoing development

in the combined field of privacy, context-awareness, and ubiquitous computing.

In particular the intention is to contribute to the following four areas:

• The improvement of a user’s overall level of privacy.

• The evaluation of different access control mechanisms.

• The provision of support for easy and rapid development of privacy-

friendly applications.

• The protection of third-party infrastructures.

The first two areas focus on the need for privacy protection in context-aware

ubiquitous systems, which is the primary motivation for the work. It is firmly

believed that users should not need to compromise their privacy to be able to

benefit from this technology. The intention is therefore to show that by

employing careful privacy-aware design and by providing users with greater

control over the distribution of their personal information, privacy can be

maintained. The work also intends to show that a suitable access control

mechanism is essential in providing the control required and includes an

evaluation of different access control mechanism with respect to context-

awareness.

The third area focuses on providing development support, another key

motivation. The intention is to demonstrate that by using a privacy-enhancing

infrastructure the handling of context information can be moved away from the

application. It is also the intention to show that by doing this the design of

privacy-friendly applications will be made both easier and quicker.

Finally, the last area on which the work focuses is the provision of privacy

protection for existing context-aware systems. The intention is to show that by

integrating the proposed infrastructure with other context-aware systems,

existing sensor networks and applications can be reused as well as allowing

access from the outside to be controlled.

25

2.4. Methodology
The methodology applied throughout this work, as with much ubiquitous

computing research, is experimental. This fits well with the desired focus on

applied work (See above, section 2.2).

The employed research process has been inspired by the rational unified

process, as described by Kruchten [Kruchten 2003], but adapted for research. It

can be broken down into five phases: problem, requirements, proposal,

experimentation, and evaluation. The first phase reviews the work in the field

and defines the area of study and the problem. The second phase captures the

requirements of the defined problem. The third phase designs a proposal that

addresses the problem by fulfilling the requirements. The fourth phase

implements the proposal and tests it experimentally. The fifth and last phase

evaluates the solution proposal and the experiments performed. Figure 4

illustrate the research process.

Probl.

Req.

Prop.

Exp.

Eval.

Figure 4. Research process

The process has been performed iteratively. This yields a gradual research

process with room for feedback.

2.5. Infrastructure approach
There are different ways in which privacy protection and development support

can be provided.

The most straightforward approach is to provide separate tools for the tasks. For

example, proxies can be used to improve users’ privacy by filtering their

requests, blocking those that would result in a violation of the users’ privacy

26

[JRC P3P Resource Centre 2005A] whilst development support can be provided

with libraries providing APIs to desirable functionalities [Java Community

Process 2003]. This separation is, however, not desirable. Firstly, it would be

inefficient to manage and maintain different tools. Secondly, the tools may end

up working against each other, due to the unavoidable conflicts that exist

between context-aware functionality and privacy. Hence, a common instrument,

addressing both issues, is preferred.

The approaches taken in early related work has been to provide developers with

the basic building blocks necessary to develop complete context-aware systems.

Schilit, for example, presents a context-aware computing architecture [Schilit

1995], whilst Dey describes a framework and toolkit [Dey 2000B]. Hong and

Landay, however, argue that the use of an infrastructure approach is more

beneficial [Hong, Landay 2001]. An infrastructure provides further abstraction

for application developers allowing them to focus on the problem at hand.

Examples of work that has opted for an infrastructure approach includes the

MobiComp infrastructure [Ryan 2005], the solar system [Chen, Kotz 2002], and

EQUIP [Greenhalgh 2002].

The use of an infrastructure has three key advantages according to Hong and

Landay [Hong, Landay 2001]. Firstly, by using services in an infrastructure

context-aware applications can be developed independently of the platform,

assuming the interaction with the services are standardised. Secondly, an

infrastructure provides a middleware layer that can separate the capture,

distribution, and use of context information allowing components to be

developed and maintained independently. Finally, an infrastructure enables

resources to be shared between applications.

With respect to privacy protection it is also believed that the use of an

infrastructure approach can be beneficial. By developing the infrastructure to

handle the privacy protection, this responsibility is lifted from the applications

and their developers. It is deemed that this can simplify the development of

applications. Furthermore, by incorporating the privacy protection into the

infrastructure, better possibilities ought to exist to provide a uniform protection

mechanism.

27

2.6. Related Work
Given the width of the combined field in which this work has been undertaken,

this section will only present a selection of the related work. The focus will be

on aspects considered particularly important when developing a privacy-

enhancing infrastructure.

2.6.1. Context and Context-awareness
Different definitions of context and context-awareness have been used in related

work, each emphasising aspects found to be important.

The early work in the field by Schilit and others describes context to capture

changes to things of interest, specifically they mention three aspects they

consider important: “where you are, who you are with, and what resources are

nearby” [Schilit, Adams et al. 1994]. Hence, change characterises contextual

information. Schilit et. al. also continue to present a number of examples of

what they consider to be contextual information, including location information,

lighting conditions, noise level, connectivity, communication costs and

bandwidth, and information about the social situation.

The importance of changes is further emphasised by Schilit’s and Theimer’s

definition of context-aware computing. They define context-aware computing as

“the ability of a mobile user’s applications to discover and react to changes in

the environment they are situated in” [Schilit, Theimer 1994 p.3]. Thus, the

definition stresses the importance for context-aware systems to be able to

capture and utilise contextual information.

A later definition of context presented by Dey and Abowd stresses the need for

information to describe a situation relevant to a user-application interaction (See

above, section 1.4). Hence, Dey and Abowd focus on the relevance of

information rather than on whether the information simply changes or not. They

also present four primary context types: location, identity, time, and activity

[Dey, Abowd 2000A]. Contexts that do not fit into those types are considered to

be secondary and are indexed by the primary types in information space.

Dey and Abowd also provide a definition for context-aware computing (See

above, section 1.4). The definition is similar to that presented by Schilit and

28

Theimer in that it stresses the use of context information. However, what makes

Dey’s and Abowd’s definition distinct is that they continue to emphasise the

importance of relevance instead of changes.

These definitions illustrate there that there are differences in how context and

context-awareness is defined, changes vs. relevance. However at the same time

the definitions can also be seen to overlap under certain conditions, for example,

when changes are relevant.

2.6.2. Application domain
A fundamental idea of ubiquitous computing is that computational devices

should be ever-present in our environment. It is therefore not surprising that the

domain covered by related work is large.

The early work in the area was carried out in office environments [Weiser, Gold

et al.1999] [Want, Hopper 1992B]. Since then there have been work carried out

that focus on peoples’ homes [Kidd, Orr et al. 1999] [Intille, Larson et al. 2005]

and places of leisure [McCarthy 1998] [Kindberg, Barton et al. 2002]. Some

have also gone outdoors to cover such domains as tourist sites [Cheverst, Davies

et al. 2000] [Mobil Turism 2005] and archaeological work [Ryan, Pascoe et al.

1997]. Furthermore, a large proportion of systems are mobile and work without

any fixed infrastructure [Ryan 2005] [Osbakk, Rydgren 2005].

In each of the environments different types of applications and services have

been deployed. For example, the active badge project provides a call forwarding

service at the office [Want, Hopper 1992B], MusicFX provides a personalised

music service at the gym [McCarthy 1998], and the GUIDE project provides

information to visitors information of interest [Cheverst, Davies et al. 2000].

These are just some examples of different services that can be and are provided

by ubiquitous computing systems.

It is therefore not possible to isolate ubiquitous computing to any single

environment. Furthermore, there is no single application or service that

characterises ubiquitous computing and can be used as a standard template.

29

2.6.3. Devices used
A wide range of devices are being used in ubiquitous computing systems

including both commercially available consumer devices and specially designed

experimental platforms. Of interest to this work are four types of devices:

TabletPCs, PDAs, Smartphones, and embedded devices.

The TabletPCs are the most powerful of the four types of devices. They are

perhaps best described as slimmed down portable personal computers. Some

features distinguishing the TabletPCs from ordinary laptops are lower weight,

smaller size, and the addition of a pen-based mechanism for data entry. Both the

form factor and the mechanisms for interaction of the TabletPCs are remarkably

similar to the Pads described by Weiser [Weiser 1993]. The capabilities of a

TabletPC are comparable to that of a low-end laptop. Thus, they generally

provide abundant processing power, memory, and disk storage for ubiquitous

computing applications. An example of related work using early TabletPCs is

the GUIDE project [Cheverst, Davies et al. 2000].

The PDAs are perhaps the most commonly used device type, out of the four.

They provide a general purpose computing platform in a handheld package.

Similar to the TabletPCs, PDAs generally provide a pen-based mechanism for

data entry. In contrast to TabletPCs, a PDA’s processing power and memory is

much more limited. Furthermore most PDAs do not feature disk storage but

have to make do with limited amounts of flash memory. However whilst the

PDAs are not on a par with the TabletPCs in terms of performance, their small

size and low weight make them much more mobile. In terms of the shape and

size these devices are similar to the tabs described by Weiser [Weiser 1993].

Their high cost, though, so far prohibit them from being scattered around a

user’s environment as envisaged. Related work using PDAs includes FieldNote

[Ryan, Pascoe et al. 1999], Cooltown [Kindberg, Barton et al. 2002].

The Smartphone is a device type that has gradually become more interesting

with respect to ubiquitous computing as the possibility to run third-party

applications has improved. A smartphone is essentially a mobile phone to which

PDA functionality has been added. They are however often more limited than

PDAs in terms of performance and capabilities. For example processing power

30

is seldom prioritiesed in a smartphone and it is not uncommon that they lack

pen-based input. Smartphones however have the advantage of featuring a

mobile-network connection. This generally provides wireless connectivity with

a better coverage. It also allows consumers to make voice calls and run

applications on a single device. Smartphones, just like PDAs, can be seen as an

expensive tab. Related work using smartphones include MobiTip [Rudström,

Svensson et al. 2004], Mobil Guide [Mobil Turism 2005], Bluereminder

[Osbakk, Rydgren 2005].

The last type, embedded devices, is frequently used when building sensor

networks and ubiquitous computing artefacts. An embedded device is a

computational platform that is committed to a specific task and closely tied to a

surrounding system. Generally, and particularly in ubiquitous computing,

embedded devices have a small form factor. The actual specifications vary

greatly from device to device but common characteristics include the lack of a

user interface of their own and severe constraints on resources, even more so

than with smartphones or PDAs. Some examples of embedded devices used in

related work are SmartIts [Gellersen, Schmidt et al. 2002], TINIs [Russo,

Sukojo 2004], and Mica motes [Hill, Culler 2002].

The capabilities of all of these four types of devices continuously improve.

However, it is still possible to get an idea of the differences that exist by

inspecting a sample of the available devices. The table in Figure 5 shows the

capabilities of one device from each of the four types.

31

Figure 5. Overview of device capabilities

2.6.4. Privacy protection
With the development of electronic commerce, online privacy has become an

acute issue. To guide service providers five principles central to fair information

practises have been composed: notice, choice, access, integrity, and

enforcement [Landesberg, Levin et al. 1998]. Firstly, subjects should be made

aware when their information is collected how it will be used. Secondly, they

should be given the choice of whether to participate or not. Thirdly, subjects

should be able to access and correct information held about them. Fourthly,

captured data should be accurate and kept securely. Finally, it is necessary for

the principles to be enforced. These principles capture the basic requirements

for privacy protection.

In ubiquitous computing privacy issues are even more prominent, especially

when combined with context-awareness. Research into the adoption of privacy

protection for this field, however, has been and still is limited. Nevertheless,

some projects have been undertaken on this topic. They investigate techniques

that may allow ubiquitous computing systems to conform with the principles of

fair information practises as well as other methods for the protection of privacy.

From the principles of fair information practices six design principles for

preserving privacy in ubiquitous computing system have been derived

[Langheinrich 2001]. These include notice, choice and consent, anonymity and

Device CPU Memory/
Storage Connectivity Size (mm)/

Weight (Kg)

A) Tecra M4 Centrino M740
1.73 Ghz

512 Mb /
60 Gb

IR, Wifi,
Bluetooth,
Ethernet

328x290x38‡
/ 2.8

B) Ipaq 4150 ARM PXA255
400 Mhz

64 Mb† /
(Exp. card)

IR, Wifi,
Bluetooth

114x70x14‡ /
0.132

C) Sony Eric.
P910i ARM 9 64Mb† /

(Exp. card)
GSM

(GPRS)
115x57x26 /

0.155

D) DSTINI
m400 DS80C400 1Mb / 1Mb Ethernet 67x48x5‡ / ?

† Shared memory and storage ‡ Approximate measures
A) [Toshiba 2005] B) [Hewlett-Packard Company 2003]
C) [Sony Ericsson 2004] D) [Dallas Semiconductor, Maxim 2005A]

32

pseudonymity, proximity and locality, adequate security, access and recourse.

Based on these design principles the privacy awareness system [Langheinrich

2002] has been developed. The central idea in the project is that privacy

beacons are used to announce where and when information may be collected by

a service. These announcements are picked up by a privacy assistant carried by

the users and forwarded to a remote but personal privacy proxy. The privacy

proxy analyses the situation by inspecting the service’s privacy policy and

compares it with the user’s preferences. A choice can then be made whether to

utilise the service or not. The privacy proxy also keeps track of services used

and the information collected. This allows the proxy to send updates to services

when relevant information changes. Furthermore the privacy awareness system

is also stated to provide secure communication and access controls. Hence, the

system covers all the fair information practice principles except enforcement.

The enforcement of privacy policies is a problem that due to its difficulty

perhaps never will be completely addressed. However, the use of social

mechanisms, such as reputation and trustworthiness, allow the situation to be

improved upon. Goecks and Mynatt describe a personalized reputation system

for the protection of privacy in ubiquitous computing environments [Goecks,

Mynatt 2002]. The idea is that every user has a reputation built from the trust

placed in them by other users. The trust network is weighted such that the

opinion of trusted users weighs more than those that are not trusted or unknown.

Once calculated the reputation can then be used as a means of ascertaining a

user’s trustworthiness and thus whether it is desirable to share information with

them or not. Since the feedback left by a user also affects the larger network,

malicious acts can be penalised in this type of system by reducing the trust

placed in the rogue user.

An alternative approach to that of adopting the principles of fair information

practices has been taken in the solar system [Minami, Kotz 2002], an

infrastructure supporting the capture, processing, and distribution of contextual

information [Chen, Kotz 2002]. In this system the focus is on controlling the

release of contextual information using access controls rather than on its use

once released. In solar, contextual changes are represented as events and

33

applications subscribe to event streams to retrieve information. To control

access, each event in solar is tagged with an access control list (ACL). The ACL

specify who can access the event as a list of named principals or roles and is

created together with the event. As the events flow through the system, their

associated ACLs are modified appropriately to reflect any transformation the

information undergoes. The access can then be enforced by restricting the

delivery of events to applications that execute on behalf of a principal listed,

either directly or through role memberships, in the event’s ACL. Thus,

assuming that the ACL is true to a subject’s privacy preferences then their

privacy is protected.

2.6.5. Security aspects
Providing a subject with the ability to control their flow of personal information

is of little use unless the infrastructure and its communication is secure since

without adequate security, sensitive information may fall into the wrong hands

anyway. Security is therefore a necessary condition when addressing privacy,

though it should be noted that it is not sufficient alone.

The book Security for Ubiquitous Computing [Stajano 2002] provides a

comprehensive discussion of the security issues that exist in ubiquitous

computing. In the book Stajano examines five aspects deemed important for

security. Firstly there is confidentiality. A secure system needs to keep

information secret to all but the intended recipient(s). Stajano highlights the

increased vulnerability of wireless networks. Given the absence of wires, the

opportunity to listen in on communication exists for anyone within signal range.

Secondly there is integrity. Information must be protected against unauthorised

modifications for a system to be secure. Stajano makes the point that integrity

applies not only to information being transported, but also to information held

by hosts. Thirdly there is availability. In a secure system rogue users must not

be able adversely affect the availability of the system and deny legitimate

requests from being processed. Fourthly there is authentication. It must be

possible to verify the identity of users. Stajano emphasises the importance of

authentication for security and states that confidentiality, integrity, and

availability can be violated without it. Finally there is anonymity. Stajano draws

34

attention to the fact that it is not always the content of messages that yields the

most useful information but its existence.

These five security aspects need to be taken into account when developing any

ubiquitous computing system and especially if the system is to protect the

privacy of its users.

2.7. Summary
In this chapter the basis for this thesis on privacy in context-aware ubiquitous

computing has been introduced.

The motivation behind this work concerns the issues that exist in developing

publicly acceptable context-aware ubiquitous computing systems. In particular

the work has been motivated by the need for improvements in privacy

protection and development support.

Given the wide scope of possible research within the field of study, the focus of

the project has been constrained to applied experimental research on the

software side of ubiquitous computing. Furthermore, to avoid a constantly

moving target the platform and the technologies used have been kept constant

whenever possible.

The aim of the research is to contribute to the ongoing development in the

combined field of privacy, context-awareness, and ubiquitous computing. In

particular the intention is to contribute to the improvement of users overall

privacy, the evaluation of different access control mechanisms, the provision of

development support, and the protection of third-party infrastructures.

The research process used has been inspired by the rational unified process and

consists of the five phases: problem, requirements, proposal, experimentation,

and evaluation. Together the phases provide the necessary structure to perform

the research. In this work the research process has been performed iteratively.

In this work an infrastructure approach for providing privacy protection and

development support has chosen to be investigated. The choice is motivated by

the benefits Hong and Landay argue to exist including platform independence,

separation of components, resource sharing. Another motivation is that it is

35

believed to be beneficial to place the responsibility for privacy protection on an

infrastructure rather than individual applications.

Also described in this chapter is related work in a number of areas including

context-awareness, application domain, devices used, privacy protection, and

security. What is evident from the work described is ubiquitous computing is a

truly diverse field, without any established standards. It is therefore especially

important to not assume implicit knowledge.

This leads us to the next chapter, which will present the definitions of context

and privacy employed in this work. The chapter will also describe the

conceptual models of context and privacy derived from the definitions.

36

CHAPTER 3

CONCEPTUAL MODELS
Neither context nor privacy are concepts that are without ambiguity. This is

clearly undesirable. To develop a privacy-enhancing infrastructure for context-

awareness a firm understanding and formal definitions of both these concepts is

essential.

This chapter will present the conceptual models that form the base of this work.

Two models have been put together, one for context and one for privacy. The

context model emphasises the existence of relationships between entities. This

creates networks of contextual information. The privacy model defines privacy

in terms of control over a subject’s flow of information. It also states that the

ideal level of privacy in ubiquitous systems is equal to that enjoyed offline.

3.1. Context Model
Although most research done in the context-aware field takes a similar view of

what constitutes context, the exact definition used varies from project to project.

In the selection of work presented in the background chapter everything from

location to musical preferences has been referred to as context. Whilst the

variations in the exact definition of context seldom cause any practical problems

it is still important to be clear about what specific definition is in use.

This section is therefore dedicated to presenting the context model employed in

this work. It will start by presenting the definition of context used in this work.

After this the derived model of context will be described. Finally the section

will show how this model can be represented both graphically and textually.

37

3.1.1. Definition
The definition of context employed in this work is broader than either of the

definitions described previously (See above, section 2.6.1).

“Context is information related to an entity, where the information may be an

entity itself” [Osbakk, Ryan 2003]

The definition stresses the existence of a relation between entities and data

values. Compared to the definitions previously described, it is closer to the

linguistic definition of context which defines context as “associated

surroundings” [Larousse 1994]. It is therefore hoped that the definition will

better fit the concept of context that is held by the general public.

By requiring the existence of a relation the definition also rationalises why one

piece of information can be considered to be context under some circumstances

but not under other. For example take the string “ISBN 0-7522-2470-0”. This

string represented on its own would not be classified as context information. But

if I state that the string provides a reference to the book “The Dilbert Principle”

by Scott Adams, the very same string will now be considered to be a piece of

context as its relationship to an entity has been defined. This context relation is

illustrated in Figure 6.

The Dilbert Principle ISBN: 0-7522-2470-0reference

Figure 6. An entity to context relation

It is also important to note that the definition does not place any limitation on

what an entity must be nor on the type of information that constitutes context.

Thus given the existence of a relation, anything can be considered to have

and/or be context. This includes physical entities such as people, places and

things [Kindberg, Barton et al. 2002] as well as virtual entities such as events

and concepts. For example, assume that a meeting is held where Alice and Bob

are present. Perhaps they are exchanging secret keys. This meeting will thus be

a piece of context with a relation to both Alice and Bob, e.g. current activity.

But the meeting itself can also be regarded as an entity on its own. It is a virtual,

and in this case a temporal, entity. Thus the meeting can also have context

38

information associated with it. Obvious examples of such context information

would be the attendees, time, purpose, location etc. Figure 7 illustrates a set of

entity to context relations.

Bob

Meeting

Key exchange

Alice 15:00

attend time

attend purpose

Figure 7. A set of entity to context relations

Finally the width of the definition ensures that narrower application specific

definitions can coexist within a system. For instance the definition by Dey and

Abowd [Dey, Abowd 2000A] needs the usage of a piece of information to be

clear whereas knowing the type of information is crucial with the classification

employed by Schilit et al [Schilit, Adams et al. 1994]. Thus situations exist

where a piece of context will be considered context in one system but not the

other. By using the definition presented here and then a narrower application

specific definition only when necessary, the information may coexist within an

infrastructure (the existence of a relation is intrinsically assumed given that

unreferenced information is seldom valuable and thus rarely used). This feature

will later be shown to be important for the integration of the developed

infrastructure with others.

3.1.2. Network of relationships
The context model used in this work is directly derived from the employed

definition of context. Consequently it takes the shape of a network, where the

network is created from the relations between entities and pieces of context (or

other entities). The previous figures have shown very limited context networks,

starting with simplest containing only one entity and one piece of context.

The world we live in however is much more complex, hence we will get an

almost infinitely complex network of relationships when using this model. The

network will represent the context of any entity within it. For example assume

39

that Alice has read the book “The Dilbert Principle” by Scott Adams [Adams

1997] and so has her friend Bob. Thus a relationship exists between them and

the book as well as between themselves. Figure 8 is a graphical representation

of the context model derived from the information given so far.

Key exchange

Meeting

Bob

15:00 Alice

time attend

purpose attend

The Dilbert
Principle

ISBN: ...

Scott Adams
author

friend

reference

read

read

Figure 8. A simple context network

What becomes clear from the above example is that the relationships work both

ways and those entities that initially may seem unrelated such as Bob and Scott

Adams form part of each other’s context.

The context of any one entity in the model is found by resolving the associated

network of relationships and may include recursive relationships. In a real world

situation this will create a graph of arbitrary size, where the size will depend on

the number and formation of the relationships. For practical reasons it will thus

be expected that the length of the relationship chain will be fixed to a

manageable value during modelling. Although this can reduce the model to a

manageable size it introduces the problem of selecting the scope. The decision

on what scope to use will largely be subjective, where important factors include

the intended use, requirements, and the available resources. Thus the decision

needs to be made on a per model basis where a trial and error approach may be

employed. In an application scenario on the other hand the graph size would be

drastically reduced as privacy protection mechanisms should, and is assumed, to

limit the length of the chain. Thus it may not be necessary to further reduce the

context model.

3.1.3. Representation
So far the context model has only been represented graphically. Although useful

when rendering an overview of the context network, it is not adequate when the

40

model is going to be processed. The model ideally needs to be represented in a

format that allows it to be read and interpreted by both humans and machines.

So how do we do this? The approach taken in this work is to represent the

context-network using the Resource Description Framework (RDF) [World

Wide Web Consortium 2004A]. An approach also taken by others [Korpipää,

Mäntyjärvi et al. 2003] [Korpipää, Mäntyjärvi 2003].

RDF is a framework developed to allow information about web resources to be

represented [World Wide Web Consortium 2004B]. It is based on the idea that

resources are associated with properties and data values which can be described

using simple statements. Such statements consist of a subject, predicate, and

object. The subject identifies the resources about which the statement is made

and consists of a Uniform Resource Identifier (URI). The predicate refer to the

particular property being described. Finally, the object is the value of the

property, which can be a literal or a resource itself. These statements can then

be represented using an RDF graph where the predicates form arcs between

subject and object nodes, as illustrated in Figure 9.

Figure 9. RDF Graph representing a simple context model

Although RDF is focused on representing web related metadata it is not limited

to this use. RDF can represent information from other areas too. The only

requirement is that the resources are identified using URIs. The translation

between the employed context model and the RDF representation is straight

forward: entities translate on to resources, relations to properties, and context to

data values. As can be seen, there is a good match between the context and RDF

models. The context model has indeed been influenced by RDF. However,

there are subtle differences. The RDF model always makes a distinction

between data values and resources. The graph representation makes this

distinction clear, showing resources using ovals and data values with rectangles.

Although accurate given the current data set, it should be remembered that the

41

length of the relationship chain may be limited. Thus the data values may in

reality be entities themselves, which is why no distinction was made in the

previous graphical representation of the context model. Note the namespaces

used here are abbreviated to improve the legibility.

As previously stated the reason for using RDF is the need to represent the

context model non-graphically. The most intuitive way of doing this using RDF

is as a collection of subject – predicate – object triples. This allows a condensed

listing of the current information in the model to be provided, as illustrated in

Figure 10.

Subject: Predicate: Object:
ent://Bob rel://attend ent://Meeting
ent://Alice rel://attend ent://Meeting
ent://Meeting rel://purpose “Key exchange”
ent://Meeting rel://time “15:00”

Figure 10. RDF triple representation of a simple context model

Alternatively the context model can be represented using RDF serialised as

XML (RDF/XML) [World Wide Web Consortium 2004C], see Figure 11. Even

though the structure of RDF/XML is more verbose than RDF triples, this is the

preferred format. A key benefit of RDF/XML is that the format is well defined.

By using services such as the W3C RDF Validation Service [World Wide Web

Consortium 2005A] the validity of such a document can thus be established.

RDF/XML is also the commonly used representation of RDF. Furthermore both

RDF graphs and RDF triples can easily be obtained from it, e.g. using the

former service.

42

Figure 11. XML Serialised RDF representation of a simple context model

Finally it should be mentioned that although RDF does not directly provide any

methods for describing the relationships between the represented resources

beyond their existence, the related RDF vocabulary description language

[World Wide Web Consortium 2004D] does this. This language allows the

creation of RDF Schemas that define the vocabulary used in RDF documents.

By using these schemas the validity of RDF documents and hence the

represented model can be established.

3.2. Privacy Model
The need for privacy in context-aware and ubiquitous computing environments

has been stated to be a key motivation for this work. The need for privacy is not

exclusive to these environments, nor to today’s society. The work by Westin

[Westin 1970] that has been presented in the background chapter argues that

this desire can be traced back as far as our animal origin. However the

introduction of this new technology enables the invasion of privacy on a much

larger scale and using fewer resources than before. Although the issues

concerning privacy were encountered already with the early work in ubiquitous

computing the work in this area has been limited. Thus there is no well

established model of privacy, leaving most ideas subject to discussion.

This section will therefore introduce the conceptual model of privacy used as a

basis for the work presented in this thesis. The aim is to clarify the position

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
 xmlns:schema="rel://">

 <rdf:Description rdf:about="ent://Bob">
 <schema:attend rdf:resource="ent://Meeting"/>
 </rdf:Description>

 <rdf:Description rdf:about="ent://Alice">
 <schema:attend rdf:resource="ent://Meeting"/>
 </rdf:Description>

 <rdf:Description rdf:about="ent://Meeting">
 <schema:purpose>Key exchange</schema:purpose>
 <schema:time>15:00</schema:time>
 </rdf:Description>

</rdf:RDF>

43

taken with respect to privacy. It will also later allow requirements to be

captured. The chapter will start by presenting the adopted definition of privacy.

It will then continue to discuss what is thought of as being the ideal level of

privacy followed by the subject’s scope of control. Furthermore, the section will

present the process of disclosure in the model as well as how the concept is

visualised. Finally, an overview will be given of how this privacy model relates

to the employed model of context.

3.2.1. Definition
The linguistic definition found in a dictionary [Larousse 1994] refers to privacy

as “seclusion”, “freedom from intrusion by the public”, “avoidance of notice”,

etc. This gives the impression that it is necessary to protect a subject from all

forms of external interaction to achieve privacy. As such, the ability to

participate in the society would be limited. Such behaviour may in turn be

interpreted as abnormal and be taken as an indication of something being

wrong. Indeed the dictionary [Larousse 1994] also refers to privacy as “secrecy”

and “concealment”, which is easily associated with negative behaviour.

The work presented in this thesis, however, views privacy from the perspective

of information flow. This is natural given the nature of the area in which privacy

is considered. One of the key differences between traditional and context-aware

applications is in fact that the latter takes advantage of the information available

about its surroundings. Thus throughout this work the following definition of

privacy has been adopted:

 “Privacy is the claim of individuals, groups, or institutions to determine for

themselves when, how, and to what extent information about them is

communicated to others” [Westin 1970 p.7]

The definition emphasises the subject’s right to control the flow of information

about them. Privacy does not therefore equal isolation nor does it imply that

there is such a desire. The issue is instead one of control. A subject may choose

to make the flow of information about them fully public or they may indeed

choose to isolate themselves. What is important is that the subjects themselves

44

can control the extent of their information flow. As such it is with the subjects

that the ownership of information rests.

Thus, the availability of privacy does not limit the participation in society by

default, though a subject’s choice may. The majority however are expected to

strike a balance between the two extremes of complete openness and complete

isolation. There are many factors that may influence this balance of privacy,

among those mentioned in Privacy and Freedom by Westin [Westin 1970] are

for example the political system in use, historical and cultural traditions, life

situation, personal preferences, etc. From this list it can be seen that some of the

factors can be affected by the subjects and not others. This work will therefore

make a distinction between the range of privacy society allows and the

particular trade-off a subject makes. The former will be referred to as the level

of privacy and describes how much control a subject has in determining their

balance of privacy. The latter will be referred to as the effective balance of

privacy as it represents the subject’s choice of privacy within the range

specified by society. It is therefore the effective balance of privacy that can

cause a subject’s claim for privacy to be interpreted negatively by others.

3.2.2. Ideal level of privacy
What level of privacy is then required? The position taken in this work is that

the introduction of new technology should not adversely affect people’s privacy.

It does not matter if the effect on privacy is limited. Over time individual and

even seemingly small sacrifices will add up to eventually give rise to an

undesirable level of intrusion. We should also not automatically assume that the

benefits provided by context-aware environments will justify any reduction in

privacy. The current level of privacy is therefore thought to be the ideal and

should therefore remain static with the introduction of new technology.

The reference point, against which the level of privacy is fixed, has been chosen

to be that of an offline environment. This choice has been made because of two

reasons. Firstly, the nature of an individual’s interactions with the physical

world is considered to be mainly offline, i.e. they do not occur over a computer

network. Most interactions take place directly between an individual and non-

networked objects or other people. Offline is therefore thought to be the natural

45

state against which privacy needs to be compared. Secondly, the level of

privacy people enjoy while being offline is found acceptable by most. This is

not surprising since the established balance of privacy in our society is in part

determined by tradition and culture and thus has gradually evolved over many

years. Also, in recent years there have not been any significant changes to the

western world’s politically system, a key determinant of the balance. This has

also contributed by allowing people to grow accustomed to the privacy that is

available. Thus this work makes the assumption that:

The level of privacy in context-aware ubiquitous environments should ideally be

equal to the privacy enjoyed whilst being offline.

But what level of privacy does an offline environment then provide? Consider

the scenario previously described where Bob and Alice meet to exchange

cryptographic keys. In this situation the information exchange is voluntary and

under their control. Either one could decide not to share their information if they

wish to do so. However they have less control over the fact that the meeting is

taking place. If a third-party sees Alice and Bob entering the meeting room the

occurrence of a meeting can be deduced. Alice and Bob do therefore not enjoy

complete privacy, they do not have full control over their information flow. The

offline world is therefore considered to constantly leak private information.

Furthermore, there are no absolute guarantees of how the information

exchanged during the meeting will be used. Even though there is a relation of

trust between Alice and Bob that may stipulate that they will not reveal

confidential meeting information, either of them can at a later stage break this

trust. Therefore, once information has been revealed in the offline world, no

control is held over it by the person disclosing it. This is also the case with

leaked information, as once acquired the third-party may continue to spread the

information. The privacy enjoyed in an offline environment is therefore not

perfect. Indeed the actual level of control a subject has in an offline

environment is fairly limited and can be summarised as being restricted to

controlling their own disclosures, their presence, actions in public spaces, and

receptiveness. These areas will be further discussed later.

46

What is important to note is that even in simple situations, free from invasive

technology, information can leak and thus potentially be misused. Thus the

intrusion caused by information leakage in an offline environment is part of

people’s everyday life and there is, in practise, little that can be done to avoid

this. The level of privacy that is needed in an ubiquitous system does therefore

not necessarily need to be perfect, rather the requirement in the adopted model

is for an adequate level of privacy to be provided. The privacy enjoyed and

accepted in our everyday offline environments is after all imperfect. Indeed

Westin argues that “the individual’s desire for privacy is never absolute, since

participation in society is an equally powerful desire” [Westin 1970 p.7]. This

does not mean though that privacy cannot be enjoyed whilst participating in

society but that it is difficult for an individual to fully control the flow of

information about them in such situations. Thus a certain degree of privacy

invasion will be deemed as acceptable.

3.2.3. Scope of control
At the start of this chapter privacy was defined as a subject’s right to control the

flow of information about them, making the scope of control the primary factor

that determines privacy. This section will now further describe the extent of the

control a subject has over their flow of information.

Two fundamental assumptions have been made about the scope of control, both

briefly introduced in the previous section:

• Information constantly leaks from a subject’s presence and actions in

public spaces

• Control over information can only be exerted up to the point of

disclosure.

The first assumption specifies that there is a constant leakage of private

information. Even if a subject does not choose to disclose any information, their

presences and actions in public spaces may allow others to deduce certain

pieces of information. The second assumption specifies that the control over the

flow of information can only be exerted up to the point of disclosure. Once

information has left a subject’s personal space, be it by a deliberate disclosure

47

or an uncontrolled leakage, the subject cannot control how it will be used. This

relaxation simplifies the privacy model to one that is practically achievable in

an imperfect world.

Because of the limitations incurred by these assumptions the level of control a

subject has over their information flow is practically limited to the four areas:

• Controlling their own disclosures

• Controlling their presence or recognition in public spaces

• Controlling their actions, and link therewith, in public spaces

• Controlling their receptiveness

Firstly, controlling their own disclosures is, in terms of this work, the foremost

way in which a subject can enforce their privacy. By directly controlling what

information is disclosed and to whom any disclosures are made, the subject can

guard their private information. Such control is broken down into two

approaches:

1. A subject may choose to keep the existence of certain pieces of

information secret.

2. A subject can also just reject requests for private pieces of information.

In (1), the subject may avoid having to deal with requests for the information

kept secret. For example if Bob does not acknowledge having taken part (and

having knowledge of what was said) in the meeting with Alice, a third-party is

not expected to ask him what happened during the meeting. This however is

dependent on two conditions (A) that the existence of the information is indeed

a secret and (B) that the subject does not unveil the secret when queried

arbitrarily. If either of these conditions are false then this approach does not

work. Such breakdown can occur if for example someone sees Bob entering the

meeting, or if someone knows Bob frequently attends such meetings with Alice.

Also in the cases where the subject denies knowledge of information and the

third-party knows for a fact that this is untrue, consequences may follow either

due to the dishonesty or the withholding of information.

48

In (2), following the example given so far Bob would then make no effort to

hide his attendance at the meeting; instead he would tell a third-party the

meeting was private. This approach is not limited by the two conditions of the

previous paragraph as there is no denial to possessing the information. This

however implies that the requester always knows that the subject is withholding

information, and the respective consequences may follow.

Secondly, a subject can also control their presence or recognition in public

spaces to minimise the leakage of private information. In this way a subject can

proactively manage their privacy, even in situations where there is no direct

control over the information flow. This area can also be broken down into two

approaches:

1. A subject can avoid being present in public spaces where the

information leakage is deemed to be potentially damaging.

2. A subject can instead of controlling their presence, hide it.

In (1), for example assume Bob is interested in taking up employment with a

rival to his current employer and that they hold a public event. By not attending

this event Bob can ensure his intention does not leak, thus protecting his

privacy. This approach of avoiding information leakage, although assured, is not

always desirable as it negatively affects a subject’s freedom.

In (2), by remaining anonymous the information leakage will not be meaningful,

thus protecting the subject’s privacy. Indeed in many situations a subject will be

anonymous as they will only be seen as being part of a larger crowd. Thus if the

attendance to the event is high enough then Bob may successfully take part

while still remaining anonymous to the other attendees. Although this approach

allows greater freedom for the subject, success is dependant on the condition

that the subject needs to remain anonymous with respect to the particular public

space. This in turn requires the subject to be inconspicuous and limits their

possibility to interact. If this condition is not met and their identity is discovered

or deduced, either while present or later, the information leaked will become

meaningful. Thus consequences may follow.

49

Thirdly, by controlling the actions taken, and their link therewith, a subject can

control the leakage of information in public spaces even when not hiding their

presence. This will allow a subject to interact with other people yet have some

control over the information leaked and thus their privacy. Similar to before,

this area is divided into two approaches:

1. A subject can actively control the action they take in a public space to

ensure the information that leaks will not be too invasive.

2. A subject can also conceal the link between them and their actions, e.g.

by using a pseudonym.

In (1), for example, if Bob attends a rival company’s event then by controlling

his action there, e.g. not openly meeting their recruitment personnel, his

intention to changes sides may remain private. Once again this will of course

limit the freedom of the subject.

In (2), this limits the meaning of the information to the particular pseudonym

and, if desired, public space. If Bob is approached by another attendee he can

use a pseudonym if he needs to identify himself. This will allow him to be

known during the interaction (and between separate occurrences of interaction)

yet isolating the leakage of information. This approach therefore allows greater

freedom for the subject to interact. However the success of this approach

depends on the subject remaining unlinked to their pseudonym and thus their

action. If this condition is not held the information leak can be linked with the

subject and consequences may follow.

Fourthly, by controlling their receptiveness to information a subject can

introduce uncertainty in the information flow. This will ensure plausible

deniability if the subject later is confronted with the information due to a

leakage. It can also reduce the risk of incorrectly disclosing the information

themselves in the future. Two approaches have been identified in this area:

1. A subject can treat unsolicited information as noise.

2. A subject can actively select which information to acknowledge.

50

In (1), by treating unsolicited information as background noise it can be

ignored. For example, when Bob is at the rival company’s event he can focus

entirely on the information he is interested in, ignoring what happens around

him. If he is observed and an attempt is made to communicate with him it will

go unnoticed. This hopefully causes the observer to become uncertain of

whether the observation was correct or not. Bob can then insist that a mistake

must have been made if later confronted with the information. This approach

requires the subject to be in full control of their receptiveness to information,

which may not always be possible. However, when successful, the subject has

no knowledge of the unsolicited information.

In (2), should Bob fail to successfully ignore the attempt to communicate he can

opt not to acknowledge it. Again, this will enable him to insist a mistake must

have been made. This approach requires the subject to suppress the natural

reflex to respond when an attempt is made to communicate with them. It should

be noted that persistently ignoring other’s attempts to communication can be

interpreted as anti-social behaviour and may incur consequences from those

being ignored.

These four areas represent the actual control a subject holds. Because of the

limitations imposed by the assumptions made, a subject does not have full

control over the information communicated about them. This constrains the

level of privacy that is achievable within the model and may indeed limit the

possibilities a subject has of achieving the effective balance of privacy they

desire. But even so it should be possible to achieve what has been defined as the

ideal level of privacy simply because these assumptions are deduced from the

offline environment in which we live. Furthermore, it will now be shown that all

of the four basic states of privacy (Solitude, Intimacy, Anonymity, and Reserve)

described by Westin [Westin 1970] can be attained with the available scope of

control. Figure 12 outlines the mapping.

51

Figure 12. Mapping to Westin’s four basic states of privacy.

