
Chitil, Olaf and Huch, Frank (2007) A Pattern Logic for Prompt Lazy Assertions.
 In: Horváth, Zoltán and Zsok, Viktoria and Butterfield, Andrew, eds. Implementation
and Application of Functional Languages. Lecture Notes in Computer Science
. Springer, Berlin, Germany, pp. 126-144. ISBN 978-3-540-74129-9.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14599/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-3-540-74130-5

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14599/
https://doi.org/10.1007/978-3-540-74130-5
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Pattern Logic for Prompt Lazy Assertions

in Haskell?

Olaf Chitil Frank Huch
University of Kent, UK CAU Kiel, Germany

oc@kent.ac.uk fhu@informatik.uni-kiel.de

Abstract. Assertions test expected properties of run-time values with-
out disrupting the normal computation of a program. Here we present
a library for enriching programs in the lazy language Haskell with as-
sertions. Expected properties are written in an expressive pattern logic

that combines pattern matching with logical operations and predicates.
The presented assertions are lazy: they do not force evaluation but only
examine what is evaluated by other parts of the program. They are also
prompt: assertion failure is reported as early as possible, before a faulty
value is used by the main computation.

1 Introduction

Large programs are composed of algorithms and numerous (more or less) ab-
stract data types which interact in complex ways. A bug in the implementation
of a basic data structure can result in the whole program going wrong. Such a
bug can be hard to locate, because the faulty data structure may not be part of
the wrong result, it may just be an intermediate data structure. Even worse, the
program may produce wrong results for a long time before the user even notices.

Testing abstract data types exhaustively is difficult. However, interesting test
cases often occur when data structures are used within other algorithms. Hence it
is a good idea to check for bugs in basic data structures and functions during the
execution of larger programs. Using assertions is a common approach to do so.
The programmer specifies intended properties of data structures and functions
by writing assertions. During program execution, these assertions are tested and
failure of an assertion is reported to the programmer. Examples of assertions
are restricting the square root function to positive arguments or the property of
being sorted for a search tree.

The Glasgow Haskell Compiler (GHC) already provides the possibility to
define assertions:

assert :: Bool -> a -> a

The first argument is the asserted property. If this property evaluates to True,
then assert behaves like the identity function. Otherwise, an error is reported
with detailed information about the source code position of the failed assertion.
For example, consider an assertion that checks whether a list is sorted:

? This work has been partially supported by the German Research Council (DFG)
under grant Ha 2457/5-2 and by the United Kingdom under EPSRC grant
EP/C516605/1.

checkSorted :: Ord a => [a] -> [a]

checkSorted xs = assert (sorted xs) xs

sorted :: Ord a => [a] -> Bool

sorted (x:y:ys) = x<=y && sorted (y:ys)

sorted _ = True

Unfortunately assert is strict in its Boolean argument which clashes with
Haskell’s laziness. The asserted property is evaluated and the tested data struc-
ture is evaluated as far as necessary to decide the property. Hence, programming
with assertions will result in strict programs with loss of the expressive power of
laziness, e.g., the use of infinite data structures.

We conclude that assertions in lazy languages should respect laziness. They
should only be evaluated as far as possible, i.e., an assertion should only be
checked for the part of the data structure which is evaluated during the compu-
tation. A first approach for lazy assertions is [2]. It is based on

assert :: String -> (a -> Bool) -> a -> a

The first parameter is a label naming the assertion. When an assertion fails, the
computation aborts with an appropriate message that includes the assertion’s
label. As further parameters assert takes the property and the value on which
it behaves as a partial identity.

To prevent an assertion from evaluating too much, the property has to be de-
fined as a predicate on the tested data structure. The implementation of assert
ensures that only the context in which the application of assert appears deter-
mines how far the tested data structure is evaluated. Only the evaluated part is
passed as argument to the predicate.

We can redefine checkSorted as follows:

checkSorted xs = assert "sorted" sorted xs

Applying checkSorted to the list [1,3,2,4] yields:

Assertion (sorted) failed: 1:3:2:_

The failure is reported as early as possible, before the whole list is evaluated.
However, the approach of [2] has a major drawback. If we evaluate only the
tail of the observed list, no failure occurs, although the evaluated part of the
observed data structure is not sorted:

> tail (checkSorted [1,3,2,4])

[3,2,4]

The reason for this behaviour is that the function (&&) used in the definition
of the predicate sorted is sequentially defined. The assertion is suspended on
checking the sorted property for the first two elements of the list. The conjunction
is never evaluated to False, although there are two elements in the evaluated
part which are not in order.

In practice, many lazy assertions are suspended exactly for this reason. Many
asserted properties may not hold for evaluated parts of data structures, but
the assertions do not fail and hence, the programmer wrongly believes their
program to be correct. The evaluation of an assertions involves a sequential

evaluation order, which may not be related to the evaluation order of the program
generating/evaluating the data structures.

In this paper we introduce a new approach for lazy assertions. The basic
idea is to define assertions by means of a pattern logic instead of arbitrary
Haskell functions. In this logic, we express properties with parallel versions of
(&&) and (||). If any of the arguments of such a parallel operator makes the
whole assertion fail, then this is reported independently of the other parts of the
assertion. Furthermore, our assertions are checked as early as possible, which
we call promptness. Whenever a new part of a data structure is required by the
main computation, assertions are checked for this part and any assertion failure
is reported before a faulty value is used by the main computation.

