
Jones, Richard E. (2007) Dynamic Memory Management: Challenges for
Today and Tomorrow. In: International LISP Conference 2007: (ILC 07).
Association of LISP Users, pp. 115-124. ISBN 978-1-59593-618-9.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14600/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Invited presentation.

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14600/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Dynamic memory management:
challenges for today and tomorrow

Richard Jones
Computing Laboratory, University of Kent

R.E.Jones@kent.ac.uk

Abstract

Garbage collection is a key component of almost all modern programming languages. The advent of con-
ventional object-oriented languages supported by managedrun-times (e.g. Java, C♯ and even Managed C++) has
brought garbage collection into the mainstream and, as memory manager performance is critical for many large
applications, brought it to the attention of programmers outside its traditional functional programming language
community.

In this paper, I review how garbage collection got to where itis today, why it is desirable, what performance
you might reasonably expect and I shall outline the directions in which research is moving. In particular, I look at
some of the challenges facing modern garbage collection, incontexts ranging from collection for high-performance,
multiprocessor systems to collection for real-time systems, from better integrating with its operating environment
to supporting specific applications. I speculate on future directions for research.

1 Automatic or explicit memory
management?

1.1 Why garbage collect?

To the functional programmer, the answer is obvious
and it may even seem that the question is not worth ask-
ing. In a lazy functional programming language, shar-
ing and delayed execution of suspensions means that
execution order is hard to predict: it is extremely diffi-
cult to determine the point at which a heap object is no
longer used. Even if an automatic technique (such as re-
gion inference [31] is used) a garbage collector is often
required as a backup in order to run space-efficiently.
In any case, for many languages, the simplest answer is
that garbage collection is needed because it is mandated
by the language specification.

But this response is too defensive. It invites the crit-
icism that automatic memory management is only a re-
quirement because of the ‘deficiencies’ of the language
(for example, Java does not have C++’s automatic ob-

jects, constructors and destructors [61]), or that ‘[in-
sert your favourite language] programmers are lazy’.
While there is some anecdotal evidence (certainly from
scrutiny of student projects) that, say, Java program-
mers often do not take as much care managing mem-
ory as they might, there are powerful reasons for advo-
cating automatic memory management, independent of
choice of language.

Explicit memory management is antagonistic to
two of the most powerful tools for the management of
complexity in large-scale software systems aremodu-
larity andabstraction. In order to be reused in differ-
ent contexts, software modules should have interfaces
that are simple and well-defined. However, ‘liveness
is a global property’ [67]: adding memory manage-
ment book-keeping detail to interfaces weakens the ab-
stractions and reduces extensibility of modules. Worse,
changes may radiate beyond the module being devel-
oped — for example, space leak or premature reclama-
tion in one module might lead to the failure of another.
Garbage collection, on the other hand, uncouples the

1

problem of memory management from class interfaces,
rather than dispersing it throughout the code. This is
why it has been a fundamental component of many
object-oriented languages.

1.2 The cost of garbage collection

Nevertheless, automatic memory management does im-
pose a performance penalty on the program, but not as
much as is commonly assumed. Remember that ex-
plicit operations like malloc/free also impose a signif-
icant cost. Hertz and Berger measured the true cost of
garbage collection for a variety of Java benchmarks and
collection algorithms [33]; King and Jones compared
the costs of conservative mark-sweep against smart-
pointer reference counting and the Windows allocator.

Hertz and Berger instrumented the Jikes RVM Java
virtual machine [3, 2] to discover precisely when ob-
jects became unreachable. They used the reachabil-
ity trace as an oracle to drive a simulator [35], mea-
suring cycles and cache misses. For the garbage col-
lector configurations, they used a number of different
garbage collectors, including simple semi-space copy-
ing and mark-sweep collectors, two generational col-
lectors and two hybrid collectors. For the explicit con-
figurations, the simulator invokedfree at the point
where the trace indicated that an object had become
garbage, using the Lea [40] allocator (version 2.7.2).
Note that the simulator only measured true costs, i.e.
that of the program being run, Jikes RVM and either the
collector or the malloc/free implementation; the oracle
cost nothing. Although, as expected, results varied be-
tween both collectors and explicit allocators, Hertz and
Berger found that a generational collector, with a vari-
able sized (Appel-style) nursery and a mark-sweep old
generation, matched the execution time performance of
explicit allocation when given a heap 5× the minimum
required. If the heap size was reduced to 3×, the over-
head increased to 17% on average.

King and Jones compared the performance of
Boehm’s conservative collector, version 6.2 [13],
Boost’s ‘shared’ and ‘intrusive’ reference counter im-
plementations1, Lea’s allocator (again version 2.7.2),

and the standard allocator provided by Microsoft Visu-
alStudio.NET vc7.0 compiler. The testbed was a ver-
sion of the gcbench2 tree-manipulation program, with
different depths of tree and numbers of threads. The
system managed by the conservative collector had an
elapsed time was just 27% of that managed by the
Windows allocator, also outperforming both reference
counters by a substantial margin. The Lea allocator was
fastest in all cases. However, all these allocators used
more memory than the Windows allocator: Lea 125%,
Boehm 150% and Boost 152–166%.

2 The Lisp legacy

Lisp has been the birth place of too many garbage
collection technologies to list in full here, but all the
techniques italicised below are significant Lisp ‘firsts’.
Mark-Sweep[43], invented by McCarthy in 1958, re-
mains today the dominant technique for managing the
oldest generation in generational collectors and for in-
cremental and concurrent collection.Reference count-
ing (1960) [20] offers the benefit that costs are dis-
tributed throughout the computation, thus avoiding
pauses incurred by stop-the-world tracing collectors.
However, reference counting local and temporary vari-
ables inflicts too much overhead though incrementing
and decrementing reference counts.Deferred reference
counting(1976) [22] removes this overhead by delay-
ing examination of local variables. Despite its attrac-
tions, reference counting remained largely out of favour
for many years because of its inability to reclaim cyclic
data and the cost of reference counting operations, par-
ticularly for threads. However, as we shall see later,
recent techniques have led to a revival of interest.

Semi-space copying[27, 15] was first suggested
in 1963 by Minsky who proposed copying the heap
to disk. The Fenichel & Yochelson (1969) collector
used an explicit stack for copying, but Cheney’s elegant
solution (1970) embeds the stack into toSpace data,
thereby requiring no extra space (although a number of
modern collectors have reverted to using auxiliary data
structures for better management of work when copy-
ing with parallel threads). TheTreadmill [8] is a non-

1http://www.boost.org
2http://www.hpl.hp.com/personal/HansBoehm/gc/gcbench

2

moving collector that shares the advantages of copying
collection (i.e. complexity proportional to live data); it
is used today, for example, for management of ‘large
object spaces’, in which objects do not share pages and
hence external fragmentation is not an issue [9].

