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Abstract When infinitary rewriting was introduced by Kaplan et. al] § the
beginning of the 1990s, its term universe was explainedasgtric completion
of a metric on finite terms. The motivation for this connegtio topology was that
it allowed to import other well-studied notions from metspaces, in particular
the notion of convergence as a replacement for normalisatio

This paper generalises the approach by parameterisinghtasierm metric,
and applying the process of metric completion not only tovebut also to opera-
tions on and relations between terms. The resulting metaryhs studied, leading
to a revised notion of infinitary rewrite system. For thes&tams a method is de-
vised to prove their convergence.

1 Introduction

Infinitary rewriting is a variation of term rewriting thatusties infinite terms and
reduction sequences of infinite length. The subject had bessduced by Der-
showitz and Kaplan at POPL 1989 [9].

There are different ways to introduce infinite terms. In thewthat terms are
functions from tree domains to symbols [4], simply droppthg demand that a
tree domain is finite would permit infinite terms. Alternatiy, infinite term can
be introduced through the ideal completion of a partial oatefinite terms; we
even have some influence on which infinite terms we (do not} Wwgarthoosing
the order with care.

Another alternative which goes back to at least [1] is nomdsad: define a
metric that measures how different two terms are, typicallyt’) = 2= where
k is the length of the shortest position at which the two tetrardt’ differ; the
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metric completion of the term set produces infinite termssi@e infinite terms
this approach offers a topology and a notion of convergefigain, the choice of
metric allows to prevent the creation of infinite terms we dowant.

We can view convergence as a generalisation of terminatieronly converg-
ing sequences over metrics with discrete topologies arertbe that remain fixed
after finitely many steps. On finite terms, all term metricgeha discrete topol-
ogy — we shall see later (proposition 4) why. In the preserfdefmite terms,
a convergent sequence may not reach a normal form but it qgarodmate an
infinite one in transfinitely many steps. Of particular iet&rto a user of infinitary
rewriting is then the question: “is my systeaa a wholeconvergent?”.

Although the original papers by Kaplan et. al. defined theceph of a sys-
tem (an abstract reduction system over a metric space) lweingerging, their
proof methods aimed lower for infinitary rewriting, as thegleided reduction se-
guences starting with infinite terms. This restriction kiat a fundamental prob-
lem with their approach: they permit too many terms or too yrraes to achieve
convergence proofs that apply generally. More recentlye§e [21] chose not
even to define the concept of a converging metric ARS; theysed instead on
the notion ofstrong convergencleut only w.r.t. reduction sequences, not systems.

The approach used in this paper goes back to the originamofi semantic
convergence and shows how infinitary rewrite systems carrdeeg convergent
w.r.t. this notion.

Very early on, papers on infinitary rewriting allowed trangé reduction se-
guencedeyondordinal w. This is not followed here: the ordinal is intrinsically
tied to the notion of metric completion and the relationgl&d here are “contin-
uous” w.r.t. the term topology. Of course, one could workeasl with topological
notions of convergence, based on filters or nets, see e ]y g2 use a matching
notion of completion. In this paper | stick to thecase, at least in part because it
allows me to make use of known properties of metric comptetio

In summary, this paper provides the following:

— the preliminary section 2 recalls concepts from rewriting sopology; a cou-
ple of basic propositions about metric spaces are proveééibaised later but
which | could not find in standard textbooks;

— section 4 introduces a general concept of what a term metii@by is, based
on the notion of ultra-metric map (section 3);

— section 5 studies fundamental properties of infinitary tere. the terms that
arise through metric completion;

— section 6 re-defines the notions of infinitary rewrite ruld arfinitary TRS;

— section 7 shows how (and which) relations can be lifted thhometric com-
pletion — these results have wider applications than irdigirewriting and
are stated in a more general way;

— section 8 studies under which conditions infinitary TRSsamahe require-
ments of the previous section;

— section 9 reduces convergence proofs for infinitary TRSsdofp that certain
finitary TRS are Cauchy;

— section 10 shows a method to prove finitary TRSs to be Cauchy;

— section 11 shows the method working on an example;

— sections 12 and 13 conclude, with 12 pointing out a numbeps§ible alter-
native approaches.



2 Preliminaries

We rely on notations and terminology from both Term Rewgtand Topology
which are introduced in this section. For the former to thevemtions and no-
tations from [25] are used, experts in the area may therefare to skip that
section.

Rewriting

We write R: A < B to declare a relatioR between seté andB. Given a binary
relationR, we write R~* for the relationx R"'y <= y R x We writeR; Sfor
the composition of the relatioi®ands, i.e.x(R; S)y < 3z xRzAzSy A quasi
orderingon A'is a reflexive and transitive relation @n

An Abstract Reduction Systdma structure = (A, —) whereA is a set and
— a binary relation oi\. Given an ordinatr, asequence of length in the setSis
a functionf : a — S, viewinga as a von Neumann ordinal, i.e. identifying it with
the set of all smaller ordinals. Aeduction sequencef lengtha in an ARS(A, >)
is a sequencé of lengtha in Asuch that'ne o. (n+1) € a = f(n) > f(n+1).
An ARS isterminating or strongly normalisingif it has no reduction sequences
of lengthw.

Given an ARS(A,—) and an equivalence relatioa on A the ARSA/~ has
as objects the equivalence clasigs of A, and the relation-/ ~ is defined as:

tlxa =/~ [Ux <= t=;,—;~uU
One says thdtrewrites tou modulo~.

A signatureis a pairZ = (% ,#) where.7Z is a set (of functions symbols) and
#:.7 — . the function assigning each symbol its arity. As notati@ugivention
function symbols are written as upper-case letters. Theiiafset ofvariablesis
calledVar and particular variables are referred to by lower-casergtTheset of
(finite) termsover X is indicated ader(X) and is defined inductively: (iYar C
Ter(2), (i) if F € # and #F) = n andty,...,ty € Ter(X) thenF(ty,...,ty) €
Ter(X). Parentheses are dropped whes 0. The set of variables occurring in
the termt is calledvar(t). Theroot of a termt is eithert, if t € Var, or F, if
t=F(tg,...,tn).

A Z-algebrais a setA together with functiongs : A" — A for everyF € #
with #(F) = n. A valuationinto A is a functionp : Var — A. Any >-algebraA
determines an interpretation functi 4 : Ter(X) x (Var — A) — A as follows:

[X|5 = p(x),  if xe Var
[F(tz,....t0)]R = Fa([ta]l2. - [tnll)

Given two2-algebrasA andB, a > -algebrahomomorphisnfrom Ato B is a func-
tion h: A — B such thah(Fa(ay,...,an)) = FRs(h(a1),...,h(ay)). If h:A—Bis
a homomorphism then([t]2) = [t]f*.

Given anyZ-algebraA, [A] is the Z-algebra with carrier sgtvar — A) — A
andFap (a1, - -,an)(P) =Fa(ai(p),...,an(p)). The functionp : Var — [[A] given



asp(x)(f) = f(x) makes it possible to interpret terms with variables. We avrit
[t]ja; as shorthand fo[ft]}ﬁA]].

Ter(Z) is itself aZ-algebra withFres) = F, the so-called term algebra. A
substitution is a functior : Var — Ter(X) the domain of which is extended to
Ter(X) by requiring it to be a homomorphism. The set of of all subitihs over
signatureX is calledO(ZX). A binary relationR on Ter(X) is calledsubstitutiveif
and only if

Vt,ue Ter(2).vO € ©(Z).t Ru= 06(t) RO(u)
This concept is typically used to form tisebstitutive closuref a relation.

Subterm positions are finite sequences of natural numbérs.empty se-
guence is denotef, otherwisei - p is the prefixing a sequengewith the num-
ber (or sequence of numbeis)The set of positions of a ter Pogt) is induc-
tively defined as follows: (if) € Pogt), (i) {i-p|1<i <#F)ApePodt)} C
Pqu(tlu [ 7t#(|:)))'

Thesubtermof t at positionp, notationt|,, is defined as follows:

tly =t
Updatinga termt at positionp with termu, notation:t{u], is defined as follows:
t[u]<> =u
F(ta,... ,tn)[u]i.p =F(tg,....,ti1, [U]p,ti+1, cootn)

For positionsp andq we write p < qiff 3r. p-r =q, i.e. if pis a prefix ofg. Two
positionsp andq areindependentp||q, if ~(p < g) A—~(g< p).

A Z-context @] is aternt € Ter(X) together with a positiop € Pogt), called
thehole we often writeC[u] instead ot[u],, keeping the position implicit. An-
ary contex{C| | is a termt together withn mutually independent positions. Here,
we define

t[tlﬂ e 7tk+1] P1yo Pkl = (t[t17 e vtk] pl-,-~»7pk)[tk+1] Pk+1

and typically abbreviatdty, ..., t]p,, .. p asClts, ..., t], leaving the positions im-
plicit and understanding them to be lexicographically oede
A binary relationR on Ter(X) is calledcompatibleiff

Vs t,ue Ter(2).Vp e Pogs).t Ru=gt]p R qu]p

Again, this is used mostly to form the compatible closure oflation; the com-
patible closure oRis expressed a’°.

A relationR is called arewrite relation[2] if it is both compatible and sub-
stitutive. Note that the compatible closure of a substitutelation is substitutive,
and that the substitutive closure of a compatible relatiozoimpatible.

A rewrite rule (over X) is a pair of termg € Ter(X) andu € Ter(X), written
t — u, such that (i} ¢ Var, and (ii) var(u) C var(t). We callt the left-hand and
u the right-hand side of the rule. A term is calligear if no variable occurs in it
more than once; a rewrite rule is callkxdt-linear if its left-hand side is linear.

A term rewriting systenfshort: TRS) consists of a signatukeand a set of
rewrite rulesR over that signature. The associated ARS of a term rewritystesn
(2,R) is (Ter(X),—r) where—r is the compatible and substitutive closureRof



Topological Spaces

Regarding topological and metric spaces we use notatiomesiminology mostly
taken from [23], and occasionally from [5,15,22]. A topdlg space is a set
together with a function CIJ (X) — [J(X) satisfying the following properties for
alABCX:

ci(o)
A
)
)

|| N

Cl(C

I(A)) = CI(A)
CI(AUB

CI(A) UCI(B)

Any set of the form QJA) is calledclosed and a seB C X is calledopeniff X\ B
is closed. A function between topological spate#\ — B is called continuous iff
its inverse image of any closed set is closed, i/e:(CI(V)) = CI(f~(CI(V)));
beware that the two occurrences of Cl on the right-hand ditleabequation refer
to (potentially) different topologies.

A topology on a sef is calleddiscreteiff every subset ofA is open (which is
the case iff all singleton sets are open). Note that funstioetween topological
spaces are always continuous if their domain is discrete.

