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Abstract When infinitary rewriting was introduced by Kaplan et. al. [9] at the
beginning of the 1990s, its term universe was explained as the metric completion
of a metric on finite terms. The motivation for this connection to topology was that
it allowed to import other well-studied notions from metricspaces, in particular
the notion of convergence as a replacement for normalisation.

This paper generalises the approach by parameterising it with a term metric,
and applying the process of metric completion not only to terms but also to opera-
tions on and relations between terms. The resulting meta-theory is studied, leading
to a revised notion of infinitary rewrite system. For these systems a method is de-
vised to prove their convergence.

1 Introduction

Infinitary rewriting is a variation of term rewriting that studies infinite terms and
reduction sequences of infinite length. The subject had beenintroduced by Der-
showitz and Kaplan at POPL 1989 [9].

There are different ways to introduce infinite terms. In the view that terms are
functions from tree domains to symbols [4], simply droppingthe demand that a
tree domain is finite would permit infinite terms. Alternatively, infinite term can
be introduced through the ideal completion of a partial order on finite terms; we
even have some influence on which infinite terms we (do not) want by choosing
the order with care.

Another alternative which goes back to at least [1] is now standard: define a
metric that measures how different two terms are, typicallyd(t, t ′) = 2−k where
k is the length of the shortest position at which the two termst andt ′ differ; the
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metric completion of the term set produces infinite terms. Beside infinite terms
this approach offers a topology and a notion of convergence.Again, the choice of
metric allows to prevent the creation of infinite terms we do not want.

We can view convergence as a generalisation of termination:the only converg-
ing sequences over metrics with discrete topologies are theones that remain fixed
after finitely many steps. On finite terms, all term metrics have a discrete topol-
ogy — we shall see later (proposition 4) why. In the presence of infinite terms,
a convergent sequence may not reach a normal form but it can approximate an
infinite one in transfinitely many steps. Of particular interest to a user of infinitary
rewriting is then the question: “is my systemas a wholeconvergent?”.

Although the original papers by Kaplan et. al. defined the concept of a sys-
tem (an abstract reduction system over a metric space) beingconverging, their
proof methods aimed lower for infinitary rewriting, as they excluded reduction se-
quences starting with infinite terms. This restriction hints at a fundamental prob-
lem with their approach: they permit too many terms or too many rules to achieve
convergence proofs that apply generally. More recently, Terese [21] chose not
even to define the concept of a converging metric ARS; they focused instead on
the notion ofstrong convergencebut only w.r.t. reduction sequences, not systems.

The approach used in this paper goes back to the original notion of semantic
convergence and shows how infinitary rewrite systems can be proved convergent
w.r.t. this notion.

Very early on, papers on infinitary rewriting allowed transfinite reduction se-
quencesbeyondordinalω. This is not followed here: the ordinalω is intrinsically
tied to the notion of metric completion and the relations studied here are “contin-
uous” w.r.t. the term topology. Of course, one could work instead with topological
notions of convergence, based on filters or nets, see e.g. [20], and use a matching
notion of completion. In this paper I stick to theω-case, at least in part because it
allows me to make use of known properties of metric completion.

In summary, this paper provides the following:

– the preliminary section 2 recalls concepts from rewriting and topology; a cou-
ple of basic propositions about metric spaces are proved that are used later but
which I could not find in standard textbooks;

– section 4 introduces a general concept of what a term metric actually is, based
on the notion of ultra-metric map (section 3);

– section 5 studies fundamental properties of infinitary terms, i.e. the terms that
arise through metric completion;

– section 6 re-defines the notions of infinitary rewrite rule and infinitary TRS;
– section 7 shows how (and which) relations can be lifted through metric com-

pletion — these results have wider applications than infinitary rewriting and
are stated in a more general way;

– section 8 studies under which conditions infinitary TRSs match the require-
ments of the previous section;

– section 9 reduces convergence proofs for infinitary TRSs to proofs that certain
finitary TRS are Cauchy;

– section 10 shows a method to prove finitary TRSs to be Cauchy;
– section 11 shows the method working on an example;
– sections 12 and 13 conclude, with 12 pointing out a number of possible alter-

native approaches.
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2 Preliminaries

We rely on notations and terminology from both Term Rewriting and Topology
which are introduced in this section. For the former to the conventions and no-
tations from [25] are used, experts in the area may thereforewant to skip that
section.

Rewriting

We writeR : A↔ B to declare a relationR between setsA andB. Given a binary
relationR, we writeR−1 for the relationx R−1 y ⇐⇒ y R x. We writeR ; S for
the composition of the relationsRandS, i.e.x(R ; S)y ⇐⇒ ∃z.xRz∧zSy. A quasi
orderingonA is a reflexive and transitive relation onA.

An Abstract Reduction Systemis a structureA = (A,→) whereA is a set and
→ a binary relation onA. Given an ordinalα , asequence of lengthα in the setSis
a function f : α → S, viewingα as a von Neumann ordinal, i.e. identifying it with
the set of all smaller ordinals. Areduction sequenceof lengthα in an ARS(A,>)
is a sequencef of lengthα in A such that∀n∈ α . (n+1)∈ α ⇒ f (n) > f (n+1).
An ARS is terminating, or strongly normalising, if it has no reduction sequences
of lengthω.

Given an ARS(A,→) and an equivalence relation≈ on A the ARSA/≈ has
as objects the equivalence classes[t]≈ of A, and the relation→/ ≈ is defined as:

[t]≈ →/ ≈ [u]≈ ⇐⇒ t ≈ ; → ; ≈ u

One says thatt rewrites tou modulo≈.
A signatureis a pairΣ = (F ,#) whereF is a set (of functions symbols) and

# :F →N the function assigning each symbol its arity. As notationalconvention
function symbols are written as upper-case letters. The infinite set ofvariablesis
calledVar and particular variables are referred to by lower-case letters. Theset of
(finite) termsover Σ is indicated asTer(Σ) and is defined inductively: (i)Var ⊂
Ter(Σ), (ii) if F ∈ F and #(F) = n and t1, . . . , tn ∈ Ter(Σ) thenF(t1, . . . , tn) ∈
Ter(Σ). Parentheses are dropped whenn = 0. The set of variables occurring in
the termt is calledvar(t). The root of a termt is eithert, if t ∈ Var, or F , if
t = F(t1, . . . , tn).

A Σ -algebrais a setA together with functionsFA : An → A for everyF ∈ F

with #(F) = n. A valuation into A is a functionρ : Var → A. Any Σ -algebraA
determines an interpretation function[[ ]]A : Ter(Σ)× (Var→ A) → A as follows:

[[x]]ρA = ρ(x), if x∈ Var

[[F(t1, . . . , tn)]]
ρ
A = FA([[t1]]

ρ
A, . . . , [[tn]]

ρ
A)

Given twoΣ -algebrasA andB, aΣ -algebrahomomorphismfrom A to B is a func-
tion h : A→ B such thath(FA(a1, . . . ,an)) = FB(h(a1), . . . ,h(an)). If h : A→ B is
a homomorphism thenh([[t]]ρA) = [[t]]h◦ρ

B .
Given anyΣ -algebraA, [[A]] is theΣ -algebra with carrier set(Var → A) → A

andF[[A]](a1, . . . ,an)(ρ) = FA(a1(ρ), . . . ,an(ρ)). The functionρ : Var→ [[A]] given
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asρ(x)( f ) = f (x) makes it possible to interpret terms with variables. We write
[[t]][[A]] as shorthand for[[t]]ρ

[[A]]
.

Ter(Σ) is itself aΣ -algebra withFTer(Σ) = F , the so-called term algebra. A
substitution is a functionσ : Var → Ter(Σ) the domain of which is extended to
Ter(Σ) by requiring it to be a homomorphism. The set of of all substitutions over
signatureΣ is calledΘ(Σ). A binary relationRonTer(Σ) is calledsubstitutive, if
and only if

∀t,u∈ Ter(Σ).∀θ ∈Θ(Σ). t R u⇒ θ(t) Rθ(u)

This concept is typically used to form thesubstitutive closureof a relation.
Subterm positions are finite sequences of natural numbers. The empty se-

quence is denoted〈〉, otherwisei · p is the prefixing a sequencep with the num-
ber (or sequence of numbers)i. The set of positions of a termt, Pos(t) is induc-
tively defined as follows: (i)〈〉 ∈ Pos(t), (ii) {i · p | 1≤ i ≤ #(F)∧ p∈ Pos(ti)} ⊂
Pos(F(t1, . . . , t#(F))).

Thesubtermof t at positionp, notation:t|p, is defined as follows:

t|〈〉 = t

F(t1, . . . , tn)|i·p = ti |p
Updatinga termt at positionp with termu, notation:t[u]p, is defined as follows:

t[u]〈〉 = u

F(t1, . . . , tn)[u]i·p = F(t1, ..., ti−1, ti [u]p, ti+1, . . . , tn)

For positionsp andq we write p≤ q iff ∃r. p · r = q, i.e. if p is a prefix ofq. Two
positionsp andq areindependent, p||q, if ¬(p≤ q)∧¬(q≤ p).

A Σ -context C[ ] is a termt ∈Ter(Σ) together with a positionp∈Pos(t), called
thehole; we often writeC[u] instead oft[u]p, keeping the position implicit. Ann-
ary contextC[ ] is a termt together withn mutually independent positions. Here,
we define

t[t1, . . . , tk+1]p1,...,pk+1 = (t[t1, . . . , tk]p1,...,pk)[tk+1]pk+1

and typically abbreviatet[t1, . . . , tk]p1,...,pk asC[t1, . . . , tk], leaving the positions im-
plicit and understanding them to be lexicographically ordered.

A binary relationR onTer(Σ) is calledcompatibleiff

∀s, t,u∈ Ter(Σ).∀p∈ Pos(s). t R u⇒ s[t]p R s[u]p

Again, this is used mostly to form the compatible closure of arelation; the com-
patible closure ofR is expressed asR⊙.

A relation R is called arewrite relation [2] if it is both compatible and sub-
stitutive. Note that the compatible closure of a substitutive relation is substitutive,
and that the substitutive closure of a compatible relation is compatible.

A rewrite rule (overΣ ) is a pair of termst ∈ Ter(Σ) andu∈ Ter(Σ), written
t → u, such that (i)t /∈ Var, and (ii) var(u) ⊆ var(t). We callt the left-hand and
u the right-hand side of the rule. A term is calledlinear if no variable occurs in it
more than once; a rewrite rule is calledleft-linear if its left-hand side is linear.

A term rewriting system(short: TRS) consists of a signatureΣ and a set of
rewrite rulesRover that signature. The associated ARS of a term rewriting system
(Σ ,R) is (Ter(Σ),→R) where→R is the compatible and substitutive closure ofR.
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Topological Spaces

Regarding topological and metric spaces we use notation andterminology mostly
taken from [23], and occasionally from [5,15,22]. A topological space is a setX
together with a function Cl :℘(X)→℘(X) satisfying the following properties for
all A,B⊆ X:

Cl( /0) = /0

A ⊆ Cl(A)

Cl(Cl(A)) = Cl(A)

Cl(A∪B) = Cl(A)∪Cl(B)

Any set of the form Cl(A) is calledclosed, and a setB⊆ X is calledopeniff X \B
is closed. A function between topological spacesf : A→B is called continuous iff
its inverse image of any closed set is closed, i.e.f−1(Cl(V)) = Cl( f−1(Cl(V)));
beware that the two occurrences of Cl on the right-hand side of that equation refer
to (potentially) different topologies.

A topology on a setA is calleddiscreteiff every subset ofA is open (which is
the case iff all singleton sets are open). Note that functions between topological
spaces are always continuous if their domain is discrete.

A neighbourhoodof a pointa ∈ A is a setB ⊆ A such that there is an open
setC such thata∈C⊆ B. An accumulation pointis a pointa∈ A such that every
neighbourhood ofa is an infinite set. Thus, a topological space is discrete if and
only if it has no accumulation points.