Although in some cases this approach may be more complicated than defining
assertions within the programming language Haskell itself, there is also an oppor-
tunity. Our pattern logic is more a specification language than a programming
language. Hence, properties are asserted in a style that is completely different
to ordinary programs. So it is unlikely that programmers will make the same
mistakes in the assertions as in the program, which may happen easily using the
same language for programming as for specifying properties.

Beside reporting failed assertions, reporting how many and which assertions
have succeeded may also be useful. We collect succeeded assertions in a file, so
that the programmer can later analyse which assertions succeeded. However,
not every assertion is supposed to succeed in the presence of laziness. The user
must be aware that in many cases checking assertions suspends and cannot be
decided on the evaluated parts of the data structures. This behaviour is even
required when a property shall be tested on a never fully evaluated infinite data
structure. However, if an assertion fails because of any part of an evaluated data
structure, then this is reported immediately.

Our assertions have the following properties:

– They do not modify the lazy behaviour of a program.
– Whenever some part of a data structure is evaluated and this part violates

an asserted property, this is promptly reported to the programmer.
– Assertions are implemented as a library and do not need any compiler or

run-time modifications; the only extension to Haskell 98 used for the imple-
mentation are unsafePerformIO and IORefs.

In Sections 2 to 5 we explain how to use our pattern logic by means of examples.
Section 6 outlines how the implementation works. In Section 7 we discuss related
work and we close in Section 8.

2 Patterns and Quantification

In the following sections we introduce our pattern logic step by step and justify
our design decisions through examples.

2.1 Patterns

Pattern matching is a powerful feature of modern functional languages. The
pattern is a kind of prototype of a function’s argument. For example, it allows a
simple definition of a function that tests whether a list has exactly two elements:

hasTwoElements :: [Int] -> Bool

hasTwoElements (_:_:[]) = True

hasTwoElements _ = False

We can define a function that is basically the identity function on lists but
additionally asserts that the argument has exactly two elements as follows:

twoElements :: [Int] -> [Int]

twoElements = assert "two elements" (p_ <:> p_ <:> pNil)

So what are the new functions used in this definition? We cannot use built-in
pattern matching for prompt lazy assertions and we do not want to extend the
language Haskell. Therefore, we implement our pattern logic using an abstract
type constructor Pat. We provide functions for constructing Pats:

p_ :: Pat a is the wildcard pattern that matches everything;
pNil :: Pat [a] and (<:>) :: Pat a -> Pat [a] -> Pat [a]

construct patterns that match the two data constructors of the list type. Using
these pattern constructors we can write p_ <:> p_ <:> pNil to express a Pat

similar to the pattern : :[] used in the definition of hasTwoElements. For
every predefined data type appropriate patterns are defined, e.g., pNothing and
pJust for matching Maybe values and pPair for matching pairs.

The assertion itself is expressed with

assert :: Observe a => String -> Pat a -> a -> a

The type of any value we make assertions about has to be an instance of class
Observe, whose rôle is explained later.

Whereas hasTwoElements forces the evaluation of the list constructors of its
argument to perform pattern matching, twoElements is lazy: the argument is
only evaluated as far as its result is demanded by the caller of twoElements.

In many cases it will be useful to combine patterns by means of the logical
conjunction and disjunction operators:

(|||) :: Pat a -> Pat a -> Pat a (&&&) :: Pat a -> Pat a -> Pat a

For instance, we can now define an assertion which expresses that a list contains
less than two elements:

shortList :: [a] -> [a]

shortList = assert "length less than two" (pNil ||| p_ <:> pNil)

2.2 Context Patterns

When specifying properties of large data structures, it is not sufficient to match
a finite initial part of the data structure. We would like to be able to match
patterns in arbitrarily deep contexts, for example, to select an arbitrary element
of a list. Hence we provide context patterns within our pattern logic. The pattern
constructor

pListC :: Pat [a] -> Pat [a]

matches its argument pattern against arbitrary sublists of a list. For example

oneTrue :: [Bool] -> [Bool]

oneTrue = assert "True in list" (pListC (pTrue <:> p_))

asserts that there exists an element True in the argument list.

2.3 Universal and Existential Quantification

Why does the preceding example assert that there exists an element True? Could
it not mean that all elements should be True? Indeed we will sometimes want to
assert a property for all sublists and sometimes want to assert that there exists
a sublist with a given property. Hence we introduce the quantifier patterns
forAll, exists :: Pat a -> Pat a

which change the meaning of context patterns within their scope. So
exists (pListC (pTrue <:> p_))

asserts that there exists an element True whereas
forAll (pListC ((exists pTrue) <:> p_))

asserts that all list elements are True.
Why is there a nested exists in the last example? Because quantifiers do

not only change the semantics of context patterns, but also of normal patterns.
Within the scope of forAll a constructor pattern such as pTrue matches any
other constructor. Because of the quantifier forAll the context pattern pListC
has to match all sublists with its argument pattern. In any finite list one sublist
will be []. We could list this alternative in our definition:
forAll (pListC (pTrue <:> p_ ||| pNil))

This is acceptable for lists, but not for more complex types with more construc-
tors, such as abstract syntax trees. We would have to add a disjunction for every
constructor and the size of assertions would blow-up unacceptably. Therefore we
decided that within the scope of forAll a pattern built from (<:>) also matches
the empty list. In contrast, in an existential context the pattern describes which
structure is supposed to exist. Hence, non-matching sub-data-structures should
not match the pattern inside exists. So within the scope of forAll the pat-
tern exists pTrue <:> p_ matches both the empty list and a non-empty list
that does start with True. In contrast, the pattern pTrue <:> p_ also matches a
non-empty list starting with False. Additionally, the dependence of the pattern
semantics on quantification becomes crucial in the context of predicates with
several arguments, as we will show in Section 3.4.