Copying collection lies at the heart of modern,
region-based collection. The most widely used form
of region-based collection isgenerational collection
(1978) [42]. Generational collectors exploit the obser-
vation that ‘most objects die young’ [63] by segregating
objects into regions (‘generations’) by age and collect
younger generations more frequently than older ones.
They must be able to identify cross-region pointers, and
this is usually done by intercepting pointer writes. Usu-
ally, such write barriers are implemented in software,
but hardware barriershave also been used [42, 44, 7].
One of the most widely used structures for recording
the location of such pointers is thecard table(1988)
[58]; the Symbolics 3600 used a similar page table
[44]. Both copying collection andMark-Compact col-
lection (1964) [32, 26], which moves or, better, slides
live (marked) data to one end of the heap, remove frag-
mentation thus allowing fast, linear (‘bump a pointer’)
allocation.

The firstparallel garbage collectionalgorithm was
due to Steele (1975) [59]. Like Dijkstra’s better known
algorithm [23], it used anincremental update write bar-
rier. Although IU write barriers tend to reduce the vol-
ume of floating garbage compared to other techniques,
they require a final, stop the world phase to terminate
the marking phase in order to detect any pointers that
the mutator might have inserted into, for example, stack
locations already scanned. Yuasa’ssnapshot at the be-
ginning barrier(1990) [70], developed for Kyoto Com-
mon Lisp, although permitting more floating garbage
than an IU barrier, allows termination without this final
stop the world phase. It is surprising that, given this ad-
vantage, SAB barriers have only recently been adopted
for high performance, concurrent collectors.

Non-moving collectors suffer from fragmentation,
but compacting the heap in a concurrent/incremental
context is challenging as all references to a moved ob-
ject must be updated. The best knownincremental

copying collectoris Baker’s (1978) [7]. In order to en-
sure that the mutator sees only toSpace objects, Baker
uses aread barrier. Read barriers have long been con-
sidered prohibitively expensive compared with write
barriers on conventional hardware (as pointer reads are
more common than writes). However, recent studies
have suggested that well-engineered read barriers may
not be as expensive as feared [10, 72]. Compaction
phases of mark-compact collectors are expensive, typi-
cally taking many times longer than the marking phase.
One solution is tocompact the heap incrementally, by
dividing it into a number of segments, each of which is
compacted separately, either by treating two of the seg-
ments (one of which should be empty) as semi-spaces,
or simply by compacting a single segment in place [39].
In this way, mutator threads need to be stopped only
long enough to compact a single segment.

Locality is vital for performance, especially in mod-
ern deeply pipelined architectures. Certainly, paging
is inimical to good performance, but good cache be-
haviour is also important. White suggested (1980)us-
ing the collector to improve locality[66]. Moon (1984)
modified Cheney’s algorithm tocopy objects approxi-
mately breadth-first. Others have had the collector re-
organise ‘hot’ fields of objects. The first studies of
garbage collector cache behaviour were by Zorn (1989)
[73].

Perhaps some of the most interesting garbage col-
lection development work was done on Lisp machines3

in the mid-80s. These architectures did not endure
because they could not compete commercially against
stock hardware. Although garbage collection research
and development has continued in the Lisp commu-
nity4, nothing has been published recently. To the best
of my knowledge, the last garbage collection paper
from the Lisp community was published in 2000 [57].
This is a shame. It is important that the lessons learnt
in the past do not become lost to the wider community.

3 The future

Despite almost 40 years of garbage collection research,
new challenges continue to emerge. As we have

3I use the term generically to include Lisp Machines, Symbolics, Explorer. . .
4For example in Harlequin’s (now Ravenbrook’s) MPS system.

3

seen above, modern collectors can offer throughput
competitive with that of the best malloc implementa-
tions. Pause times are generally not intrusive. On a
2.53GHz Pentium 4, 512KB cache, 512MB RAM, run-
ning Debian Linux, kernel 2.6.8, average pause times
for SpecJVM98 benchmarks under the HotSpot Client
VM (Blackdown 1.4.1) were 1.6ms (minor collection)
and 22ms (full collection), with standard deviations 1.7
and 15.0 respectively.

However, these are middle-sized benchmarks run-
ning on a middle of the range machine. The new chal-
lenges lie elsewhere. First, modern servers are heavily
multiprocessor. At the top end, the Azul Systems 3840
has 16 processors, each of which has 24 cores. Intel’s
Polaris architecture, although not yet a general purpose
processor, has 80 cores. And dual-core processors, on
laptops and desktops, are ubiquitous. Setting aside the
question of how we are going to program (correctly) ap-
plications to take full advantage of massive parallelism,
how will we construct automatic memory management
systems that best perform on such systems? Applica-
tions running on future servers will have prodigious de-
mands for memory; already heaps of tens of gigabytes
are not uncommon. Clearly, stopping the world to col-
lect a huge heap is impractical, but certain operations
(for example, updating all references to a moved ob-
ject) must appear atomic.

At the other end of the scale, the sophistication of
embedded devices is increasing. Applications written
in ‘managed code’ running on a virtual machine are at-
tractive for many reasons (safety, portability, ease of
update, etc.). These environments provide different
challenges. Energy efficiency is important for battery
powered devices; there are opportunities here for mem-
ory management research (for example, selective pow-
ering down of memory banks) but the field is imma-
ture. In what other ways may the collector adapt better
to its environment? For example, how can the memory
management system cohabit better with the operating
system (for example, to reduce page faults).

Systems may also demand guaranteed, hard real-
time response. Although garbage collection papers
have had titles that include the word ‘real-time’ since
1978, for most of these the term simple means incre-
mental collection without hard guarantees. One solu-
tion has been to side-step garbage collection altogether:

the Real-Time Specification for Java provides the pro-
grammer with memory regions that obey a stack disci-
pline (inter alia). Here all the memory in a region can
be reclaimed in a constant-time operation. However,
the effect of RTSJ is pervasive, requiring libraries to be
rewritten. Can garbage collection be truly real-time?

4 Concurrency and parallelism

4.1 Definitions

Throughout this paper we distinguish serial and par-
allel; stop the world, incremental, concurrent and on
the fly collection. Aserial collectorwill employ just
one collection thread no matter how many CPUs are
available; clearly, this does not make good use of re-
sources. In contrast, aparallel collectorwill share col-
lection tasks between many CPUs; the user program
(themutators) may or may not be stopped for garbage
collection. Stop the world collectorsrequire all mu-
tator threads to be halted for collection.Incremental
collectorsinterleave small bits of collection work with
the mutator; for example, each allocation request may
cause some objects to be marked.Concurrent collec-
tors allow mutator threads to run simultaneously with
collector threads; these threads may be executed on a
single CPU or in parallel on many CPUs. Many concur-
rent schemes require all mutator threads to be stopped
briefly (for example, at the start and end of each phase
[28, 48]), others stop mutator threadson the fly, just one
at a time [41, 50].