A neighbourhoof a pointa € A is a setB C A such that there is an open
setC such thal € C C B. An accumulation poinis a pointa € A such that every
neighbourhood oé& is an infinite set. Thus, a topological space is discretedf an
only if it has no accumulation points.

A topological spacéX,Cl) is calledcompactif for any family of open sets
S,i €1 such thaiX = Ui S thenX = {J;c; S for some finite subsekt of I.

Metric Spaces

A metric spaces a setM together with a functionl : M x M — £ satisfying the
following formulae [5] for allx, y, andz

d(x,y) =0<=x=y
d(y,2) <d(xy) +d(x2)

Theopeng-ball of an elemenk € M is the set of elements at distance smaller than
€:Be(x) = {ye M[d(x,y) < e}. Theclosede-ball is B:(X) ={yeM|d(x,y) <

£}. We sometimes view these as binary relatlons,xl& y — XE€Be(y) =
d(x,y) < €. Every metric space induces a topological structure: 2AsetM is
open iffvac A. 3¢ > 0.Bg(a) C A.

The diameterof a subses of a metric spacéM, d) is the supremum of the
distances irS. A metric space is calleboundedif it has a finite diameter. The
metric spaces of interest to this paper all have a diameter of

A function between metric spacés A — B is calleduniformly continuouf
there is a functiorf on the strictly positive real numbers such that

V8>O.Bf~(5);fgf;Bg



where “;" is relational composition. As we shall see latkis formulation suitably
generalises. The functioh witnesseghe uniform continuity off, and we can
w.l.0.g. assume that it is weakly monotonic. Moreowvieis callednon-expansive
iff f(e)<e, foralle.

Given a metric spacéM, d), aCauchy sequenda this space is a sequené€e
of lengthw in M such that:

Ve > 0.39.Vm,n.m>gAn>q=-d(f(m),f(n)) <e

This is equivalent to saying thdt is uniformly continuous, with respect to the
metricd(m,n) = |+ — 1|. A sequencd of lengthw in M is calledconvergingto
aeMif

Ve >0.39.Vmm>qg=-d(f(m),a) < &
andf is calledconvergingf ana € M exists to whichf converges. A metric space
is completdff every Cauchy sequence converges.

Every metric space has a unique completion, up to isometmnchwve will
call M* for this metric space We can characterise the metric complethdh as
follows: (i) M* is a complete metric space, (i) there is an isometric emingdd
e: M — M* and (iii) the closure 0&(M) in M* is M* (M is densg. An isometric
embeddings a distance-preserving function between metric spac#e that this
implies injectivity); anisometryis a bijective isometric embedding.

All points in M*\ e(M) are accumulation points; moreover, these are the only
accumulation points iM*® if M is discrete. In the followingiv will be regarded
as a subset a¥°.

Uniformly continuous functions between metric spaces @arbiquely lifted
to their metric completions, i.e. metric completion is adtor on the category
of metric spaces (as objects) and uniformly continuoustfans (as morphisms).
Moreover, a witness function fdr* can be constructed ds(¢) = f(¢)/2.

Given a sefA and a bounded metric spa@® d) the function spacé& — B has
the metricd(f,g) = sugea d(f(x),9(x)) (and is itself bounded).

Proposition 1 Let B be a bounded metric space. THén— B)®* =~ A — (B°®).

Proof Left to right: if f, is a Cauchy sequence i — B theny, = fy(x) is a
Cauchy sequence B, for anyx € A; we can setf (X) = limp_. fa(X). Right to
left: if f:A— (B°®) then eachf(x) is approximated by a Cauchy sequenge
in B; we can construct, : A — B as f,(X) = yx(m) where we pickm such that
vk. k > m.d(yx(k), f(x)) < 27" Clearly,d(f, f;) < 2" and thus the sequendg
converges td . a

This is surely a standard result for metric spaces, but #relsird literature [22, 14]
only shows the weaker result that the function space is cetajifi the codomain
is — which does not say anything about the completion of atfanspace whose
codomain is not complete.

Proposition 2 Let A, B and C be metric spaces such that C is bounded.

If f : A— (B— C) is uniformly continuous and pointwise uniformly continsaou
(i.e. each {x) is uniformly continuous in B~ C) then there is a unique function
f*:A* — (B* — C*) extending f that is continuous and pointwise continuous.

1 A traditional notation isM* but this would lead to notational clashes when we lift refasi
to metric completions.



Proof Metric completion extend$ to a functionf’ : A* — (B — C)*® which we
can view (using proposition 1) as a functiéfi : A* — (B — C*). The function
" is still uniformly continuous and it is still pointwise cantious — because
Cauchy sequences of continuous functions converge tonwanis functions, see
[22, page 209]. Given a functiaeB: B* — (.4~ — B) that maps everp to some
Cauchy sequence that convergel,tand a fixeda € A* we can construct functions

fn: B* — C* as follows: f,(b) = f//(a)(cB(b)([W} )). The construction

ensures thad( fq(b), frik(b)) < 27" (independent o) which makes it a Cauchy
sequence iB* — C*®, and as this space is complete the sequence converges to a
limit: this limit is f*(a); it is itself continuous, because the sequeficis contin-
uously convergent [14, 28.9.5]. The uniqueness$‘ofollows from more general
topological properties [15, page 54]. a

Note: the premise in proposition 2 is strictly weaker tharra@quire thatf is
uniformly continuous as a function of typ& x B — C, because the category
of metric spaces and uniformly continuous functions is natt€sian-closed. In
particular, function application itself is (in general)tnmiformly continuous in
[A— B] x A— B, if we understandA — B to be the set of uniformly continuous
functions fromA to B.

A metric spacéM, d) is called anultra-metricspace if it satisfies the stronger
inequality vx,y,z d(y,z) < maxd(x,y),d(x,z)). In an ultra-metric spacéM,d),
eachB; becomes an equivalence relation, and a sufficient conditiomn c-
sequence to be Cauchy is that the distances between adigeerrants converge
to 0. If M is an ultra-metric space then sdus.

The category of ultra-metric spaces and non-expansiveifurgis Cartesian-
closed [23]. The product construction derived from thategialso categorical
products in the categories of metric spaces (objects) wiitteiecontinuous, uni-
formly continuous, or non-expansive functions as morphidgime product of met-
ric spacegA,da) and(B,dg) is (A x B,daxs) Where

dAxg((al, bl), (az, bz)) = max(dA(al,az),dB(bl, bz)).

For every set there is a metrdy defined asdy(t,u) =1 < t # u, the
so-calleddiscrete metricor trivial metric; the resulting metric space is always
complete with the discrete power-set topology. The comveises not hold, i.e.
there are many other metrics with discrete topologies (somes, the literature
calls them discrete as well), and we shall encounter segéthem in this paper.

Since every subset of an (ultra-) metric space gives risent(ulira-) met-
ric space the notion of compactness generalises to asb#rdrsets of an (ultra-)
metric space. In this context, compact sets are alwaysdlose

3 Ultra-Metric Maps

A function f on the non-negative reals is calletktric-preserving6] if for any
metric spacgM,d), (M, f od) is a metric space as well. All metric-preserving
functions areemenable f(x) = 0 <= x = 0 andsubadditive f(x+y) < f(x) +

. .. f .
f(y). If fis subadditive therf(n-x) < n- f(x) and% < f(%) for any positive



integern. Notice that if f is a metric-preserving function then the identity func-
tion id is a uniformly continuous function frorfM, f od) to (M,d) with id = f.
Monotonicity is a sufficient (but not necessary) condition &n amenable and
subadditive function to be metric-preserving.

Examples are: the ceiling functign] (defined agr] =min{n|ne .4 ,n>
r}), and for any 0< a < 1 both multiplication and exponentiation with, e.g.
halving and square root.

For any functionf on [0, 1] we can definé#(y) = sup{x | f(x) <y}. By con-
struction, # is weakly monotonic. We also havé( f(x)) > x, and this becomes
an equality iff is strictly monotonic. Iff is continuous therf (f#(x)) < x, and
this becomes an equality ffis surjective (or, by the intermediate value theorem,
if f(0) <x< f(1)).If fis monotonic and continuous thérand f* form a Galois
connection.

Notice that if f is continuous and amenable théfis amenable. Iff is a
continuous metric-preserving function then the identitiydtion is also uniformly
continuous in the other direction, frofv,d) to (M, f od) (making the two met-

rics equivalent), withid = # — provided f is injective; otherwise, we can set

the witnessid(g) = f#(g/2). The ceiling function is not continuous, our other
examples of metric-preserving functions are.

Of particular interest in this paper are functions that eresultra-metrics
These are functions that are amenable and monotonic, tleeyingeneral not be
subadditive, e.g. squaring is not metric-preserving as fitat subadditive, but it
preserves ultra-metrics.

An ultra-metric map(short: umm) is am-ary functionm: [0, 1]" — [0, 1] such
that (i) it is monotonicx; <y; A+ AXn < Yn = M(Xq,..., %) <m(yi,...,yn) and
(i) it is amenable, i.em(xy,...,Xn) =0 <= x3 =0A--- A%y = 0. Ultra-metric
maps are closed under composition, i.ef ifs ann-ary umm andky, ..., k, are
p-ary umms therf o (ky, ..., ky) is ap-ary umm.

The concept of being “subadditive” is extendedtary functions as follows:
f is subadditive iffvay,...,an,b1,...,bn. f(@1+b1,...,an+bp) < f(ag,...,an) +
f(by,...,bn).

The component®f ann-ary umm f are the functionsf; : [0,1] — [0,1] de-
fined asfi(x) = f(0'~1,x,0""). Each component is itself a umm. Tkernelof a
umm is the functionf (xg, ..., X)) = Max<i<n fi(X). Again, the kernel of a umm
is itself a umm. Each umm is pointwise greater or equal thekdtnel; a umm is
calledsimpleiff it is equal to its kernel. Thus, a simple umm is determitydts
components.

For ann-ary (n > 0) umm f we setf#(y) = sup{(Xs,...,%n) | f(X1,...,%) <
y}. We still have f#(f(xq,...,%)) > (X1,...,%). If f is continuous therf* is
amenable in the extended sense ti#k) = (0,...,0) <= x=0.If f is a simple
umm thenf#(x) = (ff(x),..., f#(x)), and in additionf (f#(x)) < x if f is also
continuous, which again gives us a Galois connection.

For n-ary f the unary functiomAf is defined asA f(x) = f(x,...,x). If fis
continuous then so i& f and thusA f# is amenable.