A topological space(X,Cl) is calledcompactif for any family of open sets
Si , i ∈ I such thatX =

⋃
i∈I Si thenX =

⋃
i∈J Si for some finite subsetJ of I .

Metric Spaces

A metric spaceis a setM together with a functiond : M×M → R satisfying the
following formulae [5] for allx, y, andz:

d(x,y) = 0⇐⇒ x = y

d(y,z) ≤ d(x,y)+d(x,z)

Theopenε-ball of an elementx∈ M is the set of elements at distance smaller than
ε: Bε(x) = {y∈ M | d(x,y) < ε}. Theclosedε-ball is Bε(x) = {y∈ M | d(x,y) ≤
ε}. We sometimes view these as binary relations, i.e.x Bε y ⇐⇒ x∈ Bε(y) ⇐⇒
d(x,y) < ε. Every metric space induces a topological structure: a setA ⊆ M is
open iff∀a∈ A.∃ε > 0.Bε(a) ⊆ A.

The diameterof a subsetS of a metric space(M,d) is the supremum of the
distances inS. A metric space is calledboundedif it has a finite diameter. The
metric spaces of interest to this paper all have a diameter of1.

A function between metric spacesf : A→ B is calleduniformly continuousiff
there is a function̂f on the strictly positive real numbers such that

∀ε > 0.B f̂ (ε) ; f ⊆ f ; Bε
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where “;” is relational composition. As we shall see later, this formulation suitably
generalises. The function̂f witnessesthe uniform continuity off , and we can
w.l.o.g. assume that it is weakly monotonic. Moreover,f is callednon-expansive
iff f̂ (ε) ≤ ε, for all ε.

Given a metric space(M,d), aCauchy sequencein this space is a sequencef
of lengthω in M such that:

∀ε > 0.∃q.∀m,n.m≥ q∧n≥ q⇒ d( f (m), f (n)) < ε

This is equivalent to saying thatf is uniformly continuous, with respect to the
metricd(m,n) = | 1

m − 1
n|. A sequencef of lengthω in M is calledconvergingto

a∈ M if
∀ε > 0.∃q.∀m.m≥ q⇒ d( f (m),a) < ε

and f is calledconvergingif an a∈M exists to whichf converges. A metric space
is completeiff every Cauchy sequence converges.

Every metric space has a unique completion, up to isometry, which we will
call M• for this metric space1. We can characterise the metric completionM• as
follows: (i) M• is a complete metric space, (ii) there is an isometric embedding
e : M → M• and (iii) the closure ofe(M) in M• is M• (M is dense). An isometric
embeddingis a distance-preserving function between metric spaces (note that this
implies injectivity); anisometryis a bijective isometric embedding.

All points in M• \e(M) are accumulation points; moreover, these are the only
accumulation points inM• if M is discrete. In the following,M will be regarded
as a subset ofM•.

Uniformly continuous functions between metric spaces can be uniquely lifted
to their metric completions, i.e. metric completion is a functor on the category
of metric spaces (as objects) and uniformly continuous functions (as morphisms).
Moreover, a witness function forf • can be constructed aŝf •(ε) = f̂ (ε)/2.

Given a setA and a bounded metric space(B,d) the function spaceA→ B has
the metricd( f ,g) = supx∈A d( f (x),g(x)) (and is itself bounded).

Proposition 1 Let B be a bounded metric space. Then(A→ B)• ∼= A→ (B•).

Proof Left to right: if fn is a Cauchy sequence inA → B then yn = fn(x) is a
Cauchy sequence inB, for anyx ∈ A; we can setf (x) = limn→∞ fn(x). Right to
left: if f : A → (B•) then eachf (x) is approximated by a Cauchy sequenceyx
in B; we can constructfn : A → B as fn(x) = yx(m) where we pickm such that
∀k.k ≥ m.d(yx(k), f (x)) < 2−n. Clearly,d( f , fn) ≤ 2−n and thus the sequencefn
converges tof . ⊓⊔
This is surely a standard result for metric spaces, but the standard literature [22,14]
only shows the weaker result that the function space is complete if the codomain
is — which does not say anything about the completion of a function space whose
codomain is not complete.

Proposition 2 Let A, B and C be metric spaces such that C is bounded.
If f : A → (B → C) is uniformly continuous and pointwise uniformly continuous
(i.e. each f(x) is uniformly continuous in B→C) then there is a unique function
f • : A• → (B• →C•) extending f that is continuous and pointwise continuous.

1 A traditional notation isM∗ but this would lead to notational clashes when we lift relations
to metric completions.
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Proof Metric completion extendsf to a function f ′ : A• → (B → C)• which we
can view (using proposition 1) as a functionf ′′ : A• → (B → C•). The function
f ′′ is still uniformly continuous and it is still pointwise continuous — because
Cauchy sequences of continuous functions converge to continuous functions, see
[22, page 209]. Given a functioncB : B• → (N → B) that maps everyb to some
Cauchy sequence that converges tob, and a fixeda∈A• we can construct functions
fn : B• →C• as follows: fn(b) = f ′′(a)(cB(b)(⌈ 1

ĉB(b)( f̂ ′′(2−n))
⌉)). The construction

ensures thatd( fn(b), fn+k(b)) < 2−n (independent ofb) which makes it a Cauchy
sequence inB• → C•, and as this space is complete the sequence converges to a
limit: this limit is f •(a); it is itself continuous, because the sequencefn is contin-
uously convergent [14, 28.9.5]. The uniqueness off • follows from more general
topological properties [15, page 54]. ⊓⊔

Note: the premise in proposition 2 is strictly weaker than torequire that f is
uniformly continuous as a function of typeA× B → C, because the category
of metric spaces and uniformly continuous functions is not Cartesian-closed. In
particular, function application itself is (in general) not uniformly continuous in
[A→ B]×A→ B, if we understand[A→ B] to be the set of uniformly continuous
functions fromA to B.

A metric space(M,d) is called anultra-metricspace if it satisfies the stronger
inequality∀x,y,z. d(y,z) ≤ max(d(x,y),d(x,z)). In an ultra-metric space(M,d),
eachBε becomes an equivalence relation, and a sufficient conditionfor an ω-
sequence to be Cauchy is that the distances between adjacentelements converge
to 0. If M is an ultra-metric space then so isM•.

The category of ultra-metric spaces and non-expansive functions is Cartesian-
closed [23]. The product construction derived from that gives also categorical
products in the categories of metric spaces (objects) with either continuous, uni-
formly continuous, or non-expansive functions as morphisms: the product of met-
ric spaces(A,dA) and(B,dB) is (A×B,dA×B) where

dA×B((a1,b1),(a2,b2)) = max(dA(a1,a2),dB(b1,b2)).

For every set there is a metricdα defined asdα(t,u) = 1 ⇐⇒ t 6= u, the
so-calleddiscrete metricor trivial metric; the resulting metric space is always
complete with the discrete power-set topology. The converse does not hold, i.e.
there are many other metrics with discrete topologies (sometimes, the literature
calls them discrete as well), and we shall encounter severalof them in this paper.

Since every subset of an (ultra-) metric space gives rise to an (ultra-) met-
ric space the notion of compactness generalises to arbitrary subsets of an (ultra-)
metric space. In this context, compact sets are always closed.

3 Ultra-Metric Maps

A function f on the non-negative reals is calledmetric-preserving[6] if for any
metric space(M,d), (M, f ◦ d) is a metric space as well. All metric-preserving
functions areamenable: f (x) = 0 ⇐⇒ x = 0 andsubadditive: f (x+y) ≤ f (x)+

f (y). If f is subadditive thenf (n · x) ≤ n · f (x) and f (x)
n ≤ f ( x

n) for any positive
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integern. Notice that if f is a metric-preserving function then the identity func-
tion id is a uniformly continuous function from(M, f ◦d) to (M,d) with îd = f .
Monotonicity is a sufficient (but not necessary) condition for an amenable and
subadditive function to be metric-preserving.

Examples are: the ceiling function⌈ ⌉ (defined as⌈r⌉ = min{n | n∈ N ,n≥
r}), and for any 0< α < 1 both multiplication and exponentiation withα , e.g.
halving and square root.

For any functionf on [0,1] we can definef #(y) = sup{x | f (x) ≤ y}. By con-
struction, f # is weakly monotonic. We also havef #( f (x)) ≥ x, and this becomes
an equality if f is strictly monotonic. If f is continuous thenf ( f #(x)) ≤ x, and
this becomes an equality iff is surjective (or, by the intermediate value theorem,
if f (0)≤ x≤ f (1)). If f is monotonic and continuous thenf and f # form a Galois
connection.

Notice that if f is continuous and amenable thenf # is amenable. Iff is a
continuous metric-preserving function then the identity function is also uniformly
continuous in the other direction, from(M,d) to (M, f ◦d) (making the two met-
rics equivalent), withîd = f # — provided f is injective; otherwise, we can set
the witnessîd(ε) = f #(ε/2). The ceiling function is not continuous, our other
examples of metric-preserving functions are.

Of particular interest in this paper are functions that preserveultra-metrics.
These are functions that are amenable and monotonic, they need in general not be
subadditive, e.g. squaring is not metric-preserving as it is not subadditive, but it
preserves ultra-metrics.

An ultra-metric map(short: umm) is ann-ary functionm : [0,1]n → [0,1] such
that (i) it is monotonic:x1 ≤ y1∧·· ·∧xn ≤ yn ⇒ m(x1, . . . ,xn)≤ m(y1, . . . ,yn) and
(ii) it is amenable, i.e.m(x1, . . . ,xn) = 0 ⇐⇒ x1 = 0∧ ·· ·∧xn = 0. Ultra-metric
maps are closed under composition, i.e. iff is ann-ary umm andk1, . . . ,kn are
p-ary umms thenf ◦ 〈k1, . . . ,kn〉 is a p-ary umm.

The concept of being “subadditive” is extended ton-ary functions as follows:
f is subadditive iff∀a1, . . . ,an,b1, . . . ,bn. f (a1+b1, . . . ,an+bn)≤ f (a1, . . . ,an)+
f (b1, . . . ,bn).

The componentsof an n-ary umm f are the functionsf̃i : [0,1] → [0,1] de-
fined asf̃i(x) = f (0i−1,x,0n−i). Each component is itself a umm. Thekernelof a
umm is the functionf̃ (x1, . . . ,xn) = max1≤i≤n f̃i(xi). Again, the kernel of a umm
is itself a umm. Each umm is pointwise greater or equal than its kernel; a umm is
calledsimpleiff it is equal to its kernel. Thus, a simple umm is determinedby its
components.

For ann-ary (n > 0) umm f we set f #(y) = sup{(x1, . . . ,xn) | f (x1, . . . ,xn) ≤
y}. We still have f #( f (x1, . . . ,xn)) ≥ (x1, . . . ,xn). If f is continuous thenf # is
amenable in the extended sense thatf #(x) = (0, . . . ,0) ⇐⇒ x= 0. If f is a simple
umm then f #(x) = ( f #

1 (x), . . . , f #
n (x)), and in additionf ( f #(x)) ≤ x if f is also

continuous, which again gives us a Galois connection.

For n-ary f the unary function∆ f is defined as∆ f (x) = f (x, . . . ,x). If f is
continuous then so is∆ f and thus∆ f # is amenable.
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4 Term Metrics

A term metricfor a signatureΣ is a Σ -algebram where the carrier set is[0,1]
and eachFm is an ultra-metric map. A term metric is calledsimple(continuous,
subadditive) iff all itsFm are simple (continuous, subadditive) ultra-metric maps.
The reason for the name “term metric” is that this gives rise to a distance function
dm onTer(Σ) as follows:

dm(t, t) = 0

dm(t,u) = 1, if root(t) 6= root(u)

dm(F(t1, . . . , tn),F(u1, . . . ,un)) = Fm(dm(t1,u1), . . . ,dm(tn,un))

The final equation also means thatdm is a Σ -algebra homomorphism, from the
product algebraTer(Σ)×Ter(Σ) to m; this implies:

dm(θ(t),σ(t)) = [[t]]x7→dm(θ(x),σ(x))
m .