4.2 Requirements

Let us suppose we wish to build a garbage collector for
a high-performance server system. Such a system will
be multiprocessor; application programs will have very
large (multi-gigabyte) heaps and will run a large num-
ber of threads (many more threads than processors). In
general, such a system will require high throughput and
short response times, but will not specify hard real-
time guarantees. Long pauses, even if infrequent (for
example, to compact the heap), are particularly unde-
sirable for servers that provide transaction processing.
Any delay in processing work will cause a queue of

4

transactions waiting to be processed to grow. As these
transactions time-out, further transaction requests will
be submitted, leading to yet more work.

A high-performance system must therefore extract
as much parallelism as possible. As far as garbage
collection is concerned, the bottlenecks are heap con-
tention when allocating, contention for the mark stack
when marking, and handling compaction (moving ob-
jects, fixing up addresses). As in any parallel system,
it is important that data structures should be lock-free
wherever possible, and load balancing is critical (tread-
ing the path between work starvation and excessive syn-
chronisation). The general strategy is to over-partition
work and share tasks between threads. Most garbage
collection work can be partitioned into separate tasks:
marking, scanning card tables or remsets, sweeping and
compaction.

In the next sections, we shall consider a heap at least
partly managed by a high performance mark-sweep
collector. Allocation must be fast. It may be a gen-
erational collector, in which the young generation will
almost certainly be managed by a copying collector.
As fragmentation is an issue for all large, long-running
systems, we shall require (at least occasional) com-
paction. In summary, we want concurrent allocation,
parallel marker and collector threads, concurrent mark-
ing, concurrent sweeping, parallel (and maybe concur-
rent) compaction.

4.3 Concurrent allocation

Fast allocation is essential for any high performance
system. Although the heap is a shared resource, it
is essential to avoid any contention, such as locks or
atomic instructions (such as CompareAndSwap). The
fastest allocation mechanism is simply to compare a
free-space pointer against the end of the heap region
and increment it by the size of the allocation request
if there is room. Clearly, this pointer cannot be shared
between threads. In principle, the solution is simple:
divide the heap region into a large number ofthread
local allocation buffersmany more than the number of
mutator threads). Now each thread can allocate without
contention within its buffer, and must only compete for
a fresh buffer (e.g. with CAS). Garthwaite et al. give
good overview of the subtleties required [29]. Local-

ity properties make this mechanism effective even for
memory managers that rarely move objects; here, the
trick is to allow variable-sized local allocation buffers
[24].

4.4 Concurrent marking

Tracing live data concurrently (whether truly concur-
rently or incrementally) is notoriously tricky [37]. In
general, the smaller each block of instructions that must
be executed atomically, the more opportunity for paral-
lelism there is. However, it is difficult to relax atomicity
constraints on instructions without compromising cor-
rectness. Vechev et al. have suggested deriving efficient
concurrent algorithms from an ‘obviously correct’ one
through a series of correctness-preserving transforma-
tions [64]. But what is an obviously correct algorithm?

4.4.1 Coherency

Asynchronous execution of mutators and collectors in-
troduces a coherency problem. Interleavings are possi-
ble in which the mutator ‘hides’ a live (i.e. reachable)
object from the collector. For example, suppose an ob-
ject holds a single pointer to a child object, and the
collector marks the object. If the mutator then copies
the child pointer to another, already marked object, and
deletes the original pointer before the collector sees the
pointer, then the child will never be marked, and so will
be reclaimed incorrectly. The tricolour abstraction [23]
is useful here. Each object has a colour:

Black: The object and its immediate descendants have
been visited (e.g. marked); the marker has fin-
ished with this object and need not revisit it.

Grey: The object has been visited, but its components
may not have. Alternatively, in incremental or
concurrent collection, the mutator has rearranged
the connectivity of the graph. In either case, the
object must be revisited.

White: The object has not been visited.

Tracing terminates when no grey objects remain: all
white objects are garbage. There are two ways to pre-
vent the mutator from interfering with a collection, i.e.
by writing white pointers into black objects:

5

Figure 1: An incremental update barrier, Dijkstra-style (left) and a snapshot at the beginning write-barrier (right),as
a pointer is updated.

• Record where the mutator writes black-white
pointers, so that the collector can (re)visit ob-
jects. Protect objects with awrite barrier.

• Ensure that the mutator never sees a white object.
Whenever the mutator attempts to access a white
object, it is visited by the collector. White objects
are protected by aread-barrier.

Pirinen provides an excellent comparison of barrier
strategies [52].

4.4.2 Write barriers

To reclaim an object falsely, two conditions must hold:

1. a pointer to the white object is written into a
black object,

2. the original path to the white object is destroyed.

If (1) does not hold, there will be at least one path to
each reachable white object that passes through a grey
object. If (2) does not hold, the white object will still
be reachable through the original reference.

There are two forms of write barrier method
(Figure 1): incremental update(IU) methods catch
changes to connectivity,snapshot-at-the-beginning
(SAB) methods prevent loss of the original path. The
IU barrier traps attempts to install a pointer to a white
object into a black object by shading (colouring a white
object grey) either the target (Dijkstra-style) or the
source object (Steele-style); no special action is re-
quired when a pointer is deleted. IU barriers incremen-
tally record changes to the shape of the graph in order
to prevent condition (1) arising. SAB barriers shade
theold target (cf. copy-on-write), preventing condition
(2) arising. SAB collectors can be expected to be more
conservative than IU collectors since any objects that
become unreachable since the start of a collection are
preserved. However, they have one important advan-
tage: simpler termination. If no barriers are imposed
on writes to local variables, IU collectors require a stop

the world phase in which they can scan their roots and
complete tracing live data. SAB collectors do not re-
quire a final, stop the world phase.

4.4.3 Read barriers

Alternatively, we can prevent the mutator seeing white
objects so that it cannot disrupt the collector. Ap-
proaches differ on whether the mutator is allowed to
see grey objects or not. The best-known read-barrier
collector is Baker’s semi-space copying collector [7].
Baker permits access to grey, i.e. toSpace, objects but
accesses to fromSpace objects are trapped and the ob-
ject is copied to toSpace.

4.5 Parallel marking

If multiple, parallel markers are used, the mark-stack
becomes the focus of contention. The solution is to
over-partition marking into more tasks than marker
threads. Sun Microsystems’ parallel collector reduces
contention throughwork-stealing[28]. Each marking
thread is given its own mark stack onto the bottom of
which it pushes and pops addresses. If a thread exhausts
its stack, it steals work from the top of another’s stack.
Marking terminates when all threads’ stacks are empty.
Thomas devisedgrey packetsfor Insignia Solutions’
Jeode JVM (an idea reinvented in [48]). Here, each
marker thread has an in-packet and out-packet of work
(objects to mark). It obtains its (usually full) in-packet
from a shared pool. The thread then removes (refer-
ences to) objects from the packet, marks them, and adds
their children (objects which need to be marked) to its
out-packet. When the in-packet is empty, it obtains a
fresh one from the pool; when an out-packet is full, it
returns it to the pool and obtains a fresh, empty packet.
Marking terminates when all packets are empty. This
technique avoids most contention and allows simple
termination. Because the marker does not use a tradi-
tional LIFO stack, it also facilitates prefetching data to
be marked (thereby avoiding cache stalls). Weak order-

6

ing problems are also reduced (fence instructions are
only required around packet acquisitions and dispos-
als).