The function assert implicitly surrounds its pattern by exists. Hence in
the preceding subsection the pattern context is existentially quantified.

3 Predicates

Pattern matching cannot express properties of primitive types, such as a number
being positive or a number being greater than another. For expressing such
properties, Haskell enriches standard pattern matching with guards, in which
the programmer specifies restrictions for the bound variables.

3.1 Unary Predicates

Because we cannot define a new variable binding construct within Haskell, we
cannot bind normal variables in our patterns. Instead, we introduce a new pat-
tern val that represents binding a variable to a value. To check a property of
such a “variable” we provide a function check.

For example, we define an assertion that checks whether a number is positive:

posInt :: Int -> Int

posInt = assert "positive" (check val (>0))

Similarly, we can define a more complex assertion that checks whether all ele-
ments of a list are positive:

allPos :: [Int] -> [Int]

allPos =

assert "all positive" (forAll (pListC ((check val (>0)) <:> p_)))

3.2 Predicates with several Arguments

Unary predicates are not very expressive. For instance, it is not possible to
compare two elements of a data structure, as it is necessary for expressing the
property of being sorted. Hence we extend the function check so that values
from different vals can be compared in a predicate:

sortedList :: [Int] -> [Int]

sortedList = assert "sorted"

(forAll (check (pListC (val <:> (pListC (val <:> p_)))) (<=)))

We select two elements within a list (respecting their positions in the list) by
means of two list contexts, and check whether these two elements are in order.
The assertion is checked for every possible combination of elements in the list.
Evaluating sortedList [2,4,6,3,5], the following failure is reported:

Assertion (sorted) failed: 2: 4 :6: 3 :_

The result of the application is the list itself. For printing this list, the list has to
be evaluated from left to right. When the list element 3 is evaluated, the assertion
fails. The list elements which cause the assertion to fail are highlighted. Because
the remaining list is not evaluated at all, an underscore is presented to the user
for the unevaluated tail of the list. With a different evaluation order of the values
within the list other failure positions may be reported. However, our assertions
are prompt. When an assertion fails during the evaluation of a data structure,
this is directly reported to the user. The data structure is not evaluated any
further.

Checking sortedList is expensive in time (O(n2), where n is the length of
the list). Using the transitivity of (<=), we can define a linear variant instead:

sortedLin :: [Int] -> [Int]

sortedLin = assert "sortedLin"

(forAll (check (pListC (val <:> val <:> p_)) (<=)))

However, assertions should be seen as high-level specifications for which it is
more important to be understandable and correct than to be efficient. Further-
more, this more efficient implementation has another drawback. If only every
second element of the list is evaluated, then sortedLin will not compare any
list element, i.e., for a list which is only evaluated to 1: :2: :1: sortedLin

does not fail, whereas the less efficient assertion sortedList would fail. On the
other hand, in practice evaluation orders like this one are uncommon and failure
of sortedLin will in most cases be detected as early as failure of sorted.

3.3 The Pattern Type

When introducing predicates with more than one argument, we have to extend
the definition of patterns (Pat) as well. Applying check to a pattern and a pred-
icate function, we have to guarantee that the predicate takes as many arguments
as vals occur in the pattern. Furthermore, the type of each value matched by
val and the corresponding argument of the predicate must agree. In other words,
check should have a type like
check :: Pat a (b1,. . .,bn) -> (b1->. . .->bn->Bool) -> Pat a ()

where b1,. . .,bn are the types of the values matched by vals. How can such a
type be expressed within Haskell 98? We want check to work with predicates of
any arity. Even a set of check functions indexed by arity would not do as a first
take at the type of a simple constructor pattern demonstrates:
(<:>) :: Pat a (b1,. . .,bn) -> Pat [a] (bn+1,. . .,bm)

-> Pat [a] (b1,. . .,bm)

How shall we handle all these varying numbers of arguments collected by val
for the predicate tested by check? The solution is to extend the type constructor
Pat not by one but by two type arguments. The first is the type of a predicate
passed as input to the pattern and the second is the type of a predicate resulting
from the pattern. We revise the types as follows:
check :: Pat a (b1->. . .->bn->Bool) Bool -> (b1->. . .->bn->Bool)

-> Pat a Bool Bool

(<:>) :: Pat a (b1->. . .->bm->Bool) (bn+1->. . .->bm->Bool) ->

Pat [a] (bn+1->. . .->bm->Bool) Bool

-> Pat [a] (b1->. . .->bm->Bool) Bool

These are still not Haskell 98 types, but they are instances of types that we can
use:
check :: Pat a b Bool -> b -> Pat a c c

(<:>) :: Pat a b c -> Pat [a] c d -> Pat [a] b d

So the second type argument of Pat is the type of a value passed into the pattern
and the third type argument is the type of a value passed back out of the pattern,
if the pattern matches. We always use patterns for which these passed values are
predicates or simply Boolean values.

The type of check expresses that the predicate of type b has to be applied
to all its arguments in the pattern to return a Boolean value. The variable
bindings within check are encapsulated. Also, while check tests the predicate
for its argument pattern, it also accepts a predicate as input which it passes
back unchanged, if the pattern matches.