4 Term Metrics

A term metricfor a signature> is a X-algebram where the carrier set i, 1]

and eaclFy, is an ultra-metric map. A term metric is callstmple(continuous,
subadditive) iff all itsky, are simple (continuous, subadditive) ultra-metric maps.
The reason for the name “term metric” is that this gives risa tlistance function
dm onTer(X) as follows:

dm(t,t) =0
dm(t,u) = 1,if root(t) # root(u)
dm(F(t1,...,th),F(u1,...,Un)) = Fn(dm(t1,uz),...,dm(th, Un))

The final equation also means ttdat is a >-algebra homomorphism, from the
product algebrder(X) x Ter(X) to m; this implies:

dn(8(t), 0(t)) = [t]m O,
The functiondy, is indeed a distance in the metric sense, even more:

Proposition 3 Each @y is an ultra-metric on TefX ), bounded by 1.

Proof By induction on the term structure. First, thdat is bounded by 1 is trivial
by construction.

Second, we need to show théi(t,u) = 0 <= t = u. The first and second
equation clearly comply. For the third, we assume that tlopgnty holds on the
subterms of andu. The result follows front, being amenable.

Finally, the strong triangular property. Consider threentea, b andc. We
have to showdy(a,b) < max(dn(a,c),dm(b,c)). If a andb have different root
symbols then the root afis different to at least one of the two, take w.l.0.g. that
to beb. In this case the inequation to be proven becomesriiax(dm(a,c),1)
which is trivially true.

Now suppose tha andb have the same root symbol. If the rootofliffers
from that then the inequation beconthga, b) < 1 which is always true. Finally,
assume that all 3 terms have the same root syritaid thain = #(F)

max(dm(a, C)a dm(ba C))

= rna.x(lzm(dm(a.l7 C]_), ey dm(an, Cn)), I:m(dm(bl7 C]_), ey dm(bn, Cn)))

= Fm(max(dm(a, 1), dm(b1,€1)), ..., max(dm(an, cn), dm(bn, cn)))

> Fm(dm(al, bl)7 [ERE) dm(an, bn))

= dm(a7 b)

O

Ultra-metricX-algebras have some applications in domain theory [24iose413]
but these constrain algebra operations to be non-expamsidehis is not always
satisfied by the operations and metrics of interest here.

For any term metrienthere is anotheE-algebram, also with carrier s€p, 1],
where its operations are defined as follows:

Fm(aa,....,an) = 1rgi<nnlfm,i(ai)
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Here,lfmﬁi is thei-th component of,, and the minimum is set to be 1 1if=

0. Althoughn-ary functions inm are not amenable, it is the case tfigl > 0,
providedp(x) > O for all x. Algebramis useful for propagating distances:

Lemma 1l Fn(as,...,an) < Fn(b1,....bn) =V1i<i<n.ag <b
Proof

Fm(al, . ,an) < Fm(bly . bn) — Ifm(al, .. ,an) < Fm(bla .. ,bn)
> max Fmi(a) < Fm(by,...,bn)
> Mmax Fni (@) < [min. Fini (bi)
= V1i<i<n. IfmJ(ai) < ﬁm7i(bi)
= Vli<i<n.ag<hb

O

In particular, one can ugato show that all terms are discrete points, for any term
metricm.

Proposition 4 Every term metric m gives rise to a discrete topology.

Proof The statement means that for every teitimere is a constart> 0 such that
dm(t,u) < c=t = u. We can set = [[t]k!, wherekl is the constant-1 function.
If t is a variable or a function symbol with of arity 0 then= 1. Anything
closer than that distance has the same root symhkchiad hence is equal to
Ift=F(ty,...,tn) thent]< = Fn([ta] KL, . .., [ta]<H). Now, if dm(t,u) <c <1
thenu has the formF (uy,...,uy), and we get overall, using lemma 1 and the
induction hypotheses on the subterms:

[N

d(t,u) <[t <= dm(F(ts,...,t),F(us,...,un)) < [t
&= Fin(dm(tz,U1), .-, dm(ta, Un)) < Fn([ta]li, -, [tallie
= Vi.1<i <n=dm(t,u) < [t

— Vi.1<i<n=t =y

<~ F(t1,...,th) = F(ug,...,up)

O

Each metricdy, gives us a metric completiofier™(X) of the metric space
(Ter(X),dm), adding the limits of Cauchy sequences. It depends on thertetric
which, if any, “infinite terms” are added by this process.

Here are some examples of term metrics that people have e$ectpalbeit
not expressed in the framework presented here.

— The term metrico setskw.(ay,...,an) = %~max1§i§nai; the sefTer”(X) con-
tains “all” infinite terms: it is terminal in the category ®&r™(X) objects and
(partial) 2-homomorphisms as morphisms.

— The trivial term metridd setsRq(ay, . ..,an) = Max<i<n &; distance between
any two distinct terms is 1, and hen€Eer(X),dyqy) is already complete; thus
this gives no infinite terms at all.
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— A “lazy signature”(3,A) [19,18] has a predicatd C .% x .4 such that
A(F,i) signifies thatF is “lazy” in its i-th argument position. Given this,
the simple term metrig is defined through its components;j(a) = a/2 if
A(F,i), andFyi(a) = a, otherwise. The term universkerd(>) corresponds
very closely to the set of constructor values we get in H4$k6] when any
constructof is declared to be strictin all argument positions for whidr, i)
does not hold.

These are not the only sensible possibilities, in partiooitee could restrict the set
of infinite terms further thady manages. We define the following term metrics as
variants ofdg: they are all simple term metrics, defined through their congmts;
we assume a laziness predicdteand keepFn;(a) = (a/2) for lazy argument
positions. Otherwise, ifA (F,i) we set

— for term metricc: Fe(a) = [a];

— for the term metrig: Fj(a) = /&;

— for the term metrid: Fy;(a) = min(2-a,1).

Under the term metric the subterms at a strict position must be finite terms.
Under term metric we can only iterate a contef| | to create an infinite term
C” = C[C”] if all argument positions leading to the hole Gfare lazy. Under
term metricd any infinite path through an infinite term must (eventuallg)ss
arbitrarily more lazy than strict argument positions.

All these examples are simple term metrics, i.e. their umrasegual to their
kernels. What simple term metrics have in common is thatgeram “grow” in-
dependently in independent positions; in particular, if dobinary contexC| |
the termsC[t,x] andC[y,u] exist in Ter(X) then so doe<€|[t,u]. It is possible
to define a non-simple term metric for which this is not trubeexamples are
also all subadditive — a property that is essential for derapects of infinitary
rewriting.

Proposition 5 For term metric m, function symbol F is uniformly continuaums
the metric spacéTer(X),dm) if Fr is continuous.

Proof The domain for am-ary F is (Ter(X),dm)" which is the metric space
(Ter(Z)",di), wheredfy((aa, ..., @n), (b1, .., bn)) = Maxi<i<ndm(a;, bi). We can
simply construct the witness functidn as follows:F (&) = AF(¢/2). To show
that this is a uniformity witness:
dg‘l(<ala cee aan>7 <bla EERR) bn>) < AFnﬁ(E/Z)
= Vi.1<i<n=dn(a,b) < AF%(g/2)
— Fi(dm(a1,b1), ..., dm(an, bn)) < AFm(AF(€/2))
< dm(F(ay,...,an),F(b1,...,bn)) < AFm(AFA(g/2))
= dm(F(as,...,an),F(b1,....bn)) <eg/2< ¢
]
Continuity of Fy, is only used in the proof for the steFn(AFf(g/2)) < g/2
— thus continuity ofAFy, suffices as condition; in fact, it even sufficegliFy, is

merely continuous at 0, but for this claim the proof wouldchadlifferent witness
function.
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Corollary 1 If m is a continuous term metric for signatukethen Tef'(3) is a
>-algebra.

Proof Since all term-building functions are uniformly contingothey uniquely
lift to the completed metric spaces. a

Notice that proposition 5 views-ary functions as functions from timeary product
space. Proposition 2 would suggest to use curried functitaiead, for liftingn-
ary functions to the metric completion; the difference ifyatight though as this
corresponds to replacing each algebra-map of the termawetti its kernel.

Non-continuous term metrics are not necessarily regardéew”, and may
well be worth serious study — but they are certainly more aarkito work with.
If (unary) Fy, is not continuous at 0 then the function symBotan indeed not be
applied to infinite terms, in the following senseTér™(3) contains an accumu-
lation pointu andg: .4 — Ter(%) is any Cauchy sequence convergingitthen
F ogis never a Cauchy sequence. An example for a non-contingonsrhetric
is dec.

5 Operations on Infinitary Terms

Given a signature and a term metrien, theinfinitary terms are the elements in
Ter™(%); theinfiniteterms are the accumulation pointsTier™(X). Operations on
infinitary terms are mostly defined here as uniformly cortims functions oper-
ating on finite terms, which thus have a unique lifting.

In particular, this applies to the functidn]y : Ter(2) — (Var — m) — m:
this function is non-expansive for simpte and then it is justified to use this
notation for infinitary terms as well.

The set ofe-positions of a ternt € Ter™(%), Pog'(t) is defined ag){Pou) |
u e Ter(X),dm(t,u) < £}. All positions of a termPos"(t) are the union of these:
U{Pog'(t) [ £ > 0}.

The set of infinitary substitutions is defined @)™ = Var — Ter"(X).
The definition ofdy, is extended to substitutions using the function space met-
ric, i.e. dm(0,0) = supcvar d(f(X),9(x)). Notice that it can make a difference
here whether we regard the domain of substitutions as teras\ariables; in the
former case some metrics (suchdasandd.) would make the substitution space
discrete.

Substitution application ofinite termg(as an operation i®(3) — Ter(X) —
Ter(X)) is pointwise non-expansive and, provided the metric igioaous, also
uniformly continuous. Proposition 2 then allows us to lifbstitution application
uniquely to infinitary terms and infinitary substitutionsoti¢e that this is a case
in which it would not suffice to consider substitution application as a function i
O(2) x Ter(X) — Ter(X), because there are continuous term metrics (an example
is term metria) for which substitution application is not uniformly comtious in
this domain.

W.r.t. to non-continuous metrics, substitution applicatcan be undefined,
e.g. under metrid; whent = F(x), F is strict in its argument an@ mapsx to
an infinite term. Nevertheless it is still possible to viewag a partial function
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— where6(t) is defined iff a sequencé,(t) converges, wheré, is a Cauchy
sequence of finitary substitutions convergingto

ArelationRon infinitary terms is calledubstitutivef t R uimplies6(t) R6(u)
for all 6 € ©(X)™ for which 8(t) and6(u) are defined.

For (finite) unary contexts the metrik;, is extended as follows:

dm(C[ 1p, D[ ) = max(dm(C[x], D[x]),d(p,q))

where the metric on positions is discrete, i.e. differergifpons are at distance 1.
Context application, seen as a functior{(Ter(X) x 4™*) — Ter(X) — Ter(X), is
non-expansive and, provided the metric is continuous,tpige uniformly con-
tinuous. Again this allows to apply proposition 2 and gehseacontext applica-
tion to infinitary terms; for non-continuous metrics cortagplication is a partial
function. An infinitary context is an elementfier(3) x .4#*)* (which is isomor-
phic toTer"(X) x A4™).