4.6 Sweeping

Sweeping concurrently is comparatively simple since,
by definition, the sweeper deals only with dead ob-
jects (so cannot interfere with either mutators or mark-
ers from the next collection cycle) or GC words in live
object headers (which mutators have no access to). The
heap can be partitioned into segments for each parallel
thread to sweep.

4.7 Compaction

Without compaction, heaps tend to fragment over time,
reducing allocation performance. A key problem for
compaction is that objects need to be moved, and all
references to them updated, in a way that appears to be
atomic.

An idea originally due to Lang & Dupont [39] is to
divide the heap into a number of regions and compact
each separately. The benefit here is that each can be
compacted sufficiently fast to meet pause-time require-
ments. References between regions can be handled by
remembered sets (or ‘remsets’), one per region, con-
structed by the marker threads: each remset holds the
location of references into its region. If the heap is to be
compacted incrementally, i.e. one region at a time, the
condemned region can be determined by an appropriate
heuristic (such as the volume or number of live objects
it contains, the size of its remset, etc.). The condemned
region can then be compacted, using the remsets to fix
up references, either in place or by copying to an empty
region.

Abuaiadh et al. [1] split the heap into many small
blocks(e.g. 256 bytes) and a smaller number of large
target areas, e.g. 16× the number of processors. Each
compacting thread claims a target to compact and a tar-
get into which to move compacted data; both claims
are made by incrementing an index (a CAS). Blocks
are then copied atomically from the source target to the
destination target. Their system reduced compaction
time by a factor of 4 for a large three-tier applica-
tion suffering fragmentation problems. Locality effects

meant that moving non-empty blocks en masse, rather
than individual object at a time, reduced compaction
time by a further 25% at a small cost in space (+4%).
Compaction speed-up was linear in number of threads,
and the benefit of a compacted heap improved through-
put slightly.

The Garbage-Firstcollector [21] aims to meet a
soft-real time goal as far as possible: garbage collec-
tion should use no more thanxms in anyyms time slice.
Again the heap is divided into small, equal-sized re-
gions, protected by a bi-directional, card table based
write-barrier. Any write to a clean card causes the card
to be dirtied and a pointer to the card to be added to
the thread’s small, local remset log; when the log is
filled, it is added to a global log. A background thread
waits for the global log to become sufficiently large be-
fore filtering the log to each region’s remset; process-
ing of ‘hot’ cards is postponed. The world is stopped
for the parallel evacuation phase, in which a set of re-
gions to be evacuated is chosen and collector threads
compete for work. The collector can be made genera-
tional by always condemning allocation regions. Mark-
ing can be performed concurrently with compaction by
using a current and a previous bitmap and deeming any
object above a high water mark (i.e. allocated since
marking started) as implicitly live. Compared with the
HotSpot ‘low pause time’ collector (parallel young gen-
eration copying and concurrent mark-sweep), Garbage-
First leads to fewer and less severe violations of soft
real-time goals, and scales well with the number of pro-
cessors.

A number of compaction schemes have been de-
vised that rely on memory protection support. Instead
of trapping accesses and moving objects individually,
page protection mechanisms can be used. The first
collector to do so was the Appel-Ellis-Li collector [4].
This protects grey pages and, on any access violation,
the trap handler scans the whole page on which the
object resides, copying all objects’ referents (to pages
which are then protected) before unprotecting the page
and resuming the mutator.

The IBM mostly concurrent collector [49] maps the
whole heap into two virtual address ranges. As with the
schemes above, the heap is divided into a number of
logical regions. Following the mark and sweep phases,
a region is chosen for compaction. In a brief stop the

7

world phase, the objects in this region are moved, and
roots (addresses in thread stacks, registers, etc) are up-
dated; the whole heap is read/write protected before the
mutators are resumed. Other addresses are fixed up ei-
ther concurrently as the mutators trigger access viola-
tions, or by background fix-up threads. Fix-up is done
using the second virtual address region to avoid further
violations. Separating object relocation from address
fix-up reduced compaction pause times to 10-15% of
mark time (rather than 10× mark time). A throughput
improvement of up to 10% was obtained.

TheCompressor[38] extends these ideas to reduce
the cost of sweeping over the heap to fix-up addresses.
An offset table is constructed from the mark-bit vec-
tor constructed in the mark phase, and used to compute
relocation addresses. Each compaction thread finds a
page to compact and moves objects using the offset ta-
ble; it then traverses these object to update the pointers
they contain (again using the offset table) before releas-
ing the from-page. The same page protection strategy
is used for concurrent compaction, but this time threads
are stopped only to fix-up the roots.

Azul Systems’Pauseless GC[19] is designed to
operate in an environment of hundreds of threads,
10–100GB heaps on Azul’s multicore, multiprocessor
hardware. Their custom hardware and operating system
provides fast (typically 1 cycle), user-mode trap han-
dling, a garbage collector mode (between user and ker-
nel mode) and large, 1MB pages. Their current imple-
mentation, based on the HotSpot JVM (collection safe-
points, cooperative preemption), aims for a soft real-
time goal of pause times in the range 10–100ms, but
high mutator utilisation rate. The collector operates in
three phases: mark, relocate, re-map; marking in one
epoch operates concurrently with the relocate and re-
map phases of the previous one. Each object has two
mark-bits, one for this cycle and one for the previ-
ous. Marking is parallel and concurrent, using work-
lists. Running threads mark their own roots; the roots
of blocked threads are marked by marker threads. Each
reference has aNot-Marked-Throughbit, stealing one
bit from the 64-bit address space. If a thread loads a
reference with its NMT bit set to the wrong value, the
mutator gets a trap. The trap handler marks the target
and corrects the NMT bit in the reference using a CAS.
There is no stop the world phase at the end of mark-

ing. In the relocation phase, pages are protected and
objects concurrently relocated, either by the collector
or by the mutator if it attempts to access a protected
page. Forwarding pointers are held in a side-table so
physical, but not virtual, pages can be recycled as soon
as their objects have been evacuated: this means that
some references are stale. In the re-map phase, the col-
lector traverses the object graph, tripping the read bar-
riers. Although the Pauseless collector may encounter
‘trap storms’ at phase boundaries, these are apparently
brief.

5 Reference counting revisited

The prime attractions of reference counting are its
distribution of memory management costs throughout
the computation and its relatively good locality (any
pointer write affects the reference counts of only the
old and new targets). However, it also has disad-
vantages. Standard reference counting cannot reclaim
cyclic garbage (and such structures are common), so a
back-up tracing collector may be necessary. Reference
count manipulations must be atomic, which is prob-
lematic/expensive for multi-threaded programs. Con-
sequently, reference counting has been largely ignored
for many years. However, recently new techniques have
been developed that make reference counting attractive
once more.