The functiondm is indeed a distance in the metric sense, even more:

Proposition 3 Each dm is an ultra-metric on Ter(Σ), bounded by 1.

Proof By induction on the term structure. First, thatdm is bounded by 1 is trivial
by construction.

Second, we need to show thatdm(t,u) = 0 ⇐⇒ t = u. The first and second
equation clearly comply. For the third, we assume that the property holds on the
subterms oft andu. The result follows fromFm being amenable.

Finally, the strong triangular property. Consider three terms a, b andc. We
have to showdm(a,b) ≤ max(dm(a,c),dm(b,c)). If a and b have different root
symbols then the root ofc is different to at least one of the two, take w.l.o.g. that
to beb. In this case the inequation to be proven becomes 1≤ max(dm(a,c),1)
which is trivially true.

Now suppose thata andb have the same root symbol. If the root ofc differs
from that then the inequation becomesdm(a,b) ≤ 1 which is always true. Finally,
assume that all 3 terms have the same root symbolF and thatn = #(F)

max(dm(a,c),dm(b,c))

= max(Fm(dm(a1,c1), . . . ,dm(an,cn)),Fm(dm(b1,c1), . . . ,dm(bn,cn)))

= Fm(max(dm(a1,c1),dm(b1,c1)), . . . ,max(dm(an,cn),dm(bn,cn)))

≥ Fm(dm(a1,b1), . . . ,dm(an,bn))

= dm(a,b)

⊓⊔

Ultra-metricΣ -algebras have some applications in domain theory [24, section 4.3]
but these constrain algebra operations to be non-expansive, and this is not always
satisfied by the operations and metrics of interest here.

For any term metricm there is anotherΣ -algebram, also with carrier set[0,1],
where its operations are defined as follows:

Fm(a1, . . . ,an) = min
1≤i≤n

F̃m,i(ai)
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Here, F̃m,i is the i-th component ofFm, and the minimum is set to be 1 ifn =

0. Althoughn-ary functions inm are not amenable, it is the case that[[t]]ρm > 0,
providedρ(x) > 0 for all x. Algebram is useful for propagating distances:

Lemma 1 Fm(a1, . . . ,an) < Fm(b1, . . . ,bn) ⇒∀1≤ i ≤ n.ai < bi

Proof

Fm(a1, . . . ,an) < Fm(b1, . . . ,bn) =⇒ F̃m(a1, . . . ,an) < Fm(b1, . . . ,bn)

⇐⇒ max
1≤i≤n

F̃m,i(ai) < Fm(b1, . . . ,bn)

⇐⇒ max
1≤i≤n

F̃m,i(ai) < min
1≤i≤n

F̃m,i(bi)

=⇒∀1≤ i ≤ n. F̃m,i(ai) < F̃m,i(bi)

=⇒∀1≤ i ≤ n.ai < bi

⊓⊔

In particular, one can usem to show that all terms are discrete points, for any term
metricm.

Proposition 4 Every term metric m gives rise to a discrete topology.

Proof The statement means that for every termt there is a constantc> 0 such that
dm(t,u) < c⇒ t = u. We can setc = [[t]]k1

m , wherek1 is the constant-1 function.
If t is a variable or a function symbol with of arity 0 thenc = 1. Anything

closer than that distance has the same root symbol ast and hence is equal tot.
If t = F(t1, . . . , tn) then[[t]]k1

m = Fm([[t1]]k1
m , . . . , [[tn]]k1

m ). Now, if dm(t,u) < c≤ 1
then u has the formF(u1, . . . ,un), and we get overall, using lemma 1 and the
induction hypotheses on the subterms:

d(t,u) < [[t]]k1
m ⇐⇒ dm(F(t1, . . . , tn),F(u1, . . . ,un)) < [[t]]k1

m

⇐⇒ Fm(dm(t1,u1), . . . ,dm(tn,un)) < Fm([[t1]]k1
m , . . . , [[tn]]k1

m )

=⇒∀i.1≤ i ≤ n⇒ dm(ti ,ui) < [[ti ]]k1
m

⇐⇒ ∀i.1≤ i ≤ n⇒ ti = ui
⇐⇒ F(t1, . . . , tn) = F(u1, . . . ,un)

⊓⊔

Each metricdm gives us a metric completionTerm(Σ) of the metric space
(Ter(Σ),dm), adding the limits of Cauchy sequences. It depends on the term metric
which, if any, “infinite terms” are added by this process.

Here are some examples of term metrics that people have used before, albeit
not expressed in the framework presented here.

– The term metric∞ setsF∞(a1, . . . ,an) = 1
2 ·max1≤i≤nai ; the setTer∞(Σ) con-

tains “all” infinite terms: it is terminal in the category ofTerm(Σ) objects and
(partial)Σ -homomorphisms as morphisms.

– The trivial term metricid setsFid(a1, . . . ,an) = max1≤i≤nai ; distance between
any two distinct terms is 1, and hence(Ter(Σ),did) is already complete; thus
this gives no infinite terms at all.
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– A “lazy signature” (Σ ,Λ) [19,18] has a predicateΛ ⊂ F ×N such that
Λ(F, i) signifies thatF is “lazy” in its i-th argument position. Given this,
the simple term metricg is defined through its components:F̃g,i(a) = a/2 if
Λ(F, i), and F̃g,i(a) = a, otherwise. The term universeTerg(Σ) corresponds
very closely to the set of constructor values we get in Haskell [16] when any
constructorF is declared to be strict in all argument positions for whichΛ(F, i)
does not hold.

These are not the only sensible possibilities, in particular one could restrict the set
of infinite terms further thandg manages. We define the following term metrics as
variants ofdg: they are all simple term metrics, defined through their components;
we assume a laziness predicateΛ and keepF̃m,i(a) = (a/2) for lazy argument
positions. Otherwise, if¬Λ(F, i) we set

– for term metricc: F̃c,i(a) = ⌈a⌉;
– for the term metricr: F̃r,i(a) =

√
a;

– for the term metricd: F̃d,i(a) = min(2 ·a,1).

Under the term metricc the subterms at a strict position must be finite terms.
Under term metricr we can only iterate a contextC[ ] to create an infinite term
C∞ = C[C∞] if all argument positions leading to the hole ofC are lazy. Under
term metricd any infinite path through an infinite term must (eventually) cross
arbitrarily more lazy than strict argument positions.

All these examples are simple term metrics, i.e. their umms are equal to their
kernels. What simple term metrics have in common is that terms can “grow” in-
dependently in independent positions; in particular, if for a binary contextC[ ]
the termsC[t,x] andC[y,u] exist in Term(Σ) then so doesC[t,u]. It is possible
to define a non-simple term metric for which this is not true. The examples are
also all subadditive — a property that is essential for certain aspects of infinitary
rewriting.

Proposition 5 For term metric m, function symbol F is uniformly continuouson
the metric space(Ter(Σ),dm) if Fm is continuous.

Proof The domain for ann-ary F is (Ter(Σ),dm)n which is the metric space
(Ter(Σ)n,dn

m), wheredn
m(〈a1, . . . ,an〉,〈b1, . . . ,bn〉) = max1≤i≤ndm(ai ,bi). We can

simply construct the witness function̂F as follows:F̂(ε) = ∆F#
m(ε/2). To show

that this is a uniformity witness:

dn
m(〈a1, . . . ,an〉,〈b1, . . . ,bn〉) < ∆F#

m(ε/2)

⇐⇒ ∀i.1≤ i ≤ n⇒ dm(ai ,bi) < ∆F#
m(ε/2)

=⇒ Fm(dm(a1,b1), . . . ,dm(an,bn)) ≤ ∆Fm(∆F#
m(ε/2))

⇐⇒ dm(F(a1, . . . ,an),F(b1, . . . ,bn)) ≤ ∆Fm(∆F#
m(ε/2))

=⇒ dm(F(a1, . . . ,an),F(b1, . . . ,bn)) ≤ ε/2 < ε
⊓⊔

Continuity of Fm is only used in the proof for the step∆Fm(∆F#
m(ε/2)) ≤ ε/2

— thus continuity of∆Fm suffices as condition; in fact, it even suffices if∆Fm is
merely continuous at 0, but for this claim the proof would need a different witness
function.
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Corollary 1 If m is a continuous term metric for signatureΣ then Term(Σ) is a
Σ -algebra.

Proof Since all term-building functions are uniformly continuous they uniquely
lift to the completed metric spaces. ⊓⊔

Notice that proposition 5 viewsn-ary functions as functions from then-ary product
space. Proposition 2 would suggest to use curried functionsinstead, for liftingn-
ary functions to the metric completion; the difference is only slight though as this
corresponds to replacing each algebra-map of the term metric with its kernel.

Non-continuous term metrics are not necessarily regarded as “evil”, and may
well be worth serious study — but they are certainly more awkward to work with.
If (unary) Fm is not continuous at 0 then the function symbolF can indeed not be
applied to infinite terms, in the following sense: ifTerm(Σ) contains an accumu-
lation pointu andg : N → Ter(Σ) is any Cauchy sequence converging tou then
F ◦g is never a Cauchy sequence. An example for a non-continuous term metric
is dc.

5 Operations on Infinitary Terms

Given a signatureΣ and a term metricm, the infinitary terms are the elements in
Term(Σ); the infinite terms are the accumulation points inTerm(Σ). Operations on
infinitary terms are mostly defined here as uniformly continuous functions oper-
ating on finite terms, which thus have a unique lifting.

In particular, this applies to the function[[ ]][[m]] : Ter(Σ) → (Var → m) → m:
this function is non-expansive for simplem and then it is justified to use this
notation for infinitary terms as well.

The set ofε-positions of a termt ∈ Term(Σ), Posmε (t) is defined as
⋂{Pos(u) |

u∈ Ter(Σ),dm(t,u) < ε}. All positions of a term,Posm(t) are the union of these:⋃{Posmε (t) | ε > 0}.
The set of infinitary substitutions is defined asΘ(Σ)m = Var → Term(Σ).

The definition ofdm is extended to substitutions using the function space met-
ric, i.e. dm(σ ,θ) = supx∈Var d( f (x),g(x)). Notice that it can make a difference
here whether we regard the domain of substitutions as terms or as variables; in the
former case some metrics (such asdr anddc) would make the substitution space
discrete.

Substitution application onfinite terms(as an operation inΘ(Σ) → Ter(Σ) →
Ter(Σ)) is pointwise non-expansive and, provided the metric is continuous, also
uniformly continuous. Proposition 2 then allows us to lift substitution application
uniquely to infinitary terms and infinitary substitutions. Notice that this is a case
in which it wouldnot suffice to consider substitution application as a function in
Θ(Σ)×Ter(Σ)→ Ter(Σ), because there are continuous term metrics (an example
is term metricr) for which substitution application is not uniformly continuous in
this domain.

W.r.t. to non-continuous metrics, substitution application can be undefined,
e.g. under metricdc whent = F(x), F is strict in its argument andθ mapsx to
an infinite term. Nevertheless it is still possible to view itas a partial function
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— whereθ(t) is defined iff a sequenceθn(t) converges, whereθn is a Cauchy
sequence of finitary substitutions converging toθ .

A relationRon infinitary terms is calledsubstitutiveif t R uimpliesθ(t) Rθ(u)
for all θ ∈Θ(Σ)m for which θ(t) andθ(u) are defined.

For (finite) unary contexts the metricdm is extended as follows:

dm(C[ ]p,D[ ]q) = max(dm(C[x],D[x]),d(p,q))

where the metric on positions is discrete, i.e. different positions are at distance 1.
Context application, seen as a function in(Ter(Σ)×N ∗)→ Ter(Σ)→ Ter(Σ), is
non-expansive and, provided the metric is continuous, pointwise uniformly con-
tinuous. Again this allows to apply proposition 2 and generalise context applica-
tion to infinitary terms; for non-continuous metrics context application is a partial
function. An infinitary context is an element in(Ter(Σ)×N ∗)• (which is isomor-
phic toTerm(Σ)×N ∗).