The first state, solitude, is characterised by the subject not being part of any

group or under any observation. Thus a subject can attain this state by limiting

their presence to spaces that are known to be secluded and safe. The second

state, intimacy, is characterised by the subject being part of a small group

separated from the rest of society. This state can therefore also be attained by

the subject by controlling their presence, but this time to a space controlled by

the group. The third state, anonymity, is characterised by the subject remaining

unidentified and unknown. This state can thus be attained by the subject either

by hiding their identity or by presenting an un-linkable identity, i.e. a

pseudonym. The fourth state, reserve, is characterised by the use of

“physiological barriers” [Westin 1970 p.32] to retain privacy, where such

barriers may involve the limitation of communication about themselves. This

state is therefore attained by the subject controlling their own disclosures and by

controlling their receptiveness. Hence all of the four states are indeed attainable.

3.2.4. Process of disclosure
Because of the imposed limitation of not being able to control personal

information once released, the process of disclosing information plays an

important role. It is only within this process that the subject can actively control

their effective balance of privacy, using the three areas of control previously

discussed. In this conceptual privacy model the process of disclosure is

therefore thought to be like a business transaction where the disclosure of

information follows some form of agreement that governs how the information

will be used.

 Solitude Intimacy Anonymity Reserve

Own disclosures √

Presence or recognition √ √ √

Actions or links √

Receptiveness √

52

3.2.4.1. Participants
There are two types of participants that can take part in a transaction. First, there

is the subject, the primary participant, whose personal information the

transaction is about. Their aim it to ensure that the release of information only

occurs on terms that do not violate their privacy preferences. Then there are the

potential recipients of information, the secondary participants. In many cases it

will be they who initialise the process of disclosure with a request. Their aim is

of course to persuade the subject to release information for the purpose they

require at as favourable terms as possible. For a transaction to be able to occur

there must be at least one primary and one secondary participant. By definition

only one primary participant can take part since one subject alone should

control their release of information. However in certain situations there may be

multiple secondary participants.

3.2.4.2. Agreement
An agreement is made between the primary and secondary participants. This

agreement is central to the process of disclosure as it states the terms on which

information is released, thus communicating the subject’s privacy preferences.

This allows a subject to specify what use of their information they consent to

when released. It also enables the subject to state any limitations or conditions

associated with the disclosure. For example an agreement may state that the

disclosed activity information may be used to assist in effectively managing

incoming calls but that the information may not be further used or forwarded.

The form and details of such an agreement will naturally vary greatly from

situation to situation. In certain situations where very sensitive information is to

be released the agreement can be explicitly stated in high detail, e.g. within a

legally binding contract. In other day to day situations the agreement can be

very relaxed and informal, in which case it may be implicitly determined by

such factors as cultural and social norms, existing relationships, etc. Thus, with

an agreement there is some capability of affecting the use of released

information. One may even say it provides some degree of control. There are

however no guarantees that the recipients of information will honour their

agreement.

53

3.2.4.3. Trust
An important factor in determining whether or not to release information will

therefore be the recipient’s trustworthiness. Once a subject has established an

agreement with the potential recipients, they need to evaluate if the recipients

can be trusted to honour the agreement. It is only if the potential recipients are

found to be trustworthy enough that information is released. This evaluation of

trustworthiness adds an incentive for recipients to honour their agreement

because if they fail to do so, their trustworthiness will undoubtedly be reduced

and with that their future chances of receiving information. There is therefore a

linkage between current and previous actions within the conceptual model. This

obviously affects those who want to remain anonymous or that frequently

change pseudonyms by introducing a trade-off between being anonymous and

being trusted. Trust management is therefore not only essential for primary

participants but also for secondary. All participants must be careful in deciding

on who they trust as well as how they build up and retain their own

trustworthiness.

Research into trust management and trust formation is, however, outside the

scope of this work. For the purposes of this conceptual context model it is

assumed these actions are carried out by the participants.

3.2.4.4. Ownership and disclosure
It should also be noted that even when a recipient is deemed trustworthy and

information is released the ownership of information stays with the subject. The

reason for this is that, unless anonymous, the personal information will still be

linked to the subject after it has changed hands. Thus, by definition, the subject

is the owner and should be in control over its flow. Disclosing information is

therefore considered to be the equivalent of licensing its use rather than a

traditional transfer of ownership. As such the process of disclosure is a business

transaction in which the use of personal information is licensed to others.

Finally even though ownership is not transferred with a disclosure, information

is for most other purposes in this conceptual model regarded just as any other

good owned by the subject. Hence personal information, and its license for use,

can be given away, traded, and even sold. Although this is not an area in which

54

this work will focus it is important that such behaviour is accommodated in the

underlying model.

3.2.5. Legislation and social norms
In the last section it was stated that there are no guarantees of whether a

recipient will follow their agreement or not. The only incentive presented for

recipients to follow the agreements they make was that this will retain and

possibly improve their future trustworthiness. There are however further

incentives for a recipient to hold their end of the bargain such as legislation,

social norms, and reputation.

In this model disclosure only follows after the terms of its releases have been

agreed. This use of an agreement opens up the possibilities to further strengthen

the privacy protection. An agreement can, as previously described, be explicit

and stated in high detail within a legally binding contract. Such a document

could also include the possible fines that will be incurred if the agreement is

broken. In this way strong incentives can be ensured. The use of a dedicated

contract is however not feasible in most situations. Not only is it time

consuming and complicated to make an accurate agreement, but the process of

being compensated once broken will most likely be long and expensive. In

certain situations when dealing with very sensitive information, it may be an

alternative.

Existing legislation that regulates the use of personal information, e.g. like the

data protection act [Stationery Office 1998] in the UK, may also provide some

protection. However, the applicability and application of such laws to

ubiquitous computing environments must be further investigated before they

can be relied upon. Furthermore, even if current data protection laws are

applicable the problem of pursuing compensation remains. It is deemed, though,

that legislation can act as a strong deterrent.

The social norms in society provide another incentive to respect people’s

privacy. They give guidance to what is found acceptable, and what is not, in our

society. For instance it is generally acceptable to deduce information from

occasional personal observations in public spaces. However it is not acceptable

55

to systematically observe a subject. This could be considered to be a form of

surveillance or stalking. Similarly there exists a degree of tolerance for gossip,

though depending on the circumstance it could be considered to be slander.

Given that the breach of such social norms can make the offender an outcast in

society, the potential is there to provide a reasonable deterrent.

Finally, the possibility of receiving a bad reputation can also act as a deterrent.

This is a technique employed by sites such as eBay [eBay 2005]. The idea is

that your actions, good or bad, are aggregated to form a reputation. This

reputation can then act as a mechanism for establishing the trustworthiness of an

entity. Hence it is desirable to retain a good reputation, which requires a subject

to keep to their agreements. The application of reputation based privacy

protection to ubiquitous computing environments is currently being researched

[Goecks, Mynatt 2002].

3.2.6. Visualising the model
To visualise the model the idea that each subject has their own personal space is

used. This personal space is where subjects keep information about themselves,

which makes the ownership of this information clear. As the subject alone

controls their disclosures and receptiveness, access to their personal space is

limited to themselves. Thus, the release of information can only occur at the

discretion of the subject.

The idea of personal space does not conflict with the notion of uncontrolled

leakages, although it may appear to do so. A leakage is information that is

deduced from the presence or actions of a subject. Hence, no information leaves

the personal spaces.

As previously stated, only information regarding the subject is held within their

personal space. By definition, the privacy of a subject only depends on them

controlling the flow of their own personal information. Thus, information about

others is therefore treated separately. In this privacy model, the use of others’

personal information is governed by the agreement upon which it was released.

56

Information flow

Figure 13. A visual representation of the personal spaces

Figure 13 shows two subjects, each with their own personal space and

information. Although a subject is represented as an individual the model is not

limited to this. Not only does the adopted definition state that also groups and

institutions should be able to control their flow of information but this

categorisation has been further relaxed to include anything about which

information can be communicated. Also it should be noted that even though the

personal space is represented as an area surrounding the subject, such space may

be distributed provided the subject is in control. Finally the arrows represent the

information flows that occur with the release of information. In this diagram

both subjects have released information to each other.

3.2.7. Application to Context Model
So how is this model of privacy applied to the previously presented context

model? To start with, the entities in the context model are the subjects. It is

about them that information is held and communicated. Thus each entity has

their own personal space in which their contextual information is held. As

asserted previously the information must be about the subject, thus in this work

ownership can only be claimed over information with respect to the particular

relation that exists between an entity and a piece of context. This is important as

it ensures that there is no conflict over the ownership of information in

situations where a piece of context is shared between multiple entities as each

entity will have their own relation to the information. The consequence of this

mapping between the context and privacy models is that the control over

context information should be with each entity. In cases where the entity is not

an individual, an administrator can act on the entity’s behalf.

57

3.3. Using the models
The models presented describe the position taken in this work with respect to

context and privacy. This section aims to further clarify the use of the models

with the help of a scenario. In particular the focus is on discussing various

design issues and their consequences.

3.3.1. Scenario
Think of a typical office environment. There is a reception, offices, meeting

rooms, coffee area, printer rooms, etc. Employees are situated in the various

rooms around the building. Resources available are also in the form of

computers, printers, telephones, photocopiers, stationary, etc.

Assume this environment has been equipped with a sensor network capable of

accurately locating tags, worn by employees, within the building.

3.3.2. Entities and subjects
The context model does not place any limitation on what an entity must be (See

above, section 3.1.1). Instead it encourages the use of narrower application

specific definitions, as appropriate, in conjunction with the model. A key task

when applying the model is therefore to further specify what an entity is.

Whilst anything in the above scenario could theoretically be defined to be an

entity, it is in practise best to use things of interest as entities. In this case the

employees are the key candidates. It is about them that location information is

captured using the sensor network and tags. However, the rooms in the building

can also be argued to be entities. The information captured by the sensor

network applies to them as well. To understand the difference between these

two alternatives assume that Bob, a worker, is present in the coffee area and

then consider the following two statements: 1) Bob is currently located in the

coffee area. 2) The coffee area is currently used by Bob. Both statements are

equally valid but the information is structured differently. In the former

statement the employees are selected as entities and in the latter statement the

rooms are selected as entities. Whilst the structure has no impact on the

information captured by the context model, it significantly affects the privacy

model.

58

The entities in the context model are the subjects in the privacy model; it is

about them contextual information is held and communicated (See above,

section 3.2.7). The definition of what an entity is therefore also specifies

ownership of information, which in turn has consequences for privacy control.

For example, if in the above scenario the employees are chosen to be the entities

then direct control over the disclosure of positioning information will be with

the individuals. If, on the other hand, the rooms are chosen to be the entities

then the control over the information will be with the administrator acting on

behalf of the rooms. Consequently, from the employees’ point of view, the

information captured by the system will be an involuntary leakage.

Considering that it is the individuals that have a desire for privacy, it makes the

most sense in the above scenario to define the employees to be the entities, and

thus the subjects, in the model. However, there are situations in which it can be

convenient, from an implementation perspective, to also define rooms as

entities. For example, if the usage of a meeting room is to be monitored then

defining it as an entity allows the system to retrieve who is located within it

without having to query all the individual employees. How privacy control is

handled when context information is shared is discussed later (See below,

section 3.3.4).

3.3.3. Context elements
The definition of context is also an area in which the context model is general

by design (See above, section 3.1.1). Again, the model does not place any

limitation on what type of information constitutes context. For a data value to be

recognised as contextual information the model only requires it to have a

relation to an entity. Application specific definitions are then used in

conjunction with the model, as necessary, to further specify what context is.

Assuming that the employees in the above scenario are chosen to be entities

then any piece of information with a relation to the employees can be

considered context. This produces an arbitrarily large context network. Hence,

to make the context model manageable further restrictions must be introduced.

For example, in this case it is possible to limit contextual information to be

positioning data. Whilst this arguably makes the system location-aware rather

59

than context-aware, it is the only contextual information that has been specified

to be of interest in the scenario. In practise, more types of information are

generally of interest and a broader restriction must therefore be applied. For

example, the definition presented by Dey and Abowd [Dey, Abowd 2000A] can

be used.

A consequence of employing a narrower application specific definition of

context is a reduction in the number of context elements supported. Whilst this

is necessary to implement the model, it limits the types of applications that can

be supported. For example, suppose the definition of context is limited to

positioning information then the development of applications that require

knowledge of the user’s task is hindered. However, from a privacy perspective

this specialisation can be argued to be beneficial. A reduction in the number of

context elements that are supported implies that less information is held and

communicated about the subjects.

3.3.4. Shared context
The context model allows situations to exist where a piece of context is shared

between multiple entities. This occurs when there is more than one relation to a

context item. As expected, this has consequences for privacy control.

Consider a situation where a meeting is taking place. Assume the sensor

network, installed in the building, is able to capture accurately who is present at

the meeting. On this occasion this includes several employees. Furthermore, for

the purpose of the example, suppose there are only two pieces of context

available: current location and meeting participants. In this situation, who owns

the context information and who should be able to control the flow of

information?

The privacy model states that the subjects have the right to control the flow of

information about them (See above, section 3.2.1). It also specifies that it is with

them that the ownership of information rests. When applied together with the

context model it is further stated that ownership, and therefore also control, can

only be claimed over information with respect to the particular relation that

exists between an entity and a piece of context (See above, section 3.2.7).

60

Hence, in the situation outlined, each employee present at the meeting owns and

has the right to control the disclosure of their current location. Furthermore,

each employee also has the right to claim ownership and control over the

context element meeting participants. However, since all employees have a

relation to this element the ownership and control will not be exclusive, i.e. each

employee can choose to disclose this information at their own discretion.

In situations where context information is shared, privacy control is

significantly reduced. Since conflicts of interests can occur, a subject should

treat shared context information as the result of an involuntary leakage over

which they no longer have any control. Privacy control must therefore be

exercised prior to any leakage of information and is limited to controlling their

presence or recognition and to controlling their actions (See above, section

3.2.3). For example, in the situation above an employee can decide not to attend

the meeting or to forget their tag, making it appear as if they are somewhere

else, to minimise the leakage of information.

3.3.5. Implementation
Together the context model and privacy model lay the foundation for the

development of privacy-friendly context-aware systems. The models identify

the conceptual issues that exist and provide guidance on how conflicts should be

resolved. It is then the responsibility of the implementation to ensure that the

models are upheld.

The role of the infrastructure is to provide a system independent implementation

of the models. This serves two purposes. Firstly, it enables a single

implementation of the models to be used by any number of systems. This

reduces the risk of the models being interpreted differently by separate systems.

It also avoids work being duplicated. Secondly, it allows sensor networks and

applications to be developed independently from each other and without

knowledge of the underlying principles. Instead it is enough to follow the

interfaces and protocols defined by the infrastructure. This simplifies the task of

the developer.

61

As shown, because the models are general by design, a situation can be

modelled differently depending on the decisions a system designer chooses to

make. Whilst this can significantly affect the models, the consequences for the

implementation are limited. Firstly, the selection of entities only determines

who exercises control over the infrastructure components. For example, it does

not matter if, in the outlined scenario, the employees or the rooms are chosen to

be entities. The functionality required in the infrastructure, and thus the

implementation, will be the same. However, differences can be expected in how

the infrastructure is deployed and in the privacy preferences. Secondly, the

adoption of a narrower application specific definition of context only affects the

information handled in the infrastructure. To adhere to the context model the

implementation must allow anything to be considered as context, provided a

relation exists with the entity. For example, the implementation cannot be

limited to handle only positioning information, as used in the above scenario,

but must handle information in general. Hence, further specifying what context

is does not affect the implementation of the infrastructure. On the contrary the

application of a narrower definition during use can alleviate the issues that

otherwise can occur if the implementation or the device(s) the infrastructure is

deployed on cannot handle the demands of the context model.

3.4. Summary
In this chapter the definitions employed of privacy and context have been

presented along with their associated conceptual models.

The definition of context presented state that “context is information related to

an entity, where the information may be an entity itself” [Osbakk, Ryan 2003].

The emphasis is on the existence of a relation between entities and context. A

piece of information can therefore be considered to be context in certain

situations but not others. Furthermore, the definition does not restrict what can

be considered to be an entity or a piece of context. Both these features have

been shown to be important.

Based on the definition of context a conceptual model has been developed that

represents context as a network of relationships between entities and context

items. As demonstrated, it is not always easy to identify what is part of an

62

entity’s context. The use of this model however, allows contextual relationships

to be made clearer. It has also been described how the modelling of real world

scenarios can be done, even though this may at first seem unreasonable due to

the large quantity of relationships. This involves limiting the length of the

relationship. Although there are issues concerning the optimisation of such

limits, when used in application scenarios privacy will in practise provide a

natural limit. Furthermore it has been shown how RDF can be used to represent

the context model in a non-graphical format readable by both man and machine.

RDF with its subject, predicate, object statements closely matches the idea of

relationships used in the context model.

In this work privacy is viewed from the perspective of information flow.

Westin’s definition of privacy has therefore been adopted. It states that “Privacy

is the claim of individuals, groups, or institutions to determine for themselves

when, how, and to what extent information about them is communicated to

others” [Westin 1970 (p.7)]. This definition emphasises a subject’s right to

control the flow of information. Hence, privacy requires control not seclusion.

A conceptual model of privacy has therefore been presented that focuses on

controlling the flow of information. In this model the position taken is that the

introduction of context-aware ubiquitous systems must not adversely affect a

subject’s privacy, rather than aiming for perfect privacy. Hence, the ideal level

of privacy is set to be that enjoyed offline. Two important assumptions are also

made about the scope of control. Firstly, information constantly leaks from a

subject’s presence and action in public spaces. Secondly, control over

information can only be exerted up to the point of disclosure. Thus in the

employed model of privacy a subject’s control is in practise limited to

controlling their own disclosures, controlling their presence and recognition in

public spaces, controlling their actions and links therewith in public spaces, and

controlling their receptiveness. Another issue described is the process of

disclosure. It is thought of as a business transaction where the use of

information is licensed under an explicit or implicit agreement. The

trustworthiness of a user and their intention to fulfil the agreement is thus an

important factor in determining whether to release information or not. Social

63

norms, reputation, and perhaps legislation, have been presented as potential

deterrents to the breach of agreements governing the release of information.

To clarify the use of models, a scenario has been outlined and used to discuss

various design issues and their consequences. This has shown how the selection

of entities in the context model is linked to the subjects in the privacy model and

how this affects privacy control. Narrower application-specific definitions of

context can be used in conjunction with the context model to control what

information is included in the model. An example of a situation where context is

shared has been presented and ownership and privacy control in it explained.

Finally, the role of the infrastructure has been described and the consequences

of the design decisions on the implementation discussed.

In the next chapter a privacy enhancing infrastructure is presented based upon

the conceptual models of context and privacy as well as the background and

project directives presented in previous chapters.

64

CHAPTER 4

THE INFRASTRUCTURE
In chapter 2 it was stated that the approach taken in this work would be

experimental. With the conceptual models in place, the applied work can be

presented. As previously described this involves the development of a privacy-

enhancing infrastructure. The aim of the infrastructure is to improve both the

level of privacy enjoyed by users and the support available for application

development.

This chapter describes the developed infrastructure. It presents the requirements

of the infrastructure along with the strategy and the scope of the design.

Furthermore the infrastructure architecture is described together with some

alternatives for the privacy protection. Finally the format used for context

communication in the infrastructure is presented.

4.1. Requirements
In the previous chapters the problem, namely that of privacy in context-aware

environments, has been described and the areas in question defined. This has

corresponded to the problem phase in the research process. The next step is the

requirements phase. It is within this phase that the requirements of a privacy-

friendly context-aware infrastructure are captured.

Even though the area is fairly specific, being the intersection of privacy,

context-awareness, and ubiquitous computing, this phase is still of the highest

importance. The boundaries provided by the joint nature of the areas are

themselves not enough to counteract the centripetal forces pulling the work

away from its focus. It would otherwise be all too easy to go astray. Central to

this process will of course be the context and privacy models presented as well

65

as the problem description. Indeed several requirements will be drawn from the

models.

4.1.1. Capture process
Generally the requirement capture process (see Figure 14) entails finding,

specifying, and validating all of the requirements of a project in detail.

However, being a research project, the aim of the requirement capture has been

slightly different. Instead of emphasising the need for a complete requirement-

set, the process has focused on identifying the key issues the work should

address. As such the requirement-set has been the stepping stones from which

the problem space has been explored rather than being an absolute list of tasks

that must be fulfilled. This has ensured the freedom necessary to research the

area as well as keeping the research on track.

Background Models Aim

Review and
Selection

Effective Requirement Set

Figure 14. Requirement capture process

The process used to capture the requirements, i.e. the key issues, can be divided

into two stages.

The first stage of the process has involved extracting potential requirements

from various sources including the background, the models employed, and the

work’s focus. The ‘background’ source refers to the previous work done in

related areas. This has been the starting point of the requirement capture

process. By studying the results from related work a set of requirements has

been built up. This includes both the features that related work has incorporated

as well as those felt to be missing. The ‘models’ source refers to the adopted

conceptual context and privacy models. This source has been especially

important as the work needs to reflect the requirements stipulated by the

underlying models. Thus by analysing the models and what they specify it has

66

been possible to extract and add further requirements to the set. Finally the

‘aim’ source refers to the work’s focus and contribution. As such it groups

together miscellaneous requirements that the work’s focus as well as the

intended area of contribution brings out. These requirements have been

extracted from what has been set out as the aim of the work.

The second stage of the process has consisted of reviewing the set of

requirements collected from the sources in the first stage and selecting which

ones should be part of the effective requirement-set. The effective requirement-

set is what later will be used in the proposal, experimentation, and evaluation

phases. The review and selection of requirements has been performed iteratively

during the requirements capture.

4.1.2. Captured requirements
This section will present the captured requirements set. To improve the

overview the set will be broken down into three categories: privacy, functional,

and miscellaneous. Under each category the relevant requirements will be

described. It will also be indicated from which source the requirements have

been captured. The sources possible are: [B]ackground, [M]odels, and [A]im

(See above, section 4.1.1). In the cases where the requirements originate from

multiple sources, all will be listed.

4.1.2.1. Privacy
The privacy category includes both those requirements that directly and

indirectly affect a subject’s privacy. Five different requirements have been

captured, see Figure 15.

Requirement title: Source
Retain offline level of privacy A, M
Customisable effective balance of privacy M
Handle known and unknown recipients B, M
Decentralised structure B, M
Security A, B

Figure 15. Privacy-requirements

67

Retain offline level of privacy
It is required that a ubiquitous computing environment provides a subject with

the same level of privacy as they currently enjoy in the offline world. Hence the

infrastructure must not be more intrusive than the everyday environment in

which we work and live.

This requirement initially originates from the aim source. It is the key

motivation for this work to improve the overall level of privacy protection in

context-aware ubiquitous systems (See above, section 2.1). The privacy model

then formalises this aim and establishes the ideal level of privacy to be equal to

that enjoyed offline (See above, section 3.2.2).

Customisable effective balance of privacy
It is required that the effective balance of privacy is customisable in the

infrastructure. To reflect the scope of control the customisable privacy

protection required can be broken down into three parts: access control,

anonymity, and pseudonymity. Firstly an access control mechanism is required

to enable a subject to have control over their own disclosures and to enable a

subject to control their receptiveness. The mechanism must allow a subject to

express their preferences with respect to their own disclosures and what

information is solicited from whom. Furthermore the access control mechanism

must enforce these preferences appropriately. Secondly a mechanism for

achieving anonymity is required to allow a subject to control when they can be

recognised and not in public spaces. Thirdly it is also required that a mechanism

is in place that allows a subject to identify themselves using a pseudonym. This

requirement goes further than simply being anonymous. It requires that a user is

identifiable but not linkable to their chosen identity.

This requirement originates from the models source. First of all, the adopted

definition of privacy makes the subject’s control over the flow of information

about them the focus. Secondly, the derived model of privacy then specifies

what is considered the ideal level and the types of mechanisms that are required

to achieve it.

68

Known and unknown recipients
It is required that the infrastructure supports both previously known and

unknown participants. Hence a mechanism is needed with which a subject can

express their privacy preferences independent of the identity of a recipient.

Furthermore it must be possible for an agreement to be formed with previously

unknown recipients.

This requirement originates from the background and models source. Firstly, the

nature of ubiquitous computing is such that it is not feasible for a subject to

know all participants in advance, there are too many of them. Secondly, the

privacy model does not differentiate between previously known and unknown

participants; a subject’s privacy should therefore be enforced in both cases.

Decentralised structure
It is required that the infrastructure is decentralised and distributed. Subjects

must not be required to have their personal information stored or processed by

any centralised authority not under their control. Instead the subjects must

themselves be allowed to decide where information is stored and processed.

Furthermore the infrastructure must not rely on any single point for its

operation, but should be able to function in isolation if required.

This requirement originates from the background and models source. Firstly the

vision of ubiquitous computing speaks of the deployment of large numbers of

devices in our environment [Weiser 2002]. This makes a centralised

infrastructure impractical in terms of scalability. Secondly, the employed

privacy model speaks of a level of control that is not achievable if a centralised

infrastructure is forced upon the subjects (See above, section 3.2.3).

Security
It is required that adequate security is provided in the infrastructure. The

infrastructure must therefore provide mechanisms to support authentication,

confidentiality, integrity, availability, and anonymity. An adequate level of

security is considered to have been achieved when a significant effort and

considerable resources are required to breach the system. Hence, the system

should be protected against attacks from the majority of users.

69

This requirement originates from the aim source. It is the aim to provide a

privacy enhancing infrastructure. For this to be achieved security must be

provided. The aspect important for security has then been drawn for background

sources and Stajano’s book on ubiquitous computing security [Stajano 2002].

4.1.2.2. Functional
The functional category includes the features found necessary to provide the

basic functionality needed to support ubiquitous context-aware applications.

Five basic requirements have been captured, see Figure 16.

Figure 16. Functional-requirements

Storage of context
It is required that the infrastructure is able to store a subject’s context. This

minimises the duplication of data by applications. Context information should

also be accessible at times other than when captured. Hence, the storage must

support persistency. The storage must also be separate from the application and

under the control of the subject. Furthermore, the type of data storage that can

be used must not be restricted. This is essential to make best use of the, often

limited, resources in ubiquitous computing environments.

This requirement has been captured from the background and models source.

Many of the context-aware applications previously developed rely on contextual

information being available rather than constantly sensed. The applications also

utilise a wide variety of devices with different capabilities, many with

constraints on the available resources. Furthermore, the privacy model specifies

that a subject’s context is held in their personal space.

Communication of context
It is required that contextual information can be communicated within the

infrastructure. The communication must not be restricted to any particular

medium or protocol. Instead the infrastructure should allow the necessary

Requirement title: Source
Storage of context B, M
Communication of context A, B
Synchronisation of data B
Multiple concurrent agents B
Triggered actions B

70

support to be added when necessary. Hence, a standardised way of providing

communication support must therefore also exist. Furthermore the infrastructure

must support unreliable forms of communication. Finally with respect to the

applications the actual communication must be transparent.

This requirement has been captured from the aim and background sources. A

basic aim of the infrastructure is to communicate contextual information in a

non-intrusive manner. Related work has also shown it to be desirable to separate

applications from sensors [Dey 2000B]. Furthermore, ubiquitous computing is a

large domain with a wide variety of heterogeneous devices being used. Thus it

is not feasible to assume that a single form of communication can be used nor

that connectivity is ever-present.

Synchronisation
It is required that the synchronisation of context information is supported in the

infrastructure. A subject must be able to synchronise the contextual information

held about them by one distributed component with another.

This requirement has been captured from the background source. The devices

used in ubiquitous systems seldom feature a constant and reliable connection.

This makes it difficult to guarantee that information can be updated in real time.

Hence synchronisation at times of connectivity is essential, a feature common in

mobile devices supporting Personal Information Management.

Multiple concurrent agents
It is required that support is provided for multiple concurrent agents in the

infrastructure. Each subject must be able to utilise several context consumers

and context producers simultaneously. Furthermore both local and remote

agents must be supported. Finally the infrastructure must allow the set of agents

to change at runtime.

This requirement has been captured from the background source. The related

work demonstrates that contextual information has many uses, uses that cannot

be excluded from coinciding. Previous applications developed also show that

both locally and remotely sensed data is used in ubiquitous computing.

Furthermore the users of ubiquitous systems are seldom stationary, but move

71

about. This causes users to often change environments and with them also

agents.

Triggered actions
It is required that the infrastructure handles two types of triggered actions.

Firstly the infrastructure must be able to handle context triggered events. Hence

contextual changes must be detectable and the infrastructure must be possible to

set up to act upon them. Secondly, the infrastructure must also be able to handle

request triggered context collection. Hence the infrastructure must be able to

collect information from context producers in a just-in-time manner.

This requirement has been captured from the background source. Being able to

detect and react to changes in the environment is a central aspect of context-

aware computing. Furthermore given the often limited resources of ubiquitous

computing devices, the ability to reduce the frequency of context collection is

beneficial.

4.1.2.3. Miscellaneous
Finally the miscellaneous category includes requirements for extended

functionality. Three desirable requirements have been selected, see Figure 17.

Figure 17. Miscellaneous-requirements

Development support
It is required that support is provided for easy and rapid application

development. Privacy-friendly applications must not be more difficult to

develop than those ignoring privacy issues. Hence, application developers must

not be required to manage the privacy protection. Their responsibility should

only be to publish the application’s privacy practices, allowing the subjects to

decide whether to release information or not.

This requirement has been captured from the aim source. It is an ambition of

this work to improve the development support for privacy-friendly applications.

Requirement title: Source
Development support A
Standalone and integrated operation A
Interoperability with third-party systems A

72

Indeed the hypothesis intended to be tested is whether the use of an

infrastructure can help.

Standalone and integrated operation
It is required that the infrastructure can be operated both in a standalone and an

integrated mode. Hence, infrastructure components must be able to be executed

and run as separate processes. Furthermore, they must also be able to be

embedded in other applications.

This requirement has been captured from the aim source. It is an ambition to

provide as flexible development support as possible. Developers should be able

to choose the mode of operation that is most appropriate given the requirements

of the situation.

Interoperability with third-party systems
It is required that the infrastructure can interoperate with third-party systems.

Contextual information must be able to be delivered and retrieved from systems

developed by third-parties.

This requirement has been captured from the aim source. It is a goal that

existing context-aware systems should be able to be utilised. The use of already

deployed sensor networks is particularly beneficial. By interoperating with the

different systems encountered by a user on a day-to-day basis, it is also hoped

that these systems can be bridged.

4.2. Strategy
The goal of the infrastructure is of course to fulfil the requirements (See above,

section 4.1). There are however different ways in which this goal can be

pursued and depending on which route is taken the outcome will differ.

In many situations there will also be a trade-off between the different

requirements causing the fulfilment of one requirement to affect the possibility

to meet another satisfactorily. For example in this work a trade-off exists

between the requirements that concern privacy and those that specify

functionality. The reason for this is that privacy requires, by definition (See

above, section 3.2.1), that the subject has control over the flow of their personal

information while context-awareness on the other hand relies on information

73

being available to collect and process. Thus a subject’s claims for privacy may

hinder functionality.

A strategy is therefore needed that describes how to resolve such conflicts when

they occur. In this work the strategy has been to place the emphasis on privacy

and flexibility. What this implies is discussed in the following sections.

4.2.1. Prioritise privacy
From the start the improvement of privacy has been both the driving force and

the goal of this work (See above, section 2.1). Thus the position taken during

the design and implementation of the infrastructure is that privacy is the most

important objective.

It is especially important to be clear on this prioritisation as the effectiveness of

the privacy protection depends on the infrastructure as a whole rather than

individual parts. For example, if the infrastructure strictly controls the flow of

information to individuals but takes a more relaxed approach to automated

services then it is likely that suspect individuals will tunnel their requests

through dummy services. Thus the real level of protection offered to a subject is

considered to be that of the lowest denominator. This means that privacy always

needs to be prioritised so as to not void the protection. Hence, any functionality

must be weighed against its potential impact on privacy and if necessary be

adjusted or counteracted before it can be incorporated into the infrastructure.

Take for example the functional requirements “Communication of context” and

“Multiple concurrent agents” presented in the previous section (See above,

section 4.1). Together these require that remote agents should be able to retrieve

a subject’s contextual information. Unmodified, this would be a direct violation

of a subject’s privacy. The privacy requirements must therefore take precedence

here, allowing suitable protection to be put in place even if this may restrict the

desired functionality.

Furthermore, the prioritisation of privacy must be applied from the beginning of

the design process. It is at this early stage the real opportunities exist in ensuring

that a privacy-friendly product is attained. Once the functionality has been

decided and the design started, adding privacy would involve either redesigning

74

the product or wrapping it with the privacy protection. The former is of course

time consuming and therefore also costly. The latter would generally interfere

with the already designed functionality and may still even then not provide the

desired overall protection. This was recognised already in the early work at

PARC [Weiser 2002]. Privacy then needs to continue to be taken into account

throughout the design process.

The strategy taken in this work has therefore been to prioritise privacy over any

other functionality from start to end of the project. This implies that in situations

where requirements diverge or conflicts occur, privacy always takes precedence.

By doing this the desire has been to maintain an adequate level of privacy

throughout the infrastructure design, and also later in the implementation. It has

also ensured that a minimum amount of time has been spent on redesigning

parts of the infrastructure to fulfil the privacy requirements.

4.2.2. Modular design
It is also the objective of this work to improve the support available when

developing context-aware applications. This is hoped to be achieved by moving

much of the responsibility from the developer onto the infrastructure. Whilst

this is obviously beneficial when it comes to simplifying the tasks a developer

needs to perform, it does however limit their freedom.

From the requirements presented in the preceding section (See above, section

4.1) it is clear that a single solution will not be able to encompass every

scenario. The heterogeneity of the target devices, and their capabilities, means

that many different solutions need to be supported. For example it is required

that no limitations are placed on either the data store or the forms of

communication that can be used (See above, section 4.1.2.2). To be able to fulfil

these and other conditions, the infrastructure must be flexible.

In contrast with the approach taken in previous work such as the Context

Toolkit [Dey, Abowd 2000C], where the toolkit itself was extendable [Dey

2000B s.6.], the strategy taken in this work to provide the required flexibility

has been to make the infrastructure modular wherever possible. By using

modules the behaviour of one part of the infrastructure can be optimised or

75

customised without requiring changes to be made to other parts. This is

important in order to retain the unity of the infrastructure. Furthermore, by

controlling which parts of the infrastructure are implemented as modules and

what functionality they encompass, the overall behaviour can be guaranteed.

From a privacy perspective this is important as even small changes to the

handling of information may result in serious loss of privacy. The modular

approach also preserves a high level of abstraction which is believed to be

beneficial when ease of development is desired. By making ready modules

available for common configurations a majority of developers and users should

be able to put together a suitable setup from existing parts. In this way they

simply need to know what module or functionality is required, not how it is

implemented. For example, there may be one data storage module available that

uses a file for storage and another that uses a database.

4.3. Scope
Designing an infrastructure for context-awareness even for the requirements

presented in the previous section (See above, section 4.1) is an ambitious task.

With the focus on ubiquitous computing environments come limitations.

Resources such as processing power, memory, data storage, and battery power

are scarce compared with those available in traditional computing

environments. This is the case even when working with relatively powerful

devices. Thus, there are restrictions on what can be achieved as well as a need to

be extra careful with resources. The wide range of devices used in ubiquitous

computing environments, and the lack of common ground between them, also

has its implications. Each type of device comes with its own set of features and

limitations. This is of course problematic when developing a uniform

infrastructure. The more diversity that exists, the harder it is to achieve an all-

inclusive solution.

While the impact of these aspects can be seen throughout the work, two areas of

the design are affected more directly: the context model and the hardware

platform.

76

4.3.1. Restricting the context model
Earlier in this thesis (See above, section 3.1.1) context was defined as

information related to an entity, where the information may be an entity itself.

The emphasis is on the existence of relationships, rather than specific

characteristics. Thus no limitations are placed within this definition on what can

and cannot be context. Instead the condition for when something is to be

considered context is specified. While this generality is desirable it does

complicate things.

Because of the emphasis on relationships the contextual model has a network

structure (See above, section 3.1.2). When applied to the real world the network

will be almost infinitely complex since relationships exist between everything

around us. As shown previously even between seemingly unrelated entities a

relationship-chain can be established (See above, section 3.1.2). Thus the

context graph will from any given point be several levels deep and may also

contain relationship loops. This makes the model difficult and perhaps even

impossible to create, let alone process, without further limitations. It is therefore

necessary to reduce the complexity of the context model, to a level that is

feasible to process.

The first step towards a more manageable model is to reduce the depth of the

context graph. Each entity in the model, i.e. that is associated with context, must

per definition be related to at least one entity. In reality they are however, likely

to be related to many more. For example, a person may have three friends, and

each of the friends may in turn have three friends of their own, and so on. Thus

restricting the depth of the model will have a significant effect on the graph size,

illustrated in Figure 18.

A

B3

C4

B1

C5

B2

C6C1 C2 C3 C7 C8 C9

Le
ve

l 2
Le

ve
l 1

Le
ve

l 0

Figure 18. Growing context model

77

The degree to which the depth should be limited is in this work determined by

the privacy model. The employed model of privacy (See above, section 3.2)

states that each subject has their own personal space in which information about

them is held. The context model is therefore in effect split into several sub-

models, where each one represents the context of a particular entity.

Furthermore, since the personal space only contains information about the

subjects themselves, the depth of each sub-model is restricted to one level. Thus

the size of the graph that needs to be handled for each entity is reduced.

However it is not enough to limit the depth of the context model. Even one

entity’s sub-model, with its depth limited, is likely to be too large to be handled

effectively on a mobile device. For example, think of the number of direct

relationships that exist between a person and their family, their friends, the

places they go to, and the objects they interact with. Just the relationships that

are ‘active’ on a daily basis can form a link with several hundreds or even

thousands of entities. Even though the possibility to automatically establish

what relationships exist provides a natural limitation, this limitation cannot be

relied upon. As technology advances relationships will become easier to detect

and any such limitations will gradually disappear.

The second step towards a more manageable model will therefore be to reduce

the number of relationships. It is assumed that there will always be a subset of

relationships that are found to be more interesting than others. The approach

taken has therefore been to limit the context model to only contain relationships

of interest which will reduce the size of the model. To what degree, will of

course depend on how many relationships are found to be interesting. So what is

interesting? This is determined individually by each entity (or its administrator)

and will vary. As such an entity will be able to scale their context graph to fit

the resources available by changing the size of the subset with relationships they

find interesting.

By both limiting the depth of the context model and reducing the number of

relationships it contains it is possible to attain a context model that is possible to

process even on the limited devices that are used in ubiquitous computing

environments.

78

4.3.2. Targeting a specific device type
Related work has shown there to be a wide variety of devices being used by

ubiquitous computing systems (See above, section 2.6.3). This diversity is

certainly beneficial when attempting to incorporate the devices into our

environment as situations differ. However, it also means that there is no

common platform on which systems can be built. This makes it difficult to

develop a uniform infrastructure that can run on all the devices being used.

Thus, it is necessary to target a specific subset.

4.3.2.1. Criteria
To decide upon what type of devices to focus on, a number of different aspects

have been considered. Together they form a set of criteria that have been used to

select the device type to target.

Capabilities - The device type needs to be able to fulfil the demands of the

infrastructure. This includes providing enough processing power, memory, and

storage to handle the flow of information. It also takes into account the available

means of communication and interaction.

Versatility - The platform must also be flexible enough to work in many

environments, to adapt to different situations, and to allow customisation with

respect to user preferences. Thus it is important that the devices provide choices

both in terms of the capabilities they offer and how they are configured.

Availability - The type of devices must be widely available. This means using

common off-the-shelf devices whenever possible, a point which the work has

focused on from the start (See above, section 2.2).

Cost - The type of devices selected must also be reasonably priced. It is

important that the cost is such that it is indeed possible to mass deploy an

infrastructure.

Ubiquitousness - Finally the chosen type of devices must be or have the

potential of becoming pervasive. In line with the vision of ubiquitous computing

[Weiser 2002] the devices should be both ever-present and seemingly invisible.

79

4.3.2.2. Personal digital assistants
For this infrastructure the choice fell on off-the-shelf PDA-type devices. The

motivation behind this choice is as follows.