For everyn-ary finitary contextC| | there is ann-ary ultra-metric mapCp,
defined as followsCm(ay, . ..,an) = [C[X1, ... ,xn]]]ﬁq[xwa”, where the variableg
do not occur inC[ ], p(x) = 0 for all x, and the notatiop|x; — &] updatesp at
these variables. Clearly:

dm(C[tl, cee ,tn],C[Ul, ey Un]) = Cm(dm(tl, U]_), e ,dm(tn, Un))
If mis a continuous term metric the&dy, is uniformly continuous. Notice that for
unary contextsCm(dm(t,u)) = dm(C[t],C[u]) < Cm(€) impliesdm(t,u) < €.
We can express the property that two terms do not differ ugtatain position

formally as follows. There is a family of equivalence redats £ (indexed by
positionsp), defined as follows:

tlu

F(ty,...,th) iA9F(u1,...,un) —t 3 Ui

We also writeC ~ D for contextsC andD, to express (i) their holes are at the same
positionp, and (i) C[x] 2 D[X].
Proposition 6 Let C D be contexts such that€ D.

(|) Cmn=Dm;

(ii) dm(C[t], Clu]) < dm(C[t], D[u]);

(i) dm(C[x], D[x]) < dm(CIt], D[u}).
Proof Straightforward induction on the depth ©f ad

Lemma 2 If dm(Clt]p,u) < Cm(€) then there is a context B C and a term U
such that u= D[u’] and dy(t,U') < €.

Proof The proof goes by induction on the length mfThe contexD[ | is u[ ]p.
The base casp = () is trivial. Otherwisep =i -q, and letC'[ |4 = C[ ]i. Since
dm(Clt]p,u) < Cm(€g) < 1, the termu must have the same root symbolGid, call
it F. Hencedm(Clt]p,u) = Fm(a, ..., an) wherea; = dm(Clt]|j,ul;). In particular,
Clt]i = C'[t]. This implies:(Fn)i(a) < dm(Clt]p,u) < Cm(&) = (Fm)i(Cy(€)). By
monotonicity:a; = dm(C'[t],u];) < Cf,(€). By induction hypothesisifi[ |q ~ C'
and there is a termd’ such thatu]; = D'[U] anddn(t,U') < &. This also implies
ul ]p ~ C by definition of this relation. O
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The purpose of the rather awkward looking lemma 2 is to reabout distances
in the situation where we put a redex inside a context and ith@re away from
the result by a specific distance.

Corollary 2 LetC[]p, D[ ]q be finite. If gh(C[ ]p,D[ ]q) < Cm(1) then Gy = Dm.

Consequently, infinitary contexts also have a unique umhD|eé, be a (unary)
infinitary context, therDny, = Cp, for any finite contexc| ], close enough t®| |,
i.e.dm(C[x],DIX]) < dm(D[X],Dy]).

ArelationRon infinitary terms is calledompatiblef a R bimpliesCla] R Cb]
for all contextsC| ] for which bothC|a] andC[b] are defined. The notatioR™
denotes the compatible closureRf

6 Infinitary Rules

Atermt € Ter"(Z) is called apatternif there is a constarnt” > 0 such that:
Vue Ter"(2).Vo € O(2)™. dm(u,0(t)) <tm=360 € 0(X)™.0(t)=u

Notice that patterns are necessarily finite terms, becafiséé terms are arbitrar-
ily close to some finite terms. The constafi(if it exists) is the same as the one
constructed in the proof of proposition 4. Moreover, for thimmous term metrics,
patterns must be linear terms: if a pattern were of the f6fryx] thenC|t,t] can
be made arbitrarily close @]t,t'] with t #t’, andC[t,t'] is not a substitution in-
stance ofC[x, x]. In non-continuous term metrics non-linear patterns asside,
provided (and for simple metrics this is a sufficient corati)ithat each repeated
variable occurs somewhere in a non-continuous position.

An infinitary rewrite rule (over >, w.r.t. to term metrian) is a pair of terms
t € Ter(Z) andu € Ter"(X), writtent — u, such that (i)t ¢ Var is a pattern,
(i) [ull gy < [t] ), Where the partial ordet on functions is the pointwise order,
inherited from(0, 1], and (iii) if mis not continuous or not simple theris finite.

Explanation: for the discrete term metritthe second condition is equivalent
to the familiar constraint for finite rules that all variablef the right-hand side
occur on the left-hand side as well. Moreover, this condii® indeed implied
by (ii) for anyterm metricm: suppose some variableoccurred inu but not in
t. Consider the functiorf : Var — [0,1] with f(x) =1, x#y = f(y) = 0: then
[t]gmy (f) = O but[uf iy () > O.

Such a semantic re-interpretation of the condition thavér@bles of the right
occur on the left is not new, see [17] for the situation in leighrder rewriting.

Condition (ii) can be difficult to check, especially for nemple term metrics.
Simple term metrics allow to check this condition variabje/ariable: in that case,
each variable is associated with a unary umm, and these die'targer” on the
left. In term metriceo the condition can be expressed as followsi|f € Var then
there existg] € Pogt) such that|q = u|, and the length op is not shorter than
the length ofg. As a consequence, “collapsing rules” (wharis itself a variable)
are not allowed under term metrie

Condition (iii) has a double purpose: for non-simple termtnioe it ensures
that condition (i) is well-defined; for non-continuousriemetrics it ensures that
any context that can be applied to (instances of) the lafdtside of a rule can
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also be applied to the corresponding instances of its tightd side. A relation
RonTer"(%) is calledcontext-safésubstitution-safgif t R uimplies that ifC[t]
(6(1)) is defined theiC[u] (8(u)) is defined as well.

Lemma 3 Lett— u be an infinitary rule w.r.t. term metric m. The finite relatio
{(t,u)} is substitution-safe, and its substitutive closure is ertisafe.

Proof The lemma is trivial for continuous term metrics (becaudesstution and
context application are then total operations), so asshatértis not continuous
and thatu is therefore finite (by condition (iii)). Assume thétt) is defined.
Consider a Cauchy-sequence of finitary substituti@nthat converges t®.
The sequencé,(t) converges t@(t).
Foranyi, j € .4 and any terns: dm(6i(s), 8j(s)) = [[Slljm) (fij), wherefij (x) =
dm(8 (%), 6j(x)). In particular:

dm(6 (1), 6;(t)) = [t (fij) = (U (Fij) = dm(8& (), 6;(u)),

where the> step follows from condition (i) of being a rule. This meahattf,(u)
is itself a Cauchy sequence, and hefi¢e) is defined.

Now consider a Cauchy sequencg| ] of finite contexts approximating.
ThenCi[6(t)] is a Cauchy sequence approximati@fp(t)], where for all but
finitely manyi dm(Gi[6i(9)],Cj[6;(9)]) = Cm(dm(6i(S), Bj(s))); becauseCy, is a
umm it is monotonic and hence the distances between elermamts j in se-
quenceCi[6i(t)] are pointwise greater or equal than the correspondingratistain
Ci[6:(u)] which is therefore a Cauchy sequence as well. O

A relation onTer™(Z) is called arinfinitary rewrite relationif it is Isc, pointwise
compact, substitutive and compatible.

An infinitary term rewrite systeroonsists of a signatut®, a term metrign for
2, and afinite set of infinitary rewrite rules, relativeX@andm. Its associated ARS
is (Ter"(Z),—gr) where—g is the compatible, substitutive and reflexive closure
of the relation given by the rules.

The motivation for these definitions has to be delayed fdtle livhile, as some
of this rests on a number of technical results, on relatiodglaeir interaction with
metric completion.

7 Continuous Relations

We would like to lift relations between metric spaseandW to relations between
their metric completion¥* andW*. To be able to do this in a systematic and
unambiguous way, we need some structural properties fdr mlations which
the lifting needs to preserve, in analogy to (uniform) couity of functions.

There are different notions of continuity for relationsamnd. In a nutshell, the
problem is the following: dunction f between topological spaces is continuous
iff £~ maps open sets to open sets, and that is the ca$elifinaps closed sets
to closed sets. Relations also have an associated inveagge ifanction, but for
them these two conditions are not the same.

In particular, for any relatioR : V — W there is a functiorR* : 2V — 2V
defined aR"™(X) =V —R YW —X) = {ve V| R(v) C X}. Note that this function
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coincides withR~1 iff the relationR happens to be a total function: we always have
R™(R(A)) D AandR* (W) =V. Clearly,R" preserves openness Rf ! preserves
closedness and vice versa.

To lift relations systematically, we view relations as getded functions, mov-
ing from a relatiorR: V « W to a function[R] : V — 2V, Dually, if f : V — 2V
we write | f] : V < W for the corresponding relation. Since we are operating
with metric spaces, this requires a metric dh. Ziven a bounded metric space
M = (M,dy) (we assume w.l.0.g. that the bound is 1), the metric spatéas
as elements the closed subsets#f and their distancdy is defined as follows:

di(AB) = max(duA, B),d.(B,A))
d.(0,0) =

dL(DB)_llfB;é(Z)

d.(AB) = suplnf du(a,b),if A£0D

acAbeB

Aside: this is sometimes defin@dthoutthe empty set as member of’2 because
that simplifies the rest of the definition. However, that nficetion would only
permit to model relations that are entire.

This is the Hausdorff metric, see [22, page 214], giving usefach bounded
metric space# another metric space//é this construction extends to a functor:
given any functiorf : .# — 2 the function 2 : 2% — 27 is defined by 3(X) =
CI({f(x) | x € X}). If fis continuous (unlformly continuous, non-expansive, an
isometric embedding, an isometry) then sofis 2

A fundamental property of the Hausdorff construction isrékation to com-
pleteness:

Proposition 7 Let.# be any bounded metric spac:#") and (2)* are iso-
metric.

Proof The literature, e.g. [22, page 407] and [14, page 124fflu$es on show-
ing that the power set construction preserves metric cetepéss. However, this
means that @/°) and (2(-/"))* are isometric — which is only half the proof.
For the other half we need to show th@?)* and (2-4"))* are isometric as
well. First notice that both power-set construction andrieeompletion (as func-
tors) preserve isometric embeddings; this means (togetitiethe previous argu-
ment) that there is an isometric embedding fréa)® to 2-4°), but we need
to show that this is onto. For each séte 2(/°) and eachx € X there is a
Cauchy sequencé : .4 — M converging tax, and a functiork® % — .4 with
vmn e 4 .mn > X(€) = du(X(m),X(n)) < &. With this we can synchronise
all Cauchy sequences and fodg = CI({X'(X(2™")) | x € X}) which gives us a
Cauchy sequence in“2 the limit of which isX. a

Remark: the reason for usixg2™ ") rather than simply in the construction oKy
is that the latter could fail to turk, into a Cauchy sequenceXfis an infinite set.
The given construction guarantees tafXx,x) <2

Together with the metric completion functor this gives usethod to lift set-
valued continuous functions to metric completions — whegecan view them as
relations again.
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Theorem 1 Let f:V — 2V be uniformly continuous. There is a unique uniformly
continuous function’f: V* — 2W*) such that for all xc V we have f(x) "W =

f(x).