We have the following type for the variable pattern:
val :: Pat a (a -> b) b

This type expresses that the input function is applied to the matched value and
the result is passed back. We do not discuss all modified type signatures here.

To make our assertions lazy, val can only be performed if the selected data
structure is fully evaluated. Otherwise the predicate would be tested on partially
evaluated values, which could involve further evaluation destroying the laziness
of our assertions. However, the pattern val is usually used for values of primitive
types, which cannot be evaluated partially at all.

3.4 Example: Equal Sets

Let us define the property that two sets (implemented as unordered lists with-
out repeated items) contain the same elements. A simple way to describe this
property would be the following:

For each element of the first list, there exists an equal element in the
second list and
for each element of the second list, there exists an equal element in the
first list.

Using our quantifiers, the first of these two assertions can easily be defined as
follows:

subset :: ([Int],[Int]) -> ([Int],[Int])

subset = assert "already subset"

(check (pPair (forAll (pListC (val <:> p_)))

(exists (pListC (val <:> p_))))

(==))

The quantifiers are nested with respect to the order in which they appear within
the linearly written formula. Hence, for every element of the first list an equal
element within the second list has to exist. Expressing the other direction is more
difficult, because the nesting of quantifiers (forAll exists) has to be applied
in the reverse order of the tuple elements. We need to first select any element of
the second list and then check whether there exists the same element within the
first list. This can be expressed by matching the same data structure twice, by
means of a modified conjunction operator

(+++) :: Pat a b c -> Pat a c d -> Pat a b d

which applies both argument patterns to the same data structure and collects
all vals within the two argument patterns (all combinations — like a product)
to apply a predicate to these by means of check. Using this operator, we can
define the complete assertion as:

equalSets :: ([Int],[Int]) -> ([Int],[Int])

equalSets = assert "equal sets"

(check (pPair (forAll (pListC (val <:> p_)))

(exists (pListC (val <:> p_)))

&&& (pPair p_ (forAll (pListC (val <:> p_)))

+++ pPair (exists (pListC (val <:> p_))) p_)))

(==))

Evaluation of equalSets ([1,2,3],[3,2,2,1]) just yields the tuple of sets,
whereas the call equalSets ([1,2,3],[3,2,4,2,1]) aborts with the message:

Assertion (equal sets) failed: (1:(2:(3: [])),3:(2:(4 :_)))

For the element 4 of the second list, no element was found in the first list. In the
presence of existential properties it is not so easy to show the programmer where
an assertion failed. The first list does not contain the element 4. Marking the
first list completely would present the reason for the failure of the existentially
quantified part. However, this would often mean that the whole data structure
is marked. Hence, we decided to mark only that part of the data structure,

at which the failure of the existential pattern is observed. To distinguish these
sub-terms from those causing failure of a universally quantified val we use a
lighter colour for marking. In this application the lists were evaluated from left
to right. As a consequence, the empty list made the decision that the assertion
fails possible and we mark it. If the elements of the list were evaluated in another
order, another element might be highlighted.

This example also shows why the design decision of making the constructor
pattern semantics dependent on quantification is crucial. If the constructor pat-
tern <:> does not match the empty list within a forAll context, then we have to
add patterns for all other constructors (the empty list), i.e., replace the pattern

(forAll (pListC (val <:> p_)))

by the disjunction

(forAll (pListC ((val <:> p_) ||| pNil)))

Unfortunately, this is not possible and results in a type error. The pattern pNil

does not yield a value for which we can check whether it occurs in the other list.

4 Further Patterns and Assertion Features

4.1 Functions

So far, our approach allows programmers to annotate arbitrary data structures
with assertions. However, where should a programmer add such assertions? To
express pre- and post-conditions, it would be nice to add assertions directly
to functions. Furthermore, in a higher-order language, it should be possible to
add assertions to functional arguments, functional return values, and functions
within data structures as well.

In our pattern logic we handle functions just like any other data structure.
The idea is that a function can be seen as a set of argument/result pairs which
are matched by the function pattern

(-->) :: Pat a c d -> Pat b d e -> Pat (a -> b) c e

The first argument of (-->) is matched against the argument the function is
applied to. The second argument is matched against the function result. An
assertion for functions will usually contain predicates relating arguments and
results. Hence, its type is similar to any pattern constructor of arity two.

Because again b can be a functional type, patterns for functions with higher
arity can be defined by nested (-->) applications. As an example we consider
the greatest common divisor (gcd) of two numbers. A reasonable assertion for
gcd is that the result is a factor of both arguments:

gcd :: Int -> Int -> Int

gcd = assert "result is factor of arguments"

(forAll (check (val --> val --> val)

(\x y res -> mod x res==0 && mod y res==0))) gcd’

gcd’ :: Int -> Int -> Int

gcd’ n m = let r = n ‘mod‘ m in if r == 0 then m else gcd n r

The algorithm is implemented by the function gcd’. For the assertion, we add
a wrapper gcd which checks every application of gcd’. The function works cor-
rectly for many arguments, but we finally get a report like:

Assertion (result is factor of arguments) failed: 6 -> 9 -> 6

The function gcd applied to the arguments 6 and 9 yields 6, which is wrong,
because 6 is not a factor of 9. The reason is the wrong argument of gcd in the
recursive call to gcd: we wrote n instead of m. After fixing the bug, the assertion
is always satisfied.

In contrast to data structures, which are only evaluated once during the
computation, functions can be applied many times. The assertion is checked for
each application and any failure is reported to the programmer.