For everyn-ary finitary contextC[ ] there is ann-ary ultra-metric mapCm

defined as follows:Cm(a1, . . . ,an) = [[C[x1, . . . ,xn]]]
ρ[xi 7→ai ]
m , where the variablesxi

do not occur inC[ ], ρ(x) = 0 for all x, and the notationρ[xi 7→ ai ] updatesρ at
these variables. Clearly:

dm(C[t1, . . . , tn],C[u1, . . . ,un]) = Cm(dm(t1,u1), . . . ,dm(tn,un)).

If m is a continuous term metric thenCm is uniformly continuous. Notice that for
unary contexts,Cm(dm(t,u)) = dm(C[t],C[u]) < Cm(ε) impliesdm(t,u) < ε.

We can express the property that two terms do not differ up to acertain position
formally as follows. There is a family of equivalence relations

p∼ (indexed by
positionsp), defined as follows:

t
〈〉∼ u

F(t1, . . . , tn)
i·q∼ F(u1, . . . ,un) ⇐= ti

q∼ ui

We also writeC∼D for contextsC andD, to express (i) their holes are at the same
positionp, and (ii)C[x]

p∼ D[x].

Proposition 6 Let C,D be contexts such that C∼ D.

(i) Cm = Dm;
(ii) dm(C[t],C[u])≤ dm(C[t],D[u]);
(iii) dm(C[x],D[x])≤ dm(C[t],D[u]).

Proof Straightforward induction on the depth ofC. ⊓⊔
Lemma 2 If dm(C[t]p,u) < Cm(ε) then there is a context D∼ C and a term u′

such that u= D[u′] and dm(t,u′) < ε.

Proof The proof goes by induction on the length ofp. The contextD[ ] is u[ ]p.
The base casep = 〈〉 is trivial. Otherwisep = i ·q, and letC′[ ]q = C[ ]|i . Since
dm(C[t]p,u) < Cm(ε) ≤ 1, the termu must have the same root symbol asC[ ], call
it F. Hencedm(C[t]p,u) = Fm(a1, . . . ,an) wherea j = dm(C[t]| j ,u| j). In particular,
C[t]|i = C′[t]. This implies:(F̃m)i(ai) ≤ dm(C[t]p,u) < Cm(ε) = (F̃m)i(C′

m(ε)). By
monotonicity:ai = dm(C′[t],u|i) < C′

m(ε). By induction hypothesisu|i [ ]q ∼ C′

and there is a termu′ such thatu|i = D′[u′] anddm(t,u′) < ε. This also implies
u[ ]p ∼C by definition of this relation. ⊓⊔
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The purpose of the rather awkward looking lemma 2 is to reasonabout distances
in the situation where we put a redex inside a context and thenmove away from
the result by a specific distance.

Corollary 2 Let C[ ]p, D[ ]q be finite. If dm(C[ ]p,D[ ]q) < Cm(1) then Cm = Dm.

Consequently, infinitary contexts also have a unique umm: let D[ ]p be a (unary)
infinitary context, thenDm = Cm for any finite contextC[ ]p close enough toD[ ],
i.e. dm(C[x],D[x]) < dm(D[x],D[y]).

A relationRon infinitary terms is calledcompatibleif a R bimpliesC[a] RC[b]
for all contextsC[ ] for which bothC[a] andC[b] are defined. The notationR⊙

denotes the compatible closure ofR.

6 Infinitary Rules

A term t ∈ Term(Σ) is called apatternif there is a constanttm > 0 such that:

∀u∈ Term(Σ).∀σ ∈Θ(Σ)m.dm(u,σ(t)) ≤ tm ⇒∃θ ∈Θ(Σ)m.θ(t) = u

Notice that patterns are necessarily finite terms, because infinite terms are arbitrar-
ily close to some finite terms. The constanttm (if it exists) is the same as the one
constructed in the proof of proposition 4. Moreover, for continuous term metrics,
patterns must be linear terms: if a pattern were of the formC[x,x] thenC[t, t] can
be made arbitrarily close toC[t, t ′] with t 6= t ′, andC[t, t ′] is not a substitution in-
stance ofC[x,x]. In non-continuous term metrics non-linear patterns are possible,
provided (and for simple metrics this is a sufficient condition) that each repeated
variable occurs somewhere in a non-continuous position.

An infinitary rewrite rule(over Σ , w.r.t. to term metricm) is a pair of terms
t ∈ Term(Σ) andu ∈ Term(Σ), written t → u, such that (i)t /∈ Var is a pattern,
(ii) [[u]][[m]] ≤ [[t]][[m]], where the partial order≤ on functions is the pointwise order,
inherited from[0,1], and (iii) if m is not continuous or not simple thenu is finite.

Explanation: for the discrete term metricid the second condition is equivalent
to the familiar constraint for finite rules that all variables of the right-hand side
occur on the left-hand side as well. Moreover, this condition is indeed implied
by (ii) for any term metricm: suppose some variablex occurred inu but not in
t. Consider the functionf : Var → [0,1] with f (x) = 1, x 6= y ⇒ f (y) = 0: then
[[t]][[m]]( f ) = 0 but[[u]][[m]]( f ) > 0.

Such a semantic re-interpretation of the condition that thevariables of the right
occur on the left is not new, see [17] for the situation in higher-order rewriting.

Condition (ii) can be difficult to check, especially for non-simple term metrics.
Simple term metrics allow to check this condition variable by variable: in that case,
each variable is associated with a unary umm, and these have to be “larger” on the
left. In term metric∞ the condition can be expressed as follows: ifu|p ∈ Var then
there existsq∈ Pos(t) such thatt|q = u|p and the length ofp is not shorter than
the length ofq. As a consequence, “collapsing rules” (whereu is itself a variable)
are not allowed under term metric∞.

Condition (iii) has a double purpose: for non-simple term metrics it ensures
that condition (ii) is well-defined; for non-continuous term metrics it ensures that
any context that can be applied to (instances of) the left-hand side of a rule can
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also be applied to the corresponding instances of its right-hand side. A relation
R on Term(Σ) is calledcontext-safe(substitution-safe) if t R u implies that ifC[t]
(θ(t)) is defined thenC[u] (θ(u)) is defined as well.

Lemma 3 Let t→ u be an infinitary rule w.r.t. term metric m. The finite relation
{(t,u)} is substitution-safe, and its substitutive closure is context-safe.

Proof The lemma is trivial for continuous term metrics (because substitution and
context application are then total operations), so assume thatm is not continuous
and thatu is therefore finite (by condition (iii)). Assume thatθ(t) is defined.

Consider a Cauchy-sequence of finitary substitutionsθn that converges toθ .
The sequenceθn(t) converges toθ(t).

For anyi, j ∈N and any terms: dm(θi(s),θ j(s)) = [[s]][[m]]( fi j ), wherefi j (x) =
dm(θi(x),θ j(x)). In particular:

dm(θi(t),θ j(t)) = [[t]][[m]]( fi j ) ≥ [[u]][[m]]( fi j ) = dm(θi(u),θ j(u)),

where the≥ step follows from condition (ii) of being a rule. This means thatθn(u)
is itself a Cauchy sequence, and henceθ(u) is defined.

Now consider a Cauchy sequenceCn[ ] of finite contexts approximatingC.
Then Ci [θi(t)] is a Cauchy sequence approximatingC[θ(t)], where for all but
finitely many i dm(Ci [θi(s)],Cj [θ j(s)]) = Cm(dm(θi(s),θ j(s))); becauseCm is a
umm it is monotonic and hence the distances between elementsi and j in se-
quenceCi [θi(t)] are pointwise greater or equal than the corresponding distances in
Ci [θi(u)] which is therefore a Cauchy sequence as well. ⊓⊔

A relation onTerm(Σ) is called aninfinitary rewrite relationif it is lsc, pointwise
compact, substitutive and compatible.

An infinitary term rewrite systemconsists of a signatureΣ , a term metricm for
Σ , and a finite set of infinitary rewrite rules, relative toΣ andm. Its associated ARS
is (Term(Σ),→R) where→R is the compatible, substitutive and reflexive closure
of the relation given by the rules.

The motivation for these definitions has to be delayed for a little while, as some
of this rests on a number of technical results, on relations and their interaction with
metric completion.

7 Continuous Relations

We would like to lift relations between metric spacesV andW to relations between
their metric completionsV• andW•. To be able to do this in a systematic and
unambiguous way, we need some structural properties for such relations which
the lifting needs to preserve, in analogy to (uniform) continuity of functions.

There are different notions of continuity for relations around. In a nutshell, the
problem is the following: afunction f between topological spaces is continuous
iff f−1 maps open sets to open sets, and that is the case ifff−1 maps closed sets
to closed sets. Relations also have an associated inverse image function, but for
them these two conditions are not the same.

In particular, for any relationR : V ↔ W there is a functionR+ : 2W → 2V

defined asR+(X) =V−R−1(W−X) = {v∈V |R(v)⊆X}. Note that this function
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coincides withR−1 iff the relationRhappens to be a total function: we always have
R+(R(A)) ⊇ A andR+(W) = V. Clearly,R+ preserves openness iffR−1 preserves
closedness and vice versa.

To lift relations systematically, we view relations as set-valued functions, mov-
ing from a relationR : V ↔W to a function⌈R⌉ : V → 2W. Dually, if f : V → 2W

we write ⌊ f ⌋ : V ↔ W for the corresponding relation. Since we are operating
with metric spaces, this requires a metric on 2W. Given a bounded metric space
M = (M,dM) (we assume w.l.o.g. that the bound is 1), the metric space 2M has
as elements the closed subsets ofM , and their distancedH is defined as follows:

dH(A,B) = max(dL(A,B),dL(B,A))

dL( /0, /0) = 0

dL( /0,B) = 1, if B 6= /0

dL(A,B) = sup
a∈A

inf
b∈B

dM(a,b), if A 6= /0

Aside: this is sometimes definedwithoutthe empty set as member of 2M , because
that simplifies the rest of the definition. However, that modification would only
permit to model relations that are entire.

This is the Hausdorff metric, see [22, page 214], giving us for each bounded
metric spaceM another metric space 2M ; this construction extends to a functor:
given any functionf : M →P the function 2f : 2M → 2P is defined by 2f (X) =
Cl({ f (x) | x ∈ X}). If f is continuous (uniformly continuous, non-expansive, an
isometric embedding, an isometry) then so is 2f .

A fundamental property of the Hausdorff construction is itsrelation to com-
pleteness:

Proposition 7 Let M be any bounded metric space.2(M •) and (2M )• are iso-
metric.

Proof The literature, e.g. [22, page 407] and [14, page 124ff], focuses on show-
ing that the power-set construction preserves metric completeness. However, this
means that 2(M

•) and (2(M •))• are isometric — which is only half the proof.
For the other half we need to show that(2M )• and (2(M •))• are isometric as
well. First notice that both power-set construction and metric completion (as func-
tors) preserve isometric embeddings; this means (togetherwith the previous argu-
ment) that there is an isometric embedding from(2M )• to 2(M •), but we need
to show that this is onto. For each setX ∈ 2(M •) and eachx ∈ X there is a
Cauchy sequencex′ : N → M converging tox, and a function ˆx : R → N with
∀m,n ∈ N .m,n ≥ x̂(ε) ⇒ dM(x′(m),x′(n)) < ε. With this we can synchronise
all Cauchy sequences and formXn = Cl({x′(x̂(2−n)) | x ∈ X}) which gives us a
Cauchy sequence in 2M the limit of which isX. ⊓⊔

Remark: the reason for using ˆx(2−n) rather than simplyn in the construction ofXn
is that the latter could fail to turnXn into a Cauchy sequence ifX is an infinite set.
The given construction guarantees thatdH(X,Xi) ≤ 2−i .