Firstly, in comparison with the other resource constrained devices, PDAs are

quite powerful. It can even be argued that the limiting factor now is battery life

rather than processing power and memory. Furthermore, PDAs come with many

different features in a single package, e.g. colour display, sound input/output,

text input/output, and various connectivity options including wireless.

Secondly, PDAs are versatile. Since they are mobile and have a small form

factor, it is possible for them to be used both on the move and as part of a fixed

infrastructure. They also offer further options for customisation through

different models, accessories, and software configurations.

Thirdly, the availability of PDA-type devices is good. PDAs can be bought from

most consumer electronic shops. There is also a large assortment of models

available from several different manufacturers.

Fourthly, the cost of a PDA, whilst considerable, is still regarded to be

reasonable given the features these multipurpose devices have.

Finally, PDAs exhibit the characteristics of a ubiquitous device. They are

mobile devices that a user often brings with them. Furthermore, even though the

device itself is visible, the interaction with PDAs is gradually becoming so

natural as to appear invisible. They can be thought of as mobile personal servers

in a ubiquitous computing environment.

Altogether these aspects show personal digital assistants to meet the criteria set

up.

4.4. Architecture
The architecture of the infrastructure is closely tied to the employed conceptual

models (See above, Chapter 3). It has also been designed with the presented

strategy (See above, section 4.1) and scope (See above, section 4.3) in mind.

Overall the infrastructure is perhaps best described as being decentralised with

islands of control. Each island is a centre of information that operates

80

independently within the infrastructure. These centres are referred to as context

managers and they are the main components in the infrastructure.

In addition to the context managers there are also agents, data stores, and

context manager catalogue services. All of these components interact within the

infrastructure and will now be described together with the context manager.

4.4.1. Context managers
The context managers are the central components in the infrastructure. They are

in charge of handling the contextual information.

4.4.1.1. Relation to entities
Each entity in the infrastructure is associated with at least one context manager.

This is necessary to ensure a single level relationship chain as required by the

depth restriction placed on the context model (See above, section 4.3.1). Note, it

is possible for an entity to distribute their contextual information over several

context managers if desired. A context manager on the other hand can only be

associated with at most one entity. To better understand why this is the case we

need to return to the conceptual model of privacy (See above, section 3.2) and

look at how the context manager fits in.

Figure 19. Entity and its personal space

In the model the idea of a personal space is used to represent the place where a

subject holds information about themselves, illustrated in Figure 19. Access to

this personal space was stated to be restricted to the subject alone. However an

entity has a special relationship with its associated context manager(s). A

context manager is not considered to be an external entity but an extension of

the subject themselves. More precisely, the context manager sits on the

boundary between the personal space and the surrounding public domain, as

illustrated in Figure 20. This allows the context manager to act as an

81

information gateway. Since the context manager forms a part of a subject’s

personal space it cannot be associated with more than one entity.

C
on

te
xt

M

an
ag

er

Figure 20. Entity and its personal space and context manager

4.4.1.2. Responsibilities
The context managers have been designed to provide much of the required

functionality (See above, section 4.1) in the infrastructure. First of all a context

manager is responsible for storing an entity’s contextual information. This is the

most fundamental duty and one that is necessary for the operation of the

infrastructure. The context manager is also responsible for making the stored

context information available. It is through an entity’s context manager(s) that

all their information flows. Related to this is of course another duty, namely that

of privacy protection. Given that the flow of information passes through a

context manager, it is there the privacy protection must be applied. The context

manager must also provide the capability to synchronise data. Synchronisation

is needed to make the use of multiple context managers feasible. The data that

needs to be synchronised includes contextual information, privacy preferences,

and settings. Finally it is the context manager’s duty to ensure its address

information is kept up-to-date.

4.4.1.3. Multiple context managers
It was stated above that an entity in the infrastructure can be associated with

multiple context managers. The motivation for this is as follows. Firstly, as the

infrastructure targets a ubiquitous computing environment the accessibility of

the context managers is expected to vary. This could be because of limited or

intermittent connectivity, power management, or simply device usage. Through

the use of multiple context managers it is possible to improve accessibility,

particularly if one instance is run on a server. Secondly, the infrastructure

targets resource-constrained devices. This limits the rate at which requests can

82

be performed. By distributing the context information over multiple context

managers the load can be shared and performance improved. Finally, associated

with the use of small mobile devices is an increased risk of accidental damage

or loss. It is therefore especially important that data is backed up regularly. The

use of multiple context managers to duplicate data provides a convenient

alternative.

4.4.2. Agents and other actors
Agents are the actors that allow the infrastructure to interact with the

surrounding environment. It is they that communicate with the context manager

to store and retrieve contextual information. Figure 21 illustrates the

information flow between a context manager and an agent.

Information flow

C
on

te
xt

M

an
ag

er

Agent

Figure 21. Information-flow

The infrastructure contains two types of agents, context producers and context

consumers. The context producers collect contextual information about an entity

and send it to their context manager. From the perspective of the context

manager such agents appear as the source of the information. In most situations

though, context producers will be middleware that enable information to be

extracted from sensors or sensor networks. The context consumers on the other

hand retrieve and use the information stored by context managers. Hence it is

they that provide users with context-aware services. Context-aware applications

will therefore be context consumers.

In addition to agents there are two other actors in the infrastructure that provide

supporting services namely data stores and catalogue services. The former, data

stores, provide context managers with the data storage they need. Hence

although a context manager is responsible for the storage of contextual

information it will only manage this process. How the information is then stored

physically depends on the data storage used. With this separation the context

manager becomes independent from any underlying storage mechanism

allowing it to change as required (See above, section 4.1.2.2). The latter,

83

catalogue services, provide a service that allows context managers to publish

how they can be contacted and also enables agents to retrieve such information.

Thus a catalogue service makes it possible for a constant address to map to the

dynamically changing contact details of a context manager. This functionality is

necessary in the infrastructure to support unreliable communication over an

arbitrary number of protocols and mediums (See above, section 4.1.2.2).

4.4.3. Component interactions
The interaction between the different infrastructure components plays a vital

role in the infrastructure. There are altogether five different types of base

components: context managers, context producers, context consumers, data

stores, and catalogue services (CMCS). Each of these interacts with at least one

other component in the infrastructure. Figure 22 gives an overview of the

interactions that occur within the infrastructure. Note that the catalogue services

interact with any component that needs to look up addresses or update address

entries.

Data Storage

Data Storage

Context
Manager

Context
Manager

CMCS
Context

Producer

Context
Consumer

Figure 22. Infrastructure components

Since the majority of the interaction within the infrastructure will occur between

a context manager and an actor the interaction will be presented from a context

manager’s perspective. From the responsibilities presented in the previous

section (See above, section 4.4.1) six use cases have been identified: store

context, retrieve context, synchronise data, process request, handle catalogue

service, and handle data storage. All use cases except process request, which is

internal, map onto a different infrastructure component, as shown in Figure 23.

Note the separate use case for handling the data storage. This serves the purpose

84

of emphasising the design choice of modelling the data storage as a external

actor.

Context
Consumer

Synchronise
Data

Store
Context

Process
Request

Retrieve
Context

<<uses>>

<<uses>>

<<uses>

<<uses>

<<uses>>

Handle
Cat. Service

Handle
Data Storage

Context Manager

Context
Producer

Context
Manager

Catalogue
Service

Data
Storage

*

*

*

*

1

1

11

1

1

Figure 23. Use Cases

Store context - This use case enables the context managers to receive

contextual information from various context producers in the infrastructure. The

interaction between the context manager and the context producers occurs

through one of two mechanisms, push or pull. The push-mechanism allows a

context producer to push information to the context manager for storage. Hence

the context producer initiates the interaction and transfer of information. The

pull-mechanism on the other hand allows the context-manager to explicitly

request information from a context producer. With this mechanism it is

therefore the context-manager that initiates the information transfer. Regardless

of whether the information is pushed or pulled, the context manager evaluates

the information when received and if appropriate stores it.

Retrieve context - This use case allows contextual information to be delivered

to context consumers. There are two mechanisms by which the context manager

can achieve this, request and publish. The request based mechanism requires

context-consumers to initiate the process by placing a request for the piece (or

pieces) of information they require. Upon receiving such a request the context

manager then evaluates the request and returns an appropriate response. In

contrast, the publish-based mechanism is initiated by the context manager and is

not restricted to delivering information only when requested but could do so at,

for example, set intervals or when triggered by changes in context.

85

Synchronise data - This use case provides the means for context managers to

synchronise their data with each other. The interaction between the context

managers is request based and can be initiated by either context manager. The

process involves three interactions. It starts with the initiator requesting a

snapshot of the available data items, including identifiers and timestamps. This

request is then dispatched to and processed by the opposite party. The opposite

party then evaluates the request and adds identifiers and timestamps as

appropriate before replying. Upon receiving the response the initiator evaluates

it against the data items contained locally. Then depending on which type of

synchronisation is being performed, local / remote / local & remote, data is

either downloaded, uploaded, or downloaded and then uploaded.

Handle data storage - This use case concerns the interaction with the data

storage. This interaction, whilst important, depends on the type of data storage

employed. The interaction can therefore not be completely specified. From the

perspective of the context manager however, the interaction must be seamless.

Thus, even thought the interaction between the data storage and its handler may

change, the interface towards the internal structure of the context manager will

remain fixed.

Handle catalogue service - This use case allows context managers to interact

with the catalogue service to update the address record. The interaction is

request-based and is initialised by the context managers. Each time the

address(es) to the context manager change(s), an update request is sent to the

catalogue services subscribed to. The update request contains the current contact

information allowing the catalogue service(s) to update the record held.

As can be seen from the interaction between the base components, the

infrastructure is focused on performing particular tasks, for example the context

producer only interacts with context managers to store information. This makes

the interaction and the flow of information clearer. Thus while it is possible for

an actor to take on multiple roles, it is not recommended.

86

4.5. Privacy protection
It is the main aim of this work to improve the available privacy protection and

several requirements have therefore been presented (See above, section 4.1.2.1)

on this topic. There are various mechanisms that can be used to fulfil these

requirements. This section discusses some of the alternatives considered for use

within the infrastructure to perform authentication, control access, and achieve

anonymity/pseudonymity. The section also examines the concept of notice and

how it is handled within the infrastructure.

4.5.1. Authentication
Authentication is an important part of the privacy protection, after all a key

determinant in deciding whether to release information is often the identity of

the recipient. In the authentication process it is irrelevant what this identity

represents, but simply that the authenticity of the claim is determined.

Stajano outlines three methods for authentication [Stajano 2002]. Firstly,

passwords can be used. This is the simplest of the three mechanisms. It only

requires a common secret to be known by the involved parties. Hence, it can be

used with very resource constrained devices. The disadvantages though, of a

password-based authentication mechanism are that it is susceptible to replay

attacks and can be difficult to manage. Secondly, a chain of linked one-time

passwords can be used. This mechanism uses a verifiable sequence of single use

passwords for authentication. In this way replay attack can be avoided. This

gives rise to another disadvantage though, namely that both parties need to be

synchronised. Here synchronised means that they need to be at the same index

in the password list. Also every time the end of the list is reached a new

sequence needs to be generated. Finally, a challenge-response based mechanism

can be used. This type of mechanism establishes the identity of a user by posing

a challenge and verifying the given response. This allows replay attacks to be

avoided without any need to retain synchronisation between the parties.

However, given that public key cryptography often is used with this type of

mechanism it is more demanding in terms of the resources required. It is also

susceptibility to man in the middle attacks. Man in the middle attacks can be

87

counteracted by verifying the origin of public keys using a trusted third party,

assuming such a party exists and is available.

Which mechanism can and should then be used with respect to this

infrastructure? The use of one time passwords can be excluded. The need to

retain a synchronised state is not compatible with either the distributed

architecture proposed or the requirement to support unreliable connectivity.

Hence, the choice stands between using a password based mechanism or a

challenge-response based mechanism. Both of these can technically be used in

the infrastructure. The choice therefore depends on what should be prioritised: a

challenge-response based mechanism is more secure, whilst a password based

mechanism allows a wider selection of platforms to be supported.

4.5.2. Access Control
Access control is at the centre of the employed model of privacy (See above,

section 3.2). It is via the access control mechanism that a subject is given the

power to control their own disclosures and their receptiveness. Three different

mechanisms have been investigated in this work. Due to the scope of the work

all three focus on static preferences with respect to identity, which have been

shown to be stronger [Lederer, Mankoff et al. 2003].

4.5.2.1. Classification and Clearance Scheme
In the early experiments [Osbakk, Ryan 2002] the use of a classification and

clearance scheme to structure privacy preferences was evaluated. The

mechanism, which will be referred to as CCS, captures privacy preferences in

levels of sensitivity and trustworthiness. The underlying thought is that as one

places greater trust in someone, more sensitive information can be revealed to

them. This assumption forms the basis for this simplistic access control

mechanism. Figure 24 illustrates the relationship between sensitivity and

trustworthiness.

88

Figure 24. CCS trustworthiness and sensitivity

In CCS each context element is assigned a classification level, indicating its

sensitivity. The more sensitive the information is the higher the level assigned.

For experimental purposes a range between 0 (public) and 5 (private) was used

in the evaluation, though there is no technical limitation hindering the use of a

larger range. Context consumers are assigned a clearance level, indicating their

trustworthiness. This clearance level then determines what information they can

access. Only if the context consumer has a clearance that is higher or equal to

the classification of a requested piece of information will it be released. The

ability to store information is controlled by a context producer flag. Thus, only

an agent that has been given producer ‘status’ can store information.

With only two types of variables being used, classification and clearance levels,

the advantage of this mechanism is its simplicity. Take for instance the process

of evaluating whether or not to release a piece of information. This becomes a

straightforward comparison between the recipient’s clearance level and the

classification of the information. Furthermore, since neither the classifications

nor the clearance levels change dynamically, this comparison can be made

highly efficient through the use of cached lookup tables. Another aspect that

needs to be considered is the procedure needed to set up the access control

mechanism. With CCS this merely involves going through the list of context

elements, classifying them according to their sensitivity as appropriate, then

assigning clearance levels to context consumers with respect to how trustworthy

they are. Since each context element and consumer is only associated with a

single level the workload rises linearly with the increase in numbers.

The disadvantage of the approach is that it does not scale to deal with large

numbers of context elements or consumers. The problem is that the CCS

89

mechanism relies on the assumption that the more trustworthy someone is the

more sensitive information they should be able to retrieve. Hence, a more

trushtworthy context consumer is always able to access a superset of the context

elements that a less trustworthy context consumer can access. When the number

of context elements and consumers increases, the probability that a subject’s

preferences will fit this assumption decreases. Any exceptions that occur will

cause either too high or too low access to be granted. Consequently the expected

accuracy with which privacy preferences can be expressed decreases. Consider

the following scenario. Assume there are two context consumers, Alice and

Bob, and two context elements, activity.note and location.place. Furthermore,

assume that the subject feels that Alice is the more trustworthy context

consumer and that activity.note is the more sensitive context element. Finally,

assume that the subject wants Alice and Bob to be able to access activity.note

and location.place respectively. Note that the subject does not want to disclose

location.place to Alice despite her trustworthiness. The reason for such an

exception could be that the knowledge Alice has about the subject allows her to

infer more from the information. In this scenario a mismatch exists between the

subject’s privacy preferences and the capabilities of the CCS mechanism. Since

neither of the context consumers’ access can be expressed as a superset of the

other’s access the subject’s preferences cannot be represented accurately. In

such situations the subject must decide whether to release more or less

information. For example, the subject can either accept that location.place is

released to Alice or lower Alice’s clearance level below the classification of

location.place, consequently also denying Alice access to activity.note. Neither

of these alternatives is of course desirable, but accepting the need to

compromise allows the CCS mechanism to scale better. However, even

selecting such compromises becomes increasingly difficult as the numbers of

context elements and context consumers increases.

Whilst the CCS mechanism is straightforward to process and exhibits a linear

configuration workload, the failure to accurately capture a subject’s privacy

preferences in certain situations, as demonstrated by the scenario above, cannot

be ignored. The requirements specify that a subject should be able to control

90

their own disclosure of information (See above, section 4.1.2.1). While it is

possible to improve upon the accuracy of the CCS mechanism by introducing

individual classification lists, this would both complicate the processing and

significantly increase the configuration workload. Thus for increased accuracy

another mechanism is required.

4.5.2.2. Role Based Access Control
In response to the limitations found with CCS further experiments have been

performed with Role Based Access Control (RBAC) [Sandhu, Coyne et al.

1996]. The idea behind RBAC is to use roles to group permissions together.

This makes administration easier and provides scalability, by allowing

permissions to be reused. Another important aspect is that the possible accuracy

of the RBAC mechanism is not affected as the number of context consumers

and context elements increases.

The role based mechanism evaluated in this work is based on the RBAC0 model

[Sandhu, Coyne et al. 1996]. As such there are three variables: agents, roles, and

permissions. Agents are the entities that desire access to information, i.e. context

consumers and context producers. Roles denote the functions held by users,

associating them with certain rights and responsibilities. Finally permissions

capture the consent to data access and are always positive. Together these

variables allow a subject to describe their privacy preferences. This process

involves defining permissions, assigning permissions to roles, and finally

assigning roles to agents. Figure 25 illustrates the relationship between the

variables.

PermissionsRolesAgents * * * *

Figure 25. RBAC variables

However, while based on the RBAC0 reference model, this mechanism has an

important difference in that roles are automatically activated as required. This

simplifies the use of the access control mechanism as agents do not need to

decide what roles to invoke when requesting information. The result is that

91

agents, i.e. context consumers and context producers, will always be granted the

best possible access given their current set of roles. For example, if Alice has

been assigned two roles, friend and colleague, then her access, at any time, will

be the permissions held by both roles. Assuming the roles friend and colleague

grants access to user.home-info and user.business-info respectively then Alice

can access both context elements.

The permissions have been implemented as lists of access controls. Each access

control grants access to one context element. Any combination of read, write,

and history access can be specified, including none of them. In the case of

history access, a limit can be set on how far back access is granted. For further

customisation the possibility of agents being assigned a personal permission has

also been introduced. The personal permission overrides any permission granted

by more general roles, allowing the access to be fine tuned. This capability

helps to minimise the administrative burden of handling exceptions.

Compared to CCS the RBAC has an important advantage, scalability. Firstly,

and most importantly, the accuracy of the RBAC mechanism is not affected as

the number of context elements and consumers increases. The subject can

represent their privacy preferences just as accurately with respect to a single

agent and context element as to many. The reason for this is that preferences are

expressed as exact permissions describing access in detail. While the grouping

of these permissions onto roles may appear to reduce the exactness, they do not

as the mapping of permissions onto roles is free. Furthermore, the introduction

of a personal permission allows agent specific preferences to be expressed. Thus

it is possible, if required, to control access at an individual level. Secondly the

use of roles offers benefits in terms of administration. Whilst there can be many

agents requiring access to contextual information, it is not uncommon for the

number of different roles these agents take, with respect to the subject, to be

limited. By expressing privacy preferences using roles, then reusing these for

many agents, the workload of setting up the access control mechanism can be

reduced. For example a person may have several friends, all of which should

enjoy similar access. The use of a friends role allows the common permissions

to be setup once and then reused for each friend, leaving only exceptions to be

92

expressed individually. Finally, the RBAC mechanism facilitates a loose

coupling between agents and permissions. This allows an agent’s access to

progress, through role changes, without altering permissions. For example as a

subject gets to know someone better they can improve their access by changing

the assigned role from acquaintance to friend. Indeed Sandhu et al. [Sandhu,

Coyne et al. 1996] point to evidence showing that changes to role membership

is more frequent than changes to role permissions.

There are however also drawbacks to using the RBAC mechanism. Even though

the reuse of roles helps to keep the administrative burden down, the RBAC

mechanism requires a significant initial effort to be setup. Before any agents can

be granted access, the appropriate roles and their associated permission need to

be setup. This is a slow process, particular if the privacy preferences are

complex, as permissions express privacy preferences in detail. Furthermore

what roles a subject should define is not always clear, nor is the mapping of

permissions onto roles. For example should a separate role for acquaintances

and friends be used, or is it enough to have a single role with exceptions? The

decisions made will directly affect the effort required to setup the mechanism,

but also that of maintaining them later. Any strategies must therefore be

carefully evaluated. Another disadvantage is that the access control mechanism

is ‘non-fluent’, i.e. access is granted using distinct permissions, or groups

thereof. This makes it difficult to evaluate whether a particular setup provides

better access than another, unless one is the superset of the other. Thus, the

process of improving an agents access is not as simple as increasing their

clearance level. Instead an individual assessment needs to be made about which

roles or permissions need to be added or changed.

Overall though, the RBAC mechanism is an improvement upon CCS. By

providing a subject with facilities to control the access to their information in

detail, the accuracy issue displayed by CCS has been addressed. The use of

roles also reduces the effect of the increase in the administrative burden the

more detailed control brings. However, there is still a significant effort needed

to set up the mechanism initially. Furthermore, the non-fluency of the RBAC

93

mechanism hinders the subject from making small but general increases in

access.

4.5.2.3. The Platform for Privacy Preferences (P3P)
Both the CCS and RBAC mechanisms express privacy preferences with respect

to previously known agents. There are however many situations, particularly in

ubiquitous computing, where the identity of agents cannot be known in advance.

To handle these situations a supplementary mechanism based on the Platform

for Privacy Preferences (P3P) [World Wide Web Consortium 2002A] has been

evaluated. The mechanism exploits the fact that an agreement is made between

a subject and an agent during the process of disclosure (See above, section

3.2.4), allowing access decisions to be made on the basis of agreed information

usage.

The P3P based mechanism uses two types of data: P3P policies and rulesets.

The former, the P3P policy, represents the agreement made between a subject

and a recipient regarding the use of information. It is the contract that describes

what the recipient may do once the information has been received. For example,

the contract may state that the purpose of the data collection is to allow them to

tailor the subject’s visit. When using the P3P-based mechanism the contract is

formulated by the requester alone, declaring their intentions. The latter, rulesets,

represent a subject’s privacy preferences. Each ruleset contains a list of rules

and an access control mapping. The rules specify conditions that must or must

not be true. For example a ruleset can contain two rules. One rule could state

that data may be collected to allow visits to be tailored. Another may state that

the collected data must not be stored after the end of the session. The access

control mapping provides the link with the underlying access control

mechanism being supplemented with P3P. Being privacy preferences, the

rulesets are consequently defined by the subject.

To allow assertions to be made about contextual information, the P3P

vocabulary has been extended. The extension adds several context specific data

elements, see Figure 26. For example an element called location.place has been

added to the vocabulary, allowing preferences and intentions to be describe with

respect to location information. Though, whenever possible, existing P3P data

94

types have been reused. For instance, instead of defining a new data type for

addresses, the postal data type is reused. For the mechanism to work both P3P

policies and rulesets need to employ a compatible context vocabulary. Details of

the vocabulary used can be found in Appendix A.

Figure 26. Examples of context vocabulary

With the P3P based mechanism a two-step process is used to resolve access, see

Figure 27. In the first step the P3P policy is evaluated against any predefined

rulesets. This involves checking whether the policy obeys the rules made by the

subject. Each ruleset is evaluated independently and only a binary outcome is

possible. Either the policy obeys all the rules in the set, in which case there is a

match, or at least one rule is broken, resulting in a mismatch. Once the policy

has been evaluated against all the rulesets and at least one match has occurred,

the second step is carried out. The second step resolves the link between the

matching rulesets and the underlying access control mechanism. Depending on

which access control mechanism is being supplemented the details of this step

varies. When used with CCS the rule sets maps onto clearance levels. Thus a

successful match between a P3P policy and a ruleset grants the requestor the

associated level of clearance. On the other hand when used with RBAC the

rulesets map onto roles. Hence a successful match therefore assigns the

requestor with the associated role or roles. Once the appropriate mappings have

been made the underlying mechanism can resolve the access as if the requestor

was known.

Data elements:
location.place
location.postal
location.coordinates
activity.note
activity.type

95

Step 2

Ruleset
C

Ruleset
B

Ruleset
A

E
va

lu
at

e
po

lic
y

Match?

Match?

Match?

P3P
Policy

Set of matching
rulesets

Step 1

Set of matching
rulesets

 R
es

ol
ve

 A
C

 m
ap

pi
ng

(s
)

Access

Figure 27. Resolving access with P3P

The advantage of the supplementary P3P mechanism is that privacy preferences

need not be linked with a particular agent. They can also be expressed with

respect to information usage. This enables access decisions to be based not only

on identity but also on the intended usage of information. Thus it is possible to

handle requests from previously unknown agents with improved accuracy.

Instead of simply limiting unknown agents to public information it is possible to

further evaluate their request. By comparing the agents intended usage of the

information against the subject’s privacy preferences additional privileges may

be granted. The P3P based mechanism also formalises the process of disclosure

(See above, section 3.2.4) by providing a common way of representing the

agreement made between a subject and an agent.

Associated with the mechanism are also limitations and disadvantages. For the

mechanism to allow unknown agents to be supported it has been assumed that

the contract governing the usage of information, i.e. the P3P policy, is written

by the agents alone. Consequently this limits the subject’s ability to influence

the usage of the information expressed in a P3P policy. The mechanism is left

with only two options with respect to each ruleset. Either the usage of

information is accepted or it is rejected. Another limitation of P3P in general, is

that the specification does not provide any means of enforcing nor verifying an

agent’s compliance with their published policy. An important point raised by

others as well [Grimm, Rossnagel 2000] [EPIC, Junkbusters 2000].

96

Furthermore, the specification states that “P3P declarations are positive,

meaning that sites state what they do, rather than what they do not do” [World

Wide Web Consortium 2002A s.1.1.3]. Thus potentially useful information is

omitted. Finally P3P is not an easy technology to use. Policies as well as

rulesets are difficult to define. A study has shown errors to be prominent

[Cranor, Byers et al. 2003].

Despite its weaknesses P3P is a useful technology. It provides the means of

representing the agreement made between a subject and an agent in a common

format. Thus with P3P the intended usage of information can be described. This

mechanism exploits this to allow access decisions to be made in situations

where the agent is previously unknown. However, the inability to enforce and

verify policies call for extra care when defining rulesets and mapping them onto

access controls.

4.5.3. Anonymity and pseudonymity
Both anonymity and pseudonymity are states in which a subject can disclose

information without revealing their true identity. This is an important quality

that allows people to perform their daily tasks without constantly worrying

about privacy.

Before we can provide anonymity and pseudonymity in ubiquitous computing

environments it is necessary to define to what degree the identity of the subject

needs to be protected. In the conceptual model of privacy an example is given in

which a crowd allows a subject to be anonymous (See above, section 3.2.3).

When claiming anonymity here it is assumed that the people in the crowd do not

know the subject and that they do not actively attempt to identify the subject

using, for example, event attendance details. Hence, anonymity does not require

the identity of a subject to be perfectly hidden. It is enough if it is adequately

obfuscated. This suggests that in a digital world, where a subject is connected to

a larger network with a dynamic address, it could be enough to obfuscate the

static address with which they are contacted. The same reasoning can be applied

to pseudonymity, except that the subject needs to be able to retain a fabricated

identity over time.

97

One method of achieving a basic level of anonymity/pseudonymity in the

infrastructure would be by using dynamic addresses. For a subject this would

involve the use of the context manager catalogue service (See above, section

4.4.2). The CMCS provides a context manager, i.e. subject, with a static address

that maps to their dynamic context details. By using another or a second

unknown static address the subject would in effect obfuscate their identity. For a

requestor no other mechanism is required. This mechanism of course relies on a

subject’s context manager having a dynamic address. It also assumes that the

subject does not reveal any other uniquely identifying information and that

requestors use anonymous credentials. Furthermore, it also assumes an attacker

does not go to any great length in trying to find out the true identity of the

subject. For example, if the device reveals their host name this could be used to

identify the subject.

Another method to achieve a more advanced level of anonymity/pseudonymity

involves the breaking of the traceable path between a subject and requestor. For

this to be achieved, techniques such as anonymity networks need to be

employed. In the infrastructure the anonymising mechanism can be thought of

as an external proxy component through which messages can be sent and

received but not traced. How the component obfuscates the messages path is

outside the scope of this work. From the point of view of the participants in the

infrastructure the proxy will work as follows. When requests are to be sent

anonymously, the requester contacts the proxy with the message and the address

of the recipient. The component will then take responsibility for the delivery of

the message and also for the return of the reply. As such there will be no

traceable path between the requestor and the subject making the requestor

anonymous. When requests are to be received anonymously, i.e. using a

pseudonym, the proxy instead acts as a virtual recipient. The requestor sends the

message to the proxy, in the belief that it is the subject. The proxy then forwards

the request to the subject and also later returns the reply to the requestor. Hence,

the message path becomes untraceable and the subject can remain known only

by their pseudonym. It should be noted that even though this more advanced

method provides a better level of protection it still relies on the

98

subject/requestor not revealing any uniquely identifying information themselves

in the communication.

4.5.4. Notice
Notice is one of the core principles of privacy protection according to the fair

information practise codes [Landesberg, Levin et al. 1998]. It stipulates that

users should be made aware of when information is collected and how it will be

used. Hence, notice enables informed decisions to be made of whether to utilise

a service, allowing data to be collected, or not.

In this work notice is handled implicitly prior to disclosure. As described in the

privacy model, the release of information is governed by an agreement that

specifies the terms of the disclosure including any associated limitations or

conditions (3.2.4.2). Therefore, if access has been granted it is assumed an

agreement is in place and that the user has been properly notified by the other

party.

The motivation for excluding explicit notification at the point of release can be

found within the foundation of ubiquitous computing. The aim from the start

has been to move computing into the background [Weiser, Gold et al.1999]. The

use of notification, which draws attention to the system, is therefore believed to

contradict a fundamental aspect of the work. Furthermore, the vision of

ubiquitous computing also speaks of a world where large numbers of

interconnected computing devices are embedded seamlessly and invisibly in our

everyday environment. In such an environment it is not deemed feasible to

expect users to respond well to explicit notifications as these are likely to be

presented too often. Indeed even related work, that follows the fair information

practise codes more closely, minimises explicit notification at the point of

release through the use of personal privacy proxies acting on behalf of the users

in accordance with their privacy preferences [Langheinrich 2002].

The consequences of the chosen approach are twofold. Firstly, it requires

notification to occur prior to the point of release. This allows the users to

perform their everyday tasks undisturbed, with the system in the background.

However, it also implies that privacy preferences must be expressed when less

99

information is available about the situation(s) in which it will be disclosed.

Whilst this can result in less accurate privacy control, it is deemed that the

adoption of a restrictive access policy can to some extent be used to compensate

for this. Secondly, there is no feedback when information is accessed. Again

this ensures that users are not disturbed, which is good. The drawback is that it

makes it difficult for users to monitor the disclosures that occur. This in turn

negatively affects the ability to verify that agreements made are followed. But

then again, even if the occurrence of disclosures could be monitored this would

on the whole have little impact as the use of the information could still not be

controlled.

4.6. Context communication format
An essential part of any context-aware infrastructure is the communication of

contextual information. Simply letting sensors collect information is of little

use. The gathered information needs to be passed on to services and/or

applications to provide a user with an enhanced service. Whilst it is perhaps

tempting in some situations to incorporate the sensing directly into the

application, previous work has shown that it is preferable to keep the collection

and use of information separate [Dey 2000B]. Thus independent of the situation,

contextual information will always need to be communicated.

The communication of contextual information has traditionally been designed

and implemented in an ad-hoc manner for each context-aware system

developed. Hence there is no de facto standard to use. Consequently this has

made collaborations between different systems unnecessarily complex,

hindering the development of truly ubiquitous context-aware applications. This

situation is of course not desirable.

To address the issue of communication both within the infrastructure and

externally a uniform communication format has been developed together with a

context vocabulary.

4.6.1. Objectives
The context communication format needs to meet three conditions: simplicity,

universality, and versatility.

100

Simplicity - The format should be simple enough to allow it to be used with

resource constrained devices. This is important since the majority of the agents

deployed in an infrastructure are expected to run on resource constrained

devices, after all it is they that yield the smallest form factor and the lowest cost.

For example, both the sensors and pervasive interaction devices used generally

have limited processing power, memory, and battery-life. Furthermore to fully

meet the requirement of a decentralised infrastructure (See above, section

4.1.2.1) any agent must be able to operate independently within the

infrastructure. Hence, at the minimum this implies that context consumers and

producers can decode and encode contextual information in the communication

format respectively. Finally it is also beneficial, if at all possible, for the format

to be simple enough to allow the data to be humanly readable. This will aid

developers to debug and test implemented agents.

Universality - The format should be universal, i.e. device and platform

independent. This is necessary to support the diversity found in ubiquitous

computing systems. The capabilities needed by a sensor for instance, are much

different to those of an end user application. Furthermore, factors such as

context, user preferences, costs, etc. also influence the choice of device and

platform. Indeed previous and related work show that a large number of

different devices have and are being used (See above, section 2.6.3). Thus it is

essential that the context communication format does not impose limitations

restricting its use to a particular device or platform.

Versatility - The format should be versatile. Context has been defined in terms

of the relationship that exists between an entity and a piece of information (See

above, section 3.1.1). Thus no restriction has been placed on what can be

classified as context information, allowing it to vary with situations. It is

therefore not possible to determine in advance exactly what information the

format needs to support. A piece of context may for example be a name

represented as a string, a location represented by coordinates, or even an image

showing a user’s current view. The context communication format must

therefore be flexible enough to allow any data to be included.

101

4.6.2. Composite Capability / Preference Profiles
An existing format that largely meets the conditions is the Composite

Capability/Preference Profiles (CC/PP). CC/PP is a standard that has been

designed to allow device capabilities and users preferences to be communicated

to remote services, allowing services to be tailored with respect to users and

their devices. The CC/PP specification [World Wide Web Consortium 2004E]

mainly focuses on conveying static device capabilities such as screen size,

supported html version, etc. However, the format is not limited to this. It can

accommodate a more general use through the definition of vocabulary

extensions. Whilst CC/PP may not be suitable for modelling context [Indulska,

Robinson et al. 2003], experiments have found it is sufficiently flexible to be

used successfully in the communication of contextual information [Osbakk,

Ryan 2002].

The RDF/XML format used to represent CC/PP profiles allows both the

simplicity and universality objectives to be fulfilled. RDF is a structured XML

format that can be encoded using plain text. Thus, in theory profiles can be

inspected and manipulated by any device and platform capable of handling plain

text. Naturally the device and platform support will be slightly more limited, in

practise, since the profiles need to be interpreted as well. However, several

minimal XML parsers exist [Wilson 2001A] [Wilson 2001B] [Aadland, Angel

et al. 2002], one with a footprint as small as 6 kb [Scheemaecker 2003]. Also

small higher-level RDF parsers exist [Megginson 2001]. Hence, CC/PP profiles

are simple enough to be processed on resource constrained consumer devices,

e.g. PDAs and mobile phones, as well as on embedded systems, e.g. on TINIs.

CC/PP profiles are also universal as their representation makes them both

device and platform independent.

The versatility objective however, is not fully met by the CC/PP format. Whilst

the possibility to use vocabulary extension provides some degree of versatility,

it is not enough by itself. Two important limitations remain. First of all a

profile’s hierarchy is only two-levels deep. Secondly the specification only

defines basic data types. It is however possible to work around these issues, as

102

will be demonstrated in the following section (See above, section 4.6.3). Thus,

for now it will be assumed that CC/PP fulfils the versatility objective.

Given that the CC/PP format can fulfil the objectives of a general context

communication format, it was decided that this format was to be used. Thus,

instead of defining a format specific to context communication, a vocabulary

extension to CC/PP was developed. Profiles conveying contextual information

will be referred to as ‘context-profiles’.

4.6.3. Addressing CC/PP limitations
It has been stated that the CC/PP format’s versatility is limited with respect to

its hierarchical depth and the data types defined. This section will further

describe these limitations and why they constitute an issue when CC/PP profiles

are used for context communication. The section will also demonstrate how the

limitations can be resolved. Please note that the techniques described should

only be applied to information using the context vocabulary, defined later.

Doing so will ensure that the resulting profile is backward compatible with

ordinary CC/PP profiles.

4.6.3.1. Depth
A CC/PP profile’s hierarchy is only two-levels deep. This is caused by the data

structure of a profile. The CC/PP format uses two types of elements to structure

data: components and attributes. Components are used to categorise groups of

data, e.g. HardwarePlatform, whereas attributes identify and hold the data, e.g.

ScreenSize. Thus the attained result is a simple two-level tree structure,

illustrated in Figure 28.

Figure 28. Two-level data structure

This two-level structure, although sufficient to communicate static device

capabilities and simple user preferences, is not adequate to support the

communication of general context information since essential metadata cannot

be communicated. For example, it may be desirable to add a timestamp,

HardwarePlatform

 ScreenSize = 320x280

103

lifetime, or measure of accuracy to the data. Furthermore, complex pieces of

context information may also require the data format to be described along with

the data.

Different approaches can be taken to overcome this limitation and enable

metadata to be present in a CC/PP profile. For instance, the functionality of

RDF, which supports an arbitrary depth, can be utilised. Another alternative is

to define custom complex CC/PP attributes. However, to preserve the structure

of CC/PP, and hence its simplicity and universality, a third approach has been

taken. The approach involves the use of a flattened three-level tree structure. To

explain the chosen structure, the changes made when moving from a two-level

structure to a flattened three-level structure will now be described.

Starting with the simple two-level CC/PP profile shown in Figure 28. To this

structure a third level is added, dedicated to holding data and metadata. This

results in the second level being used only as a data identifier. To allow basic

data to be represented a common data holder must be defined. This data holder

must be globally known and reserved for this use only. In this work ‘value’ has

been reserved. The result is a three-level structure, illustrated in Figure 29.

Figure 29. Three-level data structure

Now to achieve a flattened three-level structure, the category information and

the data identifier are joined and represented by a component. The category

information and data identifier are separated by punctuation, effectively creating

a single string. Multiple separations, i.e. punctuations, can be used to create an

arbitrary depth. Attributes are then used to represent the data holders. Thus a

three-level structure can be represented using only two-levels. The result is

referred to as flattened three-level structure and is illustrated in Figure 30.

HardwarePlatform

 ScreenSize

 value = 320x280

104

Figure 30. Flattened three-level data structure

With this flattened three-level structure context information and metadata can

be added to a CC/PP profile.

4.6.3.2. Types of data
The CC/PP format defines a number of basic data types for the representation of

attribute data [World Wide Web Consortium 2004E s.4.1]. Supported are the

following simple data types: string, integer number, and rational number. In

addition to these, two complex data types are supported: set of values and

sequence of values.

Whilst the supported data types may be sufficient for the communication of

static device capabilities and user preferences, it is not adequate for the

communication of context information. Contextual information can take many

forms including binary. Even in the simple case of adding textual context

information care has to be taken to ensure none of the characters reserved for

the xml/rdf structure are used. For example a P3P policy cannot be directly

added to CC/PP policy as value since it uses xml. Another example is the

current view of the user in the form of an image.

To address this issue a standardised way of encoding unsupported data needs to

be specified. In accordance with the recommendation in the CC/PP

specification, the use of complex data models has been avoided [World Wide

Web Consortium 2004E s.2.1.2]. Instead it has been decided to utilise the

mechanisms developed for the specification of Internet message bodies – RFC

1341 [Borenstein, Freed 1992]. Any unsupported data is encoded according to

the “Base64 Content-Transfer-Encoding” [Borenstein, Freed 1992 s.5.2]. To

indicate that that data has been encoded the “Content-Transfer-Encoding Header

Field” [Borenstein, Freed 1992 s.5] is added as metadata. Furthermore, to aid

the recipient in interpreting encoded data, it is recommended that the MIME

type of encoded data also is added as metadata in a “Content-Type Header

HardwarePlatform.ScreenSize

 value = 320x280

 unit = Pixels

105

Field” [Borenstein, Freed 1992 s.4]. Figure 31 illustrates the addition of

unsupported data.

Figure 31. Adding unsupported data types using base64 encoding.

Using this technique it is possible to add otherwise unsupported data types to a

profile.