The definition of gcd demonstrates how programmers should add assertions
to their functions. The defined function is renamed (here to gcd’) and a wrapper
with the original name (gcd) is defined.

Because (-->) is just a standard pattern constructor, its usage is not re-
stricted to top-level function definitions. We can also use it for asserting proper-
ties of functional arguments and results as well as for functions occurring within
data structures.

4.2 Negation and Implication

Finally we add negation to the logic: neg :: Pat a b Bool -> Pat a b Bool

We restrict negation to Boolean formulas, because using values selected by both
negated and non-negated patterns in the same predicate does not make sense.
We can, for example, define implication in the common way:

(==>) :: Pat a b Bool -> Pat a b Bool -> Pat a b Bool

(==>) pat1 pat2 = neg pat1 ||| pat2

4.3 Positions in Data Structures

For tree-like data structures it can be useful to compare positions of selected
values in the structure. We provide positional information by means of

valPos :: Pat a ((Pos,a) -> b) b

where Pos is an abstract data type which can be compared by functions such as

moreLeft :: Pos -> Pos -> Bool above :: Pos -> Pos -> Bool

p1 ‘moreLeft‘ p2 is true iff in an in-order traversal of the data structure p1

is reached before p2 is reached. p1 ‘above‘ p2 is true iff position p2 is within
the substructure at position p1 . For example, using positions, the property of
being sorted can be defined as follows:

sortedPos = assert "sortedPos"

(forAll (check (pListC (valPos <:> p_) +++ pListC (valPos <:> p_))

(\ (p1,x1) (p2,x2) -> p2 ‘moreLeft‘ p1 || x1<=x2))

We non-deterministically select two elements of the list and compare them taking
their positions into account.

class Observe a where

observe :: a -> Obs a

o0 :: a -> String -> Obs a

o1 :: Observe a => (a -> b) -> String -> a -> Obs b

o2 :: (Observe a,Observe b) => (a -> b -> c) ->

String -> a -> b -> Obs c

o3 :: (Observe a,Observe b,Observe c) => (a -> b -> c -> d) ->

String -> a -> b -> c -> Obs d

. . .

pat0 :: (a -> Maybe ()) -> Pat a b b

pat1 :: (a -> Maybe b) -> Pat b e f -> Pat a e f

pat2 :: (a -> Maybe (b,c)) -> Pat b e f -> Pat c f g -> Pat a e g

pat3 :: (a -> Maybe (b,c,d)) -> Pat b e f -> Pat c f g -> Pat d g h ->

Pat a e h

. . .

patContext :: (a -> [(Int,a)]) -> Pat a b c -> Pat a b c

Fig. 1. Combinators for defining patterns for new types

4.4 Deactivating Assertions

Any system supporting assertions enables the programmer to easily deactivate
assertions. Hence we provide a module AssertWithoutCheck with a function
assert that is just implemented as the identity function on its third argument
and does not check any assertion. To deactivate assertions the programmer re-
places import Assert by import AssertWithoutCheck in their program.

While it may be advisable to leave simple assertions (“argument greater
zero”) in production code, our pattern logic encourages the formulation of prop-
erties of large data structures. Testing these properties is inherently time con-
suming. For example, it is infeasible in practice to check in a compiler after every
update of the symbol table that the whole table is sorted with respect to a key.

5 Defining new Patterns

Using our library does not come for free. The user has to define pattern con-
structors for their own data types. For each algebraic data type they usually
have to define – a context pattern,

– pattern constructors for all its constructors, and
– an instance of the class Observe.

To make these definitions as simple as possible, we provide a set of combina-
tors, shown in Figure 1. The implementation of observers and the abstract data
type Obs a, will be discussed in more detail in Section 6. Here we concentrate
on what a programmer has to do to assert properties for their data types. As an
example, we introduce a data type Tree for polymorphic trees in Figure 2 and
show the definitions the programmer has to write for the pattern logic.

First, the programmer has to define an instance of the class Observe: for each
constructor, they have to define an observation function. We provide generic

data Tree a = Node (Tree a) a (Tree a) | Empty

instance Observe a => Observe (Tree a) where

observe (Node lt n rt) = o3 Node "Node" lt n rt

observe Empty = o0 Empty "Empty"

pNode :: Pat (Tree a) b c -> Pat a c d -> Pat (Tree a) d e

-> Pat (Tree a) b e

pNode = pat3 (\t -> case t of Node tl n tr -> Just (tl,n,tr)

_ -> Nothing)

pEmpty :: Pat (Tree a) b b

pEmpty = pat0 (\t -> case t of Empty -> Just ()

_ -> Nothing)

pTreeC :: Pat (Tree a) b c -> Pat (Tree a) b c

pTreeC = patContext (\t -> case t of Node tl n tr -> [(0,tl),(2,tr)]

Empty -> [])

Fig. 2. Extending the pattern logic for polymorphic trees

observers for constructors of any reasonable arity. These observers have to be
applied to the constructor function itself, a string representation of the construc-
tor and the arguments obtained from pattern matching. The programmer also
has to define the pattern constructors. Again, we provide generic versions for
pattern constructors (patn) for each arity. The only argument of these generic
patterns is a function which makes pattern matching a total function by means
of a Maybe type and a tuple of the same arity as the constructor. Finally, the
programmer has to define the context pattern for their new type. They should
use the generic function patContext, which takes a function that determines
all arguments in which the type is recursive. We encode these arguments as a
list of the argument number and the corresponding actual argument. Note, that
descending within a data type only makes sense for arguments of the same data
type. Whenever we want to descend another type, we have to add a context of
this type. For instance, consider a tree of lists of Ints. An arbitrary Int within
this tree can be selected by the pattern

pTreeC (pNode p_ (pListC (val <:> p_)) p_)

Although a user has to generate some boilerplate code, we minimised the
required amount of work and possible mistakes by defining the abstractions
on, patn and patContext. In practice the effort for introducing observers and
patterns for each user defined datatype should be small. For GHC users we
additionally provide a module that enables fully automatic derivation of such
instances and functions by means of Template Haskell [14].