Together with the metric completion functor this gives us a method to lift set-
valued continuous functions to metric completions — where we can view them as
relations again.
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Theorem 1 Let f : V → 2W be uniformly continuous. There is a unique uniformly
continuous function f′ : V• → 2(W•) such that for all x∈V we have f′(x)∩W =
f (x).

Proof We can always liftf to the metric completions:f • : V• → (2W)•. We then
post-composef • with the isometry from proposition 7 and get the desired mapf ′.
The uniqueness of the metric lifting gives us the uniquenessof f ′. ⊓⊔
The functionf and f ′ can easily fail to coincide on values inV, because sets that
are closed inW may no longer be closed inW•; for x ∈ V the value off ′(x) is
Cl( f (x)) — the closure of the setf (x) in W•. This is the reason for the intersection
with W in the theorem.

In order to be able to model a relationR as a set-valued function in this topol-
ogy we need that it is “pointwise closed”, and that its associated function⌈R⌉ is
continuous. These conditions are vacuously satisfied when we consider relations
between metric spaces with discrete topologies. A condition that is much better
behaved than “pointwise closed” is “pointwise compact” — this uses the same
metric on sets. The biggest advantage of this notion is that the relational compo-
sition of two relations that are pointwise compact is itselfpointwise compact. On
discrete topologies a set is compact iff it is finite, and thusa pointwise compact
relation (with discrete codomain) is finitely branching.

We would like to express continuity and especially uniform continuity more
directly in terms of the relation rather than indirectly through its associated set-
valued function. There are a couple of relevant properties of relations. A relationR
is calledlower semi-continuous(short: lsc) iffR−1(A) is open for any open setA.
It is calledupper semi-continuous(short: usc) iffR−1(A) is closed for any closed
A. In [13], the lsc relations were called continuous, while [8] reserve the term for
relationsR that are not only lsc, but also usc, and in addition finitely branching.
These terminology decisions are tied to various topologies(or metrics) on power-
set domains, for example the exponential topology, which has the same carrier set
as the exponential metric, but its topology can differ.

Proposition 8 Let R: A ↔ B be lsc and pointwise closed. Let a: N → A and
b : N → B be Cauchy sequences converging to a′ ∈ A and b′ ∈ B, respectively,
such that∀n.a(n) R b(n). Then a′ R b′.

Proof SinceR is lsc it is in particular lsc ata′ which means that for anyε > 0
there is aδ > 0 such thatdA(a′,x) < δ andx R y implies that there is ab′′ such
thata′ R b′′ anddB(b′′,y) < ε. SincedA(a′,a(n)) converges to 0 there must exist
b′′n with a′′ R b′′n anddB(b′′n,b(n)) < 2−k for any k. Thus, becauseR is pointwise
closed, we must havea′′ R b′′ as well. ⊓⊔

For the purposes of lifting relations to their metric completion, it will not suf-
fice to merely usesemi-continuousrelations, because even in the special case of
continuous functions is the lifting not always possible (ornot unique). In other
words, a notion ofuniform (semi-) continuity for relations is needed — which
should coincide with uniform continuity of the associated set-valued functions.
This is achieved by adapting the earlier notion:R is calleduniformly lsciff there
is a functionR̂on the strictly positive real numbers such that

∀ε > 0.BR̂(ε) ; R⊆ R ; Bε
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It is easy to see that “uniformly lsc” implies “lsc”. The propertyuniformly usccan
be expressed as:

∀ε > 0.R−1 ; BR̂(ε) ⊆ Bε/R

wherex(S/R)y ⇐⇒ ∀z.y R z⇒ x S z, see [3, page 99]. This property is not used
in the following.

There is a strong correspondence between uniformly continuous set-valued
functions and uniformly lsc relations.

Lemma 4 If a function f : V → 2W is uniformly continuous then⌊ f ⌋ is uniformly
lower semi-continuous.

Proof We show thatR= ⌊ f ⌋ is uniformly lsc with witnesŝR(ε) = f̂ (ε).

x (BR̂(ε); R) y⇐⇒∃x′.d(x,x′) < R̂(ε)∧x′ R y

⇐⇒∃x′.d(x,x′) < f̂ (ε)∧y∈ f (x′)

=⇒∃x′.d( f (x), f (x′)) < ε ∧y∈ f (x′)

=⇒∃x′. sup
v∈ f (x′)

( inf
w∈ f (x)

d(v,w)) < ε ∧y∈ f (x′)

=⇒∃x′. (∀v∈ f (x′). inf
w∈ f (x)

d(v,w) < ε)∧y∈ f (x′)

=⇒ inf
w∈ f (x)

d(y,w) < ε

⇐⇒∃w.w∈ f (x)∧d(y,w) < ε
⇐⇒∃w.x R w∧w Bε y

⇐⇒ x (R ; Bε) y

The step from line 2 to 3 uses the premise thatf is uniformly continuous, 3 to 4
one half of the definition ofdH ; 4 to 5 is an equivalence iff (x′) is finite (if the
relation is finitely branching) but it is always an implication. ⊓⊔

An implication in this direction is what we might have expected. Slightly surpris-
ingly, the implication also holds in the other direction:

Lemma 5 If a relation R: V ↔W is uniformly lower semi-continuous and point-
wise closed then⌈R⌉ is uniformly continuous.

Proof BecauseR is pointwise closed,⌈R⌉ indeed inhabits our semantic domain,
mapping each element to a closed set.

We first show thatd(a,b) < R̂(ε) implies thatdL(⌈R⌉(b),⌈R⌉(a)) ≤ ε:

d(a,b) < R̂(ε) =⇒∀x.b R x⇒∃y.a R y∧d(x,y) < ε
⇐⇒∀x∈ ⌈R⌉(b).∃y∈ ⌈R⌉(a).d(x,y) < ε
⇐⇒∀x∈ ⌈R⌉(b). inf

y∈⌈R⌉(a)
d(x,y) < ε

=⇒ sup
x∈⌈R⌉(b)

( inf
y∈⌈R⌉(a)

d(x,y)) ≤ ε

⇐⇒ dL(⌈R⌉(b),⌈R⌉(a)) ≤ ε
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The first step unravels the relation-algebraic statement ofuniformly lsc. The intro-
duction of the supremum can lose precision ifR is not finitely branching — this is
the reason for the≤ instead of<. From this we can now prove the lemma:

d(a,b) < R̂(ε) ⇐⇒ d(a,b) < R̂(ε)∧d(b,a) < R̂(ε)

=⇒ dL(⌈R⌉(b),⌈R⌉(a)) ≤ ε ∧dL(⌈R⌉(a),⌈R⌉(b)) ≤ ε
⇐⇒ dH(⌈R⌉(b),⌈R⌉(a)) ≤ ε
=⇒ dH(⌈R⌉(b),⌈R⌉(a)) < ε ·2

Hence, forf = ⌈R⌉, we can set̂f (ε) = R̂( ε
2), giving us a witness function for the

uniform continuity of f . ⊓⊔

Thus both lemmas together give us the following nice characterisation:

Theorem 2 A pointwise closed relation R: V ↔W (between metric spaces V and
W, where W is bounded) is uniformly lsc if and only if its associated set-valued
function⌈R⌉ : V → 2W is uniformly continuous.

Note: it appears unlikely that something as fundamental as that is a new result, but
I could not find it anywhere. Kuratowski’s results about the exponentialtopology
are ever so slightly different, e.g. in that setting continuous functions are both lsc
and usc [22, page 173].

In the following, the notationR• is also used to describe the lifting of a point-
wise closed and uniformly lsc relationR from V ↔W to V• →W•.

Proposition 9 Some useful observations about uniformly lower semi-continuous
relations. Uniformly lsc relations are closed under:

1. binary union
2. composition
3. product, i.e. if p: Z ↔ A and q: Z ↔ B then〈p,q〉 : Z ↔ A×B.

Proof Note that in all three cases we need to construct a new witnessfunction as
well.

1. LetR andSbe uniformly lsc andT = R∪S. We setT̂(ε) = min(R̂(ε), Ŝ(ε)).

BT̂(ε); T = (BT̂(ε); R)∪ (BT̂(ε); S) ⊆ (BR̂(ε); R)∪ (BŜ(ε); S)

⊆ (R ; Bε )∪ (S; Bε) = T ; Bε

2. This time letT = R ; S, andT̂(ε) = R̂(Ŝ(ε)).

BT̂(ε); T = BR̂(Ŝ(ε)) ; (R ; S) = (BR̂(Ŝ(ε)); R) ; S

⊆ (R ; BŜ(ε)) ; S= R ; (BŜ(ε) ; S)

⊆ R ; (S; Bε) = T ; Bε

3. We set〈̂p,q〉(ε) = min(p̂(ε), q̂(ε)) and get:

B〈̂p,q〉(ε)
; 〈p,q〉 = 〈B〈̂p,q〉(ε)

; p,B〈̂p,q〉(ε)
; q〉 ⊆ 〈Bp̂(ε); p,Bq̂(ε); q〉

⊆ 〈p ; Bε ,q ; Bε〉 = 〈p,q〉 ; Bε
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⊓⊔

Although uniform lsc is preserved by binary union, it is not (in general) preserved
by arbitrary union. The arbitrary union of lsc relations is always lsc [22, page 179],
but uniformity can be lost through that process. We would have to set the witness
function

⋃̂
Ri(ε) to be inf(R̂i(ε)) and this infimum could be 0. This can already

happen when we form the transitive closure of a uniformly lscrelation, because
R∗ =

⋃
Rn and eachRi is uniformly continuous (a consequence of proposition

9). An example is the functionf : R → R with f (x) = 2 · x; this is a uniformly
continuous function, relative to the usual distance metric, and hence it clearly is
uniformly lsc when viewed as a relation, but the transitive closure of f is not
uniformly lsc: for a givenε we would need to find aδ such that 2m ·δ < ε, which
is possible for a finite number ofm’s but not if we need aδ that works for allm.

An important special case of uniformly semi-continuous relations is the fol-
lowing: a relationR is calledeventually non-expansive belowα (short:ene), where
α > 0, iff ∀ε < α . Bε ; R⊆ R ; Bε . It is strictly eneif this holds with respect to
closedε-balls: ∀ε ≤ α . Bε ; R⊆ R ; Bε . Clearly, if R is ene belowα then it is
uniformly lsc, with witness function̂R(ε) = min(ε,α). For bounded metrics one
can assume w.l.o.g. thatα = R̂(δ ), whereδ is the diameter of the metric space;
in this case we can leave “belowα” implicit. Moreover: if R is ene belowα and
pointwise closed thenR• is also ene belowα .

Relations that are (eventually) non-expansive are also closed under union,
composition and finite products, but there are further operations under which they
are closed. In particular, non-expansive relations are closed underarbitrary union
(and infinite products); this is not true for ene relations ingeneral, but the transitive
closure of an ene relation is always ene.

8 Continuity of Rewriting

Linking the definitions of the rewrite relations of finite andinfinitary term rewrit-
ing systems we would expect that two constructions should bestrongly related:
given afinite TRS, the rules of which also match the constraints forinfinitary
TRSs (w.r.t. some term metricm) we can either:

– view it as a finite TRS and lift its (finitary) rewrite relationusing theorem 1
– view it as an infinite TRS and construct its (infinitary) rewrite relation directly

This is only meaningful if the relation on finite terms is uniformly lsc, because
otherwise there is no canonical lifting; it also has to be pointwise compact, but
this condition is implied by the constraint to finitely many rewrite rules.

Proposition 10 Let R: Ter(Σ) ↔ Ter(Σ) be any rewrite relation which is uni-
formly lsc and pointwise compact. Then R• is an infinitary rewrite relation.