Reference counting is best suited to long-lived data
structures that are rarely updated living in huge heaps,
whilst short-lived objects with frequently update fields
are managed well by copying collectors.Ulterior refer-
ence counting[12] seeks the benefit of both approaches
in a generational collector that manages the young gen-
eration in the usual way, but the old generation with
reference counting (using trial deletion to handle cyclic
structures [5]). In a sense, this is a generalisation of
deferred reference counting [22]. In tightly constrained
heaps, the collector gave throughput comparable to a
fixed-sized nursery, generational mark-sweep collector,
but with maximum pause times reduced by a factor of
4.

Levanoni & Petrank [41] observe that, in any se-
quence of updates to a slot holding a pointer, only the
first and last are significant for reference counting. Sup-

8

pose the slot takes valueso1, o2,. . .on between garbage
collection cycles. A naive implementation would per-
form RC(o1)--, RC(o2)++, RC(o2)--, . . .RC(on)++,
but onlyRC(o1)-- andRC(on)++ are needed. They ex-
ploit this observation in theirSliding Viewscollector.
Memory management operations are divided into cy-
cles. A mutator writing a pointer first checks the source
object’s dirty bit: if it is clear, it is set and the address
of slot and its old value are added to a local buffer. At
the end of each cycle, each mutator thread marks ob-
jects referenced from its stack and local buffer, clears
the dirty bits and passes its local buffer to the collector
before resuming. The collector processes the mutator
buffers, using the old values of the pointers to perform
the reference count decrement and the values currently
held in the object to perform the increment. However,
he algorithm is complex: it uses four handshakes to
synchronise correctly with concurrent mutator activity.
Paz et al.’sAge-orientedcollector [51] collects all gen-
erations in heap at every collection but, in the spirit of
[12] traces the young generation, and uses sliding views
to collect the old generation.

Bacon & Rajan [5] demonstrate a high-
performance, concurrent, cycle-reclaiming, reference
counter. As with any efficient reference counting im-
plementation, it uses deferred RC. Reference count-
ing operations are managed by a producer-consumer
model: mutators add RC operations to local buffers.
These buffers are periodically turned over to a collector
running on its own processor which consumes them:
only the collector thread can modify reference counts.
Garbage collection is divided into epochs: increment
operations are done in this epoch but decrements are
deferred to the next to avoid race conditions. Cycles
are handled by local rather than global tracing using
trial deletion [18]. Starting from all non-atomic objects
whose reference count has been deleted, the graph is
traced and a second reference count of each object en-
countered is decremented, in order to remove the effect
of pointers internal to a cyclic garbage structure. If,
at the end of this phase, all of the objects encountered
have a zero secondary reference count, the entire struc-
ture is reclaimed. Bacon & Rajan found that throughput
was close to that of a parallel mark-sweep collector for

most applications, with maximum pause times of 2.6ms
and the smallest interval between pauses of 36ms. One
problem for concurrent trial deletion is that a thread
may alter the connectivity of the graph being traced.
Paz et al. [50] resolve this by applying sliding views to
Bacon & Rajan’s collector.

6 Real-time collection

The collectors we have examined so far have sought
to meet only soft real-time bounds, with most pause
times less than a threshold. Collectors for hard real-
time systems must meet more stringent requirements:
all deadlines must be met. However, note that simple
bounds on the maximum length of any garbage collec-
tion pause are insufficient. Were a collector to incur
a large number of such pauses within a short period,
it is possible that the mutator’s share of the processor
would be insufficient. For this reason,minimum mu-
tator utilisationcurves5 [16] provide a superior metric
to maximum pause time or, better, pause time distribu-
tions. MMU curves plot the mutator’s minimum utilisa-
tion of the processor in any time slice (see an example
in Figure 2). Other issues for hard real-time collection
include handling of large data structures, fragmentation
and schedulability.

One solution is to provide the programmer with re-
gions that allow fast allocation but that can also be re-
claimed in constant time (i.e. all objects within a region
are deallocated at once); one example is theReal-time
Specification for Java. However, this is a cumbersome
model to program with as stack-based region discipline
imposes restrictions on the direction of pointers be-
tween regions: often data shared between regions must
be passed via the general heap, thus undermining the re-
gion strategy. Standard libraries also have to be rewrit-
ten to be region-aware. In contrast, theMetronome[6]
provides a general purpose collector that can meet hard
real-time boundsprovidedthat the programmer is able
to specify parameters such as the maximum allocation
rate of the program.

The Metronome allocates objects from segregated
free-lists [68], using a large number of size classes

5See a discussion of garbage collection metrics in [56].

9

0

0.2

0.4

0.6

0.8

1

100000 1e+06 1e+07 1e+08

M
in

im
um

 M
ut

at
or

 U
til

iz
at

io
n

(M
M

U
)

Interval size (microseconds)

Beltway 10.10
Beltway 10.10.100
Beltway 33.33
Beltway 33.33.100
Appel-style generational

Figure 2: MMU curves (for Beltway configurations running SPECjvm98 213 javac). Thex-axis intercept gives the
maximum pause time, they intercept the total fraction spent in garbage collection; higher and lefter-most is better.

to achieve low internal fragmentation; external frag-
mentation is removed by copying (although the collec-
tor is mostly non-copying). Large arrays are broken
into 2-level structures (a sequence of power-of-2 sized
arraylets), with a limit on maximum array size (e.g.
8MB). Compiler optimisations improve access to these
structures. Metronome uses an incremental marking,
lazy sweeping collector with a snapshot at the begin-
ning write barrier to avoid retracing. Care is taken to
limit fragmentation. If too few free pages are available,
objects are copied from a fragmented page to another of
the same size class. A black-only read barrier is used to
ensure that the mutator sees only toSpace objects. The
collector is scheduled on the basis of time-based quanta
as work-based quanta are found not to give consistent
mutator utilisation. On SPECjvm98 benchmarks, for
a 500MHz PowerPC, with average allocation rate 10–
19MB/s and 80–358MB/s maximum, maximum live
data 20–34MB, Metronome provided a minimum mu-
tator utilisation of 44% and pause times in the range
10–13ms; less than 2% of data was copied rather than
traced.

7 Heap organisation

So far we have discussed methods of improving the
speed with which memory management operations can

be implemented. However, another way to improve
performance is to reduce the amount of work that the
collector has to do by exploiting knowledge of the life-
time demographics of objects.