5.1 Example: Clausify

The program clausify by Colin Runciman takes a propositional formula of type

data Prop = Sym Char | Neg Prop | Dis Prop Prop |

Con Prop Prop | Imp Prop Prop | Eqv Prop Prop

and transforms it into clausal form. The program is a composition of several sim-
ple transformation stages. After each successive stage, the following properties
should hold, cumulatively:

1. neg . exists $ pPropC (pImp p_ p_ ||| pEqv p_ p_)

Implication (Imp) and equivalence (Eqv) have been eliminated.
2. forAll (pPropC (exists (pNeg p_) ==> exists (pNeg (pSym p_))))

Neg (Sym) is the only permitted form of negation. Note, that ==> matches
its argument patterns against the same data.

3. neg . exists $ pPropC (pDis (pCon p_ p_) p_ |||

pDis p_ (pCon p_ p_))

No conjunction occurs within a disjunction.

Intentionally introduced faults usually cause the program to abort with a
pattern-match failure at a later stage. Our assertions always report a failed
assertion before such a pattern-match failure occurs, in contrast to [2], where
the same properties are asserted.

6 Implementation

We have space to give only a rough outline of how our assertion library works.
The implementation combines two ideas: We use the technique of the Haskell
Object Observation Debugger (HOOD) [6] to observe when a part of a value is
demanded and get access to this part of the value. We check assertion patterns
in coroutines that are implemented via continuations.

We have to check an assertion pattern for the argument of assert before
the argument is used by the context of the assertion application, but we can-
not evaluate the argument further than the context of the assertion application
demands. So we use the technique of HOOD and wrap the argument with a
function observe :: Observe a => a -> EvalTreeRef -> a. This function is
a non-strict identity, except that as a side-effect it records how far the value of
the argument has been demanded by the context. This information is recorded
in an evaluation tree1:

data EvalTree = Cons String [EvalTreeRef] | Uneval (IO ())

type EvalTreeRef = IORef EvalTree

Every time the argument is further evaluated, the evaluation tree grows at a leaf
via a mutable variable EvalTreeRef.

All suspended assertions (pattern matches) are stored as IO actions in un-
evaluated leaves. When the corresponding part is evaluated, the IO actions are
executed and thus checking continues, as the non-empty list case of the Observe

instance declaration for lists in Figure 3 shows. Checking an assertion pattern
is performed on the evaluation tree. The checking functions are defined in con-
tinuation style. So when a checking function comes across a leaf of the tree that
indicates a yet unevaluated part, the IO action is extended by further checks
(which themselves can again extend other actions when executed). So we have
implemented a scheduler for coroutines with waiting coroutines stored in the
evaluation tree. Assuming that the predicates used in patterns terminate, all
pattern checking terminates and hence we do not need preemptive concurrency

1 Hence, the type Obs already used in Figure 1 can be defined as:
type Obs a = EvalTreeRef -> a

instance Observe a => Observe [a] where

observe [] r = ...

observe (x:xs) r = unsafePerformIO $ do

Uneval routines <- readIORef r

rx <- newIORef (Uneval (return ()))

rxs <- newIORef (Uneval (return ()))

writeIORef r (Cons "(:)" [rx,rxs])

routines -- activate suspended assertions

return (observe x rx : observe xs rxs)

Fig. 3. Observe instance for lists

but cooperating coroutines suffice. The observe function ensures that all check-
ing coroutines run before a part of an argument is returned to the program
context. Thus an assertion will always report failure before a faulty value is
returned to the program context.

To illustrate the mechanism of extending suspended checks in more detail, we
briefly discuss the code of some patterns. The type Pat is defined as a function
with result type IO() which is stored in the initially unevaluated EvalTreeRef

within assert2:

type Join = Bool -> IO ()

type Pat a b c = Bool -> EvalTreeRef -> a -> b -> Join ->

(Join -> c -> IO ()) -> IO ()

Successively, the arguments of the Pat function have the following meanings

– a Boolean value distinguishing the two quantification contexts,
– the evaluation tree on which the pattern is supposed to be checked,
– the real value (which may not be evaluated further),
– the partially applied check function,
– a join function which combines results of parallel pattern matching by means

of (&&&) or (|||) and which depends on quantification,
– and a continuation passing a join function and the remaining checks (c) to

be performed in val patterns.

The pattern matching itself can be illustrated with the definition of (<:>):

(<:>) :: Pat a b c -> Pat [a] c d -> Pat [a] b d

(patx <:> patxs) ex r y p join c = do

evalT <- readIORef r

case evalT of

Uneval routines -> -- extend suspended assertions

writeIORef r (Uneval (routines >> patx <:> patxs ex r y p join c))

Cons _ rs -> case y of

(y:ys) -> let [rx,rxs] = rs in

patx ex rx x p join

(\join2 p2 -> patxs ex rxs xs p2 join2 c)

_ -> join (not ex)

2 To obtain better type error messages, Pat is defined as an abstract datatype guarded
by a constructor in the real implementation.