Proof We can always liftf to the metric completions:® : V* — (2V)*. We then
post-composé*® with the isometry from proposition 7 and get the desired rffap
The uniqueness of the metric lifting gives us the uniquenégs. a

The functionf and f’ can easily fail to coincide on valuesVh because sets that
are closed iW may no longer be closed W*; for x € V the value off’(x) is
CI(f(x)) —the closure of the sdt(x) in W*. This is the reason for the intersection
with W in the theorem.

In order to be able to model a relati®ras a set-valued function in this topol-
ogy we need that it is “pointwise closed”, and that its assteci function[R] is
continuous. These conditions are vacuously satisfied wheenoomsider relations
between metric spaces with discrete topologies. A comditiat is much better
behaved than “pointwise closed” is “pointwise compact” —isthses the same
metric on sets. The biggest advantage of this notion is teatelational compo-
sition of two relations that are pointwise compact is itgalintwise compact. On
discrete topologies a set is compact iff it is finite, and thysintwise compact
relation (with discrete codomain) is finitely branching.

We would like to express continuity and especially uniforomgnuity more
directly in terms of the relation rather than indirectlydhgh its associated set-
valued function. There are a couple of relevant properfieslations. A relatiorR
is calledlower semi-continuougshort: Isc) iffR"X(A) is open for any open sét
It is calledupper semi-continuoushort: usc) iffR"*(A) is closed for any closed
A. In [13], the Isc relations were called continuous, whilgrgserve the term for
relationsR that are not only Isc, but also usc, and in addition finitelsrmhing.
These terminology decisions are tied to various topolo@iemetrics) on power-
set domains, for example the exponential topology, whichtha same carrier set
as the exponential metric, but its topology can differ.

Proposition 8 Let R: A «— B be Isc and pointwise closed. Let &” — A and
b:.# — B be Cauchy sequences converging t& & and b ¢ B, respectively,
such thatvn.a(n) R b(n). Then 4R 1.

Proof SinceRis Isc it is in particular Isc af' which means that for ang > 0
there is a > 0 such thata(a',x) < & andx R yimplies that there is &” such
thata’ R B’ anddg(b”,y) < €. Sinceda(a’,a(n)) converges to 0 there must exist
b! with a”’ R I anddg(b/,b(n)) < 27 for any k. Thus, becausR is pointwise
closed, we must haw#’ R b’ as well. O

For the purposes of lifting relations to their metric contigle, it will not suf-
fice to merely ussemi-continuouselations, because even in the special case of
continuous functions is the lifting not always possible ot unique). In other
words, a notion ofuniform (semi-) continuity for relations is needed — which
should coincide with uniform continuity of the associated-galued functions.
This is achieved by adapting the earlier noti®is calleduniformly Isciff there
is a functionR on the strictly positive real numbers such that

Ve>O.BF§(S);Rg R; B;
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Itis easy to see that “uniformly Isc” implies “Isc”. The pregy uniformly usccan
be expressed as:

Ve>0.R™*; By, CBe/R

wherex(S/R)y < Vz.y R z= x S z see [3, page 99]. This property is not used
in the following.

There is a strong correspondence between uniformly cantisiset-valued
functions and uniformly Isc relations.

Lemma 4 If a function f:V — 2V is uniformly continuous thepf | is uniformly
lower semi-continuous.

Proof We show thaR = | f] is uniformly Isc with witnes$R(e) = f(¢).
X (Bge)) Ry <= IX.d(x,X) <R(E)AX Ry
— . d(x,X) < f(e) Ay e f(X)
= IX.d(f(x), f(X)) <enye f(X)
d(v,w)) < eAye f(X)

<
<

= 3X. sup ( inf
vef(x) wef(x)
= IX. (W e f(X). |mz)d(vw)<e)/\yef(x’)
we f (X
= inf d(y, w) <
we f(x)

— Jwwe f(Xx)Ad(y,w) < &
<= JW.XRWAW Bg y
<—X(R;Bg)y

The step from line 2 to 3 uses the premise that uniformly continuous, 3 to 4
one half of the definition ofiy; 4 to 5 is an equivalence if(X) is finite (if the
relation is finitely branching) but it is always an implicati ad

An implication in this direction is what we might have expettSlightly surpris-
ingly, the implication also holds in the other direction:

Lemma 5 If arelation R: V < W is uniformly lower semi-continuous and point-
wise closed thefiR] is uniformly continuous.

Proof BecauseR is pointwise closed|R] indeed inhabits our semantic domain,
mapping each element to a closed set.
We first show thatl(a,b) < R(¢) implies thatd, ([R](b), [R](a)) < &:

d(a,b) < R(e) = ¥x. bR x= Jy.aRyrd(x,y) <

<= Vxe [R](b). 3y € [R](a). (X7Y)<€
@VXG[R}(b).ygi{R d(x,y) <

— su inf  d(x
xe[R]?)(deﬂ(a) Goy) <

<= di([R](b),[R](a)) < &
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The first step unravels the relation-algebraic statememiddérmly Isc. The intro-
duction of the supremum can lose precisioR i not finitely branching — this is
the reason for the&l instead of<. From this we can now prove the lemma:

d(a,b) < R(¢) <= d(a,b) < R(¢) Ad(b,a) < R(¢)
= du([R](b),[R](a)) < eAdL([R](a), [R](b)) < €
< du([R](b),[Rl(a)) < €
= du([R](b),[R](a)) <€-2

Hence, forf = [R], we can sef (¢) = (%) giving us a witness function for the
uniform continuity off. a

Thus both lemmas together give us the following nice charaztion:

Theorem 2 A pointwise closed relation R/ — W (between metric spacesV and
W, where W is bounded) is uniformly Isc if and only if its agsed set-valued
function[R] : V — 2V is uniformly continuous.

Note: it appears unlikely that something as fundamentdiass a new result, but
| could not find it anywhere. Kuratowski’s results about tlkpa@nentialtopology
are ever so slightly different, e.g. in that setting continsi functions are both Isc
and usc [22, page 173].

In the following, the notatioiR® is also used to describe the lifting of a point-
wise closed and uniformly Isc relatidgdfromV — W toV*® — We°.

Proposition 9 Some useful observations about uniformly lower semi-caontis
relations. Uniformly Isc relations are closed under:

1. binary union
2. composition
3. product,i.e.if pZ— Aandqg:Z < Bthen(p,q):Z — AxB.

Proof Note that in all three cases we need to construct a new witnaston as
well.

1. LetRandSbe uniformly Isc and’ = RUS. We sefT (¢) = min(R(¢),§(¢)).
Bi(e)i T = (Bt () RIU (Bt (e S) c (Br"«g)? R)U(Bge) S

C(R;Be)U(S; Be) =
2. Thistime lefT =R; S andT (&) = ﬁ(é(s))
Bie) T =Bgrge) i (RiS) = (Brge))i R S
(R BS(E );S=R;(Bgg): 9
R;(S;Bg)=T ;B¢

3. We set(p,q)(¢) = min(p(e),d(¢)) and get:
Bz (P = (B ) P-Brgie) @ € (Bie): P Bace); )
C(p;Be,q;:B:) =(p,0); B
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O

Although uniform Isc is preserved by binary union, it is niotdeneral) preserved
by arbitrary union. The arbitrary union of Isc relationslisays Isc [22, page 179],
but uniformity can be lost through that process. We wouldehtawset the witness

function JRi(€) to be in{Ri(£)) and this infimum could be 0. This can already
happen when we form the transitive closure of a uniformlyridation, because
R* = JR" and eachR is uniformly continuous (a consequence of proposition
9). An example is the functiofi : Z — % with f(x) = 2-x; this is a uniformly
continuous function, relative to the usual distance me#a hence it clearly is
uniformly Isc when viewed as a relation, but the transitil@sare of f is not
uniformly Isc: for a givere we would need to find & such that 2'- < €, which

is possible for a finite number ofi's but not if we need @& that works for alim.

An important special case of uniformly semi-continuoustiehs is the fol-
lowing: a relatiorRis calledeventually non-expansive belewn(short.eng, where
o >0, iff Ve < a.Bs ; RC R; Bg. It is strictly eneif this holds with respect to
closede-balls: Ve < a.B; ; RC R; E Clearly, if R is ene belowa then it is
uniformly Isc, with witness functioi(g) = min(g, a). For bounded metrics one
can assume w.l.0.g. that = R(3), whered is the diameter of the metric space;
in this case we can leave “beloaV’ implicit. Moreover: if Ris ene belowx and
pointwise closed theR® is also ene belowr.

Relations that are (eventually) non-expansive are alssedlainder union,
composition and finite products, but there are further aera under which they
are closed. In particular, non-expansive relations argeclandearbitrary union
(and infinite products); this is not true for ene relationgémeral, but the transitive
closure of an ene relation is always ene.

8 Continuity of Rewriting

Linking the definitions of the rewrite relations of finite aimdinitary term rewrit-
ing systems we would expect that two constructions shoulsttmagly related:
given afinite TRS, the rules of which also match the constraintsifdinitary

TRSs (w.r.t. some term metrin) we can either:

— view it as a finite TRS and lift its (finitary) rewrite relatiarsing theorem 1
— view it as an infinite TRS and construct its (infinitary) ret@nielation directly

This is only meaningful if the relation on finite terms is wrifly Isc, because
otherwise there is no canonical lifting; it also has to benpeise compact, but
this condition is implied by the constraint to finitely mamurite rules.

Proposition 10 Let R: Ter(X) < Ter(XZ) be any rewrite relation which is uni-
formly Isc and pointwise compact. ThehiRan infinitary rewrite relation.

Proof The properties of lifting ensure thBt is uniformly Isc and pointwise com-
pact. It is clearly closed under finite contexts and finitessititions. The applica-
tion of infinitary substitutions and contexts arises as itimé$ of finitary substitu-
tion and context application. Then apply proposition 8. a

The substitutive closure is particularly well-behaved:
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Lemma 6 The substitutive closure of a rule-t u of an infinitary TRS is strictly
ene.