Generational garbage collection, based on the hy-
pothesis that ‘most objects die young’ [63], segregates
objects by age into generations. Generational collec-
tors concentrate effort on the region (the young gener-
ation) where least live data is expected and avoid re-
peatedly processing long-lived objects in the old gener-
ation. An alternative strategy is to give objects as much
time as possible to die.Older-first garbage collection
[60] lays out objects in the heap in allocation order and
then collects them in age order (see Figure 3). Start-
ing from the oldest objects in the heap (say, the left
of the heap), at each collection an older-first collec-
tor chooses a window to be collected immediately to
the right of the of the survivors of the last collection.
With each collection, this window sweeps rightwards.
Eventually it reaches the youngest (or right hand) end
of the heap and is reset to the oldest (left hand) end of
the heap. While older-first collection is an interesting
proposition, its performance is modest.

The Beltwaygarbage collection framework [11] is
novel in that it separates incrementality and age. It gen-
eralises all known copying collectors as well as pro-
viding new ones. The unit of collection is theincre-
ment. Increments are held onbelts; a belt may have one

10

Figure 3: Older-first garbage collections. At each collection, the next younger region (grey) is collected; survivors
are shown black.

Figure 4: A beltway collector configured with 3 belts. Belt 2 has one increment, belts 0 and 1 each have two
increments.

or more increments, but these are collected in strictly
FIFO order, lowest-numbered belt first (see Figure 4).
Survivors may be copied to another increment on the
same belt or promoted to a higher-numbered belt (c.f.
generations). Increments provide incrementality: al-
lowing a belt to have more than one increment gives
objects time to die. TheLACE framework [36] extends
Beltway to exploit lifetime patterns even further. It as-
sociates belts with collection policies (e.g. expected
object lifetimes). Thus, memory allocated by a site ex-
pected to create long-lived objects would be on a belt
each of whose increments are set not to be processed
for a long time after its creation. Belt policies also al-
low different promotion patterns, for example a promo-
tion path might be from a short-lived belt to an immor-
tal belt, reflecting a surprisingly common demographic
pattern; data allocated onto this pathway would be pro-
cessed by the collector at most once.

8 Integration into the environ-
ment

Good memory manager performance depends on good
integration with the manager’s environment. There are
two aspects to this. First, collectors should take ad-
vantage of expected program behaviour, as discussed
above. Secondly, the collector should inter-operate well
with the operating system and hardware. Typically, this
means at least avoiding adverse effects on locality and
at best reorganising data to improve locality [66]. Until
recently, the disparity in processor and memory speeds
have grown ever steeper year by year as improvements
in processor speeds were not matched by improvements
in memory speeds. Tracing garbage collection disrupts
a program’s working set as it touches all live data. Ad-
ditional paging kills performance, and contention be-
tween mutator and collector for the cache is undesir-

able and likely to become a more important factor as
the number of cores on a chip increases.

Over-provisioning memory is unlikely to be a real-
istic solution for many users. Consumer PCs are com-
monly sold with barely adequate memory, yet over the
lifetime of the machine the memory demands of the
programs run on it increase. Solutions to avoid pag-
ing such as mark-bitmaps [13] or hierarchical copying
[44] have been known for a long time. However, from
the demise of Lisp machines until recently, no systems
have explored better cooperation between collector and
operating system.

TheBookmarkingcollector [33] attempts to elimi-
nate garbage collection-induced paging. In particular,
the collector does not touch evicted pages whilst still
providing an approximation to full heap collection. The
collector is generational, with a mark-sweep old gener-
ation and occasional compaction (into empty slots in
segregated free-lists). The heart of the system lies in
cooperation between the collector and a modified Linux
virtual memory manager over which pages to evict.
The collector reacts to signals from the virtual memory
manager that pages are scheduled for eviction or made
resident. On notice of eviction, the collector attempts
to select an empty but resident page (e.g. a fromSpace
page immediately after a collection, although recently
used, would no longer be required). Otherwise, the
collector scans the victim page and remembers its out-
going pointers (bookmarks) before protecting the page
and notifying the virtual memory manager that it can be
evicted. On the page’s return to main memory, mutator
access violations are handled by removing the book-
marks for this page before unprotecting it. Garbage
collections proceed as normal but references to evicted
pages are not followed; bookmarked objects are treated
as root-referenced. Other approaches monitor paging
behaviour in order to guide the heap manager’s deci-
sions whether to expand the heap or trigger a collec-

11

tion [71, 69], for example by instrumenting the code at
phase boundaries.

9 Static analysis

Whether through our instincts as programmers or
through exhaustive examination of program traces, it is
clear that programs exhibit particular patterns of mem-
ory behaviour and that many of these patterns are robust
against changes of input. It is therefore very appealing
to ask whether these patterns can be identified and ex-
ploited automatically.

Region inference has been shown to be an effective
way of managing memory in the ML-kit [62]. How-
ever, without a deep understanding of the inference al-
gorithm, it is difficult to track down leaks and other
memory problems. Programs may need a back-up trac-
ing collector [31]. Region inference also does not al-
low individual objects to be deallocated. In contrast,
the combination of pointer analysis and liveness anal-
ysis of Guyer et al. [30] identifies points in a program
when individual objects (rather than regions or all ob-
jects created by a single allocation site) may be freed.
Although this give better throughput than using a mark-
sweep collector, it was unable to improve over a gener-
ational mark-sweep collector. It was also ineffective
for long-lived objects, container internals and classes
that behavedmostlylike factories. Cherem & Rugina
[17] track reference counts statically to insert free oper-
ations, guarded by suitable predicates. Their technique
was able to free a large proportion of data allocated for
some programs, and showed some execution time im-
provements over mark-sweep on small heaps.

Static analyses have also been used to assist the
collector rather than directly reclaim space. Guyer &
McKinley combine a flow insensitive pointer analysis
with a runtime test to pretenure a new object in the old
generation if it will be referenced by an object already
in the old generation. Hirzel et al. [34] use a conserva-
tive compiler analysis to derive connectivity informa-
tion in order to partition objects in the heap. The in-
tention is to replace the directed graph of objects with
a tree of strongly connected components. The collector
can then reclaim subsets of the partitions without need
for a write barrier.

10 Conclusions

The pace of development of new architectures, new en-
vironments and new applications combined with the in-
creasing importance of languages supported by man-
aged runtimes means that memory management re-
search is as alive and as vital as ever. The challenges for
the future include the development of high performance
collectors for the multicore, multiprocessors that will
be prevalent. Collectors will need to interact better with
their environment, taking account of the virtual mem-
ory manager, cache and energy considerations. The ef-
forts of memory managers will become better directed,
taking more account of program behaviour, with richer
collectors managing different spaces under different
policies, possibly guided by program analyses.

References

[1] Diab Abuaiadh, Yoav Ossia, Erez Petrank, and Uri Sil-
bershtein. An efficient parallel heap compaction al-
gorithm. In OOPSLA’04 ACM Conference on Object-
Oriented Systems, Languages and Applications, ACM
SIGPLAN Notices, Vancouver, October 2004. ACM
Press.

[2] Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek
Lieber, Stephen Smith, Ton Ngo, John J. Barton, Su-
san Flynn Hummel, Janice C. Sheperd, and Mark Mer-
gen. Implementing Jalapeño in Java. In OOPSLA [46],
pages 314–324.