4.6.4. Context vocabulary
The developed vocabulary has been inspired by the Platform for Privacy

Preferences (P3P) [World Wide Web Consortium 2002A] and whenever

possible its names and structures have been used. There are several reasons for

doing this. Firstly, the notation used by the P3P is both standardised and well

known. Secondly, it covers some of the basic context information that is

desirable to include in the vocabulary. Finally, a P3P based privacy protection

mechanism has been developed in conjunction with the context communication

format and by using the same names and structures in the context vocabulary

the administration of this mechanism is simplified.

The vocabulary consists of three parts: categories, data identifiers, and data

holders.

Beginning with the categories, their aim is to allow related data to be organised

into groups. This makes the data easier to find and allows frequent data

identifiers to be used more than once in the vocabulary. There are four broad

categories: ‘user’, ‘business’, ‘activity’, and ‘location’. The categories have

been identified from the characteristics often considered by context-aware

applications, the “who’s, where’s, when’s, and what’s” of entities [Dey 2000B

p.4]. The ‘user’ and ‘business’ categories correspond to the ‘who’s’. They group

data related to an individual or an organisation (or non-human entity)

respectively. The ‘activity’ category corresponds to the ‘what’s’ and includes

user.currentview

 value = <base64 encoded data>

 content-transfer-encoding = base64

 content-type = image/jpeg

106

information about an entity’s current activity. Finally the ‘location’ category

corresponds to the ‘where’s’. It groups information representing an entity’s

physical and possibly virtual location. Please note that there is no category for

temporal information, i.e. the ‘when’s’. This information is considered to be

metadata and will be dealt with later.

Under each of the categories a number of data identifiers have been defined.

The user category contains information structures like ‘name’, ‘bdate’, and

‘home-info’. These hold the individual’s name, date of birth, and home contact

details respectively. Similarly the business category contains structures like

‘name’ and ‘contact-info’ to hold the name of the entity and their contact

details. In the activity category, a ‘type’ and a ‘note’ identifier can be found.

They hold the type of the activity and a short description respectively. Two

structures ‘start’ and ‘end’ also exist, allowing the time frame of an activity to

be described. Finally under the location category a ‘coordinates’ and a ‘place’

identifier can be found. They hold position information in the form of a

longitude-latitude pair and a place name respectively. Furthermore a ‘contact’

structure also exists under the locations category. This structure holds any

location specific contact information.

Together the categories and the data identifiers form the components that

identify particular pieces of context in a context profile. Please note that the

structures have deeper hierarchies. For example ‘user.name’ is a higher level

representation of ‘user.name.family’ etc. Figure 32 lists the resulting

components in the vocabulary. Further details can be found in Appendix A.

107

Category Data Identifier ⇒ Component
user name† user.name†
user bdate† user.bdate†
user home-info† user.home-info†
business name† business.name†
business contact-info† business.contact-info†
activity type activity.type
activity note activity.note
activity start† activity.start†
activity end† activity.end†
location coordinates location.coordinates
location place location.place
location contact† location.contact†

 † Structure

Figure 32. Context vocabulary components.

Finally the vocabulary defines several data holders, see Figure 33. These form

the attributes in the context profile. The most fundamental data holder defined

in the vocabulary is ‘value’. Its purpose is to hold the actual context information

in the flattened three-level structure (See above, section 4.6.3.1). The remaining

data holders defined in the vocabulary only contain metadata. They are:

‘content-transfer-encoding’, ‘content-type’, ‘timestamp’, ‘accuracy’,

‘confidence’, ‘lifetime’. The ‘content-transfer-encoding’ and the ‘content-type’

hold metadata that describe the format and content of the data contained in the

‘value’ attribute. They are used when adding data that cannot be supported by

the built in data types (See above, section 4.6.3.2). The ‘timestamp’ attribute

allows the data to be accompanied with a date and time, generally showing

when the information was captured. Thus, the ‘timestamp’ takes into account

the ‘when’s’. The ‘accuracy’ and ‘confidence’ attributes allow estimates of the

quality to be included. Finally the ‘lifetime’ attribute can be used to represent

the expected validity period of the data. Further details can be found in

Appendix A.

108

Data holder ⇒ Attribute
value
content-type
content-transfer-encoding
timestamp
accuracy
confidence
lifetime

Figure 33. Context vocabulary attributes

With the described components and attributes the context vocabulary enables

basic contextual information to be communicated. Naturally the support is

limited to only a small subset of all possible contexts that it may be desirable to

communicate. It has never been the aim to provide a complete vocabulary.

Instead the vocabulary has been developed for the needs of this infrastructure. It

is then expected that further compatible vocabulary extensions will be defined

as required.

4.7. Summary
In this chapter the design of a privacy enhancing infrastructure has been

described.

The requirements capture has involved extracting potential requirements from

the aim, the background, and the employed models then reviewing these to form

an effective requirements set. The set consists of three categories of

requirements privacy, functional, and miscellaneous. The privacy category is

the most important with requirements such as: retain offline level of privacy,

customisable balance of privacy, ability to handle both known and unknown

agents, decentralised structure, and security being covered.

Also presented is the strategy taken during the development as well as the scope

of the infrastructure. The strategy has involved prioritising privacy throughout

the work rather than functionality. It has also been an objective to produce a

modular design that allows customisation. The scope of the infrastructure has

been adjusted to fit area of ubiquitous computing. To reduce the required

109

resources the depth of the context model has been restricted. Also to simplify

the development a specific type of device, namely, personal digital assistants

has been targeted.

To meet the requirements, a decentralised component based architecture has

been designed for the infrastructure. The main component in the architecture is

the context manager. Each entity in the infrastructure is associated with at least

one context manager that handles their contextual information. Interacting with

the context managers are agents, context consumers and context producers, that

retrieve or store contextual information, respectively. There is also a data

storage component and a catalogue service component in the architecture,

providing storage of date and address resolution, respectively.

For privacy protection the focus is on access control. Thus, three different

access control mechanisms have been presented. A classification and clearance

scheme that uses levels to express information sensitivity and the

trustworthiness of context consumers. A role based access control mechanism

that uses roles and permission to specify access. And a mechanism based on the

platform for privacy preferences that enables preferences to be expressed with

respect to privacy polices. Discussed is also anonymity/pseudonymity and

briefly authentication.

A context communication format has also been presented. In developing the

format the properties of simplicity, universality, and versatility has been

emphasised. Subsequently, the Composite Capability Preference Profiles, an

existing data format, has been extended for more general use.

110

CHAPTER 5

IMPLEMENTATION
The previous chapter has described the architecture of a privacy-enhancing

infrastructure. It has also described some alternatives for privacy protection and

a context communication format. Together these partially fulfil the

requirements. Before the infrastructure can be evaluated however, it needs to be

implemented. The implementation also provides the remaining features

necessary to meet the requirements.

This chapter presents the implementation of the infrastructure developed.

Particular attention has been given to explaining implementation specific

details, relevant to the fulfilment of requirements. The chapter also presents a

number of agents developed to test and demonstrate the infrastructure.

5.1. Overview
Following the previously presented architecture (See above, section 4.4), the

implementation consists of several components. Each component will be

described in detail in this chapter and an overview is provided by Figure 34.

Context-Aware
Desk Display

Context
Manager

Web Presence

iButton Context
Capture

Proxy
HTTP-Socket

Data Storage

CMCS
Admin.
Console

Figure 34. Overview of implemented infrastructure components.

111

5.2. Platform
All the components in the infrastructure have been implemented in Java. This

makes the infrastructure platform independent. Since the infrastructure is

targeted at resource constrained device types, personal digital assistants (See

above, section 4.3.2), it has been developed for the Micro Edition of the Java 2

Platform (J2ME) [Sun Microsystems 2002]. More precisely the infrastructure

has been developed for the Connected Device Configuration [Java Community

Process 2002A], Foundation Profile [Java Community Process 2002B], and the

Personal Profile [Java Community Process 2002C]. Together these components

form a complete Java runtime environment that is suitable for use on resource

constrained devices. It will henceforth be referred to as J2ME CDC/PP.

A distinct advantage of the J2ME CDC/PP platform is its compatibility with

both Java 2 Platform, Standard Edition (J2SE) and Personal Java Application

Environment (PJAE) [Sun Microsystems 1998]. This enables the infrastructure

to be deployed on a wide range of devices. The compatibility with J2SE

platform allows the application to run on more powerful traditional computing

devices, e.g. desktops and servers, whilst PJAE provides backward

compatibility with older pre-J2ME environments, e.g. PDAs and Smartphones.

5.3. Context Manager
As previously stated the Context Managers are the central components in the

infrastructure (See above, section 4.4.1). It is with them the other infrastructure

components interact to store and receive contextual information. This

interaction is performed using a request/response protocol, where the context

manager takes the server role. Hence the context managers are to run as

background processes in the infrastructure, constantly ready to receive requests

from agents. The requests form the inward flow of information to the context

manager. Each request is processed by the context manager upon being

received. Once processed the context manager returns an appropriate response.

The responses form the outward flow of information. Figure 35 illustrates the

inward/outward flow of information.

112

Context
ManagerRequest Response

Figure 35. Inward and outward flow of information

The context manager’s handling of incoming requests can be broken down into

four stages, as illustrated in Figure 36, each addressing a different aspect. The

first stage is inward communication. During this stage the context manager

receives the incoming request and, if required, decrypts the request. The second

stage is privacy protection. It is during this stage the subject’s privacy

preferences are enforced. This includes verifying the requestor’s supplied

credentials, evaluating their access, and filtering the request to remove any

unauthorised actions. The third stage is request fulfilment. During this stage the

request is executed. This involves going through a pre-processing procedure,

performing the authorised actions, and carrying out a post-processing procedure.

The fourth and last stage is outward communication. At this stage the response

is encrypted, if required, and the response is returned to the requestor.

Figure 36. The CM’s request handling stages and their subsidiary steps.

The implementation of these four stages will now be described.

Stage 1: Communication – inward
• Receive request
• Decrypt request

Stage 2: Privacy protection
• Authenticate
• Evaluate access
• Filter request

Stage 3: Request fulfilment
• Pre-processing
• Perform actions
• Post-processing

Stage 4: Communication – outward
• Encrypt response
• Return response

113

5.3.1. Communication
Several of the captured requirements concern the communication in the

infrastructure either directly or indirectly (See above, section 4.1). It is therefore

not surprising that communication plays an important part in the handling of

requests. In fact given the architecture, communication is essential even for the

most basic operations such as allowing agents to interact with the context

managers to store and retrieve information (See above, section 4.4.3).

To meet the captured communication requirements a customisable

communication scheme has been constructed. The scheme focuses on three

different aspects of communication namely the method of communication, the

transport mechanism, and confidentiality. This is illustrated in Figure 37.

Transport
mechanism

Method of
communication Confidentiality

Communication

Figure 37. The three aspects of communication.

5.3.1.1. Method of communication
A method of communication has been implemented that suites the

request/response style interaction employed by the context manager.

The method splits interaction dialogues into sequences of messages, where each

message is either a request or a response. A message consists of two parts: a

header and a body. The header is primarily used to communicate information

that applies to the message as a whole. This includes information such as the

status of the request/response, authentication details, etc. It can also be used to

issue special commands, to retrieve a public key for example. The body on the

other hand contains the action to be performed. An action can for example be to

store or retrieve a piece of contextual information. Within a single request

multiple actions can be performed.

In the infrastructure the messages are represented using an extension to the

context communication format described earlier (See above, section 4.5.4). The

extension allows implementation specific information to be encoded.

114

Specifically it provides support for the header-body structure and extends the

vocabulary to handle various actions. It should be noted that any messages

represented are still valid ‘context profiles’ and compatible with the CC/PP

specification [World Wide Web Consortium 2004E]. The extension merely

provides the semantics necessary to create and interpret infrastructure specific

messages accurately.

Context profile extension
Support for the header-body structure is added to the ‘context profiles’ by

introducing a component, reserved for header information. The header

component, just as any other component, then uses attributes to hold data. The

rest of the context profile forms the body. This approach ensures that the

context-profile is backward compatible, as only additions to the vocabulary are

made. However it does limit the type of information that can be embedded in

the header. For example, it is not possible for a piece of information stored in

the header to have associated metadata. This restriction is acceptable though, as

the header must only contain metadata with respect to the whole message or

special commands.

The header component is mandatory when communicating with a context

manager. Furthermore, every request must at least contain a ‘username’

attribute in the header, where an anonymous use is supported with the data

value ‘anonymous’. In addition to the ‘username’ attribute, there are several

optional attributes including ‘password’, ‘encrypteddata’, ‘publickey’, ‘status’,

etc. Figure 38 provides additional information about the frequently used header

attributes. For a more comprehensive listing consult Appendix B.

Figure 38. Frequently used header attributes

Header attribute Description
username The requester’s identity.
password Password authenticating the claimed identity.
encrypted The name of the employed cipher.
encryptedData Holds encrypted data.
command Any command to be performed, e.g. synchronise.
status The request’s status.

115

Additional attributes are also defined for use within the message body. The

message body is the optional part of the message that carries contextual

information. The information is embedded directly in the ‘context profiles’ as

previously described using components and attributes (See above, section

4.6.4). The additional attributes defined are specific for the context manager

implementation and are applied individually on each component in the context

profile. Several attributes are included in the extension including ‘action’ and

‘status’. The ‘action’ attribute, for example, is mandatory if the context manager

is to process the component. It can hold the values ‘read’, ‘write’, and ‘history’.

They correspond to the retrieval of current contextual information, the storing of

contextual information, and the retrieval of past contextual information. Figure

39 provides additional information about the frequently used body attributes.

For a more comprehensive listing consult Appendix B.

Figure 39. Frequently used body attributes

5.3.1.2. Transport mechanism
The context manager has been implemented to use plug-ins to transport

messages. This allows the low-level details of the transport mechanism to be

transparent to the context manager. Hence, the context manager is only

responsible for the handling of transport plug-ins. The details of the transport

mechanism are then implemented in the plug-ins.

There are two types of plug-ins being used, server plug-ins and client plug-ins.

The server plug-ins provide the ability to receive requests and return responses.

The client plug-ins on the other hand allow requests to be made and responses

to be received. Together a plug-in pair provides the necessary mechanism to

support a two-way transportation of messages, see Figure 40.

Request
ResponseClient plug-in Server plug-in

Figure 40. Client and server plug-ins.

Body attribute Description
action The action to be performed.
status The status of the individual action.

116

Each client and server pair is implemented to handle a particular mode of

transport. Furthermore the client-server pairs are exchangeable and multiple

pairs can co-exist. This ensures that the mode of transport is fully customised, as

required (See above, section 4.1.2.2).

Transport plug-ins
Whilst the details of the transport mechanism differ from plug-in to plug-in,

their interface towards the infrastructure components must follow strict

guidelines.

First of all, the plug-ins must follow a specified naming scheme and be located

in a known package. The naming scheme divides the name of the class into two

parts a plug-in name and a suffix. The plug-in name can be any combination of

lowercase letters but must be the same for both plug-ins in a pair. The suffix on

the other hand varies with the type of plug-in, where the client plug-in must use

the suffix ‘TCP’ and the server plug-in ‘TSP’. Note that the suffix must always

be in capital letters. The package the plug-in classes must be located in is

‘net.osbakk.pi.cm.plugins’. It is important that the naming scheme is followed

and that the classes are placed in the right package as the context manager will

use this information when dynamically loading plug-in classes.

Secondly, each plug-in must implement an interface that corresponds to its type.

Starting with the client plug-in, the less complex of the pair, it must implement

the ‘TCPInterface’, outlined in Figure 41. The TCPInterface mandates that

methods to initialise the plug-in and to post requests are implemented. Then

there is the server plug-in. It must implement the ‘TSPInterface’, outlined in

Figure 42. The TSPInterface requires seven methods to be implemented

including methods to initialise the plug-in, to control and retrieve its state, to

retrieve any associated addresses, to post responses, and to attach

communication event listeners. The communication event listeners provide the

link between the plug-in and context manager and must be used to pass on

incoming messages as events. Full details of both interfaces can be found in

Appendix C.2 and C.3 respectively. The details of the communication event

listener and the events that must be sent by the transport server plug-in are

available in Appendix C.4 and C.5 respectively.

117

Figure 41. Transport client plug-in specification.

Figure 42. Transport server plug-in specification.

Socket Plug-in implementation
A transport plug-in pair has been implemented that uses TCP/IP sockets as the

means of transport. The socket plug-in pair transports the messages as a single

stream of characters only preceded by the length of the message being sent. The

length of the message consists of an integer ending with a hash character. The

implementation works as follows and its lifecycle is illustrated in Figure 43.

Beginning with the server side. When the context manager is started it checks

the configuration to see which plug-ins to load. Assuming the context manager

has been configured to use the socket server plug-in, the plug-in is loaded. Once

loaded the plug-in is initialised. During the initialisation the plug-in parses the

properties file and extracts the address of the server. If not manually configured,

this information is detected automatically. When this is done the context

manager activates the plug-in by calling the connect method, prompting it to

start listening for connection on the default port. If for some reason the port is

unavailable, another port will be chosen automatically and the addresses

Name: <plug-in name>TSP†
Package: net.osbakk.pi.cm.plugins
Impl. interfaces: TSPInterface

Methods:
init isConnected addComEventListener
connect getAddresses
disconnect reply

Notes: N/A
†<plug-in name> follows regular expression [a-z]+

Name: <plug-in name>TCP†
Package: net.osbakk.pi.cm.plugins
Impl. interfaces: TCPInterface

Methods:
init post

Notes: N/A
†<plug-in name> follows regular expression [a-z]+

118

updated appropriately. Once listening to the port the plug-in sits in the

connected state, ready to receive requests from agents and responses from the

context manager. Upon receiving a request it will wrap the message, together

with a connection identifier, in an event and pass it on to the context manager

using the communication event listener. The request will then be processed by

the context manager before a response is returned. Upon receiving a reply event

from the context manager the server plug-in will unwrap the event and extract

the message and the connection identifier. The message containing the response

will then be returned to the requestor using the appropriate connection. Once

done the server plug-in returns to the connected state. The plug-in is capable of

processing multiple request/responses at once. Finally when the context

manager is shutting down it will deactivate the server plug-in. This causes the

plug-in to stop listening for new connections and terminate with the context

manager.

On the client side, the process starts when the first message is going to be sent

to a particular context manager using the socket protocol. The agent first loads

the client plug-in. The plug-in is then initialised with the context manager’s

address. Once initialised the plug-in sits in a disconnected state ready to post

requests. Then when a message is to be posted a connection is opened to the

specified address and a request sent. The client plug-in will then be placed in a

connected state, waiting for a response. When the client plug-in receives the

response, it closes the connection and returns the received message to the agent.

If no timely response is received the plug-in will time-out. This will also close

the connection, but instead of returning a response an exception will be thrown.

Once the connection is closed the plug-in will return to the disconnected state.

The plug-in then remains in the disconnected state until another request is

posted or the agent terminates it.

119

Initialised

/ parse properties

/ start listening on port

Connected

[action = event] / handle event

[action = disconnect] / stop listening on port

Disconnected

/ terminate

Server

Initialised

/ parse properties

Disconnected

[action = terminate] / terminate

[action = event] / connect,post message

/ return response or time-out

Connected

Client

Figure 43. Socket server and client plug-in lifecycles.

5.3.1.3. Confidentiality
To ensure the confidentiality of the communication another plug-in based

mechanism has been implemented. The mechanism uses cryptographic plug-ins

to secure the interaction dialogue. Each cryptographic plug-in developed is

responsible for both the encryption and decryption of messages using their own

particular function(s). Furthermore, the plug-in must be able to generate suitable

keys. Consequently each plug-in provides a complete cryptographic solution

including encryption, decryption, and key generation.

The implemented mechanism does not impose any direct limitation on what

type of cryptographic functions to be used, though it has been designed with

public key cryptography in mind. This allows differences both in requirements

as well as legislation to be supported. Moreover just as the transport plug-ins are

exchangeable so are the cryptographic plug-ins. Hence a selection of

cryptographic functionality can be provided using different plug-ins. The

mechanism also allows the different cryptographic plug-ins to co-exist, ensuring

wide runtime support.

120

Cryptographic plug-ins
All cryptographic plug-ins must have a common interface towards the context

manager. This interface is defined by the following criteria.

First of all, the cryptographic plug-ins must follow a particular naming scheme.

The scheme is similar to the one used by transport plug-ins. Hence the name of

the class consists of a plug-in name and a suffix. The plug-in name can be any

combination of lower case letters, whilst the suffix must be ‘EDP’ in capital

letters. The plug-in must also be located in the plug-in package

‘net.osbakk.pi.cm.plugins’. Once again these rules are important as this

information is used when dynamically loading plug-in classes.

Secondly, all cryptographic plug-ins must implement the ‘EDPInterface’,

outlined in Figure 44. The interface requires four methods to be implemented

including methods to initialise the plug-in, to generate keys, to encrypt data, and

to decrypt data. With these methods the context manager can interact with the

plug-in to encrypt and decrypt information. To provide a uniform support for

various key types, the interface requires individual keys to be formatted as byte

arrays. For key pairs a wrapper class is used. Full details of the ‘EDPInterface’

and the key pair class can be found in Appendix C.6 and C.7 respectively.

Figure 44. Cryptographic plug-in specification.

RSA AES Plug-in
A cryptographic plug-in has been developed that employs both an asymmetric

cipher, RSA [Rivest, Shamir et al. 1977], and a symmetric cipher, AES [NIST

2001]. The RSAAES plug-in, as it will be referred to, aims to strike a balance

between security, manageable key distribution, and performance. To implement

Name: <plug-in name>EDP†
Package: net.osbakk.pi.cm.plugins
Impl. interfaces: EDPInterface

Methods:
init encrypt decrypt
generateKeys

Notes: N/A
†<plug-in name> follows regular expression [a-z]+

121

the plug-in the Bouncy Castle crypto package [Bouncy Castle 2003] has been

used.

The implementation works as follows. Upon either receiving or sending the first

RSAAES encrypted message the context manager will create an instance of the

plug-in. This instance will then also be used for subsequent request/responses.

Once created the RSAAES plug-in is initialised. The initialisation sets up the

BouncyCastle cryptographic provider and a pseudo-random number generator.

When done the plug-in is ready to generate keys, encrypt data, and decrypt data

using the BouncyCastle API [Bouncy Castle 2003]. The key generation process

is straightforward. It simply creates a new pseudo-random RSA key pair and

encodes the generated public and private keys as byte arrays. In a typical

scenario this process is only performed once. Only if the private key is

compromised, does a new RSA key pair need to be generated.

The encryption process is somewhat more complex and can be divided into four

steps. The first step generates a new pseudo-random secret key for use with the

AES cipher. The second step encrypts the generated secret key using the RSA

cipher and the message recipient’s public key. Once this is done the encrypted

secret key is added to the output stream together with its length encoded using

two bytes. The third step generates a 16 byte pseudo-random initialisation

vector for use with the AES cipher. This initialisation vector is also added to the

output stream. Finally, the fourth step encrypts the sensitive data and adds it to

the output stream. The encryption is performed using the AES cipher, the

generated secret key, and the initialisation vector. The resulting output stream is

illustrated in Figure 45.

Length
(2 byte)

Encrypted Secret Key
(X byte)

IV
(16 byte)

Encrypted Data
(Y byte)

Figure 45. Data format of RSA-AES plug-in.

The decryption process is similar but retrieves information from the input

stream rather than using the pseudo-random number generator. The process

consists of three steps. The first retrieves and decrypts the secret key embedded

in the input stream. The decryption is performed using the RSA cipher and the

recipient’s private key. The second step retrieves the initialisation vector from

122

the input stream. No processing is required. Finally, the third and last step

decrypts the actual data. For this the AES cipher, together with the decrypted

secret key and the embedded initialisation vector, is used.

5.3.2. Privacy protection
The second stage, privacy protection, handles the protection of a subject’s

privacy. During the design of the infrastructure a number of different

mechanisms and approaches has been evaluated (See above, section 4.5). This

section will describe which of these mechanisms has been chosen to be

implemented by the developed infrastructure and explain the choice.

The context manager implements two aspects of privacy protection previously

described, namely authentication and access control. This is illustrated in Figure

46. Although the authentication mechanism described here will take the issue of

anonymity into consideration, this last aspect will utilise an external mechanism

described later (See above, section 5.5.2.2).

Authentication Access Control

Privacy
Protection

Figure 46. Privacy protection aspects.

5.3.2.1. Authentication
Of the two alternative authentication mechanisms previously short listed (See

above, section 4.5.1) the password-based mechanism was chosen to be

implemented.

This choice is motivated by the simplicity of the mechanism and the wide

device support it yields. By using the less resource demanding password based

mechanism the performance of the infrastructure is also expected to be better.

Furthermore, in a research environment the probability of a subject being

exposed to replay attacks is considered to be low. Hence, the increased risk

associated with the use of the weaker mechanism is judged to be offset by its

benefits. It should also be noted that it would be possible at a later stage to

compliment the infrastructure with support for a challenge-response mechanism.

123

Since the infrastructure has been implemented to be stateless, the authentication

is performed on a per message basis. This means that every message sent to a

subject’s context manager must contain an identity. The message must also

contain a password that verifies authenticity of the claim unless the requestor

asks to be anonymous. As already described the username and password are

added to the header of a message using the attributes ‘username’ and ‘password’

respectively (See above, section 5.3.1.1). Supplying the username ‘anonymous’

marks the request as coming from an anonymous agent.

Upon receiving a non-anonymous request the context manager will authenticate

the requestor by comparing the supplied password with that stored by the

context manager for the identity in question. The identity could of course be a

pseudonym. If there is a match then the requestor’s claim has been positively

verified and the request can be further processed. If on the other hand the

password does not match, the requestor is assumed to be a rogue user and the

request will not be further processed. Anonymous requests, if allowed by the

subject, will always be positively verified. They will incur a slight delay in their

processing though, to discourage unnecessary use.

5.3.2.2. Access control
To control access to a subject’s context both the role based mechanism (See

above, section 4.5.2.2) and the P3P based mechanism (See above, section

4.5.2.3) were chosen to be used. This combination allows privacy preferences to

be expressed with respect to be unknown and known users.

The motivation for choosing the role based mechanism over the classification

and clearance scheme is its scalability. As previously demonstrated the

probability that the CCS mechanism can accurately represent a subject’s

preferences diminishes as the number of agents and context items increase (See

above, section 4.5.2.1). Even in deployment of limited size the number of agents

and context items are deemed to be large enough to cause considerable

inaccuracies. Hence, the higher initial effort required to set up associated with

the RBAC is judged to be preferential.

124

In the context manager the RBAC mechanism has been implemented as a two

step process, illustrated in Figure 47. The first step evaluates an agent’s access.

This involves calculating its overall permission by aggregating permission

granted by all the subject’s roles, including those associated with any matching

P3P rulesets, and then superimposing their personal permission. As previously

asserted roles are always aggregated such that the best possible access is granted

(See above, section 4.5.2.2). The resulting permission represents the effective

access granted to the agent for that particular request. To make the access

control mechanism efficient an agent’s overall permission is cached. Naturally,

in the event that a subject’s privacy preferences change this cache is cleared.

The second step filters incoming requests. During this step any unauthorised

entries are discarded. This isolates the privacy protection stage from the request

fulfilment stage, as any request passed on should be fulfilled, if possible. If at a

later stage it becomes desirable to alter or exchange the access control

mechanism, this separation will be beneficial.

Access Control

Stage 1:
Evaluate access

Stage 2:
Filtering

Authorised
Requests

Requests

Figure 47. Access control steps

5.3.3. Request fulfilment
The third stage of the context manager’s request handling concerns the

fulfilment of requests. Within this stage there are three distinct parts: data

storage, synchronisation, and extensions. This is illustrated in Figure 48.

125

SynchronisationData storage Extensions

Request
fulfilment

Figure 48. Request fulfilment aspects.

At the very basic level the request fulfilment stage enables contextual

information to be stored and retrieved. This involves executing the read, write,

and history actions embedded in the requests (See above, section 5.3.1.1) and

interacting with the data storage. The request fulfilment stage also provides the

necessary mechanism to support the synchronisation of information, as required

(See above, section 4.1.2.2). Furthermore, through the implementation of

extensions additional advanced functionality can be incorporated as well. For

example, the use of extensions allows tasks such as context aggregation and

evaluation to be performed. It also provides the mechanism by which the

required support for context triggered events and request triggered context

collection (See above, section 4.1.2.2) can be implemented.

5.3.3.1. Data storage
To store and retrieve information a context manager must use data storage. The

data storage is a separate infrastructure component (See above, section 4.4.3)

with which the context manager interacts. To ensure that no restrictions are

placed on what type of data store that can be used (See above, section 4.1.2.2) a

driver based approach has been taken when implementing the interaction. This

involves using an exchangeable data storage driver to link the context manager

and external data storage.

Data Storage

Context
Manager

D
riv

er

Information flow

Figure 49. Data storage driver.

Hence the data storage driver provides the interface between the internal

workings of the context manager and the external data storage, as illustrated in

126

Figure 49. As such the context manager enjoys a uniform mechanism for storing

and retrieving information, fully independent of the type of external data storage

being used making the interaction between the context manager and the data

storage seamless, as required (See above, section 4.4.3). Thus, whilst the

context manager is in charge of handling the storage of information, it is the

data storage driver that executes the actual storage operation.

Data items
To minimise the complexity of communicating with the driver, the context

manager organises information into data items.

A data item represents a particular piece of information and is identified using a

category and a key. The categories separate different groups of information. For

example one category is used for contextual data whilst others are used for data

concerning access control etc. The key identifies an entry within a particular

group, for example a particular context or user. Thus the category and key

together provide a unique identifier.

Over time however, there may be several distinct occurrences of a single data

item. Hence to identify the value of a particular piece of information a

timestamp must be used together with the category and key. This will then

allow the value of a data item, at a particular point in time, to be identified. The

resulting data hierarchy is illustrated in Figure 50.

Category A

Key A Key B

Occur. 1 Occur. 2

Value (a) Value (b)

Occur. 1 Occur. 2

Value (c) Value (d)
Figure 50. Data hierarchy.

The value of the data items takes the form of serializable Java objects. Hence,

the usage of an external data storage does not appear different from an internal

hashtable to the Context Manager. It also makes it easier for the data storage

driver to handle the information and convert it, if necessary, to the format

required by the data storage.

127

Finally it should be noted that data items constitute the format in which

information is delivered to the driver from the context manager. It is not

necessarily how the information is physically stored. This is determined by the

data storage and its driver.

Datastorage driver
The data storage driver is required to fulfil a number of criteria.

First of all, the main driver class must be called ‘DataStorageDriver’ and have

the package name ‘net.osbakk.pi.cm.dataStorage’. This ensures that the context

manager can always find the driver. It also guarantees that only one driver can

be loaded at any one time by the Java runtime environment. Both are essential

aspects given that the driver is critical for the operation of the context manager.

Secondly, the main driver class must also implement the data storage interface,

‘DataStorageDriverInterface’, outlined in Figure 51. The interface stipulates the

mandatory methods needed to initialise the driver, connect and disconnect from

the data storage, set data, get data, delete data, etc. Full details of the interface

can be found in the Appendix C.1.

Finally, the data storage driver is required to support historic information.

Hence all information stored must contain a timestamp. The timestamp can

either represent when the information was recorded or when it is stored, the

context producers decide which. How long information is stored and to what

extent this length is customisable is determined by the driver implementation. It

is therefore optional for a data storage to retain historic information. The reason

for this is that it allows the infrastructure to operate even when storage capacity

is limited, albeit with limited functionality.

128

Figure 51. Data storage driver specification.

Memory/File driver implementation
A memory/file driver has been implemented for the infrastructure. The driver

uses internal memory to store data during runtime and a file to ensure

persistency.

The implementation works as follows and its lifecycle is illustrated in Figure 52.

When initialised the driver parses the properties to read in the configuration.

The configurable entries include the history length, the location of the data file,

and the filename. Then once the connect method is called the driver loads the

configured data file into memory, making any stored information available to

the context manager. Once loaded, the context manager can perform operations,

flush data, and disconnect the data storage. The operations work on the data

stored in memory and provide the means for setting data, getting data, deleting

data, etc. The flush method writes the result of any performed operations to

disk. Finally, the disconnect method makes sure the information in memory has

been written and closes the data file. Consequently, this makes further

operations impossible. Hence the disconnect method is only invoked when the

context manager is being shutdown.

Name: DataStorageDriver
Package: net.osbakk.pi.cm.dataStorage
Impl. interfaces: DataStorageDriverInterface

Methods:
init getData getOccurences
connect deleteData† getLastOccurencesTime
disconnect getCategories clear
isConnected getKeys flush
setData getKeysTable

Notes: The driver must support historic information.
† 3 methods with different signatures.

129

Initialised

/ parse properties

/ open file,load data

Connected

[action = <operation>] / <operation>

[action = disconnect] / write data,close file

Disconnected

[action = flush] / write data

FlushedPerformed

Figure 52. Memory/File driver state chart.

The memory/file driver implemented retains a user configurable amount of

historic information. To minimise processing the history length is specified as

the number of occurrences of data items to retain. The driver then uses a

rollover stack in which the items are sorted with respect to their timestamps.

Hence when the stack is full and a request is received from the context manager

to store a new piece of information, the driver first removes the oldest item in

the stack before adding the new. In this way the most recent information is

retained.

5.3.3.2. Synchronisation
In addition to handling the retrieval and storage of information, the context

manager has been implemented to support synchronisation, as required (See

above, section 4.1.2.2). The implementation allows both contextual information

and configurations, e.g. access control settings, to be synchronised between

context managers.

Process
In the infrastructure synchronisation is always performed between two context

managers at a time. The process is triggered when an agent sends a

synchronisation request to a context manager. For example, this can occur as a

130

result of user interaction or be a predefined behaviour. The context manager

receiving the request becomes the initiator of the synchronisation. It is the

initiator that contacts the second context manager, referred to as the responder,

and executes the synchronisation protocol.

Synchronisation requests
A synchronisation request is a request that contains the command ‘synchronise’

in the header of the context profile. This command prompts the context manager

to perform a synchronisation.

Each synchronisation request is required to contain a ‘reference’ to another

context manager in the header. The reference specifies both the information

necessary to contact the responder and the credentials of the initiator. The

former consists of the transport protocol, cryptographic plug-in, and the address

to be used to contact the responder. The latter is a username and password,

given the authentication mechanism chosen (See above, section 5.3.2.1). A

single string is used to represent this information; the exact format is described

later (See below, section 5.4.1.1).

The request can also specify three further optional parameters that control the

synchronisation. Firstly, the synchronisation ‘mode’ can be specified. This

specifies whether information should be updated at the initiator – ‘updateLocal’,

at the requestor – ‘updateRemote’, or on both sides – ‘sync’. Hence, the

implementation allows the flow of information during the synchronisation to be

controlled. The default is ‘sync’. Secondly, the ‘type’ of data to be synchronised

can be specified. The options are ‘context’, ‘data’, and ‘all’. These correspond

to synchronising contextual information, configurations, or both types

respectively. This enables the context manager to retain a synchronised context

database but different configuration or vice versa. The default is to synchronise

‘all’ types of information. Finally, it is possible to specify how any conflicts that

arise during the synchronisation should be resolved. A conflict occur when

concurrent occurrence with dissimilar values exist for a data item on the

initiator and the responder. Such conflicts can be resolved by either using the

initiators value – ‘useLocal’, the responder’s value – ‘useRemote’, or by

131

retaining the existing value on the respective sides – ‘noChange’. The default is

to retain the existing values.

Protocol
To perform the synchronisation a context manager follows a certain protocol.

To begin with the initiating context manager establishes what information is

available. This information is represented using a synchronisation profile. The

synchronisation profile contains the occurrences of all relevant data items,

where the relevancy depends upon the type of data being synchronised. To

determine what information needs to be exchanged, a synchronisation profile is

required for both the initiator and the responder. Thus, the initiator requests a

synchronisation profile from the responder and then builds a local profile

themselves.

When both the remote and the local synchronisation profile are available to the

initiation, the profiles are compared and a list is compiled with the data item

occurrences that are missing locally, i.e. on the initiator. Then, provided the

local database should be updated, the missing occurrences are requested from

the responder and subsequently added to the local database.

Once the local database has been updated, the initiator then compares the

remote synchronisation profiles again. This time, though, it is to establish which

occurrences are missing on the responder. Assuming that the remote database

should be updated, the initiator then sends the missing information.

Completing this protocol successfully will result in the two context managers

being synchronised according to the specified parameters.

5.3.3.3. Extensions
To enable the context manager to include advanced and custom functionality the

implementation supports the use of extensions. The extensions are executable

units of code that are run inside the context manager. Despite being internal to

the context manager information access from extensions is governed by the

same privacy protection mechanism as external agents in the infrastructure. This

ensures a subject’s privacy preferences are enforced.

132

With extensions it is possible to provide a wide variety of functionality. Later in

this section two uses will be examined; integration with other infrastructures

and data processing.

Operating modes
The context manager features two operating modes for extensions. First of all

extensions can be run as background processes. In this mode the extension is

invoked during the initialisation process of the context manager and is then run

in a separate thread until either the extension or the context manager terminates.

Running an extension as a background process can be useful if it is to perform

actions at frequent intervals. Extensions can also be run on a per-request basis.

In this mode an extension is only run for the period required to fulfil the

processing of the incoming request. Extensions operating in this mode can be

configured to be invoked on all requests or alternatively on certain specified

requests only. It is also possible to configure whether the extension is to be

invoked before or after the requests’ actions have been performed. Furthermore,

an extension can be set to be triggered on certain actions only, i.e.

read/write/history. Hence, processing can be limited to relevant situations, and

thus minimised. Finally, it should be noted that these two modes are not

mutually exclusive. An extension can operate in both modes simultaneously.

Resource Extension Plug-ins
To ensure consistency extensions are implemented as plug-ins. These are

referred to as resource plug-ins.

The resource plug-ins, just as others, must follow a set naming scheme. The

scheme divides the class name into a plug-in name and a suffix. As previously,

the plug-in name can consist of any combination of lower case letters. The

suffix on the other hand is specific to the resource plug-ins and must be ‘REP’,

in capital letters. Furthermore, the plug-ins must be located in the package

‘net.osbakk.pi.cm.plugins’.

The plug-ins must also implement the ‘REPInterface’, outlined in Figure 53.

The interface requires three methods to be implemented by the plug-ins. These

are a method to initialise the plug-in, another to start the plug-in as a

background service, and a method to invoke the plug-in on a per request basis.

133

To enable the resource plug-ins to communicate efficiently with the context

manager, the interface contains a direct link to the context manager. The context

manager link, ‘CMLink’, is provided as an initialisation argument. Full details

of the ‘REPInterface’ and the ‘CMLink’ class can be found in Appendix C.8

and C.9 respectively.

Figure 53. Resource extension plug-in specification.

MobiComp plug-in
A plug-in has been developed that enable integration with the MobiComp

infrastructure [Ryan 2005]. The mobicomp plug-in provides two way

synchronisation between the two infrastructures. To achieve this, the extension

utilises both operating modes available, retrieving information at periodic

intervals and updating information on a per request basis. It is important to

emphasis that both of these operations are performed without modifying the

MobiComp infrastructure. The plug-in simply interacts with an already

available webservice.

The MobiComp plug-in works as follows and its lifecycle is illustrated in Figure

54. When the context managers starts-up it initialises the MobiComp plug-in.

During the initialisation the plug-in parses the provided arguments and

properties extracting the address of the remote services and the credentials to

use locally. The plug-in will also build the dictionary that will be used to

translate messages between the two infrastructures. Once initialised the context

manager starts the plug-in as a background service, assuming it has been

properly configured. This thread will act as a timer, prompting the plug-in at a

configurable interval to contact the MobiComp infrastructure to retrieve

information. When the background services has been started the plug-in sits in a

Name: <plug-in name>REP†
Package: net.osbakk.pi.cm.plugins
Impl. interfaces: REPInterface

Methods:
init start perform

Notes: N/A
†<plug-in name> follows regular expression [a-z]+

134

waiting state until it is awakened by the timer, it receives a call from the context

manager on the perform method, or the context manager terminates. A timer

event will cause the plug-in to contact the webservice in the MobiComp

infrastructure with a request for relevant information. If information is received,

it is then processed and posted to the context manager using the CMLink and

the credentials extracted during the initialisations. A call to the perform method

prompts the plug-in to send information to the MobiComp infrastructure

instead. It will first post a request to the context manager for the piece of

context giving rise to the call. This is once again achieved using the CMLink

and the extracted credentials. The information received from the context

manager is then processed and sent to the webservice in the MobiComp

infrastructure. Finally, terminating the context manager will also terminate the

plug-in, stopping the background service.