If the data structure to be matched has not been evaluated yet, then the sus-
pended check action is extended with the actual matching. Otherwise, pattern
matching is performed. If it succeeds, the sub-patterns are matched (in contin-
uation style). If it fails, no further pattern matches have to be performed; the
local result of pattern matching can be combined with other pattern matches
executed in “parallel”, which should become clearer from the definition of the
parallel conjunction and disjunction of patterns. Both can be defined by means
of a more general function (***) which stores two patterns within the evaluation
tree:

(***) :: Pat a b c -> Pat a b c -> Pat a b c

(***) pat1 pat2 ex r x p join c = do

rcount <- newIORef 2

pat1 ex r x p (newJoin rcount join) c

pat2 ex r x p (newJoin rcount join) c

where

newJoin = if ex then ... else ...

forAll :: Pat a b c -> Pat a b c

forAll pat _ = pat False

exists :: Pat a b c -> Pat a b c

exists pat _ = pat True

(&&&) :: Pat a -> Pat a -> Pat a

pat1 &&& pat2 = forAll (pat1 *** pat2)

(|||) :: Pat a -> Pat a -> Pat a

pat1 ||| pat2 = exists (pat1 *** pat2)

The initial value of join is a function that prints that the assertion succeeded or
failed, depending on the Boolean value. In the definition of the combinator (***)
the join continuation is extended. The newJoin applied in both coroutines uses
a common reference so that a coroutine can determine if it is the first to do
the join. Thus a parallel conjunction or disjunction can be implemented. When
the first coroutine yields False for an argument of a conjunction, the result of
the conjunction is determined and the coroutine evaluates the remaining join.
When the first coroutine yields True for an argument of a conjunction, it updates
the common reference accordingly and terminates. The second coroutine will
evaluate the remaining join. We obtain a parallel implementation of conjunction
and disjunction.

Unlike [2] our implementation of assertions does not use any features of
Concurrent Haskell [12], which is a substantial extension of Haskell that is fully
implemented only in GHC. Like [2] we need references to mutable variables in the
IO monad (IORefs) and the function unsafePerformIO :: IO a -> a. These
two language extension are provided by all Haskell systems. Using the function
unsafePerformIO is dangerous, because it bypasses the safety net of the type
system. The alternative would be to modify a compiler and its run-time system,
which would be non-portable and far more complex.

7 Related Work

Assertions have been used in programs since the 1970s [11, 13] and are directly
supported by many programming languages. In particular the object-oriented
programming language Eiffel is based on a “Design by Contract” philosophy
and language constructs directly support assertions to express contracts [8, 9].

Assertion-based contracts have been introduced into the Scheme commu-
nity [5]. Findler and Felleisen motivate how assertions enable the programmer
to express interesting properties that they cannot express in existing type sys-
tems. The two issues dealt with here, ensuring that assertions are both lazy
and prompt, do not arise for a strict language such as Scheme, because all ex-
pressions are fully evaluated before an asserted property needs to be checked.
Hence arbitrary Scheme expressions can be used to express properties, but a
pattern logic might increase the usability of such contracts as well. Properties of
functions are also expressed as properties of the argument-result pairs. A major
concern of [5] is to determine which part of a program has to be blamed for the
failure of an assertion. For example, when the pre-condition of a function fails,
the caller of the function is to blame, when the post-condition fails, the function
itself is to blame. Because in a lazily evaluated language the runtime stack does
not reflect the call-structure, assigning blame is more complex. A cooperation
with the Haskell tracer Hat [4] and its redex trail view may provide a solution in
the future. Recently the contracts for Scheme have been transferred to Haskell
[7], but without taking account of its lazy semantics.

Chitil, McNeill and Runciman [2] previously expressed the need for assertions
to be lazy in a lazy language. They give several implementations but because
properties are expressed as arbitrary Boolean-valued functions, assertions are
not prompt but often get stuck. Their most advanced implementation requires
Concurrent Haskell and their synchronisation that gives assertion threads higher
priority than the main computation can cause deadlocks. Properties of functions
can only be asserted by a special assertion combinator for functions with limited
expressibility. We can define a similar combinator with our pattern logic as well:

assertFun :: (Observe a, Observe b) => String ->

Pat a c d -> Pat b d Bool -> c -> (a -> b) -> (a -> b)

assertFun label patA patB p fun a = b’

where (a’,b’) = assert label (check (pPair patA patB) p) (a,fun a’)

To make assertions lazy, we have adapted the lazy observation technique of
the Haskell Object Observation Debugger (HOOD) [6]. In every application area
we know of it is used slightly differently. So the original HOOD records a linear
trace of events, in [2] a copy of the observed value is recorded, and here we
record the evaluation tree. We also intimately link scheduling of coroutines with
observations. Nonetheless we believe that it is possible to wrap up this useful
technique once and for all in a library that can then be used for the listed and
future application areas.

There are numerous proposals in the literature for extending the pattern
matching facilities of functional programming languages. Our context pattern
combinators were inspired by [10] and the pattern logic is similar to regular

expressions [1]. All these proposals aim to extend the expressiveness of the pro-
gramming language and the semantics of extended patterns is similar to that of
normal patterns. The pattern logic for prompt lazy assertions requires a different
semantics. Previous papers propose language extensions that require compiler
modifications or preprocessors, whereas we provide a portable library. Also, each
of our context pattern combinators matches only the data constructors of a single
type. Thus they are more specific and easier to use.