[3] Bowen Alpern, Maria Butrico, Anthony Cocchi, Julian
Dolby, Stephen Fink, David Grove, and Ton Ngo. Expe-
riences porting the Jikes RVM to Linux/IA32. InUsenix
Java Virtual Machine Research and Technology Sympo-
sium (JVM ’02), San Francisco, CA, August 2002.

[4] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time
concurrent collection on stock multiprocessors.ACM
SIGPLAN Notices, 23(7):11–20, 1988.

[5] David F. Bacon, Clement R. Attanasio, Han B. Lee,
V. T. Rajan, and Stephen Smith. Java without the coffee
breaks: A nonintrusive multiprocessor garbage collec-
tor. In PLDI [53].

12

[6] David F. Bacon, Perry Cheng, and V.T. Rajan. A real-
time garbage collecor with low overhead and consis-
tent utilization. InConference Record of the Thirti-
eth Annual ACM Symposium on Principles of Program-
ming Languages, ACM SIGPLAN Notices, New Or-
leans, LA, January 2003. ACM Press.

[7] Henry G. Baker. List processing in real-time on a serial
computer.Communications of the ACM, 21(4):280–94,
1978. Also AI Laboratory Working Paper 139, 1977.

[8] Henry G. Baker. The Treadmill, real-time garbage col-
lection without motion sickness.ACM SIGPLAN No-
tices, 27(3):66–70, March 1992.

[9] Stephen M. Blackburn, Perry Cheng, and Kathryn S.
McKinley. Oil and water? high performance garbage
collection in Java with MMTk. InICSE 2004, 26th In-
ternational Conference on Software Engineering, Edin-
burgh, May 2004.

[10] Stephen M. Blackburn and Tony Hosking. Barriers:
Friend or foe? In Diwan [25].

[11] Stephen M. Blackburn, Richard Jones, Kathryn S.
McKinley, and J. Eliot B. Moss. Beltway: Getting
around garbage collection gridlock. In PLDI [54], pages
153–164.

[12] Stephen M. Blackburn and Kathryn S. McKinley. Ulte-
rior reference counting: Fast garbage collection without
a long wait. In OOPSLA [47].

[13] Hans-Juergen Boehm and Mark Weiser. Garbage col-
lection in an uncooperative environment.Software
Practice and Experience, 18(9):807–820, 1988.

[14] Proceedings of the 14th International Conference
on Compiler Construction, Edinburgh, April 2005.
Springer-Verlag.

[15] C. J. Cheney. A non-recursive list compacting algo-
rithm. Communications of the ACM, 13(11):677–8,
November 1970.

[16] Perry Cheng and Guy Blelloch. A parallel, real-time
garbage collector. In PLDI [53], pages 125–136.

[17] Sigmund Cherem and Radu Rugina. Compile-time deal-
location of individual objects. In Moss [45], pages 138–
149.

[18] T. W. Christopher. Reference count garbage collection.
Software Practice and Experience, 14(6):503–507, June
1984.

[19] Cliff Click, Gil Tene, and Michael Wolf. The pauseless
GC algorithm. In Vitek [65].

[20] George E. Collins. A method for overlapping and era-
sure of lists.Communications of the ACM, 3(12):655–
657, December 1960.

[21] David Detlefs, Christine Flood, Steven Heller, and Tony
Printezis. Garbage-first garbage collection. In Diwan
[25].

[22] L. Peter Deutsch and Daniel G. Bobrow. An efficient
incremental automatic garbage collector.Communica-
tions of the ACM, 19(9):522–526, September 1976.

[23] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S.
Scholten, and E. F. M. Steffens. On-the-fly garbage col-
lection: An exercise in cooperation. InLecture Notes in
Computer Science, No. 46. Springer-Verlag, New York,
1976.

[24] Robert Dimpsey, Rajiv Arora, and Kean Kuiper. Java
server performance: A case study of building efficient,
scalable JVMs.IBM Systems Journal, 39(1):151–174,
2000.

[25] Amer Diwan, editor. ISMM’04 Proceedings of the
Fourth International Symposium on Memory Manage-
ment, Vancouver, October 2004. ACM Press.

[26] Daniel J. Edwards. Lisp II garbage collector. AI
Memo 19, MIT AI Laboratory, Date unknown.

[27] Robert R. Fenichel and Jerome C. Yochelson. A Lisp
garbage collector for virtual memory computer systems.
Communications of the ACM, 12(11):611–612, Novem-
ber 1969.

[28] Christine Flood, Dave Detlefs, Nir Shavit, and Cather-
ine Zhang. Parallel garbage collection for shared mem-
ory multiprocessors. InUsenix Java Virtual Machine
Research and Technology Symposium (JVM ’01), Mon-
terey, CA, April 2001.

[29] Alex Garthwaite, Dave Dice, and Derek White. Sup-
porting per-processor local-allocation buffers using
lightweight user-level preemption notification. In Vitek
[65].

[30] Samuel Z. Guyer, Kathryn McKinley, and Daniel
Frampton. Free-Me: A static analysis for automatic in-
dividual object reclamation. In PLDI [55], pages 36r–
375.

[31] Niels Hallenberg, Martin Elsman, and Mads Tofte.
Combining region inference and garbage collection. In
PLDI [54], pages 141–152.

13

[32] Timothy P. Hart and Thomas G. Evans. Notes on imple-
menting LISP for the M–460 computer. In E. C. Berke-
ley and Daniel G. Bobrow, editors,The Programming
Language LISP: Its Operation and Applications, pages
191–203, Cambridge, MA, 1974. Information Interna-
tional, Inc.

[33] Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage
collection without paging. InProceedings of SIG-
PLAN 2005 Conference on Programming Languages
Design and Implementation, ACM SIGPLAN Notices,
Chicago, IL, June 2005. ACM Press.

[34] Martin Hirzel, Amer Diwan, and Matthew Hertz.
Connectivity-based garbage collection. In OOPSLA
[47].

[35] Xianlong Huang, J. Eliot B. Moss, Kathryn S. McKin-
ley, Stephen M. Blackburn, and D. Burger. Dynamic
SimpleScalar: Simulating Java virtual machines. Tech-
nical Report TR–03–03, University of Texas at Austin,
February 2003.

[36] Richard Jones and Chris Ryder. Garbage collec-
tion should be lifetime aware. In Olivier Zendra,
editor, Implementation, Compilation, Optimization of
Object-Oriented Languages, Programs and Systems
(ICOOOLPS’2006), page 8, Nantes, France, July 2006.

[37] Richard E. Jones. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. Wiley,
Chichester, July 1996. With a chapter on Distributed
Garbage Collection by R. Lins.

[38] Haim Kermany and Erez Petrank. The Compressor:
Concurrent, incremental and parallel compaction. In
PLDI [55], pages 354–363.