Initialised

/ Parse properties & arguments

/ Start

Waiting

[action=timer] / sync. [action=perform] / sync.

/ terminate

Figure 54. MobiComp plug-in lifecycle.

Data processing plug-ins
The extension mechanism provides the necessary framework for context

managers to support data processing. Whilst implementation details are

extension specific, the basic design of all data processing plug-ins is similar.

Firstly, as a result of the architecture, data processing can be performed at three

different times. By configuring the plug-in to be invoked on write requests,

135

processing can occur when context information is stored. This is useful, for

example, to validate incoming data. Similarly, if configuring the plug-in to be

invoked on read requests, processing can occur when information is retrieved.

This allows a just in time approach to data processing, for example transforming

information before release. The last alternative is to configure the plug-in to run

as a background process. This enables the plug-in to determine when processing

shall occur, for example scheduling it at predefined intervals or during periods

of low activity.

Secondly, context information is accessed by issuing messages containing read,

write, and history requests. Thus, data processing plug-ins use the same

mechanism to access information as external agents. Consequently, requests are

subject to access control. However, for local information the plug-ins benefit

from being able to use the context manager link to communicate. This removes

the need for network connectivity improving availability of data and

performance.

Finally, to perform the actual data processing the plug-ins can make full use of

the features available in the platform, i.e. J2ME CDC/PP. In addition to the

standard configuration and profile, plug-ins can also use any optional APIs and

third-party libraries that are available to the runtime environment. Hence, plug-

ins can take advantage of device specific resources to optimise processing.

Furthermore, using network connectivity it is possible for plug-ins to distribute

the workload to external resources.

5.4. Catalogue Service
The Context Manager Catalogue Service (CMCS) is an infrastructure

component that simplifies the addressing in the infrastructure. There can be any

number of CMCS in the infrastructure. Each CMCS maps Context Manager

URIs to traditional URLs and operate independently.

5.4.1.1. Context Manager URIs
The primary address scheme implemented in the infrastructure is URI-based

[rfc2396][rfc2718]. The basic structure of a URI consists of two parts: a scheme

and a scheme specific part [rfc2396], as illustrated in Figure 55.

136

<scheme>:<scheme-specific-part>

Figure 55. Basic URI syntax

The name of the scheme to be used in the infrastructure is ‘cm’. This

emphasises that it is a context manager that is being referenced. The scheme

specific part is then used to encode the address information required. This

includes both mandatory and optional parameters, some of which are dependant

on each other.

The scheme specific part of the context manager URI is itself URI-based. The

scheme specific part consists of two mandatory elements, one that specify the

protocol and another that specify the address. It may also optionally contain user

credentials, a reference to a context item, and a pointer to a particular

occurrence of a specified context item. Note the use of the slashes that signify a

hierarchal scheme. Figure 56 summarise the syntax of a CM URI.

cm:<protocol>://[<credentials>]<address>[<context-item>][<occurrence>]

Figure 56. CM URI syntax

The protocol element specifies the transport plug-in and the encryptor decryptor

plug-in. Together these therefore indicate what is required to communicate with

the context manager on the address in question. In the protocol element the

names of the two plug-ins are separated using a dash. For example, if the socket

transport plug-in and the RSAAES encryptor decryptor plug-in are to be used

the protocol element would be ‘socket-rsaaes’.

The details of the address element are dependant on and specified by the

transport plug-in being used. It can consist of any combination of alphanumeric,

unreserved, and reserved characters [rfc2396]. If the address contains reserved

characters it must be enclosed within square brackets. For example, the socket

transport protocol takes an IP-address or a domain name as an address.

The optional credentials in the current implementations specify the username to

use when accessing the context manager. It can also specify the password,

though this is not recommended. If provided, the password will be removed

from the URI and sent within the message header when communicating with the

137

context manager. If both username and password is specified then they are

separated using a colon. The credentials must be followed with an at-sign.

The optional context-item element points to a particular context item at the

context manager being referenced. The hierarchical path to the context item is

encoded as a string that is delimited by periods, i.e. the same technique used

when referencing items within a context profiles. A context-item element must

be preceded with a hash. For example, to reference a user’s location the pointer

‘#location.coordinates’ could be used.

The optional occurrence element can be used to reference a particular instance

of a context item. Hence, the occurrence element can only be used in

conjunction with the context-item element. An occurrence is specified as the

difference in milliseconds from midnight the 1st of January 1970 coordinated

universal time. (UTC). The element is specified using digits only and must be

preceded by a colon.

Figure 57 shows an example of an address with all the optional elements

included. The CM URI specifies that the socket transport protocol and the

rsaaes encryptor decryptor plug-ins should be used. It also states that the context

manager is located on the localhost. Furthermore, it specifies that the username

and password that should be used are ‘user’ and ‘pass’, respectively. Finally, the

context item of interest is ‘location.coordinates’ occurring 12th of September

2005 at 03:35:11.

cm:socket-rsaaes://user:pass@127.0.0.1#location.coordinates:1126488911740

Figure 57. Example of a CM URI

5.4.1.2. The service
In the infrastructure the CMCS is implemented as a webservice using Java

Servlet technology [Java Community Process 2001]. The CMCS’s creates a

mapping between one or more CM URIs and a static well known URL. This

serves two important functions. First of all, it provides the ability to map

dynamic addresses onto static and well known addresses. Secondly, it makes it

possible to reference entities without specifying the underlying transport plug-

in(s) and the encryptor decryptor plug-in(s). Hence, the CMCS plays an

138

important role in making the use of unreliable communication feasible over an

arbitrary number of protocols and mediums.

At the heart of the CMCS is a directory services, allowing an agent to lookup

the context managers associated with a listed entity and their respective CM

URIs. To aid the agent in determining which context manager to use when

alternatives exist, each context manager is indexed with an integer. The

recommendation is for an agent to contact the context manager with the lowest

index possible. Each context manager listed may contain several CM URIs with

which they can be contacted. To minimise redundancy, the CMCS list the URIs

and ciphers separately for each context manager. If no context manager is

associated with an entity or if all services associated are offline, the service will

assume the entity is offline.

The information listed by the CMCS is automatically updated by the

appropriately configured context managers. During the start-up the context

manager will query each of the available transport server plug-ins about their

address. The context manager will also compile a list of the available encryptor

decryptor plug-ins. This information is then communicated to the CMCS that

then can update the listing. The context manager will also update the CMCS

when it is being shutdown to notify the services it will go offline and be

unavailable.

Finally, the CMCS also provides a simple web interface for user management.

The interface allows the context managers using the services to be listed along

with their entries. It also allows a user to update their password, i.e. the

password used by their context manager to authenticate themselves to the

services. Furthermore, the CMCS’s administrator has the ability to use the

interface to add and delete users.

5.5. Proxies
A Proxy is a component type not previously described. In the infrastructure it is

any component through which information flows but that is neither the origin

nor destination of the flow. From the point of view of the information source the

proxy will appear as the destination and from the destination the proxy will

139

appear to be the source. Proxies are used to process data in transit or to relay

messages. This enables otherwise incompatible services or unreachable

destination to be integrated with the infrastructure.

5.5.1. Proxy types
The first and simplest type of proxy emulates a destination with which there is a

one-to-one relationship. This enables the proxy to be used without requiring any

special support by the infrastructure. The type of proxy must only adhere to the

interfaces a context manager and agent use. In this form the proxy will be

personal, i.e. serve only one entity. Whilst this implies that the usage is

restricted, there are situations where a personal proxy is preferable. For

example, this is the case when sensitive information is to be processed. A

personal proxy, over which the subject has control, provides a trustworthy

alternative for the processing.

The second type of proxy supported by the infrastructure uses explicit routing

instructions. This allows it to support multiple destinations. Hence, it does not

require any special relationship to exist between the proxy and the destination,

i.e. the proxy can be shared. To facilitate this second type of proxy in the

infrastructure two additional header attributes are used. First of all, the source

must specify the next destination after the proxy using the ‘relayTo’ header

attribute. The destination could be the final destination or the address of another

proxy. Secondly, the source has the option of adding the message to be relayed

in a ‘relayMessage’ header attribute. This allows the source to fully specify the

message being relayed including how it is encrypted. If the ‘relayMessage’

attribute is not present then a proxy will process and relay the incoming

message. In addition to these two attributes each proxy can support, and even

require, additional custom header attributes to be used. Furthermore, it should

be noted that even though no special relationship is required between the proxy

and the destination an implementation can limit the destinations allowed.

5.5.2. Examples of usage
From the point of view of the infrastructure the proxy component type is a tool

with which external functionalities can be incorporated into the infrastructures.

For what purpose this tool is used depends on service providers and users. The

140

possibilities are there to develop a wide range of different proxies. Three

examples of how a proxy component can assist the infrastructure are translation

between protocols, the anonymisation of communication, and data

transformation.

5.5.2.1. Protocol translation
Under some circumstances it may be beneficial, or necessary, for different

transport protocols to be used by an agent and a context manager wishing to

communicate. For example, assume a user wants to minimise the number of

protocols the context manager running on their mobile devices support without

reducing the compatibility with agents. A protocol translation proxy can then be

used in the infrastructure to assist the mobile context manager.

For the infrastructure a protocol translation proxy has been implemented that

forms a bridge between two transport protocols, HTTP and Socket. The proxy

has been implemented as a Java Servlet [Java Community Process 2001] that

emulates a context manager. Hence, one-to-one relationships exist between the

proxy and an entity. It accepts requests from agents over the HTTP transport

protocol. These requests are then forwarded to their destination over the socket

transport protocol, e.g. to a user’s mobile context manager. Thus the context

manager only needs to accept communication over one of the two transport

protocols, namely the socket. To include the HTTP transport protocol in the

updates sent to the CMCS a dummy HTTP transport server plug-in is used. The

dummy plug-in makes the context manager aware that it can be contacted using

HTTP and allows the address of the protocol translation proxy to be set. Note

that the dummy plug-in does not set up any HTTP server, nor does it contain

any such implementations. It simply provides the necessary information needed

when updating the CMCS. Figure 58 illustrates the use of the protocol

translation proxy.

Socket Agent
Proxy

 web server

S
er

vl
et

C
on

te
xt

M

an
ag

er

so
ck

et
TS

P

HTTPht
tp

TC
P

Figure 58. Using a protocol translation proxy

141

5.5.2.2. Anonymising communication
The aspect of anonymous communication has previously been described (See

above, section 4.5.3). The idea is to break the path between the communicating

parties. Proxy components enable this to be achieved in the infrastructure.

Hence, using proxy components anonymous communication solutions can be

developed. An architecture has been designed that shows how such a solution

can look.

In the architecture proxy components are used together with an anonymity

network. The proxy components provide the entry and exit points to the

anonymity network. This separates the implementation of the anonymity

network from the infrastructure, but still allows the network to be used as an

external component. The anonymity network’s task is to obfuscate the message

path. For the purpose of this thesis it is assumed the anonymity network

performs it tasks efficiently and securely. Hence, after a message has reached

the entry point it is the responsibility of the anonymity network to route the

message to its final destination.

5.5.2.3. Data transformation
Proxies provide a compliment to the support for data processing available with

the extension mechanism in the context manager (See above, section 5.3.3.3).

The advantage of using proxies is that they enable data to be processed in

transit, rather than at the destination. This makes them particularly useful for

transforming data.

For example, take a situation in which basic positioning information is required

in the form of longitude-latitude coordinates. Then assume that a context

producer supplying NMEA data from an associated GPS device is available.

From the NMEA data the current coordinates can be extracted. By using a

proxy for the processing and placing it between the context producer and the

context manager, a seamless transformation from NMEA data to longitude-

latitude coordinates can be achieved.

Whilst it would be possible to obtain the same end result by using a data

processing extension, it is not as efficient as using a proxy since it requires the

NMEA data to be stored in the context manager for processing. It produces

142

redundant information as well as introducing an additional write and read cycle.

Hence, for the given situation the use of a proxy is more appropriate.

The use of proxies for data transformation, and processing in general, also

benefits from the fact that proxies can be hosted anywhere in the network.

Hence, operations that require special resources or are demanding can be

offloaded. In the example above, where NMEA data is to be transformed into

coordinates, this would not normally be the case. However, there are certainly

situations where resource constrained devices are unsuitable or cannot perform

desired transformations. Generally, the processing of images, video, and sound

would be examples of such cases.

5.6. Agents
A number of agents have been developed to use the infrastructure, including an

iButton Context Capture application for gathering information, a Context-

Aware Desk Display that shows information about the occupier, and a Web

Presence application for publishing context information.

5.6.1. Administration console
To interact with the context manager an administrative console has been

implemented. The console takes the form of a standalone application that

communicates with the context managers, as illustrated in Figure 59. It can be

used to interact with both local and remote context managers.

Information flow

C
on

te
xt

M

an
ag

er

Admin.
Console

Figure 59. Administration console component.

The console features a basic graphical user interface that allows various aspects

of the context manager to be configured, see Figure 60. First of all the

application provides the means for users to set up their privacy preferences

using the role based access control mechanism. Using the console, lists of

access controls and roles can be defined, users created, and ruleset loaded. See

Appendix D for an example. Secondly, the administration console enables

resources to be defined, configured, and bound to context actions. Thirdly, the

143

application provides the ability to perform system commands. Commands are

available to enable the user to synchronise two context managers and to

shutdown the connected context manager. Finally, the console also provides

limited means for users to manually view and change contextual information. A

useful feature, available to the subject when viewing their own context, is the

ability to utilise the application as a form of vampire mirror [Butz, Beschers et

al. 1998] displaying the information disclosed with respect to registered users.

Figure 60. Screenshots from the administration console.

5.6.2. Context-aware desk display
The Context-Aware Desk Display consists of an enclosed TINI (Board Model

390) microcontroller [Loomis 2001] with an attached LCD and keypad, see

Figure 61. The display has been designed with the ordinary name tag,

sometimes found on desks, in mind. But instead of simply displaying the name

of the person occupying the desk, the display also presents additional context

information like the person’s email address, if they are in today or when they

are expected to be in next. The information presented by the context-aware desk

display originates from the person’s context manager and the application can

easily be extended to display more information.

144

Figure 61. Context-aware desk display.

The context-aware desk display has been designed to utilise the extensions-

architecture of the context manager. It uses a resource plug-in to detect relevant

context changes and send updates to the display device. On the display device,

i.e. the TINI microcontroller, a webserver with a servlet container is run.

Deployed on that webserver is a desk display servlet that receives context

updates and drives the LCD. Figure 62 illustrates the use of the context-aware

desk display component.

Information flow

C
on

te
xt

M

an
ag

er
C

AD
D

Pl
ug

-in

CADD
 web server

Se
rv

le
t

Figure 62. Context-aware desk display component.

Due to the privacy mechanism in the context manager the resource plug-in

cannot retrieve any information by default. Consequently without further action

no information will flow to the display. Therefore, to activate the context-aware

desk display the user must grant the plug-in read access to location.place,

user.business-info.next-in, and user.home-info.contact.online.email. This is

achieved by using the administration console to create a new user account for

the plug-in and defining a context-aware desk display role with associated

access control list(s) containing the appropriate permissions. Should the user

later decide to revoke access, e.g. by removing the account, the information

flow to the display is stopped.

145

5.6.3. Web presence application
It has long been the vision of projects such as Cooltown [Kindberg, Barton et al.

2002] that every entity should have a web presence. The web presence

application provides this for the entities using the infrastructure. Although the

context manager itself can be seen to provide a form of web presence, it is not

directly accessible by standard web browsers. The web presence application

provides the link between a context manager and a web browser, as illustrated

in Figure 63.

Info. flow

C
on

te
xt

M

an
ag

er

W
eb

 P
re

se
nc

e
A

pp
lic

at
io

n

W
eb

 s
er

ve
r

Web
browserInfo. flow

Figure 63. Web presence application component.

The application has been designed to handle a high work load without affecting

the performance of the context manager. It has therefore been implemented to

provide a snapshot view of an entity’s context using existing web technologies.

The information that makes up the snapshot is gathered by the application at

regular intervals by requesting all the context information available to it. This

information is then translated into html and/or javascript, formats compatible

with web browsers. Once translated, the publication of the context information

is then handled by a standard web server.

By default the web presence application is not allowed to retrieve any

information from the context manager. Hence, the application must be granted

read access to the elements that should be published. For example, if the entity’s

activity is to be published the application needs access to activity.type and

perhaps activity.note. In general, a separate user account for the web presence

application therefore needs to be created using the administration console. The

account also needs to be assigned any roles necessary to provide the application

with access to the desired information. If at a later stage access is changed or

revoked, this affects what information is published at the next update interval.

146

5.6.4. iButton context capture application
The iButton context capture application uses iButtons [Dallas Semiconductor,

Maxim 2005B] to gather context information. iButtons are small, uniquely

identifiable, devices. They may contain memory or have abilities like

temperature sensing. iButtons may be identified and their memory content or

sensor values read by a PDA with an adapter [Osbakk 2006] as well as more

novel mechanisms [Laerhoven, Schmidt et al. 2002]. Figure 64 shows an iPAQ

equipped with an adapter for reading iButtons.

Figure 64. iPAQ equipped with an iButton reader.

The unique identities of iButtons allow context information to be logically

linked with physical tags. This is achieved by keeping a database of known tags,

together with their associated meaning. In this way iButtons can be used to tag

context information including locations, objects, and even activities. Thus by

reading iButtons context information can be captured.

The iButton context capture application makes use of the possibility iButtons

provide for the capture of context information. The application has been

implemented as a standalone program to be run on PDAs. It uses a local

database to hold tag information. The tag information is user-specific but a

generic set may be distributed with the application. Every time a tag is read the

database is consulted and the appropriate context is deduced. The application

then proceeds to update the information held by the entity’s context manager(s).

To read tags this application has been implemented to use an adapter [Osbakk

147

2006] as well as two manual fall back modes. When the adapter is used the

application is first placed in a reading mode. After this the adapter’s connector

is simply touched against the iButton tags to be read. The two manual modes,

on the other hand, require the user to first bring up a list with either tag names

or tag identifiers. Then it relies on them correctly selecting the tag to be ‘read’

from the presented list. Whilst the manual modes require more work to be done

by users, they do offer alternatives to those without access to adapters. Figure

65 shows two screenshots from the application.

Figure 65. Screenshots from the iButton context capture application.

As a context producer, the iButton context capture application must be able to

store information in the entity’s context manager to function. By default the

privacy mechanism prohibits access. Thus, the application must explicitly be

granted write access to context elements linked to the iButtons tags. For

example, if tags are used to denote room locations the application needs write

access to location.place. Hence, a user account must be set up as well as an

appropriate role and its associated access control list(s). This is achieved using

the administration console. The granted access can be modified or revoked at

any time, with changes taking effect immediately.

148

5.7. Summary
In this chapter the implementation of the developed privacy enhancing

infrastructure has been presented.

As stipulated by the design in Chapter 4 the implementation consists of several

components including a context manager, a catalogue service, data storage, and

agents. The targeted platform for the implementation of these components has

been the Micro Edition of the Java 2 platform, with the Connected Device

Configuration, the Foundation Profile, and the Personal Profile.

The main component in the infrastructure is the context manager. Much of the

functionality has therefore been developed in conjunction with it including

communication, privacy protection, and request fulfilment. To attain the desired

modular design plug-ins are used to both enable and secure communication. The

implementation includes plug-ins for socket-based communication and RSA-

AES cryptography. Plug-ins is also used to extend the functionality of the

context manager, for example a plug-in has been developed that integrates this

infrastructure with another. Furthermore, the plug-in architecture provides the

necessary framework for supporting data processing.

The communication with the context manager is request-based, where

interaction dialogues are split into sequences of messages. Each message is

individually processed. This includes authenticating the user using a username

password, determining access using the implemented role based access control

mechanism and P3P, and fulfilling valid requests.

A number of agents has been presented that interact with the context manager

including an administration console that allow a user to interact with their

context managers, a context-aware desk display that provides information about

a user’s presence, a web presence application that publish contextual

information to the web, and an iButton context capture application that allows

information to be gathered. Together these applications aim to demonstrate that

the infrastructure works and is feasible to use.

How the context manager catalogue service simplifies the addressing in the

infrastructure has also been described. As presented the infrastructure

149

implements a URI based addressing scheme. The scheme enables the address of

a context manager be specified along with the transport plug-in and

cryptographic plug-in to be used with a single Context Manager URI. As an

entity can have multiple associated context managers, each with several

addresses, this results in each entity having many CM-URIs. The

implementation of the context manager catalogue service makes this transparent

by mapping an entity’s CM-URIs to standard a URL using Java Servlet

technology.

Introduced with the implementation is also another type of component, namely

proxies. Proxies sit between the source and destination in a message path and

enable in-transit processing. In the infrastructure a protocol translation proxy

has been implemented. It has also been described how proxies can be used to

anonymise communication and transform data.

150

CHAPTER 6

EVALUATION
The aim of this work has been to improve the overall level of privacy enjoyed

by users in context-aware environments and to make the development of

applications quicker and easier. The hypothesis made was that this could be

achieved through the use of a dedicated privacy-enhancing infrastructure for

context-awareness. The work has gone on to develop and implement such an

infrastructure as described in the two previous chapters.

This chapter evaluates the implemented infrastructure to determine the

correctness of the hypothesis. The evaluation first of all establishes to what

extent the privacy protection meets the captured requirements and what the

resulting level of control is. It then looks at the development support provided to

establish if the infrastructure makes the development of applications easier and

more rapid. Finally, the evaluation compares the approach taken in this work

with related work.

6.1. Privacy protection
Evaluating privacy protection is not an easy task. It is complicated both because

the perception of what constitutes a privacy violation is subjective and because

privacy is an abstract concept that is difficult to measure.

An action that one person finds intrusive can be acceptable to others. Hence to

achieve an accurate understanding of how well a subject’s privacy is protected,

each case must be individually analysed and compared against that subject’s

preferences. Performing this type of individual analysis is not only time

consuming, but also brings issues of its own. For example, given that each case

comes with an individual frame of reference, i.e. the subject’s preferences, how

then can cases be compared and data be aggregated?

151

This brings us to the second issue, that of measuring privacy. Privacy, unlike

performance for example, does not feature a common scale by which it can be

accurately measured. Hence privacy has no associated units in which it can be

expressed. Furthermore, similar intrusions cannot be directly compared between

subjects. The ‘cost’ of each privacy violation, or the ‘value’ of its corresponding

protection, is individual and dependant on many factors.

Given these issues, the approach taken in this work has therefore been to assess

the degree to which the privacy requirements are met and the abilities the

employed privacy protection mechanism provides to describe privacy

preferences.

6.1.1. Requirement fulfilment analysis
There were five privacy requirements captured (See above, section 4.1.2), each

covering a different aspect related to privacy.

• Decentralised structure

• Retain offline level of privacy

• Customisable effective balance of privacy

• Handle known and unknown recipients

• Security

Each of these requirements will now be analysed.

6.1.1.1. Decentralised structure
The chosen design of the infrastructure upholds this requirement (See above,

section 4.4). There are no central authorities in the infrastructure, each context

manager operates independently. The scope of the infrastructure is

customisable. A user may choose to only allow interaction with their own subset

of components or they may choose to cooperate with others. Either way the

infrastructure will work the same. There are however components that can be

argued to be centralised like the Context Manager Catalogue Service and

Proxies.

The CMCS provides the translation between virtual, but static, addresses and

the actual addresses at which context managers can be reached (See above,

152

section 5.4). To do this it is necessary for the CMCS to be located at a fixed,

known, address and be continuously operating. As such it is expected that the

number of catalogue services will be limited, and then arguably be centralised.

However, the use of the CMCS is not compulsory. Furthermore, a user may

choose to operate their own catalogue service without incurring any penalties.

Thus whilst a centralised CMCS can be used, it is at the discretion of the user.

A similar reasoning can be used for proxies. Proxies are placed in the message

communication path. Their job can be to provide a bridge between different

protocols or to transform the message content (See above, section 5.5). Whilst

there are benefits from using centralised proxies, it is not necessary that they are

operated in this fashion. Furthermore, the use of proxies is not compulsory.

Thus centralised proxies may be used but it is once again at the discretion of the

user.

6.1.1.2. Customisable effective balance of privacy
It is required that the effective balance of privacy is customisable. This implies

that the infrastructure must provide the subject with the means to influence their

privacy, within the range specified by society. To reflect the scope of control in

the privacy model, the requirement was broken down into three parts.

First of all, an access control mechanism was found to be required with which a

subject is able to control their own disclosures and receptiveness to information.

In the infrastructure the context manager is responsible for providing this

mechanism (See above, section 4.4). To fulfil the requirement the context

manager implements a role-based access control mechanism (See above,

sections 4.5.1 & 5.3.2.2). The extent to which the implemented mechanism is

customisable to the user’s preferences is however limited. Since the focus has

been on static privacy preferences only, there is currently no support for context

sensitive access controls. Furthermore, since each role, when resolved, consists

of a set of individual access controls it is not trivial to scale up or down the

overall access granted (See above, section 4.5.2.2).

Secondly, a mechanism for achieving anonymity was required to allow a subject

to hide their identity. Even though the context managers and the agents in the

153

infrastructure have been designed to not be directly identifiable, certain

‘features’ can be used to identify them. For example, context managers can be

identified by the context information they contain, the address information used

to contact them, and if cryptographic plug-ins are used from their public keys∗.

Similarly agents can be identified from the credentials they use, by the address

from which requests originate, and from their public keys. To tackle these issues

a number of counter measures can be used:

1. The context managers can use the implemented access control

mechanism, assuming it is correctly set up, to hinder identifying

information from being released.

2. Agents can choose to use the username ‘anonymous’ to post requests

without revealing their identity.

3. The context managers and agents can regenerate their public keys at

frequent intervals and only use dynamically changing addresses to

avoid being identified by them.

These counter measures provide a basic level of protection against

identification. However, they are neither optimal nor sufficient. To, for

example, rely on the assignment of varying dynamic addresses to attain

anonymity is not recommended. Furthermore, the regeneration of public keys is

time consuming and still allows the subject to be tracked within the key cycles.

To provide anonymity, the infrastructure has been designed to use a proxy. By

tunnelling incoming and outgoing communication through a trusted

anonymising proxy the identity of the subject is protected. The drawbacks of

this approach are that the proxy must be trustworthy and that it must be

centralised to some degree. Trustworthiness is important because the proxy will

be aware of the true identity of the subject. It may also see the contents of

requests if they are to be transformed from being encrypted with one key to

another. The requirement of being central is necessary for the proxy to be able

to provide a good level of protection. A proxy that is only used by a single

∗ Note even if the keys do not contain any identifying information or are guaranteed to be unique,
they are considered to provide a reasonable means of tracking a subject over time.

154

subject is of little use. With these mechanisms the infrastructure design meets

the requirement of anonymity. It should be noted that only the basic-level of

protection has been implemented, as of yet.

Finally, a mechanism that allows subjects to use pseudonyms was required. This

mechanism should enable a subject to be identified with a manufactured

identity, with which they cannot be linked. It was also required that the

manufactured identity, i.e. the pseudonym, could be retained over time. This

requirement is similar to that of providing anonymity. However, the latter

requirement makes it impossible to simply rely on the identifiable information

to be untraceable. Hence the basic protection mechanism that renews identifying

information such as public keys and addresses is not enough.

To fulfil the requirement the infrastructure has therefore been designed to use

proxies. As previously described proxies can be used to anonymise requests. A

similar procedure is used to provide a subject with a pseudonym with the

difference that the projected identity will remain fixed over time. Hence the

recipients of the request will perceive them coming from the same identity, but

do not know their true origin. When desired the subject could of course change

the used pseudonym, either by changing the settings of the proxy or swapping

proxy altogether.

The drawbacks of the pseudonymity-proxy are the same as those for the

anonymity-proxy; it needs to be trustworthy and centralised. With the

pseudonymity-proxy the infrastructure design is able to also meet the

requirement of pseudonymity. The implementation does however not feature

pseudonymity yet.

6.1.1.3. Retain offline level of privacy
To establish if the requirement to retain the offline level of privacy is fulfilled it

is necessary to return to the conceptual model of privacy (See above, section

3.2). The model presents four ways in which a user can control their privacy

offline (See above, section 3.2.3). How well the infrastructure handles each of

these will now be established.

155

First of all, the model states that subjects are able to control their own

disclosures. In the infrastructure this corresponds to controlling the access to

information held in their context manager. The context manager does provide a

mechanism with which access can be controlled (See above, sections 4.5.1 &

5.3.2.2). There are, however, limitations to the extent this mechanism is

customisable (See above, section 4.5.2.2).

Secondly, the model states that subjects can control their presence or

recognition in public spaces. In the infrastructure this corresponds to controlling

the presence of their context managers and agents in the infrastructure and

whether or not they are possible to identify. The former is possible in the

infrastructure since the subject is able to control whether they run any

components or not. The latter concerns the possibility for the subject’s

components to remain anonymous. This feature is also supported by the

infrastructure design and has been evaluated in Customisable effective balance

of privacy (See above, section 6.1.1.2).

Thirdly, the model states that a user can control their actions and links therewith

in public spaces. In the infrastructure this corresponds to the ability to control

their context managers’ and agents’ actions and their association with these

components. The former is possible in the infrastructure as all actions

performed by the subject’s context managers will be following either their

privacy preferences or the resource configuration they have set up. Hence the

context manager will not act autonomously in its default configuration. And

even though it is possible for a subject to add autonomous behaviour to the

context manager using resource plug-ins, this is then considered to be a

conscious choice made by the subject. Similarly, the subject is able to control

the agents they deploy in the infrastructure and their configuration. The control

of the latter, their association with deployed components, is also supported by

the infrastructure design through the use of pseudonyms. This feature has also

been evaluated in Customisable effective balance of privacy (See above, section

6.1.1.2).

Finally, the model states that subjects are able to control their receptiveness to

information. In the infrastructure this corresponds to controlling the ability to

156

store information in their context manager. This is achieved using the same

mechanism that controls disclosures.

6.1.1.4. Handle known and unknown recipients
It is a requirement that known and unknown recipients should be handled alike.

The requirement thus states that it must be possible to express privacy

preferences, form agreements, and disclose information independent of whether

the identity of the recipient is known or not.

These requirements are fulfilled by the infrastructure through the use of the

Platform for Privacy Preferences (P3P) (See above, sections 4.5.2.3 & 5.3.2.2).

The mechanism implemented in the infrastructure exploits P3P policies and

rulesets to form the agreement between the subject and the requester without

knowing their identity. The rulesets are defined by the users and capture their

privacy preferences with respect to the usage of information. The P3P policies

are defined by the requester and present their intended use of the information,

the contract on which information may be released. By matching rulesets and

policies the appropriate information can be disclosed.

Whilst the use of P3P fulfils the stated requirements, it has its limitations. As

previously discussed there is no technical mechanism available with which an

agreement can be enforced or P3P policies verified (See above, section 4.5.2.3).

The lack of control over the use of disclosed information is however not limited

to the P3P mechanism. Any mechanism that releases information in a

understandable form is open for abuse. This is why the privacy model

emphasises trustworthiness in the process of disclosure (See above, section

3.2.4). Another limiting factor is the lack of tools to support the creation of both

rulesets and policies. There are 11 references listed at the standards page to

compatible P3P editors, generators, and checkers [World Wide Web

Consortium 2005B]. Out of these, five policy editors and one ruleset editor are

available, see Figure 66. The majority of the available policy editors are web-

based and do not support any extension to the vocabulary. Two are applications,

of which one has been confirmed to work with the required extension. The

ruleset editor is an application and has been confirmed to support the

vocabulary extension. Thus the choice of what tool to use is limited.

157

 Type Format Extension

A) P3P Builder Policy editor Web-based Not supported

B) P3P Edit Policy editor Web-based Not supported

C) P3P Writer Policy editor Web-based Not supported

D) P3P Policy Ed. Policy editor Application Supported‡

E) P3P Editor Policy editor Application Unknown†

F) JCR P3P … Ruleset editor Application Supported‡

† Unconfirmed due to unavailability. ‡ Requires custom post-processing.
A) [P3P Builder 2005] B) [Code Infusion 2005]
C) [P3P Writer 2005] D) [IBM alphaWorks]
E) [Abrantix 2005] F) [JRC P3P Resource Centre 2005B]

Figure 66. Table with available P3P policy and ruleset editor tools.

Overall it can be concluded that although the P3P mechanism fulfils the

captured requirement, the solution is not optimal. For the use of P3P to be

practical the support for the generation of both policies and rulesets needs to be

improved. Furthermore, a mechanism also needs to be developed that deters

misuse.

6.1.1.5. Security
The infrastructure is required to be secure to attain an acceptable level of

privacy. Without adequate security even the most elaborate privacy protection

mechanism will fail. The requirement highlighted five aspects of security, of

which anonymity has already been evaluated in the section Customisable

effective balance of privacy (See above, section 6.1.1.2). The remaining

aspects: authentication, confidentiality, integrity, and availability will now be

discussed.

In the implementation authentication is performed using a username-password

mechanism. This is the simplest of the candidate mechanisms (See above,

section 4.5.1). As discussed earlier its susceptibility to replay attack has been

deemed to be an acceptable weakness for the purposes of this work (See above,

section 5.3.2.1). However, the difficulty concerning key management is a

problem. Each entity to entity relationship requires a shared secret. To ensure

security this secret must be difficult to guess, it should therefore not be reused

by the entities in other relationships. As a result scalability becomes an issue.

158

To ensure the confidentiality of communication cryptographic plug-ins are used.

With the infrastructure a RSAAES plug-in has been developed that uses a

combination of an asymmetric and a symmetric cipher to secure communication

(See above, section 5.3.1.3). Using this plug-in the security of the

communication will be a function of the key and its size. In the infrastructure

implementation pseudorandom keys are generated with a default key size of

1024-bit and 256-bit for the RSA and AES components respectively. For the

purpose of this infrastructure this is deemed to be secure enough. However,

whilst the use of the RSAAES plug-in is recommended, it is not mandatory. The

confidentiality of communication can therefore vary with configurations. It is

always possible, though, for each entity to specify their acceptable set of

communication plug-ins, thus prohibiting unencrypted communication.

The integrity of communication is not explicitly covered by the infrastructure.

No mechanism for checking the integrity of messages has been implemented.

However, when the RSAAES plug-in is used, to ensure the confidentiality of

communication, basic integrity is implicitly provided. For the purposes of this

work it is deemed difficult enough to tamper with the encrypted data stream

without raising suspicion of the decrypted message. To be able to guarantee the

integrity of messages to a specified level, further work is required.

With respect to availability attacks the protection provided in the infrastructure

is very limited. It focuses on minimising the workload of processing

unauthorized requests. The filtering process, performed as a part of the access

control (See above, section 5.3.2.2), only lets authorised actions through to

request fulfilment. The implementation also delays replying to unauthorised

requests on purpose to make brute force attacks less favourable. Whilst these

actions can protect the availability of the infrastructure when subject to

infrequent, unintentional, attacks it is not feasible to expect them to protect

against persistent and calculated attacks.

159

6.1.2. User survey
From the start it was recognised that the candidate access control mechanisms

had limitations (See above, section 4.5.2). To evaluate the actual performance of

the two primary privacy protection mechanisms presented in this work (See

above, sections 4.5.2.1 & 4.5.2.2) a user survey was undertaken.

The survey consisted of a series of questions and tasks, found in Appendix E.1.

To encourage participation the survey was performed online and was

anonymous. Hence, no identifying information about the subjects was recorded.

It is possible though, to distinguish between individual surveys through the use

of the completion time. To gather participants the survey was advertised in

newsgroups∗ and an online discussion forum∗∗.

6.1.2.1. Completion process
First of all the subjects were asked to complete a few questions about their

background. This included questions about their age, gender, computer literacy,

and internet use. These are questions that can be found in other surveys as well

[GVU's WWW Surveying Team 1998]. This survey then specifically asked the

users about their privacy concerns both with respect to their real-life and their

presence online.

Then to evaluate the access control models the subjects were presented with a

scenario. The scenario asked them to envisage that their mobile phone was

connected to a context-aware system. The subjects were told that the system

would be able to collect and monitor their context with location and current

activity given as examples. They were also told that the information collected

would be used to provide enhanced services; examples given included call

management, navigation to points of interest, and context sharing.

After this the subjects’ privacy preferences were captured to establish a baseline

against which the setup of the access control mechanism could be compared.

This was achieved by asking the subjects to indicate who they felt should be

∗ ukc.misc, ukc.comp-postgrad, alt.privacy
∗∗ http://www.ntcompatible.com/thread27503-1.html

160

able to access information about their location, activity, and contact details

respectively. The alternatives they were given included family member, friend,

colleague, boss/supervisor/teacher, and anyone (public). Multiple alternatives

could be selected.

Once the subjects’ privacy baseline had been captured the subjects were asked

to set up a simulation of the CCS and RBAC mechanisms to reflect their

privacy preferences. The simulations worked the same as the real access control

mechanisms but were limited to the pieces of context and recipients relevant to

the scenario and did not provide any feedback. To aid them in performing the

set task, the subjects were given some brief information about the respective

access control mechanism as well as instructions on how to set them up. Once

they had set up the mechanisms they were also asked to indicate how similar

they found the mechanism to be to how they reason about privacy day to day,

how accurately they felt they could represent their privacy preferences, and how

easy they found it to express their preferences using the mechanisms.

Lastly it should be said that no feedback was given during the completion of the

survey nor once it had been completed. Hence the subjects were not told how

accurately they managed to set up either mechanism.

6.1.2.2. Findings
The survey received 31 responses, compiled in Appendix E.2. The responses

came from subjects in all of the following age groups: ≤20, 21-40, 41-60, and

≥60 years. A majority though, fell within the bounds of the 21-40 group. The

ratio between female/male responses were 9/22. Furthermore the sample

showed a bias towards computer and internet literate people.

In this sample there were some interesting findings both with respect to the

subjects’ privacy concerns and their use of the access control mechanism

[Osbakk, Ryan 2004B].

Privacy concerns
It has been assumed that the ideal level of privacy for ubiquitous computing

systems was the same as for offline environments (See above, section 3.2.2).

161

The responses on the survey however, indicate that this may not always be

correct.

The sample shows that 97% of the respondents are either very concerned or

concerned about their privacy when online. The corresponding concern for real-

life, i.e. offline, privacy in the sample is 71%. Hence, the sample shows a clear

difference between privacy concerns online and offline. This finding is

illustrated in Figure 67.

97%

71%

50%

60%

70%

80%

90%

100%

Concerned

Online
Offline

Figure 67. Proportions of subjects that reported privacy concerns.

The cause of this heightened concern is still unclear, though we have identified

two hypotheses. It could perhaps be that people fear the unknowns that are

encountered with new technology. Indeed, it is only within the last decade that

Internet technology has become widely available to households [National

Statistics 2005]. The greater concern could also be an indicator of a lack of trust

in online technology, its providers, and the way personal information is handled.

Given the surge of spam [Wakefield 2005] and other malicious online activities

such as computer viruses [Ward 2005] and internet fraud [BBC News 2005], a

lack of trust from those on the receiving end should not be surprising. Even

those that are lucky not to be targeted are likely to be affected by the reports in

the media.

Regardless of what has caused the subjects to show more concern for online

than offline environments, this finding does not bode well. It suggests that the

opportunity to form an early relationship of trust between the technology, its

users, and providers has already passed. This can, potentially, negatively affect

the acceptance and desire for ubiquitous computing by a wider audience. Hence,

users are rightfully expected to inspect new ubiquitous systems harder than their

162

offline counterparts, if any. They may possibly also judge them harder than

traditional systems, which is unfortunate. Overall, the finding suggests that the

work of proving the trustworthiness of these new ubiquitous systems will at the

very least be more difficult than anticipated.

Access control mechanisms
The responses to the survey also yielded some interesting findings concerning

the tested access control mechanisms.