Proof The properties of lifting ensure thatR• is uniformly lsc and pointwise com-
pact. It is clearly closed under finite contexts and finite substitutions. The applica-
tion of infinitary substitutions and contexts arises as the limits of finitary substitu-
tion and context application. Then apply proposition 8. ⊓⊔

The substitutive closure is particularly well-behaved:
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Lemma 6 The substitutive closure of a rule t→ u of an infinitary TRS is strictly
ene.

Proof Let R be the substitutive closure of this rule. It is strictly ene below [[t]]k1
m :

Supposea R bwith a = θ(t), b = θ(u). Let s∈ Term(Σ) with dm(s,a) ≤ ε <
[[t]]k1

m . Hencedm(s,θ(t)) < [[t]]k1
m and by the pattern property oft this means that

s= σ(t) for someσ ; so:s Rσ(u). Butdm(σ(u),θ(u)) = [[u]][[m]]( f )≤ [[t]][[m]]( f ) =
dm(σ(t),θ(t)) ≤ ε, where f is the functionf (x) = dm(σ(x),θ(x)). ⊓⊔

The proof works unchanged to show that similarly the substitutive closure of a
finitary rule is strictly ene as a relation on finite terms, w.r.t. any term metricm for
which the rule classifies as an infinitary rule.

Aiming for rewrite relations that are lsc but not uniformly lsc is not very sat-
isfactory, because lsc is a weak property for relations on infinitary terms. One can
observe this as follows:

Proposition 11 Let R be any relation on Term(Σ) that is compatible and reflexive.
Then it is lsc as well.

Proof Let t ∈ Term(Σ) and ε > 0. We have to findδ > 0 such thatdm(t, t ′) <
δ ∧u R vimplies that there is au′ with dm(u′,v) < ε ∧ t R u′∨ t = u′. We can set
δ = min{Cm(ε) | p∈ Posmε (t),C[ ] = t[ ]p}, and for thisδ it suffices to picku′ = t.

⊓⊔

Explanation: any infinitary termt has only finitely many positions at which chang-
ing the subterm at that position deviates fromt with ε or more. We can “protect”
these positions by translating them into a (safe) distance for t; applyingR at other
positions will stay withinε-distance oft.

To get something stronger the metric has to have certain properties.

Proposition 12 Let R be any strictly ene and context-safe relation on Term(Σ). If
m is subadditive then the compatible and reflexive closure ofR is uniformly lsc. In
particular, if R is strictly ene belowα then for allε < α :

B ε
⌈1/α⌉

; R⊙ ⊆ (R⊙ ; B ε
⌈1/α⌉

)∪Bε

Proof Let R be strictly ene belowα . Let S= id∪R⊙. The function witnessing its
uniformity is set as

Ŝ(ε) =
ε⌈
1
α
⌉

To check that this is indeed a uniformity witness: notice first that Ŝ(ε) ≤ ε. Now
supposet R uanddm(C[t],a) < Ŝ(ε). SinceC[t] S C[u], ab needs to be found such
thata S banddm(b,C[u]) < ε. There are two cases: (i)Cm(1) < ε, (ii) Cm(1) ≥ ε.

In case (i)dm(C[t],C[u]) = Cm(dm(t,u)) ≤ Cm(1) < ε. Becausedm(C[t],a) <
Ŝ(ε)≤ ε the ultra-metric property givesdm(a,C[u]) < ε. Hence we can pickb= a
asa S aby reflexivity.

In case (ii)ε ≤Cm(1); we abbreviatek = ⌈1/α⌉ and get:

Cm(α) ≥Cm(
1
k
) ≥ Cm(1)

k
≥ ε

k
= Ŝ(ε)



22

The first inequation holds by monotonicity ofCm (and ⌈x⌉ ≥ x, for all x); the
second follows from subadditivity ofCm, the third is dividing inequation (ii) by
k, the fourth is the definition of̂S(ε). Hencedm(C[t],a) < Cm(α) and by lemma
2: a = D[a′], D ∼ C anddm(t,a′) < α . Sinceδ = dm(t,a′) < α andR is strictly
ene belowα it follows that Bδ ; R⊆ R ; Bδ . Thus there is ab′ with a′ R b′ and
dm(b′,u)≤ δ . BecauseR is context-safe,D[b′] is defined and we can setb= D[b′];
clearlya S b. Using proposition 6 one can show thatdm(D[b′],C[u]) < ε as well:

dm(D[b′],C[u])≤max(dm(C[u],D[u]),dm(D[b′],D[u]))

=max(dm(C[u],D[u]),Cm(dm(b′,u)))

≤max(dm(C[t],D[a′]),Cm(δ ))

=max(dm(C[t],D[a′]),dm(C[t],C[a′]))

=dm(C[t],D[a′]) < ε.

⊓⊔
Ultra-metric maps that are not subadditive (such asx2) can prevent the compatible
closure (of the substitutive closure) of a single rewrite rule t → u to be uniformly
lsc. The reason is: (i) some termssare closer than distance 1 fromt without being
substitution instances (1> dm(s, t) > [[t]]k1

m ); (ii) non sub-additive contextsC[ ] can
makeCm(dm(s, t)) arbitrarily small but keepCm(dm(t,u)) = 1.

As before, proposition 12 can be adapted for finite terms and relations, but
w.r.t. the same metric.

Theorem 3 Let (Σ ,m,R) be an infinitary rewrite system such that m is subaddi-
tive. Then the relation→R of its associated ARS is an infinitary rewrite relation.

Proof By construction→R is substitutive and compatible. It remains to be shown
that it is lsc and pointwise compact. By lemma 6 the substitutive closure of a rule is
strictly ene and by lemma 3 it is context-safe, which impliesby proposition 12 that
its compatible and reflexive closure is uniformly lsc. Sincethere are only finitely
many rules the union of their rewrite relations is still uniformly lsc (proposition
9).

To show that→R is pointwise compact it suffices to show that ifA⊆ {u | t →R
u} is infinite thenA contains a Cauchy sequence, and thatt is →R-related to the
limit of that sequence. The elements ofA are all of the formt[ap,i ]p, for various
p∈ Pos(t) wheret|p is related toap,i by the substitutive closure ofR. Since that
relation is finitely branching andA is infinite,A must containt[ap,i]p for infinitely
many differentp. Picking one for eachp and arranging them by the length ofp
gives indeed a Cauchy sequence — with limitt, andt →R t by reflexivity. ⊓⊔
The reason why the rewrite relation of an infinitary TRS is required to be reflexive
should be clear from the proof of theorem 3: it is useful for showing that the
compatible closure is lsc and also that the relation is pointwise compact.

9 Convergence

A metric abstract reduction system(short: MARS) is a structure(M,d,→) such
that (M,d) is a metric space and(M,→) is an abstract reduction system. It is
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calledconverging(Cauchy) iff any reduction sequence of lengthω is converging
(Cauchy). Observation: if(M,d) has a discrete topology then(M,d,R) is converg-
ing iff the relationR\ idM is terminating.

Proposition 13 Let (M,d,→) be a MARS such that(M,d) is an ultra-metric.
Then it is Cauchy iff the irreflexive interior of the relations→/Bε (→ moduloBε )
is strongly normalising for allε > 0.

Proof A reduction sequencef of lengthω is Cauchy iff for allε there is ann such
that the set{ f (k) | k≥ n} has a diameter of at mostε. In an ultra-metric this is the
case iff, for allk≥ n, d( f (k), f (k+1)) ≤ ε. If a reduction sequence of→ fails to
be Cauchy, it fails for one particularε, and in an ultra-metric this means that there
is a reduction sequence with infinitely many steps of at leastε-distance. ⊓⊔

Proposition 13 is a useful tool for convergence proofs, because for an infinitary
TRS (Σ ,m,R) the MARS(Term(Σ),→R)/Bε can be represented as a relation on
finite terms — the termination of which can be checked by traditional means. This
is based on another observation of the equivalence relations Bε .

Given an infinitaryt ∈ Term(Σ), anopen representative of t atε is a finite term
u ∈ Ter(Σ), such that (i)u ∈ Bε(t), and (ii) ∀v ∈ Bε (t).∃θ ∈ Θ(Σ)m. θ(u) = v;
notation:t ցε u if u is an open representative oft at ε.

Proposition 14 Let m be a term metric. For anyε > 0 and any t∈ Term(Σ) there
is a u such that tցε u.

Proof Any Bε(t) contains a finite termu′. Suppose somet ′ ∈ Bε (t) is not a sub-
stitution instance ofu′ thenu′ = C[u1, . . . ,un], t ′ = C[t1, . . . , tn] for some context
C[ ] where the roots ofti andui are distinct. Consider the termu′′ = C[x1, . . . ,xn]
where the variablesxi are fresh. Clearly,dm(t ′,u′′) = dm(u′′,u′) = dm(u′, t ′) ≤ ε,
and botht ′ andu′ are substitution instances ofu′′. This cannot be repeated in-
finitely, becauseu′′ is of smaller size thanu′ (counting function symbols and re-
peated variable occurrences). ⊓⊔

The representatives can be used to express reductions onBε equivalence classes,
and even modified rewrite rules. Some fundamental properties of representatives:

Proposition 15 Let tցε u. Then for all p∈ Pos(u): (i) ∀s∈ Bε(t).s
p∼ u and (ii)

if m is continuous then t|p ցδ u|p whereδ = C#
m(ε) and C[ ] = u[ ]p.

Proof (i) is obvious: since all terms inBε(t) are substitution instances ofu they
must have the same function symbols asu up to its variable positions. For (ii) first
note that because of (i) and proposition 6 thatCm is not only the context function
of u[ ]p but of anys[ ]p with s∈ Bε(t). Second, consider the distance between
t|p andu|p: ε ≥ dm(t,u)≥ dm(t, t[u|p]p) = Cm(dm(t|p,u|p)). ApplyingC#

m on both
sides givesC#

m(Cm(dm(t|p,u|p))) ≤ C#
m(ε) which impliesdm(t|p,u|p))) ≤ C#

m(ε).
Third, consider any terma with dm(a, t|p) ≤ C#

m(ε); it needs to be shown that
a is a substitution instance ofu|p. SinceCm/C#

m form a Galois connection for
continuousm, the premisedm(a, t|p) ≤ C#

m(ε) impliesCm(dm(a, t|p)) ≤ ε, hence
dm(t[a]p, t) ≤ ε. Thusθ(u) = t[a]p for some substitutionθ (asu representst ’s ε-
ball) and thereforeθ(u|p) = a. ⊓⊔
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In the following, it is assumed (without loss of generality,merely for sim-
plicity of presentation). that signatureΣ contains a function symbol⊥ of arity
0. The variables of an equivalence class are those that occurin every term, i.e.
var(Bε(t)) =

⋂{var(u) | dm(t,u) ≤ ε}. A finite termu is aclosed representative
of r, notationr ↓ε u, if and only if:

r ↓ε u ⇐⇒ ∃s∈ Ter(Σ). r ցε s ∧ θ(s) = u where

θ(x) =

{
x if x∈ var(Bε(r))
⊥ if x∈ Var\var(Bε(r))

Explanation: by construction,r ↓ε u ensures thatu ∈ Bε(r); moreover, the only
variables left inu occur in all terms of the class. In fact, the relation↓ε is a func-
tion,u is unique. Given an infinitary rulet → u we write[t → u]ε for a pair of finite
terms(t ′,u′) such thatt ցε t ′∧u ↓ε u′′ and then eitherdm(t ′,u′′) > ε ∧u′ = u′′ or
dm(t ′,u′′) ≤ ε ∧u′ = t ′.

Note: if t → u is an infinitary rule w.r.t. term metricm then[t → u]ε is a finitary
rule (for ε < 1), i.e.t ′ is not a variable and all variables inu′ occur int ′ as well;
the first follows fromε < 1 (for ε = 1 we always have[t → u]1 = (x → x)), the
second follows from condition (ii) of being an infinitary rule.