Basically our patterns describe a grammar and our pattern combinators are
parser combinators [15]. They do not parse a string or list of tokens but tree-
structured data. Hence our combinators have to leave the sequential structure of
normal parser combinators. As grammars describe context-free properties, the
similarity to parsing combinators gives an indication of the expressiveness of our
pattern logic; however, the combinator check used with several arguments goes
beyond grammars and allows the specification of context-sensitive properties.

QuickCheck is a library for testing Haskell programs with random data [3].
Properties are expressed as Haskell functions. For example, the property that
the function insert preserves order can be expressed as follows:

prop :: Int -> [Int] -> Property

prop x xs = sorted xs ==> sorted (insert x xs)

QuickCheck properties can use normal pattern matching and Boolean functions,
because they are only checked for total, finite data structures that are randomly
generated. Testing with random data and testing with real data as our assertions
do are two different methods which complement each other. A combined tool is
feasible, but to handle laziness it would need to use our pattern logic.

QuickCheck and assertions handle preconditions (like sorted xs in the ex-
ample) in distinct ways. In QuickCheck a precondition is a filter on the test data,
so that a strong precondition makes it hard to obtain a sufficient amount of test
data. When that is the case, the user is left with the difficult task of defining a
special test generator that generates data fulfilling the precondition (for example
generate sensible abstract syntax trees for testing compiler phases). In contrast,
our assertions check for every call of a function that its preconditions are met by
the caller. So assertions naturally support the contract between caller and callee
whereas for QuickCheck preconditions cause additional problems.

8 Conclusions

We have presented a new approach for assertions in lazy functional programming
languages such as Haskell. Our assertions do not modify the run-time behaviour
of lazy execution (unless a predicate used by check fails to terminate). Assertions
are implemented by means of a pattern logic, a high level, abstract specification
language. Assertions provide a parallel implementation of conjunction and dis-
junction, which makes it possible to report failure of assertions promptly, before
faulty values can effect the rest of the computation. Our approach is implemented
as a library, without any modification of the compiler or the run-time system,
and only needs common extensions of Haskell 98.

For future work, we plan to add assertions to more real-life programs. The
practical experience we will gain will guide us in improving our pattern logic.
We may revise some design decisions and possibly add further combinators to
make the logic more expressive and/or easier to use.

We will also investigate which function should be blamed when an assertion
fails. Combining assertions with the Haskell tracer Hat [4] should enable the
programmer to locate the function to blame and even the precise fault location.

References

1. N. Broberg, A. Farre, and J. Svenningsson. Regular expression patterns. In ICFP

’04: Proceedings of the ninth ACM SIGPLAN international conference on Func-

tional programming, pages 67–78, New York, NY, USA, 2004. ACM Press.
2. O. Chitil, D. McNeill, and C. Runciman. Lazy assertions. In P. Trinder, G. Michael-

son, and R. Pena, editors, Implementation of Functional Languages: 15th Interna-

tional Workshop, IFL 2003, LNCS 3145, pages 1–19. Springer, November 2004.
3. K. Claessen and R. J. M. Hughes. QuickCheck: a lightweight tool for random

testing of Haskell programs. In Proc. 5th Intl. ACM Conference on Functional

Programming, pages 268–279. ACM Press, 2000.
4. K. Claessen, C. Runciman, O. Chitil, J. Hughes, and M. Wallace. Testing and

Tracing Lazy Functional Programs using QuickCheck and Hat. In 4th Summer

School in Advanced Functional Programming, LNCS 2638, pages 59–99, August
2003.

5. R. B. Findler and M. Felleisen. Contracts for higher-order functions. In ICFP ’02:

Proceedings of the seventh ACM SIGPLAN international conference on Functional

programming, pages 48–59. ACM Press, 2002.
6. A. Gill. Debugging Haskell by observing intermediate datastructures. Electronic

Notes in Theoretical Computer Science, 41(1), 2001. (Proc. 2000 ACM SIGPLAN
Haskell Workshop).

7. R. Hinze, J. Jeuring, and A. Löh. Typed contracts for functional programming.
In Proceedings of the 8th International Symposium on Functional and Logic Pro-

gramming, FLOPS 2006, LNCS 3945, pages 208–225, 2006.
8. B. Meyer. Applying ”design by contract”. Computer, 25(10):40–51, 1992.
9. B. Meyer. Eiffel: The Language. Prentice-Hall, Inc., 1992.

10. M. Mohnen. Context patterns, part II. In Implementation of Functional Languages,
LNCS 1467, pages 338–357, 1997.

11. D. L. Parnas. A technique for software module specification with examples. Com-

mun. ACM, 15(5):330–336, 1972.
12. S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Conference

Record of POPL ’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 295–308, 21–24 Jan. 1996.
13. D. S. Rosenblum. A practical approach to programming with assertions. IEEE

Trans. Softw. Eng., 21(1):19–31, 1995.
14. T. Sheard and S. P. Jones. Template metaprogramming for haskell. In Haskell

Workshop 2002, October 2002.
15. Swierstra and Alcocer. Fast, error correcting parser combinators: A short tutorial.

In Theory and Practice of Informatics, Seminar on Current Trends in Theory and

Practice of Informatics, LNCS, volume 1725. 1999.