Proof Let R be the substitutive closure of this rule. It is strictly ersdo [[t]*:
Suppose R bwith a= 8(t), b= 8(u). Lets € Ter™(Z) with dy(s,a) < & <
[[t]}kml. Hencedm(s, 8(t)) < [[t]]km1 and by the pattern property bfthis means that
s=o(t) for someo; so:s Ra(u). Butdm(o(u), 8(u)) = [u]ljmy (f) < [ty (F) =
dm(a(t),8(t)) < €, wheref is the functionf (x) = dm(ag(x), 8(X)). O

The proof works unchanged to show that similarly the sultisi# closure of a
finitary rule is strictly ene as a relation on finite terms, wany term metrien for
which the rule classifies as an infinitary rule.

Aiming for rewrite relations that are Isc but not uniformiclis not very sat-
isfactory, because Isc is a weak property for relations énitary terms. One can
observe this as follows:

Proposition 11 Let R be any relation on TE¥X) that is compatible and reflexive.
Then it is Isc as well.

Proof Lett € Ter"(X) ande > 0. We have to findd > 0 such thatdn(t,t') <

d Au R vimplies that there is & with dy(U,v) < e At RU Vt = U. We can set

0 =min{Cn(&) | pe Pod'(t),C[] =t[]p}, and for thisd it suffices to pickd =t.
O

Explanation: any infinitary terrhhas only finitely many positions at which chang-
ing the subterm at that position deviates fromith £ or more. We can “protect”
these positions by translating them into a (safe) distaoice &pplyingR at other
positions will stay withine-distance of.

To get something stronger the metric has to have certaireptiep.

Proposition 12 Let R be any strictly ene and context-safe relation off'TE. If
m is subadditive then the compatible and reflexive closureisfuniformly Isc. In
particular, if R is strictly ene belowr then for alle < a:

B_- ;RGQ(RG;BL)UBE
[1/a] [1/a]

Proof Let Rbe strictly ene belovar. Let S=id UR”. The function witnessing its
uniformity is set as
A £
B
a

To check that this is indeed a uniformity witness: noticet finsit §(&) < €. Now
supposé R uanddn(C[t],a) < §&). SinceC[t] S Qu], ab needs to be found such
thata S banddn(b,C[u]) < €. There are two cases: @n(1) < &, (ii) Cn(1) > €.

In case (i)dm(C[t],C[u]) = Cm(dm(t,u)) < Cn(1) < €. Becausaln(Clt],a) <
S(g) < € the ultra-metric property givesn(a,C[u]) < €. Hence we can pick= a
asa S aby reflexivity.

In case (ii)e < Cn(1); we abbreviaté = [1/a] and get:

Conl) 2 () > T > £ _ g
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The first inequation holds by monotonicity &, (and [x] > x, for all x); the
second follows from subadditivity a@, the third is dividing inequation (i) by
k, the fourth is the definition o§(¢). Hencedn(C[t],a) < Cm(a) and by lemma
2:a=D[d], D ~C anddny(t,a) < a. Sinced = dn(t,a) < a andR s strictly
ene belowa it follows thatBs ; RC R; Bs. Thus there is &' with & R b and
dm(b’,u) < 8. Becausdris context-safeD[b'] is defined and we can set= D[b'];
clearlya S b Using proposition 6 one can show tti(D[b/],C[u]) < € as well:

dr(D[b'], C[u]) <max(dm(C[u], D[u]),dm(D[b'], D[u]))
=max(din(C[u], D[u]), Cn(dm(b', u)))
< max(dm(Clt], D[a]),Cim(3))
=max(dm(C[t], D[a]), dm(C[t], C[a]))

=dm(Clt],D[d]) < €.
0

Ultra-metric maps that are not subadditive (suck?gan prevent the compatible
closure (of the substitutive closure) of a single rewrite tu— u to be uniformly
Isc. The reason is: (i) some termare closer than distance 1 franwithout being
substitution instances (& dm(s,t) > [t]¥D); (i) non sub-additive context[ | can
makeCn(dm(s,t)) arbitrarily small but keem(dm(t,u)) = 1.

As before, proposition 12 can be adapted for finite terms atations, but
w.r.t. the same metric.

Theorem 3 Let (X, m,R) be an infinitary rewrite system such that m is subaddi-
tive. Then the relatior-g of its associated ARS is an infinitary rewrite relation.

Proof By construction—r is substitutive and compatible. It remains to be shown
thatitis Isc and pointwise compact. By lemma 6 the substédiosure of arule is
strictly ene and by lemma 3 it is context-safe, which impliggroposition 12 that
its compatible and reflexive closure is uniformly Isc. Sitlcere are only finitely
many rules the union of their rewrite relations is still umihly Isc (proposition
9).

To show that—r is pointwise compact it suffices to show thatifc {u |t —r
u} is infinite thenA contains a Cauchy sequence, and that—gr-related to the
limit of that sequence. The elementsAvfre all of the formt[ay ], for various
p € Pogt) wheret|, is related toa, by the substitutive closure &. Since that
relation is finitely branching and is infinite, A must contairt[ay ] p for infinitely
many differentp. Picking one for eaclp and arranging them by the length pf
gives indeed a Cauchy sequence — with limandt —grt by reflexivity. a

The reason why the rewrite relation of an infinitary TRS isuiegd to be reflexive
should be clear from the proof of theorem 3: it is useful foowimg that the
compatible closure is Isc and also that the relation is pog® compact.

9 Convergence

A metric abstract reduction systefshort: MARS) is a structuréM,d, —) such
that (M,d) is a metric space antM,—) is an abstract reduction system. It is
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calledconverging(Cauchy iff any reduction sequence of lengthis converging
(Cauchy). Observation: {{iM,d) has a discrete topology th¢kl, d, R) is converg-
ing iff the relationR\ idy is terminating.

Proposition 13 Let (M,d,—) be a MARS such thaM,d) is an ultra-metric.
Then it is Cauchy iff the irreflexive interior of the relat®n> /B (— moduloB;)
is strongly normalising for alge > 0.

Proof A reduction sequenctof lengthw is Cauchy iff for alle there is am such
that the se{ f (k) | k> n} has a diameter of at most In an ultra-metric this is the
case iff, for allk > n, d(f(k), f(k+1)) < €. If a reduction sequence ef fails to

be Cauchy, it fails for one particulat and in an ultra-metric this means that there
is a reduction sequence with infinitely many steps of at leakstance. a

Proposition 13 is a useful tool for convergence proofs, bsedor an infinitary
TRS (2, mR) the MARS (Ter"(X),—r)/Be can be represented as a relation on
finite terms — the termination of which can be checked by tiaal means. This
is based on another observation of the equivalence resan

Given an infinitaryt € Ter™(X), anopen representative of t atis a finite term
u € Ter(X), such that (iJu € Bg(t), and (i) Vv € Bg(t). 30 € ©(Z)™. 6(u) = v;
notation:t \ ¢ uif uis an open representativetodt €.

Proposition 14 Let m be a term metric. For ang/> 0 and any te Ter™(Z) there
is a u such thatt\; u.

Proof Any B¢(t) contains a finite terno/. Suppose some € B(t) is not a sub-
stitution instance ofl thenu’ = Clug, ..., up], t' = Clty, ..., t,] for some context
C[ ] where the roots df andu; are distinct. Consider the terof = C[xq, ..., Xy
where the variables are fresh. Clearlydy(t’,u”) = dn(U”,U) = dn(U',t’) <&,
and botht’ and U’ are substitution instances af. This cannot be repeated in-
finitely, becausel” is of smaller size tha’ (counting function symbols and re-
peated variable occurrences). ad

The representatives can be used to express reductioBs equivalence classes,
and even modified rewrite rules. Some fundamental propesfieepresentatives:

Proposition 15 Lett\ ¢ u. Then for all pc Pogu): (i) Vse€ BT(t).sﬂ u and (ii)
if m is continuous thenj§ 5 u|p Whered = Cf(¢) and 4 | = u[ .

Proof (i) is obvious: since all terms iB,(t) are substitution instances ofthey
must have the same function symbolsiag to its variable positions. For (i) first
note that because of (i) and proposition 6 tBatis not only the context function
of u[ ], but of anys| |, with s € B¢(t). Second, consider the distance between
t|p andup: € > dm(t,u) > dm(t,t[u]p]p) = Cm(dm(t|p, Ulp)). Applying C# on both
sides givesCH (Cm(dm(t|p, Ulp))) < Cf (&) which impliesdm(t|p, ulp))) < CH ().
Third, consider any terna with dm(a,t|p) < Cf(€); it needs to be shown that
a is a substitution instance afl,. SinceCn/Cf, form a Galois connection for
continuousm, the premisem(a,t|,) < C#(€) impliesCm(dm(a,t|p)) < €, hence
dm(t[a)p,t) < €. ThusB(u) = t[a], for some substitutio® (asu represents’s &-
ball) and thereforé(u|,) = a. O
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In the following, it is assumed (without loss of generalityerely for sim-
plicity of presentation). that signatute contains a function symbal of arity
0. The variables of an equivalence class are those that at@wery term, i.e.
var(Bg(t)) = N{var(u) | dm(t,u) < €}. A finite termu is aclosed representative
of r, notationr | ¢ u, if and only if:

rleu <= 3dseTer(X).r \ ¢ s A 8(s) =uwhere

_[x if xevar(Bg(r))
0(x) = {L if x € Var\ var(Bg(r))

Explanation: by constructiom, | u ensures thati € B¢(r); moreover, the only
variables left inu occur in all terms of the class. In fact, the relatignis a func-
tion, uis unique. Given an infinitary ruke— uwe write [t — ul¢ for a pair of finite
terms(t’,u’) such that \ ¢ t’ Au | U” and then eithedn(t’,u”) > e AU = U" or
dm(t’,u") <eAU =t'.

Note: ift — uis an infinitary rule w.r.t. term metrimthen[t — u. is a finitary
rule (for € < 1), i.e.t’ is not a variable and all variables if occur int” as well;
the first follows frome < 1 (for € = 1 we always havét — u]; = (X — X)), the
second follows from condition (ii) of being an infinitary eul

The rulet’ — U’ simulates the behaviour of applying rule- u at the root of
aterm: ifa= 6(t) andb = 8(u) then there are finite terna andb’ and a finitary
substitutiond’” such thatdn(a,@) < &, dn(b,b') < ¢, 0'(t') =4, 6/(U) =D,

To simulate the behaviour of the compatible closure one carsteuct the
derived rule[C[t] — CJu]]¢ for any contexC| ] and any ruld — u.

Given an iITRSA = (X, m R) the notationR]¢ stands for the substitutive clo-
sure of the following relation ofier(X): t' [Rl¢ U < (t' — U') = [C[t] — C[u]] for
some rule — u € Rand some infinitary contex@| |. Notice that[R]¢ is strictly
ene belowe: this holds because any term withirdistance ot’ is an instance of
t’, and so lemma 6 can be applied.