[39] Bernard Lang and Francis Dupont. Incremental in-
crementally compacting garbage collection. InSIG-
PLAN’87 Symposium on Interpreters and Interpretive
Techniques, volume 22(7) ofACM SIGPLAN Notices,
pages 253–263. ACM Press, 1987.

[40] Doug Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html, 1997.

[41] Yossi Levanoni and Erez Petrank. An on-the-fly ref-
erence counting garbage collector for Java. InOOP-
SLA’01 ACM Conference on Object-Oriented Systems,
Languages and Applications, volume 36(10) ofACM
SIGPLAN Notices, Tampa, FL, October 2001. ACM
Press.

[42] Henry Lieberman and Carl E. Hewitt. A real-time
garbage collector based on the lifetimes of objects.

Communications of the ACM, 26(6):419–429, 1983.
Also report TM–184, Laboratory for Computer Science,
MIT, Cambridge, MA, July 1980 and AI Lab Memo
569, 1981.

[43] John McCarthy. Recursive functions of symbolic ex-
pressions and their computation by machine.Commu-
nications of the ACM, 3:184–195, 1960.

[44] David A. Moon. Garbage collection in a large LISP
system. In Guy L. Steele, editor,Conference Record of
the 1984 ACM Symposium on Lisp and Functional Pro-
gramming, pages 235–245, Austin, TX, August 1984.
ACM Press.

[45] J. Eliot B. Moss, editor.ISMM’06 Proceedings of the
Fourth International Symposium on Memory Manage-
ment, Ottawa, June 2006. ACM Press.

[46] OOPSLA’99 ACM Conference on Object-Oriented Sys-
tems, Languages and Applications, volume 34(10) of
ACM SIGPLAN Notices, Denver, CO, October 1999.
ACM Press.

[47] OOPSLA’03 ACM Conference on Object-Oriented Sys-
tems, Languages and Applications, ACM SIGPLAN
Notices, Anaheim, CA, November 2003. ACM Press.

[48] Yoav Ossia, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolod-
ner, Victor Leikehman, and Avi Owshanko. A parallel,
incremental and concurrent GC for servers. In PLDI
[54], pages 129–140.

[49] Yoav Ossia, Ori Ben-Yitzhak, and Marc Segal. Mostly
concurrent compaction for mark-sweep GC. In Diwan
[25].

[50] Harel Paz, Erez Petrank, David F. Bacon, V.T. Rajan,
and Elliot K. Kolodner. An efficient on-the-fly cycle
collection. In CC [14].

[51] Harel Paz, Erez Petrank, and Stephen M. Blackburn.
Age-oriented garbage collection. In CC [14].

[52] Pekka P. Pirinen. Barrier techniques for incremental
tracing. In Richard Jones, editor,ISMM’98 Proceed-
ings of the First International Symposium on Memory
Management, volume 34(3) ofACM SIGPLAN Notices,
pages 20–25, Vancouver, October 1998. ACM Press.

[53] Proceedings of SIGPLAN 2001 Conference on Pro-
gramming Languages Design and Implementation,
ACM SIGPLAN Notices, Snowbird, Utah, June 2001.
ACM Press.

[54] Proceedings of SIGPLAN 2002 Conference on Pro-
gramming Languages Design and Implementation,
ACM SIGPLAN Notices, Berlin, June 2002. ACM
Press.

14

[55] Proceedings of SIGPLAN 2006 Conference on Pro-
gramming Languages Design and Implementation,
ACM SIGPLAN Notices, Ottawa, June 2006. ACM
Press.

[56] Tony Printezis. On measuring garbage collection re-
sponsiveness. Science of Computer Programming,
62:164–183, October 2006.

[57] Manuel Serrano and Hans-J Boehm. Understanding
memory allocation of Scheme programs. InProceed-
ings of International Conference on Functional Pro-
gramming, Montreal, September 2000. ACM Press.

[58] Patrick Sobalvarro. A lifetime-based garbage collector
for Lisp systems on general-purpose computers. Tech-
nical Report AITR-1417, MIT AI Lab, February 1988.
Bachelor of Science thesis.

[59] Guy L. Steele. Multiprocessing compactifying garbage
collection. Communications of the ACM, 18(9):495–
508, September 1975.

[60] Darko Stefanovíc, Kathryn S. McKinley, and J. Eliot B.
Moss. Age-based garbage collection. In OOPSLA [46],
pages 370–381.

[61] Bjarne Stroustrup.The C++ Programming Language.
Addison-Wesley, second edition, December 1991.

[62] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels
Hallenberg. A retrospective on region-based memory
management. Higher-Order and Symbolic Computa-
tion, 17(3), September 2004.

[63] David M. Ungar. Generation scavenging: A non-
disruptive high performance storage reclamation algo-
rithm. ACM SIGPLAN Notices, 19(5):157–167, April
1984. Also published as ACM Software Engineering
Notes 9, 3 (May 1984) — Proceedings of the ACM/SIG-
SOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, 157–
167, April 1984.

[64] Martin Vechev, Erin Yahav, and David Bacon.
Correctness-preserving derivation of concurrent

garbage collection algorithms. In PLDI [55], pages
341–353.

[65] Jan Vitek, editor. First ACM/USENIX Conference on
Virtual Execution Environments (VEE’05), Chicago, IL,
June 2005. ACM Press.

[66] Jon L. White. Address/memory management for a gi-
gantic Lisp environment, or, GC Considered Harmful.
In Conference Record of the 1980 Lisp Conference,
pages 119–127, Redwood Estates, CA, August 1980.

[67] Paul R. Wilson. Uniprocessor garbage collection tech-
niques. Technical report, University of Texas, January
1994. Expanded version of the IWMM92 paper.

[68] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and
David Boles. Dynamic storage allocation: A survey and
critical review. In Henry Baker, editor,Proceedings of
International Workshop on Memory Management, vol-
ume 986 ofLecture Notes in Computer Science, Kin-
ross, Scotland, September 1995. Springer-Verlag.

[69] Ting Yang, Emery D. Berger, Matthew Hertz, Scott F.
Kaplan, and J. Eliot B. Moss. Autonomic heap sizing:
Taking real memory into account. In Diwan [25].

[70] Taichi Yuasa. Real-time garbage collection on general-
purpose machines.Journal of Systems and Software,
11(3):181–198, 1990.

[71] Chengliang Zhang, Kirk Kelsey, Xipeng Shen, Chen
Ding, Matthew Hertz, and Mitsunori Ogihara. Program-
level adaptive memory management. In Moss [45],
pages 174–183.

[72] Benjamin Zorn. Barrier methods for garbage collec-
tion. Technical Report CU-CS-494-90, University of
Colorado, Boulder, November 1990.

[73] Benjamin G. Zorn. Comparative Performance Evalu-
ation of Garbage Collection Algorithms. PhD thesis,
University of California at Berkeley, March 1989. Tech-
nical Report UCB/CSD 89/544.

15