When comparing the setup of the Classification and Clearance Scheme (CCS)

against the subjects’ reported privacy preferences the average accuracy was

found to be 79% in the sample. The respective average accuracy for the Role

Based Access Control (RBAC) mechanism was found to be 87%. Hence the

subjects in the sample were able to set up the RBAC mechanism more

accurately than the CCS mechanism. This finding is illustrated in Figure 68.

79%

87%

50%

60%

70%

80%

90%

100%

Accuracy

CCS
RBAC

Figure 68. The accuracy of the subjects’ access control setups.

This result tallies with what is to be expected. Due to its limitations there are

situations in which the CCS mechanism cannot represent the subjects’

preferences completely accurately. With three pieces of context and five

potential recipients some inaccuracies are to be anticipated. The RBAC

mechanism, on the other hand, can with the availability of 5 roles be completely

accurately set up for the given scenario. Thus, it is anticipated that the RBAC

mechanism should be the more accurate of the two, which the survey confirms.

Another finding, that is perhaps more interesting, concerns the subjects’

perception of their ability to set up access control mechanisms. When asked

how accurately they felt they had been able to set up the CCS mechanism, 65%

163

of the respondents stated that they had been able to express their preferences

either very accurately or accurately. The respective figure for the RBAC

mechanism was only 48%. Hence, the subjects in the sample felt that they had

been able to express their privacy preferences more accurately with the CCS

mechanism than with the RBAC mechanism, when in fact the opposite was true.

This finding is illustrated in Figure 69. The CCS mechanism was also reported

to have felt easier to set up by the subjects.

65%

48%

20%

30%

40%

50%

60%

70%

Perceived accurate setup

CCS
RBAC

Figure 69. The subjects’ perception of the access control setups.

This result indicates that it can be difficult for people to see the real effect of an

access control mechanism at any particular state. It also suggests that they may

not always be aware of how well they have managed to set up their privacy

protection mechanism. Furthermore, the fact that the mechanism found to be the

easiest to work with was also perceived to be the more accurately set up, seems

to suggest that the ease of use may be misleading.

Finally, another finding concerns the cases where the subjects in the sample

failed to set up the access control mechanisms to represent their preferences.

With the CCS mechanism it was found that 70% of the inaccuracies lead to too

high an access. The corresponding figure for the RBAC mechanism was 68%.

Thus, in the cases were the access control mechanisms were inaccurately set up,

it was found that this most often resulted in too high an access being granted.

This finding is illustrated in Figure 70.

164

CCS inaccuracies
Too
low,
30%

Too
high,
70%

RBAC inaccuracies

Too
low,
32%

Too
high,
68%

Figure 70. The effect of inaccurate representation of privacy preferences

This result is most worrying, especially since the other findings suggest that

people may not always be aware of how well they have managed to express

their privacy preferences. The overall consequence is likely to be a false sense

of protection. This may subsequently affect people’s trust in the technology, if

and when they become aware that their expectations have not been met.

6.1.2.3. Validity to population
The validity of the survey results to the population is arguable given that the

sample size was small. Whilst 31 subjects are considered to be enough to be

able to draw some conclusions from the survey, in particular when the

differences are clear, a larger sample is required to statistically demonstrate that

the result applies to the general population.

The sample was also biased. With 70% of the respondents being male this

gender was overrepresented in the sample. If this has affected the outcome of

the survey is unclear, though given that the overrepresentation is relatively

small it can be assumed that the effect also will be small. Also computer and

internet literate users were clearly overrepresented. This is an outcome most

likely resulting from the survey being performed online, and perhaps also due to

its topic. This overrepresentation cannot be disregarded.

There is, however, evidence to suggest that even with a larger size the sample

may still have been biased. For example, the 10th WWW user survey performed

by the GVU Center at the Georgia Institute of Technology [GVU's WWW

Surveying Team 1998] shows a similar bias despite having a much larger

sample size. Furthermore, it can be argued that bias towards computer and

Internet literate people is not a disadvantage. It is expected that the users of

165

ubiquitous computing systems are both computer and Internet literate. The

number of households with internet access also increases steadily. Between

1998 and 2004 the proportion of UK households with internet access has gone

from less than 10% to 52% [National Statistics 2005]. This of course will

contribute to improve the population’s computer and Internet literacy.

It is therefore believed that the sample provides a reasonable approximation of

the population for the purpose of this survey.

6.1.2.4. Limitations of results
There are concerns with respect to how well the survey captures the everyday

use of the access control mechanisms. Firstly, no training was given on how to

use the mechanisms. Only a short description was provided as guidance.

Secondly, the survey did not include any feedback of the outcome when setting

up the access control mechanisms. In contrast when using the infrastructure, the

administration console allows the user to view the actual outcome of the

configuration and to fine-tune the access, if necessary. Hence, what the survey

actually captures is the first attempt at using the mechanisms. Whilst this

provides an indication of the initial accuracy that can be expected, it does not

show how well the mechanisms can perform. In practise the accuracy is

generally expected to be better, particularly with experienced users, but what

improvement can be achieved for the respective mechanism is unclear.

Also, the general applicability of the results for the two types of access control

mechanisms has limitations. The survey specifically compared the CCS and

RBAC mechanism presented in this work (See above, section 4.5.2). Associated

with these mechanisms are simplifications. Firstly, in CCS the classifications

are associated with the identifiers of context information, not the data. There is

therefore an element of uncertainty when performing the classification. It also

implies that once released information is no longer associated with a

classification. Secondly, the RBAC mechanism employs automatic role

invocation. In practice this means that a user always receives the best possible

access given their current set of roles. Hence, the exact roles assigned are in

effect not important provided the overall access is correct. These simplifications

can affect the reasoning and process of assigning access as well as affecting the

166

results directly. For example, with the RBAC mechanism the fact that access is

achieved by invoking the wrong role is hidden, in some situations improving the

measured accuracy and always increasing risks from impersonation. Hence,

when comparing the results with other mechanisms these simplifications must

be taken into account.

6.2. Development support
It has been suggested that an infrastructure, in addition to providing privacy

protection, can make the development of context-aware applications easier and

more rapid. This hypothesis has been based on the assumption that an

infrastructure will reduce the complexity of the application design and that

common functions can be performed by the infrastructure.

The approach taken to establish whether the infrastructure in fact aids the

development of applications has consisted of a qualitative evaluation in three

areas. Firstly, the usefulness of the feature set provided by the infrastructure has

been evaluated. Secondly, the reduction to the code base of context-aware

applications that can be achieved by using the infrastructure has been estimated.

Finally, a measurement of the cost in terms of performance of using the

infrastructure has also been made.

6.2.1. Feature set
To aid the development of context-aware applications the infrastructure has

been developed to handle a number of key features. These features are now

discussed from a developer’s perspective. The discussion draws upon the

experience and necessities of the agents developed for the infrastructure (See

above, section 5.6) as well as the infrastructure itself (See above, sections 5.3 &

5.5). For each feature an analysis is made about the usefulness and the benefits

it brings.

6.2.1.1. Privacy protection
The infrastructure’s ability to protect the user’s privacy has already been

evaluated (See above, section 6.1). However, the inclusion of privacy protection

in the infrastructure also affects the application developers and needs to be

examined from this perspective as well.

167

Including privacy protection in context-aware systems can be a time consuming

and costly process. The development of the privacy protection for the

infrastructure has demonstrated this. From the requirements it can be seen that

there are several areas that need to be covered including authentication, access

control, anonymity, etc. In all of these areas various mechanisms must be

chosen and implemented with care. Furthermore, from a developer’s point of

view the time spent on privacy protection can appear to add little direct value to

a system. Adding additional functions has a more noticeable effect, even though

this may leave the system open for abuse.

Given this, incorporating the privacy protection into an infrastructure is

therefore seen to be beneficial. It removes the need for system and application

developers to delve deep into the area. Instead the infrastructure provides a

solution that takes care of the privacy protection and that is ready out of the box.

And even though developers need to be careful not to void the protection, the

factors they need to consider are minimised. This should save them time, time

that then can be spent developing other parts of the system. Another useful

aspect is that the responsibility for the implementation of the privacy protection

is shifted away from each individual system or application. This minimises code

duplication and thus also the risk of errors. Furthermore, if errors are found they

can be corrected without having to update each individual system.

The web presence application takes advantage of the benefits provided with the

infrastructure based privacy protection. The application, which publishes an

entity’s context on the web, has been developed without any access control

mechanism itself. It simply publishes the information it can access from the

entity’s context manager. This of course reduces the development time

significantly. It also makes the application much more flexible and responsive

to changes in privacy preferences. Any changes made to the privacy preferences

held by the context manager in the infrastructure, will be reflected by the web

presence application. Hence, the process of configuring what is published or not

is that of granting or revoking access to the information.

Relying on the privacy protection solution provided by an infrastructure has its

disadvantages as well. A developer has no direct control over the privacy

168

protection mechanism. This includes the type of mechanism, its

implementation, and how it is set up. This can be a problem under certain

situations. For example, if it is desirable to run another access control system in

parallel it may prove difficult to synchronise the systems. There may also be

situations where the provided privacy protection is not appropriate. Assigning

access per context item may for example be unnecessary.

6.2.1.2. Context storage
Another key feature of the infrastructure is context storage. The context

manager in the infrastructure sits between the context producers and context

consumers and manages the flow of information. This includes both temporary

and long term storage of information (See above, section 5.3.3.1).

It is common for context-aware systems to require contextual information to be

retained for later use. Independent of the length of time the storage of

information is required it adds an overhead to the context-aware system both in

terms of development and operation. It is particularly troublesome if individual

applications are to store information. Furthermore, if the storage of a subject’s

contextual information is not coordinated this will not only lead to discrepancies

but it will also make it difficult to control the flow of information.

Letting the infrastructure handle the storage of contextual information therefore

has its benefits. From a developers perspective it enables context producers and

context consumers to be developed without having to worry about how

information is stored. It also widens the choice of devices that can be used when

developing sensors and applications as the storage of information is shifted onto

the infrastructure. In a ubiquitous environment where resources are scarce this

can be very useful. From a wider perspective a notable benefit is that data

duplication can be minimised and thus also potential discrepancies in the data.

Looking at the implementation, the driver approach provides a flexible solution.

By exchanging the data storage driver used by the context manager a system

developer can customise how information is stored in the infrastructure. This is

useful as the environments for which ubiquitous systems are developed vary

along with the resources they offer. The developers can also implement custom

169

storage drivers and thus take control over how information is stored in the

infrastructure.

All of the applications developed have benefited from the infrastructure’s ability

to store contextual information. In fact, none of the applications developed

implement any mechanism for storing contextual information persistently. This

has of course simplified their development. It has also the benefit of making

breakdowns or theft less critical from an information perspective. For example,

if the context-aware desk display were to break down no information would be

lost as it is stored in the infrastructure by a context manager.

Placing the storage of contextual information in the infrastructure, however,

comes at a cost. Even though it is possible to control how information is stored

through the development of custom data storage drivers, the developer loses

control over the storage process as a whole. It is only that last step, i.e. how

information is physically stored, that can be influenced and even this is steered

by the interface towards the context manager. Another disadvantage is that the

storage of contextual information in the infrastructure is less efficient in terms

of performance. Adding an intermediary infrastructure component, the context

manager, between the context producer and context consumer removes the

ability to subscribe to real-time streams of contextual information. The

communication required to store and retrieve information also adds an

overhead. Furthermore, in situations where connectivity is unreliable it becomes

necessary to either cache information in the application or to utilise a local

context manager. The former alternative forces developers to handle temporary

storage of information anyway while the latter uses scarce resources.

6.2.1.3. Communication
Communication is a critical feature in context-aware systems. In these systems

contextual information is generally captured, processed, and utilised by different

components. Communication is the thread the ties them together.

There are three key aspects of communication that a developer needs to

consider when developing a context-aware system. Firstly, how is information

represented so that it can be conveyed? For this they need to design a data

170

format and a scheme governing how information is represented using the

format. Secondly, how is the information conveyed? A mechanism needs to be

developed with which information can be transported between components.

Thirdly, how can the flow of information be secured? The developer needs to

carefully select a solution that provides adequate security for the

communication. Addressing these key aspects is time consuming for a

developer. It is also unnecessary for each system to develop custom solutions as

the problem is seldom unique. Furthermore, to achieve interoperability between

different systems the solutions must be standardised.

With respect to communication the infrastructure provides developers with

several benefits. To a large extent it removes the need for developers to consider

communication. The infrastructure includes a predefined and extendable data

format, saving developers design time. Embedded in the infrastructure is also a

plug-in based communications framework that is ready to be used by

developers. Thus developers benefit from not having to implement the

communication. Another useful feature of the framework is that the details of

the communication are transparent to the applications. This enables the

developers to implement their system independent of how messages are

transported or secured. In situations where a developer requires control over the

communication this is also possible because of the framework’s use of plug-ins.

Hence, a developer is able to customise how information is both transported and

secured.

The development of the iButton context capture application (See above, section

5.6.4) has demonstrated the benefit of the infrastructure’s communication

framework. Although the application is directly dependant on communication to

function, i.e. to update an entity’s context manager with any information

captured, it was developed without implementing any communication

mechanism. Instead the communication framework provided with the

development toolkit was used to handle the communication. This shortened the

development time. It has also made it possible for users of the application to

choose what transport and cryptographic plug-ins to use.

171

The downside of using the infrastructure and its communication framework is

that the developer becomes locked to a specific data format. Whilst this may not

be a problem for the development itself, the performance of a finished system

can suffer. For example, the XML based data format is not suitable for the

transportation of very large messages. For each message a model is created in

memory for further processing within the infrastructure. Large quantities of data

are better sent using other means. Furthermore, the framework restricts a

developer’s ability to control the communication. Even though custom plug-ins

can be developed and used, they need to comply with the guidelines of the

framework.

6.2.1.4. Synchronisation
Synchronisation is another key feature in the infrastructure. Although it is a

small part of the implementation it fulfils an important need. Furthermore,

synchronisation between different systems can be difficult for developers to

implement due to a lack of cooperation.

In a distributed ubiquitous system discrepancies and data duplication are often

unavoidable. The lack of reliable communication between systems makes it

necessary for information to be available locally to ensure uninterrupted

operation. To recover eventual differences that come about during periods of

offline operation it is necessary to synchronise the systems. In an environment

filled with ubiquitous systems it will however not be practical for individual

systems to handle the synchronisation of data. Implementing synchronisation

routines for each system is a time consuming process. It also requires

developers to know how to interface with each related system, thus placing

unnecessarily high demands on them.

The implemented infrastructure provides built-in support for synchronisation.

This moves the responsibility for keeping information synchronised away from

individual systems and their developers. Doing so has its benefits. It removes

the need to implement synchronisation routines in the individual systems

developed, thus reducing their development time. It also provides developers

with one issue less to concentrate their efforts on and in this way lowers the

demands placed upon them. The implementation also has another useful feature.

172

Although the infrastructure handles the synchronisation of information, it is

possible for individual systems to initiate the process. This feature is

particularly valuable in situations where it is critical that information is up to

date and synchronised.

In the deployed infrastructure context managers have been run both on mobile

devices and on permanently online servers. The built-in synchronisation feature

has been used to keep an entity’s context managers synchronised. This allows

the systems developed for the infrastructure to be used even when there is no

connectivity back to the main server. Even in situations where the context

changes with the state of the connectivity, e.g. location and availability of

hotspots, it is useful to be able to update the contextual information on the move

as this history can be kept. A key benefit is of course that the applications do not

need to be adapted in any way to support the synchronisation of information.

However, implementing the synchronisation routines in the infrastructure rather

than in individual systems is not only beneficial. A disadvantage is that

developers lose control over the synchronisation process if they rely on the

support provided by the infrastructure. This can be problematic as the ability to

customise the process is limited. For example, only a very basic control is

provided of the type of information being synchronised, data or context.

6.2.2. Code reduction
One way of making the development of context-aware systems easier and also

more rapid is by reducing the amount of coding developers need to do. A

reduction of the code base will also make maintenance less demanding, which is

an added benefit. To estimate the extent to which the infrastructure allows

coding to be reduced a scenario has been investigated.

6.2.2.1. Measure
To give a quantitative measurement of the amount of code required to

implement a system is difficult. Several factors affect this including the design,

choice of platform, coding style, programmer experience, etc. Hence,

quantitative measurements of code use will be biased. This is not desirable. A

coarser estimate of the amount of coding required has therefore been employed

173

in this evaluation. The approach taken has been to use the number of features

required to be implemented as the indicator.

6.2.2.2. Scenario
Assume that a system is going to be built to make use of a network of location

sensors deployed throughout a building. The system should initially support a

simple application that allows a user location to be queried. But future plans are

to make wider use of the location information collected as well as other pieces

of context. To not discourage usage of the system it is required that individual

users can determine for themselves who can query their location information.

6.2.2.3. Required features
A system for the outlined scenario requires a number of features to be

implemented. Firstly, the system must be able to capture contextual information.

For this a driver that can interface with the sensor network is required. This

driver would then capture the raw location data picked up by the sensor

network. Secondly, the system should be able to store, or at least cache, the

captured location information so that it can be queried. Hence, the system needs

to incorporate data storage. Thirdly, the system must contain mechanisms for

privacy protection and security. At the very minimum authentication and access

control is required. Hence, there need to be a information management

component in the system. Fourthly, the system need to be able the handle

location requests. A request handler component is thus required. The request

handler would then interact with the information management component to

fulfil requests. Finally, it is necessary to provide a user interface to the system.

The user interface must allow users to express their privacy preferences and to

post requests for location information. The interface could take the shape of a

standalone application or perhaps be available over the web.

6.2.2.4. Implementations
How then does an independent implementation compare with one that uses the

infrastructure?

Developing an independent system for the outlined scenario will require all of

the features listed to be incorporated. Hence, without any external support the

174

implementation must contain code for context capture, data storage, privacy

protections, security, request fulfilment, and user interaction.

A system developed for the same scenario, but that uses the support provided by

the infrastructure to the full extent, instead only needs to implement two of the

five required features, namely the context capture and the user interaction.

Furthermore, the user interaction can also be simplified if the administrative

console (See above, section 5.6.1) is used in conjunction with the system being

developed as this would remove the need to provide an interface for the

management of privacy preferences. To utilise the features of the infrastructure

little additional code is required. Only a few lines of code are necessary to send

and retrieve context to and from context managers, as illustrated in Figure 71.

Figure 71. Using the infrastructure

Thus, the use of the infrastructure minimises the number of features a developer

needs to implement. Whilst no measure has been made of the reduction in terms

of lines of code, the experience from the implementation of the features in the

infrastructure indicates that the reduction is significant. For example, the

unoptimised implementation of the role based access control mechanism in the

infrastructure, excluding P3P support, alone consists of more than 2300 lines

(80 kb) of commented source code.

As a reference the iButton context capture application, including the graphical

user interface, only consists of approximately 1200 lines (40 kb) of commented

//Load communication properties
Properties props = PropertiesReaderCcpp.readProperties(fileInputStream);

//Create and initialise communication handler.
ComHandler comHandler = new ComHandler();
comHandler.init(props);

//Create message
Message msg = new Message();
msg.setData(component,attribute-key,attribute-value);
...

//Post message
Message reply = comHandler.post(username, password, address, msg);

//Handle response
...

175

source code. For the web presence application the source code consists of 450

lines (15 kb).

6.2.3. Infrastructure performance
Performance is an important factor when determining whether it is practical or

not to use the developed infrastructure. The performance of the infrastructure

has therefore been evaluated. In the evaluation the round-trip times and the

cryptographic performance has been measured and analysed.

6.2.3.1. Platforms
The performance test has been run on two different devices, a handheld

computer and a laptop.

The handheld device was an iPAQ 4150 PDA. It is equipped with an Intel PXA

255 processor, 400mhz ARM X-Scale, and 64 Mb of RAM whereof 15 Mb was

used for storage. Also available was additional storage in the form of a Secure

Digital flash card with a stated maximum transfer rate of 22 Mbit/s. The

infrastructure components were run from the flash memory and also utilised it

for storage. The operating system on the device was Windows Mobile 2003.

The Java virtual machine used was IBM’s J9 with the CDC configuration and

the Personal Basis Profile.

The laptop device was an Evo N1015. It is equipped with a Mobile AMD

Athlon XP 2000+, 1.66 Ghz and 512 Mb of ram. The infrastructure was run

from the hard disk and also utilised it for storage. The operating system on the

device was Windows XP Professional SP1. The Java virtual machine used was

Sun’s J2SE 1.3.

6.2.3.2. Round-trip
One measure of performance is the round trip time, i.e. the time it takes for a

request to be fulfilled. This includes the time it takes for a request to be

delivered, processed, and then have a reply returned. The evaluation performed

has measured the round-trip time for both context-producers and context

consumers with two different sized payloads.

176

To measure the round-trip times a simple test agent has been developed that first

takes the role of a context producer and then of a context consumer. The agent

will therefore write and read to a context manager depending on its current role.

To measure the round-trip time a timestamp is taken directly before a request is

sent and immediately after the response has been received. The difference

between those timestamps is the round-trip time. To avoid any bias the payload

written and read by the agent is pseudorandom and stays the same throughout

the evaluation.

The performance test was carried out in an isolated infrastructure set up

dedicated to the test. The setup consisted of a single context manager and a test

agent, both running locally on the device. The components were run in separate

Java virtual machine instances and they communicated over a socket

connection. The payload sizes used during the test were 1024-bytes and 10240-

bytes. Added to this was the overhead from the message format. For example, a

request to write 1 Kb of data results in a message size of 2295-bytes, the

corresponding value for 10 Kb is 14935-bytes. During the test, each operation

was run 10 times from which an average was then calculated. Figure 72

contains the results.

 1024-bytes 10240-bytes

iPAQ 4150 1785 / 784 46182 / 22488

Evo N1015v 149 / 90 6643 / 2851

Figure 72. Write/read time in ms

The results show that it takes approximately 1.8 seconds to write 1 Kb of data to

the context manager on the PDA and approximately 0.8 seconds to read it back.

For many purposes this is considered an adequate level of performance,

particularly if context updates are infrequent. However, it is not sufficient for

the infrastructure to serve applications that require context updates in real-time.

Hence, in practise the application domain that can benefit from the

infrastructure will be limited. The figures for the laptop, which are 10 times

faster however, show that as processing power and memory increase the

performance will improve significantly.

177

The test also shows the write operation on both types of devices to be

significantly slower than read operation. This is to be expected with the current

implementation. The data storage caches the available information in memory.

Hence, data can be read quickly. The data storage will also commit data to disk

after each write operation. Hence, the write operations are expected to take

longer. What was unexpected though, was the detrimental effect the increased

payload had. Increasing the payload 10 times, to 10 Kb, causes the round-trip to

take 30 times longer. This is a significant increase that indicates that the

infrastructure in its current state does not scale to handle large payloads. Hence,

for optimal performance the infrastructure is best used with smaller payloads.

To what extent careful optimisation can improve the situation is still unclear.

6.2.3.3. Cryptography
Given the resource constraints in ubiquitous computing systems it is important

to establish to what degree cryptography affects performance. This will help to

determine the right balance between performance and secrecy of

communication. The evaluation performed has measured the cryptographic

performance of the implemented RSAAES mechanism (See above, section

5.3.1.3) with respect to key generation and the encryption/decryption of data.

To test the RSAAES performance a stand-alone test application was developed

that utilises the cryptographic library in the infrastructure. The test application

measures the key generation time by taking a timestamp immediately before and

after a key is generated. The difference between those timestamps is taken to be

the key generation time. The same approach is taken to measure the time it takes

to encrypt and decrypt data. To avoid any bias both the data and the RSA key

were pseudorandom and constant throughout the evaluation.

The RSAAES tests were performed on the laptop and the handheld device

previously described (See above, section 6.2.3.1), which were temporarily

dedicated to this task. The RSA key sizes used during the test were 512-bits and

1024-bits. The AES key size was kept constant at 256-bits. As with the round-

trip performance test the two data sizes 1 Kb and 10 Kb were used. Each

operation was also run 10 times from which an average value was calculated.

The results are presented in Figure 73 to Figure 75.

178

 512-bits 1024-bits

iPAQ 4150 9532 128916

Evo N1015v 80 1191

Figure 73. RSA Key generation time in ms

The RSA key generation was found to be the most time consuming operation in

the test. This was expected as a previous benchmark [Osbakk, Ryan 2004B] has

shown this to be the case. What was unexpected though was the length of time it

took to generate keys on the PDA. The generation of the 1024-bit keys, the now

recommended minimum length by RSA Laboratories [Kaliski 2003], took on

average approximately 129 seconds. This is significantly longer than the

approximately 4 seconds found in the previous benchmark performed on the

same device [Osbakk, Ryan 2004B]. Since the previous benchmark both the

RSAAES implementation and the cryptographic library used [Bouncy Castle

2003] have remained unchanged. The only difference between the set ups is the

Java virtual machines used. This test used IBM’s J9 whilst Insignia’s Jeode was

used before. Hence, this indicates that the choice of JVM can make a significant

difference to the cryptographic performance. The result also further emphasises

the importance of reusing the RSA key pair as it would not be feasible to

regenerate the key pair for every request or even every new session. A one off

delay of 129 seconds for the key generation, although clearly undesirable, is still

considered to be acceptable. It does suggest though that persistent keys must be

generated in advance rather than upon the first request as done in the current

infrastructure implementation.

 512-bits 1024-bits

iPAQ 4150 157 / 529 178 / 920

Evo N1015v 4 / 14 4 / 36

Figure 74. RSAAES encryption/decryption time in ms (1024 bytes)

The performance test measured the time to encrypt and decrypt 1 Kb of data to

be on average approximately 0.18 and 0.92 seconds, respectively, on the PDA.

These operations are also slower in comparison to the benchmarks run on the

Jeode JVM, though not to the same degree [Osbakk, Ryan 2004B]. This slow

down makes cryptography more of an issue than previously believed. For

179

example, the encryption of a 1 Kb read request takes almost as long as the

round-trip. However, the fact that the operations can be performed significantly

faster on another JVM leaves room for optimisation. It should also be noted that

on the laptop device the measured times are so short they are largely

insignificant. Hence, as the processing power increases on ubiquitous devices

cryptography is likely to become less of an issue. This view is supported by the

results from the previous benchmark as it showed the cryptographic

performance to improve approximately by a factor of 2 between an iPAQ 3660

and an iPAQ 4150 [Osbakk, Ryan 2004B].

 512-bits 1024-bits

iPAQ 4150 761 / 1235 749 / 1620

Evo N1015v 30 / 30 15 / 46

Figure 75. RSAAES encryption/decryption time in ms (10240 bytes)

Finally, the test also shows the encryption and decryption times to be increased

with larger pieces of data, as expected. What is important to note, though, is that

in contrast to the round-trip times the cryptographic performance increase at a

slower rate than the data size. Increasing the data size by 10 times resulted in an

increase in the order of magnitude of approximately 4 and 2 times for

encryption and decryption respectively on the PDA. This result is in line with

expectations as the work performed by the slower asymmetric cipher, RSA, in

the RSAAES combination is unaffected by the data length. An increased

payload size will therefore effectively make the latency introduced by the

RSAAES cryptographic mechanism less significant overall.

6.3. Comparison with related work
In general there is more than one way of doing things. Providing privacy

protection and development support for context-aware systems is no exception.

It is therefore necessary to also evaluate how the developed infrastructure

compares with related work.

The evaluation consists of a qualitative comparison with the approaches taken in

three related projects: the privacy awareness system, solar, and the EQUIP

Platform [Greenhalgh 2002]. The aim is to establish if the approach taken in this

180

work can be motivated given the existence of alternative approaches. Hence, the

evaluation has been made with respect to the background, aims, and

requirements presented in Chapter 1 to Chapter 4.

6.3.1. Privacy-awareness system
The privacy-awareness system (pawS) [Langheinrich 2002], is a related

research project also investigating a comprehensive solution for improving

privacy in ubiquitous computing. Just as the infrastructure presented in this

thesis, pawS, covers a wide range of issues including secure communication,

anonymity, and access control. Furthermore, pawS also utilises the Platform for

Privacy Preferences Project (P3P) as a supporting technology. However, the

similarities end there. There are a number of important differences though

compared to this work, each of which has its advantages and disadvantages.

Firstly, the foundation for the work on privacy in pawS is six design guidelines

concerning notice, choice and consent, anonymity and pseudonymity, proximity

and locality, adequate security, and access and recourse [Langheinrich 2001]. In

contrast this work is based on a model of privacy with the focus on controlling

the release and leakage of information. A key difference is therefore the width

of the foundation, with pawS having a broader scope. The broader scope makes

desirable requirements, e.g. security, more evident in pawS. This is certainly

advantageous. However, from the point of view of this project it is not

necessary as it is not a problem to specify requirements later.

Secondly, pawS emphasises the importance of explicitly making users, or their

agents, aware of when data is being collected. This should be compared to the

approach taken in this work where notice is only given during the agreement

stage of the process of disclosure, which can occur anytime before the actual

data collection. The advantage of the approach taken in pawS is that users can

be made aware of potential data collection before it occurs, providing them with

an opportunity to oppose the collection of data. Hence, the notice provides a

mechanism enabling information leakages to be managed. An added benefit is

that previously unknown services can be presented to a user. The disadvantage,

however, is that this approach may provide a false sense of security when

181

systems do not follow the rules. For the purpose of this work leakage

management is not required by the adopted privacy model.

Finally, the privacy-awareness system’s architecture assumes the presence of

Internet connectivity. This is necessary because a user’s mobile privacy

assistant offloads the decision making onto a personal privacy proxy situated on

the Internet. In contrast the infrastructure developed in this work is not

dependent on Internet connectivity for it to work. The infrastructure can run

locally on a disconnected network or just on a device. The advantage of

offloading demanding operations to a proxy on the Internet is that the mobile

clients can conserve their resources. The disadvantage, however, is that the use

of the system becomes limited to where there is connectivity. This hinders

ubiquitous operation, which is essential for the infrastructure developed in this

work.

6.3.2. Solar
The Solar system [Chen, Kotz 2002] [Minami, Kotz 2002], like this work,

provides a privacy enhancing infrastructure that supports the development of

context aware applications. Furthermore, Solar also focuses on access control as

the means of improving privacy. Thus there are clear similarities between the

projects. However, once again there are a number of important differences

compared to this work, each of which has its advantages and disadvantages.

Firstly, the Solar system uses a subscription model to distribute contextual

information whilst this work has employed a request-based model. The

advantage of the subscription model approach is that contextual changes

propagate to the listening applications in the system when they occur. It also

removes the need for applications to poll for contextual information or to add

their own subscriptions support. However, to manage the subscriptions a central

authority, a star, is used. This centralisation, although possible in environments

with reliable connectivity, does not allow the system to fully support ubiquitous

operation where connectivity is limited and unreliable. A request-based

approach, as employed in this work, is more suitable there.

182

Secondly, in Solar the processing of contextual information is integrated within

the data flow. Operators are used to filter, transform, merge, and aggregate

information between the source and the application. These operators can be

distributed in the network and they interact by subscribing and publishing event

streams. Furthermore by chaining operators a sequence of transformations can

be performed. In contrast the approach taken in this work typically results in the

processing being centralised to the context managers. Context producers deliver

information directly to a subject’s context manager. Information is then

processed by the context manager itself or by services which return their output

to the context manager again. The advantage of Solar’s approach is that it

allows complex operations to be distributed and performed by a graph of

simpler operators. As transformations are performed by the operators in the

system it ought to also support reuse of transformation sequences better. The

disadvantage of Solar’s approach, though, is that the flow of information cannot

be controlled between processing steps. Thus in Solar access to information is

first enforced at the root of a subscription tree, as the last step before passing on

an event to an application. This is not compliant with the requirements of this

work. A subject must be able to control the flow of information about them.

Thirdly, a difference exists not only in how access is enforced but also in how

access controls are used. As previously described (See above, section 2.6.4)

each event in the Solar system is tagged with an access control list (ACL) upon

creation. The ACL is then modified appropriately if and when the event is

transformed by operators. Hence, the ACL associated with an event published

by an operator is derived from the ACLs of the events forming the input. In

addition to deriving access, operators can restrict the access further and users

can ease the control. This should be compared to the access control mechanism

in this work that requires users to explicitly set permissions for each context

item. The advantage of Solar’s approach is that it scales better. As the number

of context items sensed in the environment increases it becomes increasingly

difficult to individually control access to them. Thus deriving access control

settings from those initially set by the source is beneficial. Once again though,

Solar’s approach provides the users with less than full control over the flow of

183

information. Although users are able to affect how the access control is derived

at each operator, their customisation is limited to attaching their own relaxation

functions. The consequence of the assumptions made in this work is that full

control is required.

Finally, in Solar neither authentication nor secrecy of communication is directly

addressed in conjunction with privacy. These issues are instead assumed to be

provided by the system as a whole. In contrast the approach taken in this work

has been to address authentication, access control, and secrecy of

communications together. Whilst focusing on access control separately may

allow more progress to be made in this specific area, it is believed to be more

beneficial for a system as a whole to provide a more encompassing solution.

6.3.3. EQUIP
The EQUIP software platform [Greenhalgh 2002], developed within the

EQUATOR Interdiciplinary Research Collaboration, is another project that has

opted for an infrastructure approach. Whilst there are some basic similarities to

the infrastructure presented in this work, the design of the EQUIP platform

differs significantly.

Firstly, EQUIP uses the notion of dataspaces to hold shared information. In

contrast this work uses context managers to hold information about their

associated entity only. Furthermore, in EQUIP any application is allowed to

create a dataspace server and share information whilst in this work the

information sharing is separated from the applications. The advantage of using

dataspaces is that it allows multiple applications to work on the same data. This

allows for better collaboration, less redundancy, improved scalability, and more

independent services. The disadvantage is that the ownership of information is

not clear, which raises the question of who should control access. Given the

requirements of this work the use of dataspaces with shared information is

therefore considered inappropriate.

Secondly, the EQUIP platform employs an event-based model with state sharing

to distribute information whilst this work implements a request-based model.

The advantage of an event based mechanism is similar to that found with the

184

subscription model used by Solar (See above, section 6.3.2). It allows changes

to information to propagate to listening applications, removing their need to

constantly poll for updates or add custom subscription support. Furthermore, in

contrast to Solar, EQUIP does not rely on a central authority for managing

subscriptions but associates them with the dataspace. Operation in ubiquitous

computing environments with potentially unreliable communication is therefore

possible. A disadvantage of the event-based model can be argued to be the

overhead required to retrieve information, though this is only valid in situations

where updates are not required. It must therefore be concluded that an event-

based model, like that used by EQUIP, is advantageous. However, from the

point of view of this project a request-based model is sufficient to fulfil the

requirements.

Thirdly, EQUIP supports distributed computation natively. The items being

shared in the dataspaces are software objects capable of both holding data and

providing methods for computation. In comparison the messages sent in the

infrastructure presented in this work are only bearers of information. Distributed

computation is achieved through the use of agents, proxies, and resource

extension plug-ins. The advantage of embedding methods for computation

directly in the data items is that this functionality is available to all applications

using the dataspace without additional configuration. The disadvantage is that

limitations are placed on what devices can be used with the platform. The

devices must support a runtime environment compatible with the data items.

Furthermore, it may not be possible for the producer of a data item to foresee all

types of distributed computations required by applications. Which approach is

the most suitable therefore depends on how the infrastructure is intended to be

used. In this work an emphasis is placed on maximising device compatibility.

Finally, another important difference between EQUIP and the infrastructure

presented in this work is how privacy and security issues are handled. The

former provides limited security and no privacy protection whilst the latter

addresses both areas. What is available in EQUIP is the ability to protect access

to the dataspace using a shared secret (password); no further access control is

185

provided1. The advantage of not providing a more extensive mechanism for

privacy and security is that the complexity of the platform is reduced. Also

performance should, in theory, be better as less processing is required. The

disadvantage is that subjects are not able to control the flow of information

about them. Furthermore, the platform becomes dependent on an appropriately

configured network for security. The level of protection available in EQUIP is

therefore not sufficient to meet the requirements of this work.

It should be noted that on the whole EQUIP focuses on a different, but related,

problem; that of sharing information between ubiquitous computing devices and

virtual environments. Thus, the existence of fundamental differences is to be

expected.

6.4. Summary
In this chapter the developed infrastructure has been evaluated. In particular the

evaluation has examined the privacy protection, the development support, and

how the infrastructure compares with related work.

A qualitative examination of how well the privacy requirements have been

fulfilled revealed an overall positive result with all requirements being

considered by the infrastructure design. There are limitations though to the

solutions provided and the circumstances under which they work. In particular

further work in the areas of anonymity/pseudonymity and security would be

beneficial. Interesting results were also found with the user study evaluating the

performance of the candidate access control mechanisms. Although the role

based access control model implemented in the infrastructure was found to be

the more accurately set up, as expected, the study showed a mismatch between

the actual and perceived accuracy. This indicates a difficulty in seeing the real

effect of an access control mechanism.

To evaluate the development support a qualitative evaluation of the features set

was performed where the implemented agents served as case studies. The

investigation concluded that the features included in the infrastructure are

1 Confirmed by C. Greenhalgh in an email communication on 26 April 2007.

186

indeed useful and will benefit developers. However, it was also recognised that

each feature imposes distinct limitations on the system being developed. Hence,

the ease of development comes at cost. An estimate of the reduction in code the

use of the infrastructure can bring was also made by examining a hypothetical

scenario. It showed that a significant reduction is possible. Furthermore, to

establish whether the use of the infrastructure is feasible its performance was

measured. The results revealed that for small messages (~1 Kb) decent

performance is attained, with read and write operation taking less than 1 and 2

seconds respectively on a mobile device. Also the use of RSAAES

cryptography was found to be feasible. The infrastructure is however not

suitable for use in real-time systems or with large messages.

To establish whether the approach taken in this work can be motivated, given

the existence of other approaches, a qualitative comparison was conducted with

three related projects: the privacy awareness system, solar, and EQUIP. The

comparison was made with respect to the background, aims, and requirements

of this project. In the evaluation several differences were identified, each with

there own advantages and disadvantages. In the context of this work however, it

has been concluded that the approach taken can be motivated even if there are

areas that can be improved upon.

187

CHAPTER 7

CONCLUSION AND FURTHER WORK
Privacy is a matter of utmost importance and surveys have shown it to be a real

concern in our information society. Ubiquitous computing and context-

awareness further heighten these concerns. The work presented in this thesis has

taken some steps towards improving the situation through the development of a

privacy enhancing infrastructure.

This chapter concludes this thesis. It begins by providing a summary of the

work presented. After this some areas of further work are discussed that

originate from the limitations of the project and the results found. Finally, the

initial goals are revisited and an overall conclusion presented.

7.1. Summary
In Chapter 1 the background for the work in this thesis was presented. This

included work in the fields of ubiquitous computing, context-awareness, and

privacy. From the background it has been concluded that the early work on

ubiquitous computing still largely guides the research in the field. Context-

awareness was shown to be an integral part of ubiquitous computing, allowing

enhanced services to be provided. Privacy was established as a long standing

desire made more acute with the introduction of ubiquitous and context-aware

computing. Recent work concerning privacy on the web has helped to bring the

issue to life. Thus, the need to combine the work of the three fields was found.

In Chapter 2 the project that forms the basis of this thesis was outlined. The

need for improved privacy protection and development support for context-

aware systems was substantiated and described as the motivation for the project.

The research was fixed to focus on applied research performed iteratively. An

188

infrastructure approach was established to be advantageous for the work.

Results from related work were also examined and taken onboard.

In Chapter 3 two conceptual models were presented, one with respect to context

and another to privacy. Context was defined in terms of the existence of

relationships between entities and data values. Arbitrarily complex networks of

relationships were demonstrated to exist. Privacy was defined in terms of

information flow and control. It was assumed that the ideal level of privacy in

online environments is equal to that experienced offline. Furthermore, it was

demonstrated that a subject’s control is limited to controlling their own

disclosures, presence, actions, and receptiveness. The use of the models was

also clarified using a scenario.