Proposition 16 Let A= (2, m,R) be an iTRS¢g > 0 and f be anw-sequence in
Ter™(X) such thatvn € w. f(n) —rty Be f(n+1). Then there is amo-reduction
sequence g of the MARSer(%),dm, [Rl¢) such thatyn. dn(f(n),g(n)) < &.

Proof Forg(0) we can pick any finite terra with dy,(f(0),a) < ¢, e.g. we can set
f(0) le a=g(0). Thusdm(f(0),9(0)) <e.

Sincef(n) —rth B¢ f(n+1) we have thatf (n) = o(CJt]) andt, = o(C[u])
for some ruled — u, some context| |, and some substitutioo.

The relation[R] contains the rulgC[t] — Clu]]¢, with C[t] \,¢ t’ andCJ[u] |,
u’. By definition of \¢ there is a substitutiol® with 6(t") = CJt]. Thus also
o(0(t")) = f(n). SinceC[u] |¢ U it follows dm(C[u],u’) < € and because substitu-
tion application is non-expansive aldg(t, o (U')) = dm(o(C[u]), a(U)) < ¢; see
diagram (top-left triangle). Becaufi@l; is strictly ene it is uniformly Isc (trivially,
it is pointwise closed) and thus can be lifted to infinitanyrie — where it remains
strictly ene belove. Sincef (n) [Rl¢ o () anddm(f(n),g(n)) < € there must exist
anay such thag(n) [Rle a;, anddm(an, o(U')) < € (bottom-left triangle). We can
assumen, € Ter(2) as all rules inRJ relate finite terms to finite terms. Overall
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we can choosg(n+ 1) = a, which gives the following picture:

f(n) ——>th—= f(n+1)

P
e

g(n+1)

n
g(n) P

Finally, sincedy, is an ultra-metricB; is an equivalence relation which allows to
concludedm(f(n+1),9(n+1)) <e. 0

Corollary 3 If the rewrite relation of an iTRE>, m,R) is not converging then for
somee > 0the MARSTer(X),dm, [R]¢) is not Cauchy.

Proof Any non-converging reduction sequerttkas are such that (for infinitely
many n) dm(h(n),h(n+ 1)) > ¢; this sequence can be reshaped to match the
premise of proposition 16 by combining all consecutive cdign steps within
e-distance a8; steps. The resultindR|; steps must preserve the distance. O

Generally, the number of rules jR is infinite, because there are infinitely many
contexts. This does not make it a good candidate for diremtfgechniques, es-
pecially ase needs to be chosen as well. However, the relaiiRlp can itself
be simulated by dinite TRS if the term metric is continuous. Given an iTRS
A= (3, m,R) with continuous term metrim the notationA] stands for the TRS
(Z,Uoceca{lt = Ule | (t — u) R}

Forming the union withall € is an over-approximation of what the context
functionsCr, (and their inverse€?) can do to a specifie. A desirable side-effect
of this construction is that the definition §4] no longer refers te; thus anyw
reduction modulds; for any e can be simulated by the TRA].

Itis worth illustrating the construction of this TRS at araexle. LetR be the
following rewrite rule:

H(F(x,G(y,2))) — K(C,F(D(D(y)),x))

considered w.r.t. term metri®. The corresponding TRER] consists of the fol-
lowing rules:

(Xl7 Z)HK(Lv )
H(F (x1,%2)) — K(C,F(L, 1))
H(F (X, G(y1,Y2))) — K(C,F(D(1),%))
H(F(x,G(Y,2))) — K(C,F(D(D(L),x)))
H(F(x,G(y,2))) — K(C,F(D(D(y),x)))

These five rules argR],-« with k ranging from 1 to 5, in that order. Focusing &n
that are negative powers of two suffices for term metxicg andd.
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Proposition 17 Let A= (X, m,R) be an iTRS with continuous term metric m. If
(the MARS of) A is not converging then (the MARSASf)s not Cauchy.

Proof Corollary 3 tells us thgR], is not Cauchy for some; we are going to show
[Rle C—a- Suppose@[R|¢b with dm(a,b) > €. Then there is a rule— u € Rand

a contextC| ], and a finitary substitutio® such thalC[t] \¢ ' AC[u] | U and
6(t') =aandf(u') = b. In [A] there is the rul¢” — u” = [t — U]cs ). Because
mis continuous, proposition 15 implies th&f, is a representative @[t],|, =t

at distanceC(€). But so ist”, and thus there is a variable renaming substitution
p with p(t”) =t'|,. Moreover,u” = U'|p, because the closed representative is a
substitution instance of the open representative, so gitpo 15 applies again,
and p(u”) = u", becausep(x) = x for all variablesx € var(Bg). Overall,a =

a[8(p(t"))lp — 1 AlB(p(U"))]p = a[B(U")]p =b. 0

10 Proving a TRS to be Cauchy

The contra-positive of proposition 17 gives us a handle twgian iTRSA to be
converging: simply prove that the finite TRS] is Cauchy. There is a relatively
straightforward technique for managing these proofs wisdbased on original
ideas from [9].

The central idea is the following: If, for a finitary TRS, thebstitutive clo-
sure of the rules is terminating and no reduction sequent@its infinitely many
redex-contractions at positidinthen the rewrite process moves deeper and deeper
inside the terms, and is therefore converging — that ist.wnetricd... For other
metrics the argument does not quite suffice, but it can betadagypically termi-
nation of a relation is proved by showing that it is includacsome other termi-
nating relatior-. Context<C| ] that cannot be repeated infinitely many times need
to preserve that strict relatian.

A umm f is calledshrinkingiff the sequenceg = 1, 8,1 = A f(a,) converges
to 0. A contexiC[ ] is shrinking (w.r.t. term metrim) iff the ummGC, is shrinking.

A term metricm is calleduniform if the pointwise supremum of all shrinking
metric morphisms of the for@y, is itself shrinking.

Proposition 18 The term metricso, g, r, d, id, and c are all uniform.

Proof Notice all metric morphisms of concern arise as composstimirthe form
f10---o fx where eacl; is eitherf, or halving.id has no shrinking umms at all,
so the pointwise supremum is the constant O function (whscshrinking). For
the other metricsall shrinking metric morphisms are multiplications with*or
somek > 0 (obvious for all but, see below). Thus, their pointwise supremum is
“halving” — which is shrinking.

Forr (with f;(x) = 1/X), we need to show that no shrinking metric morphism
involves square root. It suffices to show this for a singlevoence off, (one
eager position), because these metric morphisms are psitewer bounds for
the others. Letf be such a metric morphism, i.e. it is of the forffix) = 27"

2-K.x=2"n-k/2. /X, for some fixeck andn. This function fails to shrink for
x < 272k O
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The following definition is normally used in the context ofrténation proofs
(see [25, page 253]): a quasi-orderirgon Ter(X) is called areduction quasi-
orderingif

(i) > is strong normalising
(ii) every substitution is botl--monotonic and--monotonic
(i) every function symboF is =-monotonic w.r.t. the product quasi ordering

Here,- is the relatiorx - y <= x>=yA—=(y = X).
A reduction quasi-ordering is calledshrink-stablew.r.t. term metrian if for
every shrinking context| | we havet > u=- C[t] > C[ul.

Theorem 4 Let (2, R) be a TRS, m a uniform term metric aida shrink-stable
reduction quasi-ordering on TeE).
If R is a subrelation of- then(Ter(X),dm, —r) is Cauchy.

Proof Sincem is uniform there is a shrinking umih that is the supremum of
all shrinking context functions. We show that amyreduction sequence ef is
eventually within diameten' (1), by induction for allr. The base = 0,h%(1) = 1
is trivial.

Consider anyw-reduction sequenckof —r. Clearly, it is also a reduction se-
guence for-, because contexts and substitutions preserve this ordeauBe- is
strongly normalising, there iska> 0 such thav'n > k. —~(f(n) > f(n+1)). More-
over, for eachn there are a conteXd,| |,, a substitutioré, and a rulé, — u, € R
such thatf (n) = Dp[Bn(tn)] and f (n+ 1) = Dn[6n(un)]. Because substitutions pre-
serve the strict order andis shrink-preserved this means that foralt k context
Dy, must be non-shrinking.

A position p € Pog f(k)) is calledstableif none of the positiongj, j > k

is a proper prefix ofp. In particular, f(k) 2 f(k+x). It is maximally stable

if it is stable andp = p; for somei. For any maximally stable the function
gp(i) = f(k+1)|p defines aromegareduction sequence (on the reflexive closure
of —g). By induction hypothesis, it is eventually within diamebé(1), say from
kp. Becausef (k) has only finitely many positions it also has only finitely many
maximally stable positiongand beyond the maximum of all of thed all gq will

be within diameteih' (1). We can recover the distances withinfrom the sub-
term projectionstm(f(k+n), f(k+n+ 1)) = maxy(Cq(dm(gq(n),gq(n+1)))),
whereq ranges over the maximally stable positionsfitk) andCq is the context
function of the contexDy_x for which pc.x = g. Notice that for eaclm, the val-
uesCqy(dm(gq(n),gq(n+1))) are non-zero for at most orgg the one for which

q is a prefix of pi;n. Because eac@y is pointwise bounded b it follows that

dm(f(y), f(y+1)) <h(h'(1)) = hr+1(1) for all y > k4 maxg(kg). O

The argument in the proof of theorem 4 is not fundamentaly fsee proposition
5in [11]) except that the presence of non-shrinking costextder a term metric
complicates matters slightly.

How does one find a quasi-reduction ordering that is shriakig? This is
typically similar to the task of showing a TRS to be simplynérating, except
that at several stages one can use the weak ordehere a termination proof
would require the strict order. This is best demonstrated at an example.
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11 Application Example

The chapter on infinite rewriting in [21] motivates the suibjeith the following
example, an iTRS modelling the sieve of Eratosthenes:

Filter (Congx,y), Zero,m) — CongZera Filter (y,m,m))
Filter (Congx,y), S(n),m) — Congx, Filter (y,n,m))
SievéCongZeroy)) — Sievey)
SievéCongS(n),y)) — CongS(n), SievéFilter (y,n,n)))
Natgn) — Congn,Nat{S(n))
Primes— SievéNatgS(S(Zero))))

Given that this is such a fundamentally motivating exammbe would expect that
it is converging, w.r.t. to some term metric. However, it &,rat least not as an
iTRS with the definition as in this paper.

Because of the penultimate rule, for it to be converging fitdssessary that the
componenConsy is shrinking, to allow “infinite lists”. This causes a protle
with the third rule, because it lifts variabjeout of such a shrinking context; for
this to be a proper rule the functi@®ieve, would have to be non-continuous at
0, which in turn would prevent us from applyiBieveto any (eventually) infinite
lists, but the rewrite system does, with its last two rules.