The rulet ′ → u′ simulates the behaviour of applying rulet → u at the root of
a term: ifa = θ(t) andb = θ(u) then there are finite termsa′ andb′ and a finitary
substitutionθ ′ such that:dm(a,a′) ≤ ε, dm(b,b′) ≤ ε, θ ′(t ′) = a′, θ ′(u′) = b′.

To simulate the behaviour of the compatible closure one can construct the
derived rule[C[t] →C[u]]ε for any contextC[ ] and any rulet → u.

Given an iTRSA = (Σ ,m,R) the notation[R]ε stands for the substitutive clo-
sure of the following relation onTer(Σ): t ′ [R]ε u′ ⇐ (t ′ → u′) = [C[t]→C[u]]ε for
some rulet → u∈ R and some infinitary contextC[ ]. Notice that[R]ε is strictly
ene belowε: this holds because any term withinε distance oft ′ is an instance of
t ′, and so lemma 6 can be applied.

Proposition 16 Let A= (Σ ,m,R) be an iTRS,ε > 0 and f be anω-sequence in
Term(Σ) such that∀n∈ ω. f (n) →R tn Bε f (n+1). Then there is anω-reduction
sequence g of the MARS(Ter(Σ),dm, [R]ε) such that∀n.dm( f (n),g(n)) ≤ ε.

Proof Forg(0) we can pick any finite terma with dm( f (0),a)≤ ε, e.g. we can set
f (0) ↓ε a = g(0). Thusdm( f (0),g(0))≤ ε.

Since f (n) →R tn Bε f (n+ 1) we have thatf (n) = σ(C[t]) andtn = σ(C[u])
for some rulet → u, some contextC[ ], and some substitutionσ .

The relation[R]ε contains the rule[C[t] →C[u]]ε , with C[t] ցε t ′ andC[u] ↓ε
u′. By definition of ցε there is a substitutionθ with θ(t ′) = C[t]. Thus also
σ(θ(t ′)) = f (n). SinceC[u] ↓ε u′ it follows dm(C[u],u′)≤ ε and because substitu-
tion application is non-expansive alsodm(tn,σ(u′)) = dm(σ(C[u]),σ(u′))≤ ε; see
diagram (top-left triangle). Because[R]ε is strictly ene it is uniformly lsc (trivially,
it is pointwise closed) and thus can be lifted to infinitary terms — where it remains
strictly ene belowε. Sincef (n) [R]ε σ(u′) anddm( f (n),g(n))≤ ε there must exist
anan such thatg(n) [R]ε an anddm(an,σ(u′)) ≤ ε (bottom-left triangle). We can
assumean ∈ Ter(Σ) as all rules in[R]ε relate finite terms to finite terms. Overall
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we can chooseg(n+1) = an which gives the following picture:

f (n)
R

//

[R]ε ""
FFF

FF
FFF

ε

tn
ε

ε

f (n+1)

εσ(u′)

ε

uuuuuuuuu

ε IIIIIIIII

g(n)
[R]ε

// g(n+1)

Finally, sincedm is an ultra-metric,Bε is an equivalence relation which allows to
concludedm( f (n+1),g(n+1))≤ ε. ⊓⊔

Corollary 3 If the rewrite relation of an iTRS(Σ ,m,R) is not converging then for
someε > 0 the MARS(Ter(Σ),dm, [R]ε) is not Cauchy.

Proof Any non-converging reduction sequenceh has anε such that (for infinitely
many n) dm(h(n),h(n+ 1)) > ε; this sequence can be reshaped to match the
premise of proposition 16 by combining all consecutive reduction steps within
ε-distance asBε steps. The resulting[R]ε steps must preserve the distance. ⊓⊔

Generally, the number of rules in[R]ε is infinite, because there are infinitely many
contexts. This does not make it a good candidate for direct proof techniques, es-
pecially asε needs to be chosen as well. However, the relation[R]ε can itself
be simulated by afinite TRS if the term metric is continuous. Given an iTRS
A = (Σ ,m,R) with continuous term metricm the notation[A] stands for the TRS
(Σ ,

⋃
0<ε<1{[t → u]ε | (t → u) ∈ R}.

Forming the union withall ε is an over-approximation of what the context
functionsCm (and their inversesC#

m) can do to a specificε. A desirable side-effect
of this construction is that the definition of[A] no longer refers toε; thus anyω
reduction moduloBε for anyε can be simulated by the TRS[A].

It is worth illustrating the construction of this TRS at an example. LetRbe the
following rewrite rule:

H(F(x,G(y,z))) → K(C,F(D(D(y)),x))

considered w.r.t. term metric∞. The corresponding TRS[R] consists of the fol-
lowing rules:

H(x1,x2) → K(⊥,⊥)

H(F(x1,x2)) → K(C,F(⊥,⊥))

H(F(x,G(y1,y2))) → K(C,F(D(⊥),x))

H(F(x,G(y,z)))→ K(C,F(D(D(⊥),x)))

H(F(x,G(y,z)))→ K(C,F(D(D(y),x)))

These five rules are[R]2−k with k ranging from 1 to 5, in that order. Focusing onε
that are negative powers of two suffices for term metrics∞, g andd.
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Proposition 17 Let A= (Σ ,m,R) be an iTRS with continuous term metric m. If
(the MARS of) A is not converging then (the MARS of)[A] is not Cauchy.

Proof Corollary 3 tells us that[R]ε is not Cauchy for someε; we are going to show
[R]ε ⊆→[A]. Supposea[R]εb with dm(a,b) > ε. Then there is a rulet → u∈ Rand
a contextC[ ]p and a finitary substitutionθ such thatC[t] ցε t ′ ∧C[u] ↓ε u′ and
θ(t ′) = a andθ(u′) = b. In [A] there is the rulet ′′ → u′′ = [t → u]C#

m(ε). Because
m is continuous, proposition 15 implies thatt ′|p is a representative ofC[t]p|p = t
at distanceCm(ε). But so ist ′′, and thus there is a variable renaming substitution
ρ with ρ(t ′′) = t ′|p. Moreover,u′′ = u′|p, because the closed representative is a
substitution instance of the open representative, so proposition 15 applies again,
and ρ(u′′) = u′′, becauseρ(x) = x for all variablesx ∈ var(Bε). Overall, a =
a[θ(ρ(t ′′))]p →[A] a[θ(ρ(u′′))]p = a[θ(u′′)]p = b. ⊓⊔

10 Proving a TRS to be Cauchy

The contra-positive of proposition 17 gives us a handle to prove an iTRSA to be
converging: simply prove that the finite TRS[A] is Cauchy. There is a relatively
straightforward technique for managing these proofs whichis based on original
ideas from [9].

The central idea is the following: If, for a finitary TRS, the substitutive clo-
sure of the rules is terminating and no reduction sequence contains infinitely many
redex-contractions at position〈〉 then the rewrite process moves deeper and deeper
inside the terms, and is therefore converging — that is: w.r.t. metricd∞. For other
metrics the argument does not quite suffice, but it can be adapted: typically termi-
nation of a relation is proved by showing that it is included in some other termi-
nating relation>. ContextsC[ ] that cannot be repeated infinitely many times need
to preserve that strict relation>.

A umm f is calledshrinkingiff the sequencea0 = 1,an+1 = ∆ f (an) converges
to 0. A contextC[ ] is shrinking (w.r.t. term metricm) iff the ummCm is shrinking.
A term metricm is calleduniform if the pointwise supremum of all shrinking
metric morphisms of the formCm is itself shrinking.

Proposition 18 The term metrics∞, g, r, d, id, and c are all uniform.

Proof Notice all metric morphisms of concern arise as compositions of the form
f1 ◦ · · · ◦ fk where eachfi is either fm or halving.id has no shrinking umms at all,
so the pointwise supremum is the constant 0 function (which is shrinking). For
the other metrics,all shrinking metric morphisms are multiplications with 2−k for
somek > 0 (obvious for all butr, see below). Thus, their pointwise supremum is
“halving” — which is shrinking.

For r (with fr(x) =
√

x), we need to show that no shrinking metric morphism
involves square root. It suffices to show this for a single occurrence of fr (one
eager position), because these metric morphisms are pointwise lower bounds for
the others. Letf be such a metric morphism, i.e. it is of the formf (x) = 2−n ·√

2−k ·x = 2−n−k/2 ·√x, for some fixedk andn. This function fails to shrink for
x≤ 2−2n−k. ⊓⊔
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The following definition is normally used in the context of termination proofs
(see [25, page 253]): a quasi-ordering� on Ter(Σ) is called areduction quasi-
ordering if

(i) ≻ is strong normalising
(ii) every substitution is both≻-monotonic and�-monotonic
(iii) every function symbolF is�-monotonic w.r.t. the product quasi ordering

Here,≻ is the relationx≻ y ⇐⇒ x� y∧¬(y� x).
A reduction quasi-ordering� is calledshrink-stablew.r.t. term metricm if for

every shrinking contextC[ ] we havet ≻ u⇒C[t] ≻C[u].

Theorem 4 Let (Σ ,R) be a TRS, m a uniform term metric and� a shrink-stable
reduction quasi-ordering on Ter(Σ).
If R is a subrelation of≻ then(Ter(Σ),dm,→R) is Cauchy.

Proof Sincem is uniform there is a shrinking ummh that is the supremum of
all shrinking context functions. We show that anyω reduction sequence of→ is
eventually within diameterhr(1), by induction for allr. The baser = 0,h0(1) = 1
is trivial.

Consider anyω-reduction sequencef of →R. Clearly, it is also a reduction se-
quence for�, because contexts and substitutions preserve this order. Because≻ is
strongly normalising, there is ak≥ 0 such that∀n≥ k.¬( f (n)≻ f (n+1)). More-
over, for eachn there are a contextDn[ ]pn, a substitutionθn and a ruletn → un ∈ R
such thatf (n) = Dn[θn(tn)] and f (n+1) = Dn[θn(un)]. Because substitutions pre-
serve the strict order and� is shrink-preserved this means that for alln≥ k context
Dn must be non-shrinking.

A position p ∈ Pos( f (k)) is calledstable if none of the positionsp j , j ≥ k

is a proper prefix ofp. In particular, f (k)
p∼ f (k + x). It is maximally stable

if it is stable andp = pi for somei. For any maximally stablep the function
gp(i) = f (k+ i)|p defines anomega-reduction sequence (on the reflexive closure
of →R). By induction hypothesis, it is eventually within diameter hr(1), say from
kp. Becausef (k) has only finitely many positions it also has only finitely many
maximally stable positionsq and beyond the maximum of all of theirkq all gq will
be within diameterhr(1). We can recover the distances withinf from the sub-
term projections:dm( f (k+ n), f (k+ n+ 1)) = maxq(Cq(dm(gq(n),gq(n+ 1)))),
whereq ranges over the maximally stable positions inf (k) andCq is the context
function of the contextDk+x for which pk+x = q. Notice that for eachn, the val-
uesCq(dm(gq(n),gq(n+ 1))) are non-zero for at most oneq, the one for which
q is a prefix ofpk+n. Because eachCq is pointwise bounded byh it follows that
dm( f (y), f (y+1)) ≤ h(hr(1)) = hr+1(1) for all y≥ k+maxq(kq). ⊓⊔

The argument in the proof of theorem 4 is not fundamentally new (see proposition
5 in [11]) except that the presence of non-shrinking contexts under a term metric
complicates matters slightly.

How does one find a quasi-reduction ordering that is shrink-stable? This is
typically similar to the task of showing a TRS to be simply terminating, except
that at several stages one can use the weak order� where a termination proof
would require the strict order≻. This is best demonstrated at an example.
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11 Application Example

The chapter on infinite rewriting in [21] motivates the subject with the following
example, an iTRS modelling the sieve of Eratosthenes:

Filter(Cons(x,y),Zero,m) → Cons(Zero,Filter(y,m,m))

Filter(Cons(x,y),S(n),m) → Cons(x,Filter(y,n,m))

Sieve(Cons(Zero,y)) → Sieve(y)

Sieve(Cons(S(n),y)) → Cons(S(n),Sieve(Filter(y,n,n)))

Nats(n) → Cons(n,Nats(S(n))

Primes→ Sieve(Nats(S(S(Zero))))

Given that this is such a fundamentally motivating example,one would expect that
it is converging, w.r.t. to some term metric. However, it is not, at least not as an
iTRS with the definition as in this paper.