In Chapter 4 the privacy enhancing infrastructure was introduced. Requirements

were extracted from the project’s aim, the background of the work, and the

conceptual models. The need to prioritise privacy and to use a modular design

was shown. It was also established to be necessary to restrict the depth of the

context model and to target a subset of devices. In order to uphold these

preconditions a decentralised infrastructure was presented. Furthermore,

alternatives for the privacy protection were discussed and the issue of context

communication addressed.

In Chapter 5 the implementation of the privacy enhancing infrastructure was

presented. The target platform and the advantages of a platform independent

implementation were described. How the context manager handles the storage

and protection of contextual information was demonstrated, including its use of

exchangeable modules. It was also shown how the use of catalogue services and

proxies provides the means to simplify the addressing of entities, translate

between protocols, and provide anonymity. Furthermore, a number of agents

utilising the infrastructure to store and retrieve contextual information were

presented.

In Chapter 6 the infrastructure developed was evaluated. A qualitative

requirements fulfilment analysis showed the privacy requirements to be met

with the design of the infrastructure. From a user survey performed it was

189

concluded that the role based access control mechanism was the more accurate

mechanism of the candidates presented in Chapter 4. Evidence was also found

that indicate it is difficult for users to see the real effect of an access control

mechanism. An analysis of the features in the infrastructure, from a developer’s

perspective, showed them to be useful. Examining a hypothetical scenario it was

also demonstrated that a reduction of application code is possible when using

the infrastructure. Furthermore, measuring the performance of the infrastructure

showed it to be sufficient for the purposes of the agents developed, but not for

applications demanding real-time context updates. Finally, with respect to the

preconditions of this project it was found that the approach taken in this work

can be justified in comparison with approaches taken in related work.

7.2. Contributions
The intentions of this work were to contribute in four areas relating to the

development of privacy-friendly context-aware systems.

Firstly, the overall level of privacy in context-aware systems was to be

improved. In this work it has been shown how a subject’s privacy can be

protected by providing means of controlling the disclosure of information. The

privacy-enhancing infrastructure developed demonstrates the use of this

approach in context-aware systems. The infrastructure also demonstrates the

feasibility of using cryptography to ensure the confidentiality of information in

transit even in ubiquitous computing environments.

Secondly, different access control mechanisms were to be evaluated. In this

work a classification and clearance scheme and a role based access control

mechanism have been evaluated, revealing the latter to be the more accurate

both in theory and in practise. Worth noting though, is that the users perceived

their performance with the classification and clearance scheme to be better.

Furthermore, the work has also shown how the Platform for Privacy Preferences

Project (P3P) [World Wide Web Consortium 2002A] can be used to support

access control with respect to previously unknown users, though due to poor

tools this mechanism proved impractical.

190

Thirdly, support for easy and rapid development of privacy-friendly

applications was to be provided. This work has addressed this issue with the

development of the privacy-enhancing infrastructure. It has been shown how the

infrastructure minimises the development effort by providing common features

required by context-aware applications. Furthermore, it has been demonstrated

that it is feasible to utilise an infrastructure approach for general purpose

applications even with resource constrained devices.

Finally, third-party infrastructures were to be protected. In this thesis it has been

described how resource extension plug-ins can be used to integrate with other

infrastructures, thus protecting access from the outside. A plug-in has also been

developed that demonstrates the integration between the privacy enhancing

infrastructure developed in this work and the MobiComp infrastructure [Ryan

2005].

7.3. Further work
There are many aspects to the development of a privacy enhancing

infrastructure for context-awareness. The scope of this work, however, has

implied that only a selection of the relevant aspects has been covered.

Furthermore, the evaluation also highlights some issues that need to be

addressed.

The key candidates for further work will now be discussed.

7.3.1. Access control
Access control plays a central role in providing privacy. In this work a

classification and clearance scheme and a role based access control mechanism

have been evaluated. From the experience gained, three aspects have been

identified as candidates for further work.

Firstly, neither of the two access control mechanisms evaluated handle dynamic

privacy preferences. This implies that it is not possible to describe privacy

preferences that are context sensitive, a feature that is deemed desirable. An

investigation, however, has shown promising initial results concerning an

extension to the current role based access control addressing dynamic

preferences using the concept of a privacy invasive value [Osbakk, Ryan

191

2004A]. Further work, examining the extension and how it performs with

respect to related work on dynamic access control [Covington, Long et al. 2001]

[Zhang, Parashar 2004], is believed to be warranted.

Secondly, from the user survey undertaken to evaluate the classification and

clearance scheme and the role based access control mechanism, it was

concluded that difficulties exist for people to see the real effect of an access

control mechanism. When this causes too high an access being granted, as it

was found to do in the majority of the cases examined, it leads to a false sense

of protection. This is clearly undesirable and further work is necessary to attain

an understandable, yet powerful, access control mechanism.

Thirdly, this work has not investigated how to represent the access controls in a

standardised form. Instead solution specific alternatives have been used. Whilst

this has worked well for the purposes of this research, the use of a standardised

format would be desirable in cases of public deployment. Research by others

has shown good results using X.509 attribute certificates with Role Based

Access Control [Chadwick, Otenko et al. 2003][Chadwick, Otenko 2004],

making it attractive an alternative. A candidate for further work is therefore to

investigate the use of X.509 certificates, particularly in conjunction with a

privacy invasive value approach. Another alternative to investigate is the use of

a custom but publicly specified role definition language, as used by others

[Mascone 2002].

7.3.2. User interaction
The privacy enhancing infrastructure developed focuses on the technical aspects

involved when building privacy-friendly context-aware systems. User

interaction has therefore not been prioritised. However, the discrepancy found

in the undertaken survey between the actual and perceived performance in

setting up the access control mechanism emphasises the need for informative

interfaces. Furthermore, the lack of tools found even for standardised

mechanisms such as P3P indicates that it is not possible to rely on external

tools. An important piece of further work is therefore to increase the scope to

include user interaction.

192

There are different directions future work on user interaction can take. Firstly,

the use of traditional graphical user interfaces can be optimised to improve their

performance. For example, the work others have performed on their user

interfaces for privacy control highlights several issues [Lau, Etzioni et al. 1999]

[Lederer, Hong et al. 2003] and has shown that significant improvements can be

achieved [Brostoff, Sasse et al. 2005]. Secondly, research into the use of more

novel interfaces for privacy control is called for. After all a key aspect of

ubiquitous computing is to change the way we interact with computational

devices, so should this not also include privacy control?

7.3.3. Trust management
In the context model presented, and subsequently the infrastructure, an

important factor in determining whether or not to release information is the

recipient’s trustworthiness. Unfortunately, given the time constraints of this

project it has not been feasible to study the formation and management of trust.

Instead the work has relied on existing social mechanisms. Trust management is

therefore a candidate for further work.

Within the area of trust management there are several aspects that are of interest

to the further development of the infrastructure. Firstly, it would be useful to

study the processes involved in the formation and management of trust in

everyday offline situations. This information may then be used to evolve the

conceptual model of privacy. Secondly, it would be interesting to evaluate the

effect of using trust management tools in conjunction with the infrastructure’s

access control mechanism. Could they perhaps be used as an alternative to P3P

when interacting with previously unknown participants? Finally, the current

infrastructure does not provide any mechanism to discourage improper use of

information once disclosed, but relies on existing social mechanisms. Research

into the use of trust management as an enforcement mechanism in the

infrastructure is therefore another candidate for further work.

7.3.4. Security
For privacy protection to be effective, a system must be secure. With the

privacy enhancing infrastructure a basic level of security is provided. However,

as discussed in the evaluation, the employed security mechanisms are limited

193

and have scalability issues. The improvement of security within the

infrastructure is thus a candidate for further work.

Given the scalability issue with the current authentication mechanism,

improving the authentication is a priority. In particular further work into the

usage of a public key infrastructure is deemed important. With digital

certificates entities could securely authenticate themselves in a uniform manner

within the privacy enhancing infrastructure. It is recognised that intermittent

connectivity and resource constrained devices, both common properties in

ubiquitous computing, pose a problem. Connectivity is required to validate

certificates and the signing/verification of digital signatures are computationally

intensive. However, given that connectivity is also required to distribute context

and that the communication already uses public keys to ensure confidentiality it

is believed these issues can be addressed.

Further work securing the integrity of communication and the availability of the

infrastructure is also desirable. However, for the purpose of the infrastructure

these areas are not prioritised.

7.4. Conclusion
This thesis has argued that there is a need for privacy protection and

development support for privacy-friendly context-aware systems. The

hypothesis presented was that this could be provided with a privacy-enhancing

infrastructure.

To investigate the validity of the hypothesis a privacy enhancing infrastructure

for context-awareness has been developed and implemented. The infrastructure

is decentralised and is capable of ubiquitous operation on handheld devices. It

supports the development of applications by handling the storage and privacy

protection of contextual information and by providing desirable features like

synchronisation. To protect the privacy of its users the infrastructure provides

authentication, access control, confidential communication, and support for

anonymity.

The evaluation shows that the privacy enhancing infrastructure developed is

capable of providing a reasonable level of privacy protection in line with the

194

requirements of the conceptual model of privacy. It also shows that the

infrastructure provides significant support for the development of privacy-

friendly applications and that it can be used with resource constrained devices.

Hence, the hypothesis is concluded to be verified as true.

Nevertheless, significant limitations and issues have also been found in this

investigation. Further work is therefore clearly desirable, particularly with

respect to access control, user interaction, trust management, and security. It is

hoped that the initial steps taken in this work will inspire further research into

these aspects of privacy protection.

195

APPENDIX

A Context vocabulary

A.1 Components
User

user.name <string>

The user’s name.

user.name

middle

family

given

suffix

prefix

nickname

user.bdate <string>

The user’s birthdate.

user.bdate

ymd

hms

user.home-info <string>

The user’s private contact information.

user.home-info

telecom

online

postal

user.business-info <string>

The user’s professional contact information.

196

user.business-info

telecom

online

postal

Business

business.name <string>

The entity’s name.

business.name

business.contact-info <string>

The entity’s contact information.

business.contact-info

telecom

online

postal

Activity

activity.type <string>

The type of activity.

activity.type

activity.note <string>

Further description of the activity.

activity.note

activity.start <string>

When the activity commenced.

197

activity.start

ymd

hms

activity.end <string>

When the activity expect to finish.

activity.end

ymd

hms

Location

location.coordinates <string>

The location expressed in coordinates.

location.coordinates

location.place <string>

The location expressed as a place name.

location.place

location.contact <string>

The location specific contact details.

location.place

telecom

online

postal

A.2 Attributes
General

value <string>

198

The component’s value.

timestamp <long>

The value’s timestamp. (Specified as the difference in milliseconds
between current time and midnight 1 January 1970 UTC).

Content

content-type <string>

The MIME type of the data.

content-transfer-encoding <string>

The encoding of the data.

Quality

accuracy <integer>

Estimate of the data’s accuracy.

confidence <integer>

Confidence in estimated accuracy.

Validity

lifetime <long>

The estimated lifetime of data. (Specified as milliseconds after the
timestamp).

B Context-profile extension

B.1 Header attributes
General

status <1-2>

The request’s status.

1) ok – request performed without errors.
2) error – errors occurred when performing the request.

command <1-3>

199

The command to be performed.

1) availableData – lists the data available.
2) sycnhronise – performs a synchronisation.
3) legacyCommand – performs a legacy command.

Authentication

username <string> | <1>

The requestor’s identity.

1) anonymous – request from an anonymous agent.

password <string>

Password authenticating the claimed identity.

onBehalfOf <string>

Indicates that the request is forwarded by a privileged user responsible for
authenticating the requestor.

view <string>

Allows an administrator to assume the identity of a user.

Confidentiality

publicKey <string>

Holds public key in plug-in dependant binary format (Base64 encoded).

cipher <string>

The name of the cipher for which a public key is valid.

encrypted <string>

Indicates the presence of encrypted data with the name of the employed
cipher.

encryptedData <string>

Holds encrypted data. (Base64 encoded).

200

P3P

p3pId <string>

The requestor’s identifier as referred to in P3P rulesets.

p3pUri <string>

URI to the requestor’s P3P policy.

p3pPolicy <string>

The requestor’s P3P policy. (Base64 encoded)

Synchronisation

reference <string>

The URI to the remote Context Manager. (CM URI).

syncMode <1-3>

The mode of synchronisation.

1) synchronise – update local and remote information (default).
2) updateLocal – update local information only.
3) updateRemote – update remote information only.

syncType <1-3>

The type of information to be synchronised.

1) all – synchronise context and data (default).
2) context – synchronise only context.
3) data – synchronise only data.

syncConflictResolution <string>

The method by which conflicts are resolved.

1) noChange – no change (default).
2) useLocal – use the local information.
3) useRemote – use the remote information.

B.2 Body attributes
General

action <1-3>

201

The action to be performed.

1) read – retrieves the context item (most recent).
2) write – stores the context item.
3) history – retrieves a historic context item.

status <string>

The context item’s status.

1) ok – action performed without errors.
2) error – error occurred when performing the action.

Data list

current <long>

The timestamp of the most recent occurrence of the context item. (Specified
as the difference in milliseconds between current time and midnight 1
January 1970 UTC).

historic <long> | <bag>

A timestamp or bag of timestamps of the context item’s historic
occurences. (Specified as the difference in milliseconds between current
time and midnight 1 January 1970 UTC).

C Interface specification

C.1 Datastorage driver interface

net.osbakk.pi.cm.dataStorage
Interface DataStorageDriverInterface

public interface DataStorageDriverInterface
The DataStorageDriverInterface defines the methods the DataStorageDriver
class must implement.

Method Summary
 void clear()

 Clear datastorage.

 void connect()
 Activates the datastorage.

 void deleteData()
 Deletes data.

202

 void deleteData(java.lang.String category)
 Deletes data.

 void deleteData(java.lang.String category,
java.lang.String key)
 Deletes data.

 void deleteData(java.lang.String category,
java.lang.String key, java.lang.Long time)
 Deletes data.

 void disconnect()
 Inactivates the datastorage

 void flush()
 Flushes queue.

 java.util.Vector getCategories()
 Retrieves categories.

 java.lang.Object getData(java.lang.String category, java.lang.String key,
java.lang.Long time)
 Retrieves data.

 java.util.Vector getKeys(java.lang.String category)
 Retrieves keys.

 java.util.Hashtable getKeysTable(java.lang.String category)
 Retrieves keys.

 java.lang.Long getLastOccurrencesTime(java.lang.String category,
java.lang.String key)
 Retrieves last occurrence.

 java.util.Vector getOccurences(java.lang.String category,
java.lang.String key)
 Retrieves all occurrences.

 void init(java.lang.String identifier,
net.osbakk.pi.util.properties.Properties properties)
 Initialises the datastorage.

 boolean isConnected()
 Returns the current connection state.

 void setData(java.lang.String category, java.lang.String key,
java.lang.Object data, java.lang.Long time)
 Stores data.

Method Detail
init
public void init(java.lang.String identifier,
 net.osbakk.pi.util.properties.Properties properties)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,

203

 java.lang.Exception
Initialises the datastorage.
Parameters:
properties - the properties.
Throws:
java.lang.IllegalStateException - if already initialised.
java.lang.Exception - if an unexpected exception occurred.

connect
public void connect()
 throws java.lang.IllegalStateException,
 java.lang.Exception
Activates the datastorage.
Throws:
java.lang.IllegalStateException - if already connected or not initialised.
java.lang.Exception - if an unexpected exception occurred.

disconnect
public void disconnect()
 throws java.lang.IllegalStateException,
 java.lang.Exception
Inactivates the datastorage
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.Exception - if an unexpected exception occurred.

isConnected
public boolean isConnected()
Returns the current connection state.
Returns:
connection state (true/false).

setData
public void setData(java.lang.String category,
 java.lang.String key,
 java.lang.Object data,
 java.lang.Long time)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,
 java.lang.Exception
Stores data. Adds the provided piece of information to the datastore. Note:
- The category + key always yield a unique key.
- The data is always a serializable object.
- The timestamp is represented as seconds relative to 1 January 1970 UTC.
- If the timestamp is null the current time must be used.
- If the history length has been reached, or historic data is not supported, the
oldest data item must be removed to make space.
Parameters:
category - The data category.

204

key - The key.
data - The data.
time - The timestamp or null.
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.NullPointerException - if category, key, or data is null.
java.lang.Exception - if an unexpected exception occurred.

getData
public java.lang.Object getData(java.lang.String category,
 java.lang.String key,
 java.lang.Long time)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,
 java.lang.Exception
Retrieves data. Retrieves the requested piece of information from the datastore.
Note:
- The category + key always yield a unique key
- The data is always a serializable object
- The timestamp is represented as seconds relative to 1 January 1970 UTC.
- If the timestamp is null the most recent occurrence must be retrieved.
- If the data item does not exist then null must be returned.
Parameters:
category - The data category.
key - The key.
time - The timestamp or null.
Returns:
The data item or null.
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.NullPointerException - if category or key is null.
java.lang.Exception - if an unexpected exception occurred.

deleteData
public void deleteData(java.lang.String category,
 java.lang.String key,
 java.lang.Long time)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,
 java.lang.Exception
Deletes data. Deletes a previously stored data item. Note:
- The category + key always yield a unique key
- The timestamp is represented as seconds relative to 1 January 1970 UTC.
- If the timestamp is null the most recent occurrence must be deleted.
Parameters:
category - The data category.
key - The key.
time - The timestamp or null.
Throws:

205

java.lang.IllegalStateException - if not connected.
java.lang.NullPointerException - if category or key is null.
java.lang.Exception - if an unexpected exception occurred.

deleteData
public void deleteData(java.lang.String category,
 java.lang.String key)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,
 java.lang.Exception
Deletes data. Deletes all occurrences of a certain category + key. Note:
- The category + key always yield a unique key
Parameters:
category - The data category.
key - The key.
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.NullPointerException - if category or key is null.
java.lang.Exception - if an unexpected exception occurred.

deleteData
public void deleteData(java.lang.String category)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,
 java.lang.Exception
Deletes data. Deletes a stored data category with all its keys and occurrences.
Parameters:
category - The data category.
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.NullPointerException - if category is null.
java.lang.Exception - if an unexpected exception occured.

deleteData
public void deleteData()
 throws java.lang.IllegalStateException,
 java.lang.Exception
Deletes data. Deletes all stored data.
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.Exception - if an unexpected exception occured.

getKeysTable
public java.util.Hashtable getKeysTable(java.lang.String category)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,
 java.lang.Exception
Retrieves keys. Retrieves the keys and timestamps for a given category. Note:

206

- The keys must be returned in a Hashtable with keys as keys and the latest
update time as values.
- The update timestamp must be represented as seconds relative to 1 January
1970 UTC.
- If the category does not exist null must be returned.
Parameters:
category - The data category.
Returns:
The keys and last update times or null.
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.NullPointerException - if category is null.
java.lang.Exception - if an unexpected exception occurred.

getOccurences
public java.util.Vector getOccurences(java.lang.String category,
 java.lang.String key)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,
 java.lang.Exception
Retrieve occurrences. Retrieve the occurrences for a given category + key.
Note:
- The category + key always yield a unique key
- The occurrences must be returned as timestamps in a Vector.
- The timestamp must be represented as seconds relative to 1 January 1970UTC.
- If the category + key do not exist null must be returned.
Parameters:
category - The data category.
key - The key.
Returns:
The occurences or null.
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.NullPointerException - if category or key is null.
java.lang.Exception - if an unexpected exception occurred.

getKeys
public java.util.Vector getKeys(java.lang.String category)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,
 java.lang.Exception
Retrieves the keys for a given category. Note:
- The keys must be returned in a Vector.
- If the category does not exist null must be returned.
Parameters:
category - The data category.
Returns:
The keys or null.
Throws:

207

java.lang.IllegalStateException - if not connected.
java.lang.NullPointerException - if category is null.
java.lang.Exception - if an unexpected exception occured.

getCategories
public java.util.Vector getCategories()
 throws java.lang.IllegalStateException,
 java.lang.Exception
Retrieves all categories. Note:
- The categories must be returned in a Vector.
- If no category exist null must be returned.
Returns:
The categories or null.
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.NullPointerException - if category is null.
java.lang.Exception - if an unexpected exception occured.

flush
public void flush()
 throws java.lang.IllegalStateException,
 java.lang.Exception
Flushes queue. Flushes the data in the queue. After being called changes are
guaranteed to be permanent. Note:
- The data in the queue must be saved/deleted permanently when called.
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.Exception - if an unexpected exception occurred.

clear
public void clear()
 throws java.lang.IllegalStateException,
 java.lang.Exception
Clear datastorage. Clears the datastorage.
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.Exception - if an unexpected exception occurred.

getLastOccurrencesTime
public java.lang.Long getLastOccurrencesTime(java.lang.String category,
 java.lang.String key)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,
 java.lang.Exception
Retrieves the last occurrence. Gets the time of the last occurrence of a category
+ key combination. Note:
- The category + key always yield a unique key
- The timestamp must be specified as seconds relative to 1 January 1970 UTC.
- If the category + key do not exist null must be returned.

208

Parameters:
category - The data category. * @param key The key.
Returns:
The occurrence timestamp or null.
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.NullPointerException - if category or key is null.

C.2 TCP interface

net.osbakk.pi.cm.client
Interface TCPInterface

public interface TCPInterface
The TCPInterface defines the methods the Transport Client Plug-in classes must
implement.

Method Summary

 void init(java.lang.String address,
net.osbakk.pi.util.properties.Properties properties)
 Initialises the Transport Client Plug-in.

 java.lang.String post(java.lang.String message)
 Posts a 'message' to the recipient.

Method Detail
init
public void init(java.lang.String address,
 net.osbakk.pi.util.properties.Properties properties)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,
 java.lang.Exception
Initialises the Transport Client Plug-in. Note:
- One instance of the TCP is created per recipient.
- The format of the recipient's address is plug-in specific.
Parameters:
address - The address.
properties - the properties.
Throws:
java.lang.IllegalStateException - if already initialised.
java.lang.NullPointerException - if address or properties is null.
java.lang.Exception - if an unexpected exception occurred.

post
public java.lang.String post(java.lang.String message)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,

209

 java.lang.Exception
Posts a 'message' to the recipient. Note:
- The message is encoded using the communication format.
- The response must be encoded using the communication format.
- The communication format is based on CC/PP. See separate description for
full details.
Parameters:
message - The message.
Returns:
The response.
Throws:
java.lang.IllegalStateException - if not initialised.
java.lang.NullPointerException - if message is null.
java.lang.Exception - if an unexpected exception occurred.

C.3 TSP interface

net.osbakk.pi.cm.server
Interface TSPInterface

public interface TSPInterface
The TSPInterface defines the methods the Transport Server Plug-in classes must
implement.

Method Summary

 void addComEventListener
(net.osbakk.pi.cm.server.ComEventListener listener)
 Adds a communication event listener.

 void connect()
 Activates the Transport Server Plug-in.

 void disconnect()
 Inactivates the Transport Server Plug-in.

 java.lang.String[] getAddresses()
 Retrieves the addresses associated with this TSP
plug-in.

 void init(net.osbakk.pi.util.properties.Properties properties)
 Initialises the Transport Server Plug-in.

 boolean isConnected()
 Returns the current connection state.

 void reply(ComEvent event)
 Responds to a request.

Method Detail
init

210

public void init(net.osbakk.pi.util.properties.Properties properties)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,
 java.lang.Exception
Initialises the Transport Server Plug-in. Note:
- One instance of the TSP plug-in is created per protocol.
Parameters:
properties - the properties.
Throws:
java.lang.IllegalStateException - if already initialised.
java.lang.NullPointerException - if properties is null.
java.lang.Exception - if an unexpected exception occurred.

connect
public void connect()
 throws java.lang.IllegalStateException,
 java.lang.Exception
Activates the Transport Server Plug-in.
Throws:
java.lang.IllegalStateException - if already connected or not initialised.
java.lang.Exception - if an unexpected exception occurred.

disconnect
public void disconnect()
 throws java.lang.IllegalStateException,
 java.lang.Exception
Inactivates the Transport Server Plug-in.
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.Exception - if an unexpected exception occurred.

isConnected
public boolean isConnected()
Returns the current connection state.
Returns:
connection state (true/false).

getAddresses
public java.lang.String[] getAddresses()
 throws java.lang.IllegalStateException,
 java.lang.Exception
Retrieves the addresses associated with this TSP plug-in. Note:
- The addresses must be returned as an array of Strings, where each address is
one entry.
- The format of the addresses is plug-in specific.
Returns:
the addresses.
Throws:
java.lang.IllegalStateException - if not connected.

211

java.lang.Exception - if an unexpected exception occurred.

reply
public void reply(ComEvent event)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,
 java.lang.Exception
Responds to a request. Note:
- The response to the request is contained with in the event.
Parameters:
event - The event.
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.NullPointerException - if event is null.
java.lang.Exception - if an unexpected exception occurred.

addComEventListener
public void
addComEventListener(net.osbakk.pi.cm.server.ComEventListener listener)
 throws java.lang.IllegalStateException,
 java.lang.NullPointerException,
 java.lang.Exception
Adds a communication event listener. Note:
- Multiple concurrent listeners must be supported.
- Upon receiving a request the TSP plug-in must create an event and call the
listener’s ‘comEventOccured’ method with it.
Parameters:
listener - The listener.
Throws:
java.lang.IllegalStateException - if not connected.
java.lang.NullPointerException - if listener is null.
java.lang.Exception - if an unexpected exception occurred.

C.4 Communication event listener

net.osbakk.pi.cm.server
Interface ComEventListenerInterface
All Superinterfaces:
java.util.EventListener

public interface ComEventListenerInterface
extends java.util.EventListener
The ComEventListenerInterface defines the methods the ComEventListener
implement.

Method Summary

212

 void comEventOccured(ComEvent event)
 Dispatches an event to the Context Manager.

Method Detail
comEventOccured
public void comEventOccured(ComEvent event)
 throws java.lang.NullPointerException,
 java.lang.Exception
Dispatches an event to the Context Manager.
Parameters:
event - The event.
Throws:
java.lang.NullPointerException - if event is null.
java.lang.Exception - if an unexpected exception occurred.

C.5 Communication event

net.osbakk.pi.cm.server
Class ComEvent
java.lang.Object
 |
 +--net.osbakk.pi.cm.server.ComEvent

public class ComEvent
extends java.lang.Object
The ComEvent class is a wrapper for events, i.e requests and responses.

Constructor Summary

ComEvent(java.lang.String message)
 Constructs a Communication Event.

Method Summary

 java.lang.Object
getEventDetails()
 Sets the event details.

 java.lang.String getMessage()
 Retrieves the message.

 void setEventDetails(java.lang.Object details)
 Sets the event details.

Methods inherited from class java.lang.Object

213

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail
ComEvent
public ComEvent(java.lang.String message)
 throws java.lang.NullPointerException
Constructs a Communication Event. Note:
- The message holds the request/response. It is encoded using the
communication format.
- The communication format is based on CC/PP. See separate description for
full details.
Parameters:
message - The message.
Throws:
java.lang.NullPointerException - if message is null.
Method Detail
getMessage
public java.lang.String getMessage()
Retrieves the message. Note:
- The message holds the request/response. It is encoded using the
communication format.
- The communication format is based on CC/PP. See separate description for
full details.
Returns:
the message.

setEventDetails
public void setEventDetails(java.lang.Object details)
Sets the event details Note:
- The details of the event are protocol specific.
- The details may be null.
Parameters:
details - The details.

getEventDetails
public java.lang.Object getEventDetails()
Sets the event details Note:
- The details of the event are protocol specific.
- The details may be null.
Returns:
The details.

C.6 EDP Interface

214

net.osbakk.pi.cm.cryptography
Interface EDPInterface

public interface EDPInterface
The EDPInterface defines the methods the EDP classes must implement.

Method Summary
 void decrypt(java.io.InputStream input,

java.io.OutputStream output, byte[] privateKey)
 Decrypts data using the provided key.

 void encrypt(java.io.InputStream input,
java.io.OutputStream output, byte[] publicKey)
 Encrypts data using the provided key.

 Keypair generateKeys()
 Generates a new set of keys.

 void init(net.osbakk.pi.util.properties.Properties properties)
 Initialises the Encryption Decryption Plug-in.

Method Detail
init
public void init(net.osbakk.pi.util.properties.Properties properties)
 throws java.lang.NullPointerException,
 java.lang.IllegalStateException,
 java.lang.Exception
Initialises the Encryption Decryption Plug-in. Note:
- One instance of the EDP plug-in is created per Plug-in.
Parameters:
properties - the properties.
Throws:
java.lang.IllegalStateException - if already initilised.
java.lang.NullPointerException - if properties is null.
java.lang.Exception - if an unexpected exception occurred.

generateKeys
public Keypair generateKeys()
 throws java.lang.IllegalStateException,
 java.lang.Exception
Generates a new set of keys. Note:
- The generated keys must be returned as a keypair.
Returns:
the keypair.
Throws:
java.lang.IllegalStateException - if not initialised.
java.lang.Exception - if an unexpected exception occurred.

215

encrypt
public void encrypt(java.io.InputStream input,
 java.io.OutputStream output,
 byte[] publicKey)
 throws java.lang.NullPointerException,
 java.lang.IllegalStateException,
 java.lang.Exception
Encrypts data using the provided key. Note:
- The unencrypted data, to encrypt, is provided with an inputstream.
- The encrypted data must be returned with an outputstream.
- The public key refers to the key required for encryption.
Parameters:
input - the inputstream.
output - the outputstream.
publicKey - the public key.
Throws:
java.lang.IllegalStateException - if not initialised.
java.lang.NullPointerException - if input, output, or publicKey is null.
java.lang.Exception - if an unexpected exception occurred.

decrypt
public void decrypt(java.io.InputStream input,
 java.io.OutputStream output,
 byte[] privateKey)
 throws java.lang.NullPointerException,
 java.lang.IllegalStateException,
 java.lang.Exception
Decrypts data using the provided key. Note:
- The encrypted data, to decrypt, is provided with an inputstream.
- The decrypted data must be returned with an outputstream.
- The private key refers to the key required for decryption.
Parameters:
input - the inputstream.
output - the outputstream.
privateKey - the private key.
Throws:
java.lang.IllegalStateException - if not initialised.
java.lang.NullPointerException - if input, output, or privateKey is null.
java.lang.Exception - if an unexpected exception occurred.

C.7 Key pair

net.osbakk.pi.cm.cryptography
Class Keypair
java.lang.Object
 |
 +--net.osbakk.pi.cm.cryptography.Keypair
All Implemented Interfaces:

216

java.io.Serializable

public class Keypair
extends java.lang.Object
implements java.io.Serializable
The Keypair class is a wrapper for private and public keys.
See Also:
Serialized Form

Constructor Summary

Keypair(byte[] privateKey, byte[] publicKey)
 Constructs a Keypair.

Method Summary
 byte[] getPrivateKey()

 Retrieves the private key.

 byte[] getPublicKey()
 Retrieves the public key.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail
Keypair
public Keypair(byte[] privateKey,
 byte[] publicKey)
 throws java.lang.NullPointerException
Constructs a Keypair. Note:
- The private key refers to the key used for decryption.
- The public key refers to the key used for encryption.
Parameters:
privateKey - the private key.
publicKey - the public key.
Throws:
java.lang.NullPointerException - if privateKey or publicKey is null.
Method Detail
getPrivateKey
public byte[] getPrivateKey()
Retrieves the private key. Note:
- The private key refers to the key used for decryption.
Returns:
the private key.

217

getPublicKey
public byte[] getPublicKey()
Retrieves the public key. Note:
- The public key refers to the key used for encryption.
Returns:
the public key.

C.8 REP Interface

net.osbakk.pi.cm.server
Interface REPInterface

public interface REPInterface
The REPInterface defines the methods the Resource Extension Plug-ins classes
must implement.

Method Summary

 void init(java.util.Hashtable arguments, CMLink cmServiceLink,
net.osbakk.pi.util.properties.Properties properties)
 Initialises the Resource Extension Plug-in.

 void perform(java.lang.String contextItem)
 Invokes the resource extension for this request.

 void start()
 Starts the resource extension in the background.

Method Detail
init
public void init(java.util.Hashtable arguments,
 CMLink cmServiceLink,
 net.osbakk.pi.util.properties.Properties properties)
 throws java.lang.IllegalStateException,
 java.lang.Exception
Initialises the Resource Extension Plug-in.
Parameters:
arguments - The arguments.
cmServiceLink - The cmservicelink.
properties - The properties.
Throws:
java.lang.IllegalStateException - if already initialised.
java.lang.Exception - if an unexpected exception occured.

perform
public void perform(java.lang.String contextItem)
 throws java.lang.IllegalStateException,
 java.lang.Exception

218

Invokes the resource extension for this request.
Parameters:
contextItem - The context item prompting the action, or null if not disclosed.
Throws:
java.lang.IllegalStateException - if not initialised.
java.lang.Exception - if an unexpected exception occurred.

start
public void start()
 throws java.lang.IllegalStateException,
 java.lang.Exception
Starts the resource extension in the background.
Throws:
java.lang.IllegalStateException - if not initialised.
java.lang.Exception - if an unexpected exception occurred.

C.9 Context manager link

net.osbakk.pi.cm.server
Class CMLink
java.lang.Object
 |
 +--net.osbakk.pi.cm.server.CMLink

public final class CMLink
extends java.lang.Object
The CMLink class provides an internal communication link to the context
manager.

Constructor Summary
CMLink(net.osbakk.pi.cm.server.ContextManager contextManager)
 Constructs a context manager link.

Method Summary

 net.osbakk.pi.cm.common.Message postRequest(java.lang.String message)
 Posts a message.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail
CMLink
public CMLink(net.osbakk.pi.cm.server.ContextManager contextManager)

219

 throws java.lang.NullPointerException
Constructs a context manager link.
Parameters:
contextManager - The context manager.
Throws:
java.lang.NullPointerException - if contextManager is null.
Method Detail
postRequest
public net.osbakk.pi.cm.common.Message
postRequest(java.lang.String message)
 throws java.lang.NullPointerException
Posts a message. The message is sent to the context manager for processing.
Parameters:
message - The message.
Returns:
the context manager's reply.
Throws:
java.lang.NullPointerException - if message is null.
java.lang.Exception - if an unexpected exception occurred.

D Configuring access

D.1 Scenario
Assume that Alice wants to allow her friend, Bob, to retrieve basic location

information from her context manager. To enable this she needs to set up an

account for Bob with read access to location.place. Since it is likely she will

want to allow other friends to retrieve the same information the access should be

defined using a role.

D.2 Procedure
The administration console is used to configure access to the context manager.

The procedure can be broken down into three steps.

Firstly, an access control list (ACL) for basic location information must be

created. For the scenario outlined, the ACL only needs to contain a single access

control (AC), location.place, that grants read access to the corresponding

context element. The screenshots below show, from left to right, the ACL for

basic location being created and the AC for location.place being defined.

220

Secondly, a role for friends must be created. According to the scenario the role

should grant read access to basic location information. Thus, the role needs to

be associated with the access control list for basic location. The screenshot

below shows the role Friend being defined.

Finally, a user account for Bob must be created. The account should be

associated with the role Friend and specify an initial password for

authentication. To enable the account to be used it must also be activated. The

screenshots below show, from left to right, Bob’s account being created and the

resulting access being granted.

221

E Privacy survey

E.1 Questions
Introduction
This study is done as part of my research as a PhD student at the University of
Kent where I research privacy protection for context-aware systems. Context-
aware systems use information about us and our environments to provide
enhanced and new services. One example of an existing commercial application
is a location service that allow us to find nearby places and people. Location,
though, is only one of many pieces of information that may be used by a
context-aware system, others include: activity, contact details, weather
information etc. The research I undertake aims to improve the level of privacy
users of such system enjoy by allowing privacy preferences to be expressed and
enforced. For example you may want to allow some people to know where you
are but not others.

The purpose of this study is to evaluate two different protection mechanisms
that allow privacy preferences to be described. It should only take
approximately 10 minutes to complete. All the information is collected
anonymously and will not be personally identifiable. The results may be
published.

If you have any questions do not hesitate to contact me.

Thank you,

Patrik Osbakk
Computing Laboratory
University of Kent
Canterbury, Kent
CT2 7NF

pjo2@kent.ac.uk

Background
Age: ___

Gender: ○Male ○Female

How comfortable are you using computers?
 ○Very comfortable ○Comfortable ○Neither comfortable nor uncomfortable
 ○Uncomfortable ○Very uncomfortable

How comfortable are you using the Internet?
 ○Very comfortable ○Comfortable ○Neither comfortable nor uncomfortable
 ○Uncomfortable ○Very uncomfortable

How concerned are you about your privacy in real-life (your right to control the
flow of your personal information)?
 ○Very concerned ○Concerned ○Neither concerned nor unconcerned
 ○Unconcerned ○Very unconcerned

222

How concerned are you about your privacy when online (your right to control
the flow of your personal information)?
 ○Very concerned ○Concerned ○Neither concerned nor unconcerned
 ○Unconcerned ○Very unconcerned

Scenario
Assume that your mobile phone connects you to a context-aware system that
collects and monitors your context, e.g. your location and current activity. This
information is used to provide a number of enhanced services to you. For
example when you are busy, e.g. in a meeting, calls can automatically be
forwarded to your voicemail or the callers can be asked to call back later when
convenient for you. Other services would allow you to find nearby places such
as restaurants, shops, sights, etc. or even to be interactively guided to a named
place. Furthermore imagine that your context information is shared with others,
allowing you to both be located and to be able to locate others.

Given this scenario:

Who of the following should be allowed to access your location (Tick all the
appropriate)?
 � Family member, � Friend, � Colleague
 � Boss/Supervisor/Teacher, � Anyone (public)
Please tick the box(es) of those you feel should be able to find out where you
are when they desire.

Who of the following should be allowed to access your activity (Tick all the
appropriate)?
 � Family member, � Friend, � Colleague
 � Boss/Supervisor/Teacher, � Anyone (public)
Please tick the box(es) of those you feel should be able to find out where you
are when they desire.

Who of the following should be allowed to access your contact details (Tick all
the appropriate)?
 � Family member, � Friend, � Colleague
 � Boss/Supervisor/Teacher, � Anyone (public)
Please tick the box(es) of those you feel should be able to find out where you
are when they desire.

Mechanisms
Continue to assume that you are connected to the context-aware system
previously described and that it shares your context information with others.
Two different protection mechanisms will now be presented and you are asked
to set them up to match your previously indicated preferences as close as
possible.

Protection Mechanism 1: Classification and Clearance Scheme - CCS
This mechanism focuses on the sensitivity of information and works like this:
You tell the system how sensitive (private) you feel a piece of information is,

223

i.e. you classify it. You also tell the system how sensitive (private) information
different people should be able to retrieve, i.e. you give people a clearance level.
The system can then use this information to ensure that only those you want can
find out where you are, what you are doing, and how to contact you.

Here each piece of context is classified on a scale of 0 to 100, where 0 is the
most insensitive (public) and 100 is the most sensitive (private). Information
that anyone should be able to find out should be classified with 0. Similarly
each person that should be able to retrieve information is given a clearance level
on a scale of 0 (only allowed to access public information) to 100 (can access
everything). Please note that information is shared if the person has a clearance
equal to or greater than the corresponding classification.

Please classify the context pieces below:
 Location: ___
 Activity: ___
 Contact Details: ___
Please enter a value between 0 (public) and 100 (private) that represent how
sensitive you feel the information is.

Please assign the people below the desired clearance (Anyone always has a
level of 0, thus it cannot be changed):
 Family member: ___
 Friend: ___
 Colleague: ___
 Boss/supervisor/teacher: ___
 Anyone (public): ___
Please enter a value between 0 (public) and 100 (private) that represent how
sensitive information you feel that person should be able to retrieve.

How similar is this mechanism to how you reason about privacy day to day?
 ○Very similar ○Similar ○Neither similar nor unsimilar
 ○Unsimilar ○Very unsimilar}

How accurately do you feel you have been able to express your preferences
using this mechanism?
 ○Very accurately ○Accurately ○Neither accurately nor inaccurately
 ○Inaccurately ○Very inaccurately

How easy did you find expressing your preferences using this mechanism?
 ○Very easy ○Easy ○Neither easy nor difficult ○Difficult ○Very difficult

Protection Mechanism 2: Role Based Access Control - RBAC
This mechanism focuses on what role a person has, where every role allows
certain pieces of context information to be shared. The mechanism works like
this: You first identify what roles you need, i.e. what roles do people around you
have. You then tell the system what information a person having a specific role
should be able to retrieve. After this you tell the system what roles people have.
The system can then use this information to ensure that only those you want can
find out where you are, what you are doing, and how to contact you.