The problem seems a technicality, caused by our conditipriofi rewrite
rules when the third rule of the system is considered. Howélere is indeed a
slight problem with this rule. If the metric allows arbityanfinite lists then rule 3
would rewrite the ternBievéCongZero (CongZero,...))))) to itself. Although
this does not contradict convergence (reflexive steps raajeiit does contradict
strong convergend®1], which requires that any reduction sequence movexrede
positions arbitrarily deep into the terms. This redex waild happily at position
(), and the convergence is slightly accidental.

The iTRS is repairable though — it is generally possible tkeralles comply
with condition (ii) by padding them with “delay” functionBor term metrieo the
modified rules look like this:

Filter (Congx,y),Zerom
Filter (Congx,y),S(n),m
SievéCongZeray)) — D(Sievéy))
Siev¢CongS(n),y)) — CongS(D(n)), SievéFilter (y,n,n)))
Natgn) — Congn,Nat{S(n))
Primes— SievéNatgS(S(Zero))))
D(Congx,y)) — CongD(x), D(y))
D(S(x)) — S(D(¥))

D(Zero) — Zero

— CongZero,Filter (y,m,m))
— CongD(x), Filter (y,n,m))

—_ — T T

Essentially, the functioB is the identity function (on streams or numbers), but its
appearance on right-hand sides pushes variables furtmer the term. IfSieve
was now applied to an infinite stream of zeros the system wgitdngly) con-
verge to the ternd(D(...)).
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For term metriceo all rules are now “legal”: the lowest nesting depth of a
variable on the right-hand side is never smaller than theesponding value on
the left-hand side. To prove that this iTRSs converging, we can build the finite
TRS [§ (sincew is continuous) and show th@H is Cauchy (on finite terms).
System[S contains all the rules @ plus the following:

Filter (x,%2,X3) — Cong L, 1)
Filter (Congx1,Y1),Zeram) — CongZero,Filter (L, 1, 1))
Filter (Congx1,y1),S(n1),m) — CongD(L),Filter (L, L, 1))
Sievéx;) — D(L1)
SievéCongxy,y1)) — D(Sievé L))
Sievéx;)) — CongL, 1)
SievéCongxy,y1)) — CongS(.L), Sievé_l))
SievéCongS(n;),y)) — CongS(D(_L)), SievéFilter (L, 1, 1)))
Natgn;) — Cong. L, 1)
Natgn) — Congn,Natg 1)
Natgn) — Congn,Nat{S(_1)))
Primes— Sievé_l)
Primes— SievéNatg_1))
Primes— SievéNatgS(_1)))
Primes— SievéNatgS(S(_1))))
D(x1) — CongL, 1)
D(Congxs.y1)) — CongD(L),D(L))
D(x1) — S(1)
D(Skx1)) — S(D(1))
1)

D(x1) — Zero

Itis very easy to find a reduction ordering for this TRS (beshgnk-stable comes
for free under term metrie) to show that it is Cauchy: the order only compares
the root symbols and ignores the rest of the terms. One cantliie as an inter-
pretation of terms in the ordinal 4:

Primeg, =3 Natg(x) =1 S(x) =0
Sieva(x) =2 Da(x) =1 Zery =0
Filtera(x,y,z) = 1 Cons(x,y) =0 1s =0

This interpretation interprets all left-hand sides as biggumbers than their right-
hand sides. This order is clearly well-founded and preskbyeall non-shrinking
contexts (as the trivial context is the only one),tse u <= [t[a > [ufsis a
reduction quasi-ordering that shows (using theorem 4)[$a& Cauchy and thus
by proposition 17 that the iTRSis converging.



30

12 Potential Variations

The definitions chosen here do not cover every possibleti@riane might want
to throw at infinitary rewriting, but they go very far and tisction discusses some
alternatives.

This paper only looked at infinitary rewriting within ordina: all infinite
terms arise as metric completions of finite terms, all op@naton these terms arise
through metric completion of uniformly continuous funcet®operating on finite
terms, and similarly the relations between infinite termseaas completions of
uniformly Isc relations between finite terms. Forcing eweiryg to jump through
this completion hoop means that nothing of interest wouldplea “beyondw”,
i.e. such iTRSs arew-closed”. This is not the only approach one can take, in fact
much of the infinitary rewriting literature [21,11] operatirectly on infinitary
terms, and extends its studies to relations that areunclosed. | would argue
that forcing the study of infinitary rewriting to follow a cgofetion process is
important, as it is a protection against random conceptsramdom definitions;
howevermetric completions not the only mechanism at our disposal, and other
completion processes could give sensible notions of traitesfiewriting at larger
ordinals.

In all cases, the rewrite relations on infinitary terms weefireed to be re-
flexive. It is possible to deviate from that (and maintaintthach relations are
uniformly lower semi-continuous and pointwise closed},rmt very far: it would
suffice to require that such relations are merely reflexiviliéneighbourhood of
accumulation points, but anything weaker would be probtema

All iTRSs were required to have onfinitely manyrules. The reason for this
constraint is to ensure that the lifting of the rewrite riglatfrom finite to infinitary
terms is canonical and unique. This does not mean that aitédgigt of rules never
has such a canonical and unique lifting, but it would no lorgydfice to look at
individual rules to establish that.

Rewrite relations were required to peintwise compactor a uniformly Isc
relationR to be liftable it would suffice to impose the weaker conditibat it is
pointwise closed. However, that stronger condition erssthat lifting is functo-
rial w.r.t. relational compositiorR* ; S = (R; S)*. Moreover, because of the con-
straint to finitely many rules that was imposed for otheroeasanyway, pointwise
compactness is guaranteed. Pointwise compactness isenohly invariant one
can use to ensure that lifting distributes over relatiomahposition: an alternative
would be to require that the inverse relati@n® is uniformly usc.

One condition for pairs of term@, u) to qualify as infinitary rules turned out
to be very strong, condition (ii)ft]jny > [ullfmy- It is possible to relax this re-
guirement in various ways, e.g. an alternative conditionlaide:

This would still imply that all variables on the right-hanidie occur on the left,
and for subadditiven the rewrite relation would still be uniformly Isc. In other
words, this would give rise to a sensible notion of infinitagyriting. Moreover,
the application example from the previous section wouldt§roriginal version)
now be legal under metri®. However, the relaxation with a factkibadly affects
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convergence proofs, in particular the proof of propositiéhwould irreparably
fail.

In [21] (as well as earlier papers on which their chapter iseblx the authors
largely abandoned the semantic notion of convergence tooager variety, called
strong convergenceéecause this shows better behaviour w.r.t. confluence prob
lems. A reduction sequence is strongly convergent if reaesitjons (this is w.r.t.
term metriceo) move eventually arbitrarily deep. First, note that thigéseralis-
able to other term metrics: the “depth” of a rewrite s&if(t)] — C[O(u)] in term
metricmcan be seen as the valGg(1) — which is also the distance between the
two termsif they have different root symbols. Thus anreduction sequence is
strongly convergent if its depths converge to 0. An entife$Tcould be regarded
as strongly convergent if all its reduction sequences aoagly convergent.

This has still a very syntactic flavour, because the depthsssociated with
contexts, and ARSs have such numbers not occur in any otherkavever,
they might: instead of using ARSs with ordinary relation® @mould use fuzzy
ARSs withfuzzy relationgsee e.g. [12]) — in a fuzzy set/relation characteristic
functions that arq0, 1}-valued are replaced with ones that take valuef®jd].
With this we can give a rewrite step its depth as its truth @ala this sense, a
strongly convergent reduction sequence would in the liraitehreduction steps
with truth value 0, i.e. no reduction step at all, and thisywetuch captures the
idea of strongly convergent reductions.

Unfortunately, such an approach would mean to redo thesesgiction on con-
tinuous relations from scratch, defining concepts suchaset semi-continuous
fuzzy” relations, etc. It is certainly possible to genesalthe Hausdorff metric
from sets to fuzzy sets (provided the characteristic fumstiare continuous), but
it opens up further choices: for example, an alternativerimein fuzzy sets is
to compare the graphs of their characteristic functionsess is the Hausdorff
metric; in that metric, two fuzzy sets are exactly the sans¢éadice apart as their
respective complements.

13 Conclusions

We have studied the meta-theory of infinitary rewriting brgty divorcing con-
crete rewriting from infinite terms and explaining such @tiens/relations in-
stead through metric completion. Thus, not only infinitertearise through met-
ric completions, so do rewrite relations on infinite termisisTlatter view is novel
and required a thorough study of the lifting of relationsnfronetric spaces to
their completions. In essence: uniformly lower semi-aoundius relations that are
pointwise compact can be lifted. What is also novel is thendgéregarding a term
metric as &-algebra with the carrier séd, 1].

The investigation has unveiled a variety of areas in remgitior which the
required uniformity is not always forthcoming:

— infinite set of rewrite rules

— non-left-linear rules (except for non-continuous or coet@lterm metrics)

— infinitary right-hand sides cause problems with non-cardgirs or non-simple
term metrics
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— the completion w.r.t. a term metric that is not continuou®jaloes not give a
term algebra

— term metrics that are not subadditive may not give rise téoumily Isc rewrite
relations, and thus may have unliftable rewrite relations

Moreover, rewrite rules were restricted beyond non-ligidrity, and an important
condition emerged that prevents a certain kind of non-cgaré behaviour. The
condition([t] iy > [U]ljmy is @ healthiness condition for infinitary rules; it implies
that all variaHes of the right-hand side occur on the leit,amore importantly,
that the same is true for all approximations of the rule.

For the original term metrieo this condition forbids (amongst other things)
collapsing rules. It has been known (see figure 14 in [11]) tha presence of
two different collapsing rules under this metric makes @esysnecessarily non-
convergent on infinitary terms. Collapsing rules are notstble culprits here, e.g.
the rulesk (G(x)) — G(x), G(F(x)) — F(x) would show a similar pattern of non-
convergence fofF (G(F(G(...)))). The condition (ii) prevents this particular form
of non-convergence.

Moreover, a framework for convergence proofs has been s#taipeduces
convergence proofs of infinitary systems to Cauchy-nessfgrof certain finite
term rewriting systems — provided the term metric is cordumt The Cauchy-
ness proofs for finite systems require certain reductiosiqoi@erings, which can
be set up in similar ways as simplification orderings, altitothe exact details
depend on the term metric involved. Particularly simplénis¢ase of term metric
oo for which this method was carried through on an example. €bkrtique used
is fundamentally the same as in [11], but the mentioned exnadition on rewrite
rules ensures that the method is sound to show convergeneaé feduction se-
guences, not just those that commence on finite terms.
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