Because of the penultimate rule, for it to be converging it isnecessary that the
componentConsm,2 is shrinking, to allow “infinite lists”. This causes a problem
with the third rule, because it lifts variabley out of such a shrinking context; for
this to be a proper rule the functionSievem would have to be non-continuous at
0, which in turn would prevent us from applyingSieveto any (eventually) infinite
lists, but the rewrite system does, with its last two rules.

The problem seems a technicality, caused by our condition (ii) for rewrite
rules when the third rule of the system is considered. However, there is indeed a
slight problem with this rule. If the metric allows arbitrary infinite lists then rule 3
would rewrite the termSieve(Cons(Zero,(Cons(Zero, . . .))))) to itself. Although
this does not contradict convergence (reflexive steps neverdo), it does contradict
strong convergence[21], which requires that any reduction sequence moves redex
positions arbitrarily deep into the terms. This redex wouldstay happily at position
〈〉, and the convergence is slightly accidental.

The iTRS is repairable though — it is generally possible to make rules comply
with condition (ii) by padding them with “delay” functions.For term metric∞ the
modified rules look like this:

Filter(Cons(x,y),Zero,m) → Cons(Zero,Filter(y,m,m))

Filter(Cons(x,y),S(n),m)→ Cons(D(x),Filter(y,n,m))

Sieve(Cons(Zero,y)) → D(Sieve(y))

Sieve(Cons(S(n),y)) → Cons(S(D(n)),Sieve(Filter(y,n,n)))

Nats(n) → Cons(n,Nats(S(n))

Primes→ Sieve(Nats(S(S(Zero))))

D(Cons(x,y)) → Cons(D(x),D(y))

D(S(x)) → S(D(x))

D(Zero) → Zero

Essentially, the functionD is the identity function (on streams or numbers), but its
appearance on right-hand sides pushes variables further down the term. IfSieve
was now applied to an infinite stream of zeros the system would(strongly) con-
verge to the termD(D(. . .)).
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For term metric∞ all rules are now “legal”: the lowest nesting depth of a
variable on the right-hand side is never smaller than the corresponding value on
the left-hand side. To prove that this iTRSS is converging, we can build the finite
TRS [S] (since∞ is continuous) and show that[S] is Cauchy (on finite terms).
System[S] contains all the rules ofSplus the following:

Filter(x1,x2,x3) → Cons(⊥,⊥)

Filter(Cons(x1,y1),Zero,m) → Cons(Zero,Filter(⊥,⊥,⊥))

Filter(Cons(x1,y1),S(n1),m) → Cons(D(⊥),Filter(⊥,⊥,⊥))

Sieve(x1) → D(⊥)

Sieve(Cons(x1,y1)) → D(Sieve(⊥))

Sieve(x1)) → Cons(⊥,⊥)

Sieve(Cons(x1,y1)) → Cons(S(⊥),Sieve(⊥))

Sieve(Cons(S(n1),y)) → Cons(S(D(⊥)),Sieve(Filter(⊥,⊥,⊥)))

Nats(n1) → Cons(⊥,⊥)

Nats(n) → Cons(n,Nats(⊥)

Nats(n) → Cons(n,Nats(S(⊥)))

Primes→ Sieve(⊥)

Primes→ Sieve(Nats(⊥))

Primes→ Sieve(Nats(S(⊥)))

Primes→ Sieve(Nats(S(S(⊥))))

D(x1) → Cons(⊥,⊥)

D(Cons(x1,y1)) → Cons(D(⊥),D(⊥))

D(x1) → S(⊥)

D(S(x1)) → S(D(⊥))

D(x1) → Zero

It is very easy to find a reduction ordering for this TRS (beingshrink-stable comes
for free under term metric∞) to show that it is Cauchy: the order only compares
the root symbols and ignores the rest of the terms. One can view this as an inter-
pretation of terms in the ordinal 4:

Primes4 = 3 Nats4(x) = 1 S4(x) = 0
Sieve4(x) = 2 D4(x) = 1 Zero4 = 0
Filter4(x,y,z) = 1 Cons4(x,y) = 0 ⊥4 = 0

This interpretation interprets all left-hand sides as bigger numbers than their right-
hand sides. This order is clearly well-founded and preserved by all non-shrinking
contexts (as the trivial context is the only one), sot � u ⇐⇒ [[t]]4 ≥ [[u]]4 is a
reduction quasi-ordering that shows (using theorem 4) that[S] is Cauchy and thus
by proposition 17 that the iTRSS is converging.
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12 Potential Variations

The definitions chosen here do not cover every possible variation one might want
to throw at infinitary rewriting, but they go very far and thissection discusses some
alternatives.

This paper only looked at infinitary rewriting within ordinal ω: all infinite
terms arise as metric completions of finite terms, all operations on these terms arise
through metric completion of uniformly continuous functions operating on finite
terms, and similarly the relations between infinite terms arise as completions of
uniformly lsc relations between finite terms. Forcing everything to jump through
this completion hoop means that nothing of interest would happen “beyondω”,
i.e. such iTRSs are “ω-closed”. This is not the only approach one can take, in fact
much of the infinitary rewriting literature [21,11] operates directly on infinitary
terms, and extends its studies to relations that are notω-closed. I would argue
that forcing the study of infinitary rewriting to follow a completion process is
important, as it is a protection against random concepts andrandom definitions;
however,metric completionis not the only mechanism at our disposal, and other
completion processes could give sensible notions of transfinite rewriting at larger
ordinals.

In all cases, the rewrite relations on infinitary terms were defined to be re-
flexive. It is possible to deviate from that (and maintain that such relations are
uniformly lower semi-continuous and pointwise closed), but not very far: it would
suffice to require that such relations are merely reflexive inthe neighbourhood of
accumulation points, but anything weaker would be problematic.

All iTRSs were required to have onlyfinitely manyrules. The reason for this
constraint is to ensure that the lifting of the rewrite relation from finite to infinitary
terms is canonical and unique. This does not mean that an infinite set of rules never
has such a canonical and unique lifting, but it would no longer suffice to look at
individual rules to establish that.

Rewrite relations were required to bepointwise compact. For a uniformly lsc
relationR to be liftable it would suffice to impose the weaker conditionthat it is
pointwise closed. However, that stronger condition ensures that lifting is functo-
rial w.r.t. relational composition:R• ; S• = (R ; S)•. Moreover, because of the con-
straint to finitely many rules that was imposed for other reasons anyway, pointwise
compactness is guaranteed. Pointwise compactness is not the only invariant one
can use to ensure that lifting distributes over relational composition: an alternative
would be to require that the inverse relationR−1 is uniformly usc.

One condition for pairs of terms(t,u) to qualify as infinitary rules turned out
to be very strong, condition (ii):[[t]][[m]] ≥ [[u]][[m]]. It is possible to relax this re-
quirement in various ways, e.g. an alternative condition would be:

∃k∈ N .∀ f ∈ Var→ m. k · [[t]][[m]]( f ) ≥ [[u]][[m]]( f ).

This would still imply that all variables on the right-hand side occur on the left,
and for subadditivem the rewrite relation would still be uniformly lsc. In other
words, this would give rise to a sensible notion of infinitaryrewriting. Moreover,
the application example from the previous section would (inits original version)
now be legal under metric∞. However, the relaxation with a factork badly affects
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convergence proofs, in particular the proof of proposition16 would irreparably
fail.

In [21] (as well as earlier papers on which their chapter is based) the authors
largely abandoned the semantic notion of convergence for a stronger variety, called
strong convergence, because this shows better behaviour w.r.t. confluence prob-
lems. A reduction sequence is strongly convergent if redex positions (this is w.r.t.
term metric∞) move eventually arbitrarily deep. First, note that this isgeneralis-
able to other term metrics: the “depth” of a rewrite stepC[θ(t)]→C[θ(u)] in term
metricmcan be seen as the valueCm(1) — which is also the distance between the
two termsif they have different root symbols. Thus anω-reduction sequence is
strongly convergent if its depths converge to 0. An entire iTRS could be regarded
as strongly convergent if all its reduction sequences are strongly convergent.

This has still a very syntactic flavour, because the depths are associated with
contexts, and ARSs have such numbers not occur in any other way. However,
they might: instead of using ARSs with ordinary relations one could use fuzzy
ARSs withfuzzy relations(see e.g. [12]) — in a fuzzy set/relation characteristic
functions that are{0,1}-valued are replaced with ones that take values in[0,1].
With this we can give a rewrite step its depth as its truth value. In this sense, a
strongly convergent reduction sequence would in the limit have reduction steps
with truth value 0, i.e. no reduction step at all, and this very much captures the
idea of strongly convergent reductions.

Unfortunately, such an approach would mean to redo the entire section on con-
tinuous relations from scratch, defining concepts such as “lower semi-continuous
fuzzy” relations, etc. It is certainly possible to generalise the Hausdorff metric
from sets to fuzzy sets (provided the characteristic functions are continuous), but
it opens up further choices: for example, an alternative metric on fuzzy sets is
to compare the graphs of their characteristic functions as sets in the Hausdorff
metric; in that metric, two fuzzy sets are exactly the same distance apart as their
respective complements.

13 Conclusions

We have studied the meta-theory of infinitary rewriting by largely divorcing con-
crete rewriting from infinite terms and explaining such operations/relations in-
stead through metric completion. Thus, not only infinite terms arise through met-
ric completions, so do rewrite relations on infinite terms. This latter view is novel
and required a thorough study of the lifting of relations from metric spaces to
their completions. In essence: uniformly lower semi-continuous relations that are
pointwise compact can be lifted. What is also novel is the view of regarding a term
metric as aΣ -algebra with the carrier set[0,1].

The investigation has unveiled a variety of areas in rewriting for which the
required uniformity is not always forthcoming:

– infinite set of rewrite rules
– non-left-linear rules (except for non-continuous or complete term metrics)
– infinitary right-hand sides cause problems with non-continuous or non-simple

term metrics
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– the completion w.r.t. a term metric that is not continuous (at 0) does not give a
term algebra

– term metrics that are not subadditive may not give rise to uniformly lsc rewrite
relations, and thus may have unliftable rewrite relations

Moreover, rewrite rules were restricted beyond non-left-linearity, and an important
condition emerged that prevents a certain kind of non-convergent behaviour. The
condition[[t]][[m]] ≥ [[u]][[m]] is a healthiness condition for infinitary rules; it implies
that all variables of the right-hand side occur on the left, and, more importantly,
that the same is true for all approximations of the rule.

For the original term metric∞ this condition forbids (amongst other things)
collapsing rules. It has been known (see figure 14 in [11]) that the presence of
two different collapsing rules under this metric makes a system necessarily non-
convergent on infinitary terms. Collapsing rules are not thesole culprits here, e.g.
the rulesF(G(x)) → G(x),G(F(x))→ F(x) would show a similar pattern of non-
convergence forF(G(F(G(. . .)))). The condition (ii) prevents this particular form
of non-convergence.

Moreover, a framework for convergence proofs has been set upthat reduces
convergence proofs of infinitary systems to Cauchy-ness proofs of certain finite
term rewriting systems — provided the term metric is continuous. The Cauchy-
ness proofs for finite systems require certain reduction quasi-orderings, which can
be set up in similar ways as simplification orderings, although the exact details
depend on the term metric involved. Particularly simple is the case of term metric
∞ for which this method was carried through on an example. The technique used
is fundamentally the same as in [11], but the mentioned extracondition on rewrite
rules ensures that the method is sound to show convergence for all reduction se-
quences, not just those that commence on finite terms.
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