224

Here each role can allow a combination of location, activity, and contact details
to be retrieved including all and none of them. The roles are labelled Role 1
through to Role 5 so you are free to think of a role, e.g. Role 1, to represent any
role you would like, e.g. friends. In this survey you can setup at most 5 roles. If
you don't need all of them just leave the ones you don't need blank. Each person
that should be able to retrieve information then has one or more roles
associated. Please note that information is shared using the roles in the best
possible way so that a person that has multiple roles can access the 'sum' of the
roles.

Please setup what information should be shared with each role:
 Role 1: � Location, � Activity, � Contact Details
 Role 2: � Location, � Activity, � Contact Details
 Role 3: � Location, � Activity, � Contact Details
 Role 4: � Location, � Activity, � Contact Details
 Role 5: � Location, � Activity, � Contact Details
Please tick the box(es) of a particular role to allow the information in question
to be released. For example a tick in the location box of Role1 would later allow
anyone associated with Role1 to retrieve where you are.

Please assign roles to the following persons:
 A family member: � Role1, � Role2, � Role3, � Role4, � Role5
 A friend: � Role1, � Role2, � Role3, � Role4, � Role5
 A colleague: � Role1, � Role2, � Role3, � Role4, � Role5
 Your boss/supervisor/teacher: � Role1, � Role2, � Role3, � Role4, � Role5
 Anyone (public): � Role1, � Role2, � Role3, � Role4, � Role5
Please tick the box(es) of a particular person to associate this person with the
role in question. For example a tick in the Role1 box of A friend would allow
this friend to retrieve the information Role1 allows.

How similar is this mechanism to how you reason about privacy day to day?
 ○Very similar ○Similar ○Neither similar nor unsimilar
 ○Unsimilar ○Very unsimilar

How accurately do you feel you have been able to express your preferences
using this mechanism?
 ○Very accurately ○Accurately ○Neither accurately nor inaccurately
 ○Inaccurately ○Very inaccurately

How easy did you find expressing your preferences using this mechanism?
 ○Very easy ○Easy ○Neither easy nor difficult ○Difficult ○Very difficult

Submission
Please press the button below to submit the study.

225

E.2 Responses
Age

… - 20

21 - 40

41 - 60

60 - …
No answer

0

2

4

6

8

10

12

14

16

18

20

22

24
En

tr
ie

s

… - 20 7

21 - 40 20

41 - 60 3

60 - … 1

No answer 0
Gender

Female

Male

No Answer
0

2

4

6

8

10

12

14

16

18

20

22

24

En
tr

ie
s

Female 9

Male 22

No Answer 0

How comfortable are you using computers?

Very comfortable

Comfortable

Neither comfortable nor
uncomfortable

Uncomfortable Very uncomfortable No anwser
0

2

4

6

8

10

12

14

16

18

20

22

24

En
tr

ie
s

Very comfortable 19

Comfortable 9

Neither comfortable nor uncomfortable 3

Uncomfortable 0

Very uncomfortable 0

No anwser 0

226

How comfortable are you using the Internet?

Very comfortable

Comfortable

Neither comfortable nor
uncomfortable

Uncomfortable Very uncomfortable No anwser
0

2

4

6

8

10

12

14

16

18

20

22

24

En
tr

ie
s

Very comfortable 19

Comfortable 10

Neither comfortable nor uncomfortable 2

Uncomfortable 0

Very uncomfortable 0

No anwser 0
How concerned are you about your privacy in real-life (your right to control the flow of your personal

information)?

Very concerned

Concerned

Neither concerned nor
unconcerned

Unconcerned
Very unconcerned No anwser

0

2

4

6

8

10

12

14

16

18

20

22

24

En
tr

ie
s

Very concerned 7

Concerned 15

Neither concerned nor unconcerned 8

Unconcerned 1

Very unconcerned 0

No anwser 0

How concerned are you about your privacy when online (your right to control the flow of your personal
information)?

Very concerned

Concerned

Neither concerned nor
unconcerned

Unconcerned Very unconcerned No anwser
0

2

4

6

8

10

12

14

16

18

20

22

24

En
tr

ie
s

Very concerned 14

Concerned 16

Neither concerned nor unconcerned 1

Unconcerned 0

Very unconcerned 0

No anwser 0

227

Overall accuracy

CCS accurate

RBAC accurate

CCS inaccurate

RBAC inaccurate

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Pe
rc

en
ta

ge

CCS accurate 78.92%

RBAC accurate 87.31%

CCS inaccurate 21.08%

RBAC inaccurate 12.69%
Overall effect of inaccuracy

CCS too high access

CCS too low access
RBAC too low access

RBAC too high access

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Pe
rc

en
ta

ge

CCS too high access 70.41%

RBAC too high access 67.80%

CCS too low access 29.59%

RBAC too low access 32.20%

CCS Access

Accurate, 78.92%

Too high, 14.84%

Too low, 6.24%

228

RBAC Access

Accurate, 87.31%

Too high, 8.60%

Too low, 4.09%

How similar is this mechanism to how you reason about privacy day to day?

0

2

4

6

8

10

12

14

16

18

20

22

24

En
tr

ie
s

CCS 2 11 12 2 4 0

RBAC 4 10 10 2 4 1

Very similar Similar Neither similar nor
unsimilar Unsimilar Very unsimilar No anwser

How accurately do you feel you have been able to express your preferences using this mechanism?

0

2

4

6

8

10

12

14

16

18

20

22

24

En
tr

ie
s

CCS 2 18 5 5 1 0

RBAC 4 11 8 5 2 1

Very accurately Accurately Neither accurately nor
inaccurately Inaccurately Very inaccurately No anwser

229

How easy did you find expressing your preferences using this mechanism?

0

2

4

6

8

10

12

14

16

18

20

22

24

En
tr

ie
s

CCS: 5 14 9 2 1

RBAC 4 10 10 4 1 2

Very easy Easy Neither easy nor difficult Difficult Very difficult No anwser

230

BIBLIOGRAPHY
[Aadland, Angel et al. 2002]
Aadland, B., M. Angel, et al. (2002) kXML Project. Version 1.21. Webpage.
Available at: http://kxml.objectweb.org/index.html
Last accessed: 20/12/2005

[Abrantix 2005]
Abrantix AG (2005). P3P Editor. Webpage.
Available at: http://www.p3peditor.com
Last accessed: 27/12/2005

[Adams 1997]
Adams, S. (1997). The Dilbert Principle, Boxtree.

[Addlesee, Curwen 2001]
Addlesee, M., R. Curwen, et al. (2001). Implementing a Sentient Computing
System. IEEE Computer 34(8): pp. 50-56.
Available at: http://www-lce.eng.cam.ac.uk/publications/files/tr.2001.8.pdf
Last accessed: 26/06/2004

[BBC News 2005]
BBC News website (2005). Card fraudsters 'targeting web'. BBC News.
Webpage.
Available at: http://news.bbc.co.uk/1/hi/business/4243137.stm
Last accessed: 27/12/2005

[Borenstein, Freed 1992]
Borenstein, N. and N. Freed (1992). MIME (Multipurpose Internet Mail
Extensions): Mechanisms for Specifying and Describing the Format of Internet
Message Bodies. Webpage.
Available at: http://www.ietf.org/rfc/rfc1341.txt
Last accessed: 20/12/2005

[Bouncy Castle 2003]
Legion of the Bouncy Castle (2003). The Bouncy Castle Crypto package
(release 1.21). Webpage.
Available at: ftp://ftp.bouncycastle.org/pub/release1.21/
Last accessed: 21/12/2005

231

[Brostoff, Sasse et al. 2005]
Brostoff, S., M. A. Sasse, et al. (2005). R-What? Development of a Role-Based
Access Control (RBAC) Policy-Writing Tool for e-Scientists. Software:
Practice and Experience 35(9): pp. 835-856.
Available at: http://www.cs.kent.ac.uk/pubs/2005/2275/content.pdf
Last accessed: 14/01/2006

[Brotherton, Abowd et al. 1999]
Brotherton, J. A., G. D. Abowd, et al. (1999). Supporting Capture and Access
Interfaces for Informal and Oppertunistic Meetings. GVU Technical Report;
GIT-GVU-99-06.
Available at: http://hdl.handle.net/1853/3373
Last accessed: 07/04/2007

[Brown, Bovey et al. 1997]
Brown, P. J., J. D. Bovey, et al. (1997). Context-aware applications: from the
laboratory to the marketplace. IEEE Personal Communications 4(5): pp. 58-64.

[Brown, Jones 2004]
Brown, P. J. and G. J. F. Jones (2004) Context-awareness and privacy: an
inevitable clash? (Version #1). Webpage.
Available at: http://www.dcs.ex.ac.uk/~pjbrown/papers/ieee_privacy.pdf
Last accessed: 27/02/2004

[Butz, Beschers et al. 1998]
Butz, A., C. Beshers, et al. (1998). Of Vampire Mirrors and Privacy Lamps:
Privacy Management in Multi-User Augmented Environments. Proceedings of
the 11th annual ACM symposium on User interface software and technology,
San Francisco, California, United States, ACM Press.
Available at: http://www1.cs.columbia.edu/~butz/publications/papers/uist98.pdf
Last accessed: 07/01/2006

[Chadwick, Otenko et al. 2003]
Chadwick, D. W., A. Otenko, et al. (2003). Role-Based Access Control With
X.509 Attribute Certificates. IEEE Internet Computing. 7:2 pp. 62-69.

[Chadwick, Otenko 2004]
Chadwick, D. W. and A. Otenko (2004). Implementing Role Based Access
Controls using X.509 Privilege Management - the PERMIS Authorisation
Infrastructure. NATO Advanced Networking Workshop on Advanced Security
Technologies in Networking, Bled, Slovenia.
Available at: http://www.cs.kent.ac.uk/pubs/2004/2279/content.pdf
Last accessed: 14/01/2006

[Chen, Kotz 2002]
Chen, G. and D. Kotz (2002). Solar: A pervasive-computing infrastructure for
context-aware mobile applications. Dartmouth Computer Science Technical
Report. TR2002-421.
Available at: ftp://ftp.cs.dartmouth.edu/TR/TR2002-421.pdf
Last accessed: 08/12/2005

232

[Cheverst, Davies et al. 2000]
Cheverst, K., N. Davies, et al. (2000). Developing a Context-aware Electronic
Tourist Guide: Some Issues and Experiences. Conference on Human Factors
and Computing Systems, The Hague, The Netherlands.
Available at: http://www.guide.lancs.ac.uk/CHIpaper.pdf
Last accessed: 13/12/2005

[Code Infusion 2005]
Code Infusion, LLC (2005). P3PEdit. Webpage.
Available at: http://p3pedit.com/
Last accessed: 27/12/2005

[Covington, Long et al. 2001]
Covington, M. J., W. Long, et al. (2001). Securing Context-Aware Applications
Using Environment Roles. Proceedings of the Sixth ACM Symposium on Access
control models and technologies, Chantilly, Virginia, USA, ACM Press.

[Cranor, Byers et al. 2003]
Cranor, L., S. Byers, et al. (2003). An Analysis of P3P Deployment on
Commercial, Government, and Children's Web Sites as of May 2003. Technical
Report prepared for the 14 May 2003 Federal Trade Commission Workshop on
Technologies for Protecting Personal Information.
Available at: http://www.research.att.com/projects/p3p/p3p-census-may03.pdf
Last accessed: 20/12/2005

[Crowcroft 2003]
Crowcroft, J. (2003). Scalable Ubiquitous Computing Systems or just
Ubiquitous Systems. A 15-year Grand Challenge for Computer Science.
Webpage.
Available at:
http://www.nesc.ac.uk/esi/events/Grand_Challenges/proposals/US.pdf
Last accessed: 08/12/2005

[Dallas Semiconductor, Maxim 2005A]
Dallas Semiconductor and Maxim (2005). DSTINIm400 Networked
Microcontroller Evaluation Board. Rev: 091605. Webpage.
Available at: http://pdfserv.maxim-ic.com/en/ds/DSTINIM400.pdf
Last accessed: 14/12/2005

[Dallas Semiconductor, Maxim 2005B]
Dallas Semiconductor and Maxim (2005). What is an iButton?. Webpage.
Available at: http://www.maxim-ic.com/products/ibutton/ibuttons/index.cfm
Last accessed: 21/12/2005

[Debaty, Caswell 2000]
Debaty, P. and D. Caswell (2000). Uniform Web Presence Architecture for
People, Places, and Things. HP Labs Technical Report HPL-2000-67.
Available at: http://www.hpl.hp.com/techreports/2000/HPL-2000-67.html
Last accessed: 13/04/2004

233

[Debaty, Goddi et al. 2003]
Debaty, P., P. Goddi, et al. (2003). Integrating the Physical World with the Web
to Enable Context-Enhanced Services. HP Labs Technical Report HPL-2003-
192.
Available at: http://www.hpl.hp.com/techreports/2003/HPL-2003-192.html
Last accessed: 13/04/2004

[Dey, Abowd 2000A]
Dey, A. K. and G. D. Abowd (2000). Towards a Better Understanding of
Context and Context-Awareness. Workshop on The What, Who, Where, When,
and How of Context-Awareness, 2000 Conference on Human Factors in
Computing Systems, The Hague, The Netherlands.
Available at: ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-22.pdf
Last accessed: 20/06/2004

[Dey 2000B]
Dey, A. K. (2000). Providing Architectural Support for Building Context-Aware
Applications. Graphics, Visualization and Usability Center, College of
Computing. Atlanta, US, Georgia Institute of Technology.
Available at: http://www.cc.gatech.edu/fce/ctk/pubs/dey-thesis.pdf
Last accessed: 03/12/2005

[Dey, Abowd 2000C]
Dey, A. K. and G. D. Abowd (2000). The Context Toolkit: Aiding the
development of Context-Aware Applications. Workshop on Software
Engineering for Wearable and Pervasive Computing.
Available at: http://www.cc.gatech.edu/fce/contexttoolkit/pubs/SEWPC00.pdf
Last accessed: 03/12/2005

[Duan 2002]
Duan, M. (2002). An Introduction to Art, the Wireless Way. mpulse magazine.
2002:October.
Available at: http://www.cooltown.com/cooltown/mpulse/1002-lasarsegall.asp
Last accessed: 27/04/2004

[eBay 2005]
eBay Inc. (2005). Reputation — eBay Feedback: Overview. Webpage.
Available at: http://pages.ebay.co.uk/help/buy/reputation-ov.html
Last accessed: 20/12/2005

[EPIC, Junkbusters 2000]
EPIC and Junkbusters (2000). Pretty Poor Privacy: An Assessment of P3P and
Internet Privacy. Webpage.
Available at: http://www.epic.org/Reports/prettypoorprivacy.html
Last accessed: 08/10/2001

234

[European Commission 2002]
European Commission (2002). Questionnaire on the implementation of the Data
Protection Directive (95/46/EC). Your voice in Europe. Webpage.
Available at: http://europa.eu.int/yourvoice/results/204/index_en.htm
Last accessed: 18/06/2003

[Gellersen, Schmidt et al. 2002]
Gellersen, H.-W., A. Schmidt, et al. (2002). Multi-Sensor Context-Awareness in
Mobile Devices and Smart Artifacts. Mobile Networks and Applications 7(5):
pp. 341-351.
Available at: http://www.smart-its.org/publication/sensors-in-mobile-
devices.monet.pdf
Last accessed: 14/12/2005

[Goecks, Mynatt 2002]
Goecks, J. and E. Mynatt (2002). Enabling privacy management in ubiquitous
computing environments through trust and reputation systems. Workshop on
Privacy in Digital Environments: Empowering Users. CSCW 2002. New
Orleans, LA USA.
Available at: http://www.cc.gatech.edu/~everyday-
computing/projects/saori/pubs/ReputationTrust-cscw2002.pdf
Last accessed: 19/12/2005

[Greenhalgh 2002]
Greenhalgh, C. (2002). EQUIP: a Software Platform for Distributed Interactive
Systems. Equator Technical Report 02-002, University of Nottingham.
Available at: http://citeseer.ist.psu.edu/539227.html
Last accessed: 26/04/2007

[Grimm, Rossnagel 2000]
Grimm, R. and A. Rossnagel (2000). Can P3P Help to Protect Privacy
WorldWide? ACM Multimedia Workshop, Mariana Del Rey, CA, USA, ACM
Press.

[Guardian 2002]
Guardian (2002). ICM Poll. The Guardian Big Brother 2002(07/09/2002):pp. 3.

[GVU's WWW Surveying Team 1998]
GVU's WWW Surveying Team (1998). GVU's 10th WWW User Survey, GVU
Center, College of Computing Georgia Institute of Technology. Webpage.
Available at: http://www.gvu.gatech.edu/user_surveys/survey-1998-10/
Last accessed: 08/12/2005

[Harter, Hopper 1994]
Harter, A. and A. Hopper (1994). A Distributed Location System for the Active
Office. IEEE Network 8(1).
Available at: http://www-lce.eng.cam.ac.uk/publications/files/tr.94.1.pdf
Last accessed: 23/06/2004

235

[Hewlett-Packard Company 2003]
Hewlett-Packard Company (2003). User's Guide hp iPAQ Pocket PC h4000
Series. Document Part Number: 343434-001. Webpage.
Available at:
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c00046424/c0004
6424.pdf
Last accessed: 14/12/2005

[Hill, Culler 2002]
Hill, J. L. and D. E. Culler (2002). Mica: a wireless platform for deeply
embedded networks. IEEE Micro. 22: pp. 12-24.
Available at: http://www.cs.berkeley.edu/~culler/cs294-f03/papers/micaarch.pdf
Last accessed: 14/12/2005

[Hong, Landay 2001]
Hong, J. I. and J. A. Landay (2001). An Infrastructure Approach to Context-
Aware Computing. Human-Computer Interaction 16(2): pp. 287-303.

[Indulska, Robinson et al. 2003]
Indulska, J., R. Robinson, et al. (2003). Experiences in Using CC/PP in
Context-Aware Systems. 4th International Conference on Mobile Data
Management, Melbourne, Australia.
Available at: http://citeseer.ist.psu.edu/561612.html
Last accessed: 26/02/2006

[Intille, Larson et al. 2005]
Intille, S. S., K. Larson, et al. (2005). The PlaceLab: a live-in laboratory for
pervasive computing research. Proceedings of Pervasive 2005 Video Program
Available at:
http://www.pervasive.ifi.lmu.de/adjunct-proceedings/video/p183-186.pdf
http://www.media.mit.edu/%7Eintille/videos/Pervasive05DIVX.avi
Last accessed: 13/12/2005

[IBM alphaWorks]
IBM alphaWorks (2005). P3P Policy Editor (Beta 1.11). Webpage.
Available at: http://www.alphaworks.ibm.com/tech/p3peditor
Last accessed: 28/02/2003

[Java Community Process 2001]
Java Community Process (2001). JSR 53: JavaTM Servlet 2.3 and JavaServer
PagesTM 1.2 Specifications (Final Release). Webpage.
Available at: http://jcp.org/en/jsr/detail?id=53
Last accessed: 21/12/2005

[Java Community Process 2002A]
Java Community Process (2002). JSR 36: J2ME Connected Device
Configuration 1.0a Maintenance Release (Final Release updated on August 12,
2002). Webpage.
Available at: http://www.jcp.org/en/jsr/detail?id=36
Last accessed: 21/12/2005

236

[Java Community Process 2002B]
Java Community Process (2002). JSR 46: J2ME Foundation Profile 1.0a
Maintenance Release (Final Release updated on August 12, 2002). Webpage.
Available at: http://www.jcp.org/en/jsr/detail?id=46
Last accessed: 21/12/2005

[Java Community Process 2002C]
Java Community Process (2002). JSR 62: J2ME Personal Profile Specification
1.0 (Final Release). Webpage.
Available at: http://www.jcp.org/en/jsr/detail?id=62
Last accessed: 21/12/2005

[Java Community Process 2003]
Java Community Process (2003). JSR-000179 Location API for J2ME.
Webpage.
Available at: http://jcp.org/aboutJava/communityprocess/final/jsr179/index.html
Last accessed: 08/12/2005

[JRC P3P Resource Centre 2005A]
JRC P3P Resource Centre (2005). JRC P3P Proxy Version 2.0. Webpage.
Available at: http://p3p.jrc.it/
Last accessed: 08/12/2005

[JRC P3P Resource Centre 2005B]
JRC P3P Resource Centre (2005). JRC Ruleset editor (1.3 Beta). Webpage.
Available at: http://p3p.jrc.it/
Last accessed: 28/02/2003

[Kaliski 2003]
Kaliski, B. (2003). TWIRL and RSA Key Size. RSA Laboratories. Webpage.
Available at: http://www.rsasecurity.com/rsalabs/node.asp?id=2004
Last accessed: 27/12/2005

[Kidd, Orr et al. 1999]
Kidd, C. D., R. Orr, et al. (1999). The Aware Home: A Living Laboratory for
Ubiquitous Computing Research. Second International Workshop on
Cooperative Buildings - CoBuild'99, Pittsburgh, USA.
Available at:
http://www.cc.gatech.edu/fce/ahri/publications/cobuild99_final.PDF
Last accessed: 26/02/2004

[Kindberg, Barton et al. 2002]
Kindberg, T., J. Barton, et al. (2002). People, Places, Things: Web Presence for
the Real World. Mobile Networks and Applications 7(5): pp. 365-376.
Available at: http://www.hpl.hp.com/techreports/2001/HPL-2001-279.pdf
Last accessed: 13/12/2005

237

[Korpipää, Mäntyjärvi 2003]
Korpipää, P. and J. Mäntyjärvi (2003). An Ontology for Mobile Device Sensor-
Based Context. Context 2003, Stanford, Califonia, USA, Springer-Verlag Berlin
Heidelberg. LNAI, pp. 451-458.

[Korpipää, Mäntyjärvi et al. 2003]
Korpipää, P., J. Mäntyjärvi, et al. (2003). Managing Context Information in
Mobile Devices. IEEE Pervasive Computing. 2: pp. 43-51.

[Kruchten 2003]
Kruchten, P. (2003). The Rational Unified Process: An Introduction, Addison-
Wesley Professional.

[Laerhoven, Schmidt et al. 2002]
Laerhoven, K. V., A. Schmidt, et al. (2002). Pin&Play: Networking Objects
through Pins. 4th International Conference on Ubiquitous Computing,
UbiComp 2002, Göteborg, Sweden, Springer-Verlag Berlin Heidelberg.

[Landesberg, Levin et al. 1998]
Landesberg, M. K., T. M. Levin, et al. (1998). Privacy Online: A Report to
Congress, Federal Trade Commission.
Available at: http://www.ftc.gov/reports/privacy3/priv-23a.pdf
Last accessed: 19/12/2005

[Langheinrich 2001]
Langheinrich, M. (2001). Privacy by Design - Principles of Privacy-Aware
Ubiquitous Systems. UbiComp 2001, Atlanta, Georgia, USA, Springer-Verlag
Berlin Heidelberg.

[Langheinrich 2002]
Langheinrich, M. (2002). A Privacy Awareness System for Ubiquitous
Computing Environments. 4th International Conference on Ubiquitous
Computing, UbiComp 2002, Göteborg, Sweden, Springer-Verlag Berlin
Heidelberg.

[Larousse 1994]
Larousse plc. (1994). The Chambers Dictionary. Microsoft Bookshelf - British
Reference Collection.

[Lau, Etzioni et al. 1999]
Lau, T., O. Etzioni, et al. (1999). Privacy Interfaces for Information
Management. Communications of the ACM 42(10): pp. 88-94.
Available at: ftp://ftp.cs.washington.edu/tr/1998/02/UW-CSE-98-02-01.PS.Z
Last accessed: 07/01/2006

238

[Lederer, Mankoff et al. 2003]
Lederer, S., J. Mankoff, et al. (2003) Who Wants to Know What When? Privacy
Preference Determinants in Ubiquitous Computing. Extended Abstracts of CHI
2003, ACM Conference on Human Factors in Computing Systems.
Available at: http://www.cs.berkeley.edu/projects/io/publications/privacy-
chi03.pdf
Last accessed: 07/01/2006

[Lederer, Hong et al. 2003]
Lederer, S., Hong, J.I., Jiang, X., Dey, A.K., Landay, J.A., Mankoff, J. Towards
Everyday Privacy for Ubiquitous Computing. Technical Report UCB-CSD-03-
1283, Computer Science Division, University of California, Berkeley.
Available at: http://www.cs.berkeley.edu/projects/io/publications/privacy-
techreport03a.pdf
Last accessed: 07/01/2006

[Loomis 2001]
Loomis, D. (2001). The TINI Specification and Developer's Guide, Addison
Wesley Professional.
Available at: http://www.maxim-ic.com/products/tini/pdfs/tinispec.pdf
Last accessed: 21/12/2005

[Mascone 2002]
Masone, C. (2002). Role Definition Language (RDL): A language to describe
context-aware roles. Dartmouth Computer Science Technical Report. TR2002-
426.
Available at: ftp://ftp.cs.dartmouth.edu/TR/TR2002-426.pdf
Last accessed: 05/10/2004

[McCarthy 1998]
McCarthy, J. F. (1998). MusicFX: An Arbiter of Group Preferences. AAAI
Spring Symposium on Intelligent Environments, Palo Alto.
Available at: http://citeseer.ist.psu.edu/288814.html
Last accessed: 03/12/2005

[Megginson 2001]
Megginson, D. (2001). RDF Filter. Version 1.0 alpha. Webpage.
Available at: http://sourceforge.net/projects/rdf-filter/
Last accessed: 20/12/2005

[Minami, Kotz 2002]
Minami, K. and D. Kotz (2002). Controlling access to pervasive information in
the "Solar" system. Dartmouth Computer Science Technical Report TR2002-
422.
Available at: ftp://ftp.cs.dartmouth.edu/TR/TR2002-422.pdf
Last accessed: 19/12/2005

239

[Mobil Turism 2005]
Mobil Turism (2005). Mobil Guide. Webpage.
Available at: http://www.mobilturism.se/
Last accessed: 03/12/2005

[National Statistics 2005]
National Statistics (2005). Individuals accessing the Internet – National
Statistics Omnibus Survey. Webpage. (Published 26/04/2005)
Available at: http://www.statistics.gov.uk/cci/nugget.asp?id=8
Last accessed: 11/08/2005

[Nilsson, Lindskog et al 2001]
Nilsson, M., H. Lindskog, et al. (2001). Privacy Enhancement in the Mobile
Internet. Security and Control of IT in Society-II, IFIP SCITS-II, Bratislava,
Slovakia.

[NIST 2001]
National Institute of Standards and Technology (2001). Announcing the
ADVANCED ENCRYPTION STANDARD (AES). Webpage.
Available at: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
Last accessed: 21/12/2005

[Osbakk 2006]
Osbakk P. (2006). How to get started with iButtons using an iPAQ and the
Jeode VM. Webpage.
Available at: http://www.osbakk.com/pub/iButton_Instructions.pdf
Last accessed: 20/04/2006

[Osbakk, Ryan 2002]
Osbakk, P. and N. Ryan (2002). Context, CC/PP, and P3P. UbiComp 2002
Adjunct Proceedings, Göteborg, Sweden, Viktoria Institute. pp. 9-10.
Available at:
http://www.viktoria.se/ubicomp/ubicomp_adjunct_proceedings.pdf
Last accessed: 20/12/2005

[Osbakk, Ryan 2003]
Osbakk, P. and N. Ryan (2003). A Privacy Enhancing Infrastructure for
Context-Awareness. 1st UK-UbiNet Workshop, London, UK.
Available at: http://www-
dse.doc.ic.ac.uk/Projects/UbiNet/ws2003/papers/osbakk.pdf
Last accessed: 19/12/2005

[Osbakk, Ryan 2004A]
Osbakk, P. and N. Ryan (2004). Expressing Privacy Preferences in terms of
Invasiveness. 2nd UK-UbiNet Workshop, Cambridge, UK.
Available at: http://www-dse.doc.ic.ac.uk/Projects/UbiNet/ws2004/Papers/18-
Osbakk.pdf
Last accessed: 05/01/2006

240

[Osbakk, Ryan 2004B]
Osbakk, P. and N. Ryan (2004). The development of a privacy-enhancing
infrastructure: Some interesting findings. Ubicomp Privacy: Current Status and
Future Directions Workshop, UbiComp 2004, Nottingham, UK.
Available at: http://www.cs.kent.ac.uk/pubs/2004/1977/content.pdf
Last accessed: 27/12/2005

[Osbakk, Rydgren 2005]
Osbakk, P. and E. Rydgren (2005). Ubiquitous Computing for the Public.
Pervasive Mobile Interaction Devices Workshop, Pervasive 2005, Munich,
Germany.
Available at:
http://www.medien.ifi.lmu.de/permid2005/pdf/PatrikOsbakk_Permid2005.pdf
Last accessed: 13/12/2005

[Pascoe, Morse et al. 1998]
Pascoe, J., D. Morse, et al. (1998). Developing Personal Technology for the
Field. Personal Technologies 2(1): pp. 28-36.

[P3P Builder 2005]
P3PBuilder (2005). P3PBuilder. Webpage.
Available at: http://www.p3pbuilder.com/
Last accessed: 27/12/2005

[P3P Writer 2005]
P3PWriter (2005). P3PWriter. Webpage.
Available at: http://www.p3pwriter.com/
Last accessed: 27/12/2005

[Rivest, Shamir et al. 1977]
Rivest, R., A. , A. Shamir, et al. (1977). A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the ACM 21(2):
pp. 120-126.
Available at: http://theory.lcs.mit.edu/~rivest/rsapaper.pdf
Last accessed: 21/12/2005

[Rudström, Svensson et al. 2004]
Rudström, Å., M. Svensson, et al. (2004). MobiTip: Using Bluetooth as a
Mediator of Social Context. Ubicomp 2004 Adjunct Proceedings (demo),
Nottingham, UK.
Available at: http://ubicomp.org/ubicomp2004/adjunct/demos/rudstrom.pdf
Last accessed: 13/12/2005

[Russo, Sukojo 2004]
Russo, J., A. Sukojo, et al. (2004). SmartWave –Intelligent Meal Preparation
System to Help Older People Live Independently. Second International
Conference On Smart homes and health Telematic (ICOST2004), Singapore.
Available at: http://www.harris.cise.ufl.edu/projects/publications/Russo-
ICOST2004-SmartWave-final.pdf
Last accessed: 14/12/2005

241

[Ryan, Pascoe et al. 1997]
Ryan, N., J. Pascoe, et al. (1997). Enhanced Reality Fieldwork: the Context-
aware Archaeological Assistant. Computer Applications in Archaeology 1997,
Tempus Reparatum.
Available at: http://www.cs.kent.ac.uk/pubs/1998/616/content.html
Last accessed: 13/12/2005

[Ryan, Pascoe et al. 1998]
Ryan, N., J. Pascoe, et al. (1998). FieldNote: extending a GIS into the field.
New Techniques for Old Times: Computer Applications in Archaeology, 1998,
Archaeopress, Oxford, UK.
Available at: http://www.cs.kent.ac.uk/pubs/1999/1015/content.html
Last accessed: 05/10/2004

[Ryan, Pascoe et al. 1999]
Ryan, N., J. Pascoe, et al. (1999). FieldNote: a handheld information system for
the field. TeleGeo'99, 1st International Workshop on TeleGeoProcessing, Lyon,
France.

[Ryan 2005]
Ryan, N. (2005). Smart Environments for Cultural Heritage. Reading the
Historical Spatial Information in the World. 24th International Symposium,
Kyoto, Japan.
Available at: http://www.cs.kent.ac.uk/pubs/2005/2053/content.pdf
Last accessed: 13/12/2005

[Salber, Dey et al. 1999]
Salber, D., A. K. Dey, et al. (1999). The Context Toolkit: Aiding the
Development of Context-Enabled Applications. Proceedings of CHI99, ACM
SIGCHI Conference on Human Factors in Computing Systems, Pittsburgh, PA,
US.
Available at: http://www.cc.gatech.edu/fce/contexttoolkit/pubs/chi99.pdf
Last accessed: 21/06/2004

[Sandhu, Coyne et al. 1996]
Sandhu, R. S., E. J. Coyne, et al. (1996). Role-Based Access Control Models.
Revised October 26, 1995. IEEE Computer 29(2): pp. 38-47.
Available at: http://csrc.nist.gov/rbac/sandhu96.pdf
Last accessed: 20/12/2005

[Scheemaecker 2003]
Scheemaecker, M. D. (2003). NanoXML. Version 2.2.3. Webpage.
Available at: http://nanoxml.cyberelf.be/index.html
Last accessed: 20/12/2005

242

[Schilit, Adams et al. 1994]
Schilit, B. N., N. Adams, et al. (1994). Context-Aware Computing Applications.
IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz,
CA, USA.
Available at: http://citeseer.ist.psu.edu/schilit94contextaware.html
Last accessed: 13/12/2005

[Schilit 1995]
Schilit, B. N. (1995). A Context-Aware System Architecture for Mobile
Distributed Computing. Columbia University.
Available at: http://seattleweb.intel-research.net/people/schilit/schilit-thesis.pdf
Last accessed: 08/12/2005

[Schilit, Theimer 1994]
Schilit, B. N. and M. Theimer (1994). Disseminating Active Map Information to
Mobile Hosts. IEEE Network 8(5): pp. 22-32.
Available at: http://seattleweb.intel-research.net/people/schilit/ams.pdf
Last accessed: 05/10/2004

[Sony Ericsson 2004]
Sony Ericsson (2004). P910 Series White Paper. Webpage.
Available at: http://developer.sonyericsson.com/getDocument.do?docId=66933
Last accessed: 14/12/2005

[Stajano 2002]
Stajano, F. (2002). Security for Ubiquitous Computing, John Wiley & Sons.

[Stationery Office 1998]
Stationery Office. (1998). Data Protection Act, 1998 (Public General Acts -
Elizabeth II). The Stationery Office Books.
Available at: http://www.opsi.gov.uk/acts/acts1998/19980029.htm
Last accessed: 20/12/2005

[Sun Microsystems 1998]
Sun Microsystems Inc. (1998). PersonalJava API Specification. Version 1.1.
Webpage.
Available at: http://java.sun.com/products/personaljava/spec-1-
1/pJavaSpec.html
Last accessed: 21/12/2005

[Sun Microsystems 2002]
Sun Microsystems Inc. (2002). Datasheet Java 2 Platform, Micro Edition.
Webpage.
Available at: http://java.sun.com/j2me/j2me-ds.pdf
Last accessed: 21/12/2005

[Telia 2005]
Telia (2005). FriendFinder. Webpage.
Available at: http://friendfinder.telia.se/
Last accessed: 03/12/2005

243

[Toshiba 2005]
Toshiba (2005). Tecra M4. Webpage.
Available at: http://uk.computers.toshiba-europe.com/cgi-
bin/ToshibaCSG/jsp/SUPPORTSECTION/discontinuedProductPage.do?PROD
UCT_ID=104798&DISC_MODEL=1&service=UK
Last accessed: 11/07/2007

[Wakefield 2005]
Wakefield, J. (2005). UK laws are failing to deter spam. BBC News. Webpage.
Available at: http://news.bbc.co.uk/1/hi/technology/4466053.stm
Last accessed: 27/12/2005

[Want, Hopper 1992]
Want, R. and A. Hopper (1992). Active Badges and Personal Interactive
Computing Objects. IEEE Transactions of Consumer Electronics 38(1): pp. 10-
20.
Available at: http://www-lce.eng.cam.ac.uk/publications/files/tr.2001.8.pdf
Last accessed: 23/06/2004

[Want, Hopper 1992B]
Want, R., A. Hopper, et al. (1992). The Active Badge Location System. ACM
Transactions on Information Systems 10(1): pp. 91-102.
Available at: http://sandbox.xerox.com/want/papers/ab-tois-jan92.pdf
Lastr accessed: 13/12/2005

[Ward 2005]
Ward, M. (2005). Virus flood threatens home users. BBC News. Webpage.
Available at: http://news.bbc.co.uk/1/hi/technology/4080420.stm
Last accessed: 27/12/2005

[Weiser 1993]
Weiser, M. (1993). Some computer science issues in ubiquitous computing.
Communications of the ACM. 36(7): pp. 75-84.

[Weiser, Gold et al.1999]
Weiser, M., R. Gold, et al. (1999). The origins of ubiquitous computing research
at PARC in the late 1980s. IBM Systems Journal 38(4): pp. 693-696.
Available at: http://www.research.ibm.com/journal/sj/384/weiser.pdf
Last accessed: 13/03/2003

[Weiser 2002]
Weiser, M. (2002). The Computer for the 21st Century. Pervasive Computing.
1(1): pp. 19-25. Reprint.

[Westin 1970]
Westin, A. F. (1970). Privacy and freedom. London, Bodley Head.

244

[Wilson 2001A]
John Wilson (2001). MinML2 a namespace aware minimal XML parser.
Version 0.3. The Wilson Partnership. Webpage.
Available at: http://www.wilson.co.uk/xml/minml2.htm
Last accessed: 20/12/2005

[Wilson 2001B]
John Wilson (2001). MinML a minimal XML parser. Version 1.7. The Wilson
Partnership. Webpage.
Available at: http://www.wilson.co.uk/xml/minml.htm
Last accessed: 20/12/2005

[World Wide Web Consortium 2002A]
World Wide Web Consortium (2002). The Platform for Privacy Preferences 1.0
(P3P1.0) Specification [W3C Recommendation 16 April 2002]. Webpage.
Available at: http://www.w3.org/TR/2002/REC-P3P-20020416/
Last accessed: 03/12/2005

[World Wide Web Consortium 2002B]
World Wide Web Consortium (2002). A P3P Preference Exchange Language
1.0 (APPEL1.0) [W3C Working Draft 15 April 2002]. Webpage.
Available at: http://www.w3.org/TR/2002/WD-P3P-preferences-20020415/
Last accessed: 03/12/2005

[World Wide Web Consortium 2004A]
World Wide Web Consortium (2004). Resource Description Framework (RDF):
Concepts and Abstract Syntax [W3C Recommendation 10 February 2004].
Webpage.
Available at: http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
Last accessed: 19/12/2005

[World Wide Web Consortium 2004B]
World Wide Web Consortium (2004). RDF Primer [W3C Recommendation 10
February 2004]. Webpage.
Available at: http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
Last accessed: 19/12/2005

[World Wide Web Consortium 2004C]
World Wide Web Consortium (2004). RDF/XML Syntax Specification
(Revised) [W3C Recommendation 10 February 2004]. Webpage.
Available at: http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
Last accessed: 19/12/2005

[World Wide Web Consortium 2004D]
World Wide Web Consortium (2004). RDF Vocabulary Description Language
1.0: RDF Schema [W3C Recommendation 10 February 2004]. Webpage.
Available at: http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
Last accessed: 19/12/2005

245

[World Wide Web Consortium 2004E]
World Wide Web Consortium (2004). Composite Capability/Preference Profiles
(CC/PP): Structure and Vocabularies 1.0 [W3C Recommendation 15 January
2004]. Webpage.
Available at: http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
Last accessed: 20/12/2005

[World Wide Web Consortium 2005A]
World Wide Web Consortium (2005). RDF Validation Service. Webpage.
Available at: http://www.w3.org/RDF/Validator/
Last accessed: 19/12/2005

[World Wide Web Consortium 2005B]
World Wide Web Consortium (2005). References for P3P Implementations.
Webpage.
Available at: http://www.w3.org/P3P/implementations
Last accessed: 08/08/2005

[Zhang, Parashar 2004]
Zhang, G. and M. Parashar (2004). Context-aware Dynamic Access Control for
Pervasive Applications. Communication Networks and Distributed Systems
Modeling and Simulation Conference (CNDS 2004), San Diego, CA, USA.
Avilable at: http://www.caip.rutgers.edu/TASSL/Papers/automate-sesame-cnds-
04.pdf
Last accessed: 26/02/2004

